Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_exponentialsmoothing.wasp
Title produced by softwareExponential Smoothing
Date of computationTue, 13 Dec 2016 21:27:07 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/13/t148166085818k6q9kcif0n4rh.htm/, Retrieved Fri, 01 Nov 2024 03:47:26 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=299223, Retrieved Fri, 01 Nov 2024 03:47:26 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact70
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Exponential Smoothing] [exponential smoot...] [2016-12-13 20:27:07] [130d73899007e5ff8a4f636b9bcfb397] [Current]
Feedback Forum

Post a new message
Dataseries X:
2180
1720
1580
1470
1330
4110
1210
2960
1580
4680
2350
1670
3290
990
1870
1420
900
3430
5000
2780
1840
4300
530
4650
4200
1420
1010
1710
1820
3630
1020
1560
5340
4090
2260
3860
5300
3310
2650
4690
4550
4530
2070
2380
5330
2440
2630
8300
5940
4630
5820
5490
7290
17160
1990
3860
6220
6980
7860
6510
6070
4660
8290
5670
3560
17020
6520
3960
7010
3040
4950
2650
12420
4420
15300
6240
5560
5300
9430
3450
4510
4100
10510
3600
8080
1330
3840
10060
6000
1190
5800
3180
3210
3480
7010
2040
700
7610
160
6980
1680
6550
790
9140
2770
650
5410
4670
5070
1470
3210
2140
8270
2810
5490
1310
4280
2180
3640
1490
80
340
21070
16890
9850
9060




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time1 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299223&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]1 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=299223&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299223&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center







Estimated Parameters of Exponential Smoothing
ParameterValue
alpha0.13020750194877
betaFALSE
gammaFALSE

\begin{tabular}{lllllllll}
\hline
Estimated Parameters of Exponential Smoothing \tabularnewline
Parameter & Value \tabularnewline
alpha & 0.13020750194877 \tabularnewline
beta & FALSE \tabularnewline
gamma & FALSE \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299223&T=1

[TABLE]
[ROW][C]Estimated Parameters of Exponential Smoothing[/C][/ROW]
[ROW][C]Parameter[/C][C]Value[/C][/ROW]
[ROW][C]alpha[/C][C]0.13020750194877[/C][/ROW]
[ROW][C]beta[/C][C]FALSE[/C][/ROW]
[ROW][C]gamma[/C][C]FALSE[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299223&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299223&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Estimated Parameters of Exponential Smoothing
ParameterValue
alpha0.13020750194877
betaFALSE
gammaFALSE







Interpolation Forecasts of Exponential Smoothing
tObservedFittedResiduals
217202180-460
315802120.10454910357-540.104549103566
414702049.77888497362-579.778884973624
513301974.28732467857-644.287324678565
641101890.396281594912219.60371840509
712102179.40533708464-969.40533708464
829602053.18148976704906.818510232956
915802171.25606270538-591.256062705382
1046802094.270087768452585.72991223155
1123502430.95152035433-80.9515203543306
1216702420.41102511004-750.411025110038
1332902322.70188009564967.298119904355
149902448.65135192813-1458.65135192813
1518702258.72400317937-388.724003179374
1614202208.10922177786-788.109221777862
179002105.49148874738-1205.49148874738
1834301948.527453377081481.47254662292
1950002141.426292878532858.57370712147
2027802513.63403441925266.365965580748
2118402548.31688140169-708.316881401693
2243002456.088709686241843.91129031376
235302696.17979261312-2166.17979261312
2446502414.126933045062235.87306695494
2542002705.25437976781494.7456202322
2614202899.8814730271-1479.8814730271
2710102707.18980324398-1697.18980324398
2817102486.20295863065-776.202958630653
2918202385.13551038211-565.135510382112
3036302311.550627312711318.44937268729
3110202483.22262657625-1463.22262657625
3215602292.70006357484-732.700063574837
3353402197.297018619053142.70298138095
3440902606.500523191621483.49947680838
3522602799.66328420914-539.663284209143
3638602729.39507607881130.6049239212
3753002876.608318913562423.39168108644
3833103192.15209595125117.847904048745
3926503207.49677714734-557.49677714734
4046903134.90651445051555.0934855495
4145503337.39135250071212.6086474993
4245303495.282095333061034.71790466694
4320703630.01012892141-1560.01012892141
4423803426.88510701977-1046.88510701977
4553303290.572812407362039.42718759264
4624403556.1215319102-1116.1215319102
4726303410.79413536894-780.794135368939
4883003309.12888146634990.8711185337
4959403958.977742358831981.02225764117
5046304216.9217018312413.078298168797
5158204270.707595145011549.29240485499
5254904472.437088969381017.56291103062
5372904604.931413690392685.06858630961
54171604954.5474868748812205.4525131251
5519906543.78896876324-4553.78896876324
5638605950.85148273871-2090.85148273871
5762205678.60693422542541.393065774577
5869805749.100372892321230.89962710768
5978605909.372738487681950.62726151232
6065106163.35904144237346.640958557632
6160706208.49429472928-138.494294729284
6246606190.46129857843-1530.46129857843
6382905991.183756061262298.81624393874
6456706290.50687662378-620.506876623775
6535606209.71222627656-2649.71222627656
66170205864.6998164099811155.30018359
6765207317.20358680388-797.203586803885
6839607213.40169922155-3253.40169922155
6970106789.78439113003220.215608869969
7030406818.45811545112-3778.45811545112
7149506326.47452302017-1376.47452302017
7226506147.24721388159-3497.24721388159
73124205691.879390464776728.12060953523
7444206567.93116784239-2147.93116784239
75153006288.254416119739011.74558388027
7662407461.65129679463-1221.65129679463
7755607302.58313318653-1742.58313318653
7853007075.68573647625-1775.68573647625
7994306844.478132483622585.52186751638
8034507181.13247608684-3731.13247608684
8145106695.31103693565-2185.31103693565
8241006410.76714583518-2310.76714583518
83105106109.887928190694400.11207180931
8436006682.81552935561-3082.81552935561
8580806281.409820309341798.59017969066
8613306515.59975463645-5185.59975463645
8738405840.39576447908-2000.39576447908
88100605579.929229077364480.07077092264
8960006163.2680527129-163.268052712899
9011906142.00932742111-4952.00932742111
9158005497.2205632706302.779436729398
9231805536.64471736859-2356.64471736859
9332105229.79189573926-2019.79189573926
9434804966.79983853868-1486.79983853868
9570104773.207345664732236.79265433527
9620405064.45452956308-3024.45452956308
977004670.64786051103-3970.64786051103
9876104153.639721475663456.36027852434
991604603.68375917727-4443.68375917727
10069804025.082797444482954.91720255552
10116804409.83518485468-2729.83518485468
10265504054.390164702892495.60983529711
1037904379.33728719571-3589.33728719571
10491403911.978645378385228.02135462162
10527704592.70624609849-1822.70624609849
1066504355.37621900758-3705.37621900758
10754103872.908437750231537.09156224977
10846704073.0492903373596.950709662697
10950704150.77675102903919.223248970971
11014704270.46651401077-2800.46651401077
11132103905.82476493025-695.824764930249
11221403815.22316049459-1675.22316049459
11382703597.096537559874672.90346244013
11428104205.54362425195-1395.54362425195
11554904023.833375077571466.16662492243
11613104214.73926874938-2904.73926874938
11742803836.52042475303443.479575246971
11821803894.26479241124-1714.26479241124
11936403671.05465611264-31.0546561126448
12014903667.01110691634-2177.01110691634
121803383.54792897004-3303.54792897004
1223402953.40120557082-2613.40120557082
123210702613.1167630035418456.8832369965
124168905016.3414230529711873.658576947
12598506562.380845349833287.61915465017
12690606990.453522835752069.54647716425

\begin{tabular}{lllllllll}
\hline
Interpolation Forecasts of Exponential Smoothing \tabularnewline
t & Observed & Fitted & Residuals \tabularnewline
2 & 1720 & 2180 & -460 \tabularnewline
3 & 1580 & 2120.10454910357 & -540.104549103566 \tabularnewline
4 & 1470 & 2049.77888497362 & -579.778884973624 \tabularnewline
5 & 1330 & 1974.28732467857 & -644.287324678565 \tabularnewline
6 & 4110 & 1890.39628159491 & 2219.60371840509 \tabularnewline
7 & 1210 & 2179.40533708464 & -969.40533708464 \tabularnewline
8 & 2960 & 2053.18148976704 & 906.818510232956 \tabularnewline
9 & 1580 & 2171.25606270538 & -591.256062705382 \tabularnewline
10 & 4680 & 2094.27008776845 & 2585.72991223155 \tabularnewline
11 & 2350 & 2430.95152035433 & -80.9515203543306 \tabularnewline
12 & 1670 & 2420.41102511004 & -750.411025110038 \tabularnewline
13 & 3290 & 2322.70188009564 & 967.298119904355 \tabularnewline
14 & 990 & 2448.65135192813 & -1458.65135192813 \tabularnewline
15 & 1870 & 2258.72400317937 & -388.724003179374 \tabularnewline
16 & 1420 & 2208.10922177786 & -788.109221777862 \tabularnewline
17 & 900 & 2105.49148874738 & -1205.49148874738 \tabularnewline
18 & 3430 & 1948.52745337708 & 1481.47254662292 \tabularnewline
19 & 5000 & 2141.42629287853 & 2858.57370712147 \tabularnewline
20 & 2780 & 2513.63403441925 & 266.365965580748 \tabularnewline
21 & 1840 & 2548.31688140169 & -708.316881401693 \tabularnewline
22 & 4300 & 2456.08870968624 & 1843.91129031376 \tabularnewline
23 & 530 & 2696.17979261312 & -2166.17979261312 \tabularnewline
24 & 4650 & 2414.12693304506 & 2235.87306695494 \tabularnewline
25 & 4200 & 2705.2543797678 & 1494.7456202322 \tabularnewline
26 & 1420 & 2899.8814730271 & -1479.8814730271 \tabularnewline
27 & 1010 & 2707.18980324398 & -1697.18980324398 \tabularnewline
28 & 1710 & 2486.20295863065 & -776.202958630653 \tabularnewline
29 & 1820 & 2385.13551038211 & -565.135510382112 \tabularnewline
30 & 3630 & 2311.55062731271 & 1318.44937268729 \tabularnewline
31 & 1020 & 2483.22262657625 & -1463.22262657625 \tabularnewline
32 & 1560 & 2292.70006357484 & -732.700063574837 \tabularnewline
33 & 5340 & 2197.29701861905 & 3142.70298138095 \tabularnewline
34 & 4090 & 2606.50052319162 & 1483.49947680838 \tabularnewline
35 & 2260 & 2799.66328420914 & -539.663284209143 \tabularnewline
36 & 3860 & 2729.3950760788 & 1130.6049239212 \tabularnewline
37 & 5300 & 2876.60831891356 & 2423.39168108644 \tabularnewline
38 & 3310 & 3192.15209595125 & 117.847904048745 \tabularnewline
39 & 2650 & 3207.49677714734 & -557.49677714734 \tabularnewline
40 & 4690 & 3134.9065144505 & 1555.0934855495 \tabularnewline
41 & 4550 & 3337.3913525007 & 1212.6086474993 \tabularnewline
42 & 4530 & 3495.28209533306 & 1034.71790466694 \tabularnewline
43 & 2070 & 3630.01012892141 & -1560.01012892141 \tabularnewline
44 & 2380 & 3426.88510701977 & -1046.88510701977 \tabularnewline
45 & 5330 & 3290.57281240736 & 2039.42718759264 \tabularnewline
46 & 2440 & 3556.1215319102 & -1116.1215319102 \tabularnewline
47 & 2630 & 3410.79413536894 & -780.794135368939 \tabularnewline
48 & 8300 & 3309.1288814663 & 4990.8711185337 \tabularnewline
49 & 5940 & 3958.97774235883 & 1981.02225764117 \tabularnewline
50 & 4630 & 4216.9217018312 & 413.078298168797 \tabularnewline
51 & 5820 & 4270.70759514501 & 1549.29240485499 \tabularnewline
52 & 5490 & 4472.43708896938 & 1017.56291103062 \tabularnewline
53 & 7290 & 4604.93141369039 & 2685.06858630961 \tabularnewline
54 & 17160 & 4954.54748687488 & 12205.4525131251 \tabularnewline
55 & 1990 & 6543.78896876324 & -4553.78896876324 \tabularnewline
56 & 3860 & 5950.85148273871 & -2090.85148273871 \tabularnewline
57 & 6220 & 5678.60693422542 & 541.393065774577 \tabularnewline
58 & 6980 & 5749.10037289232 & 1230.89962710768 \tabularnewline
59 & 7860 & 5909.37273848768 & 1950.62726151232 \tabularnewline
60 & 6510 & 6163.35904144237 & 346.640958557632 \tabularnewline
61 & 6070 & 6208.49429472928 & -138.494294729284 \tabularnewline
62 & 4660 & 6190.46129857843 & -1530.46129857843 \tabularnewline
63 & 8290 & 5991.18375606126 & 2298.81624393874 \tabularnewline
64 & 5670 & 6290.50687662378 & -620.506876623775 \tabularnewline
65 & 3560 & 6209.71222627656 & -2649.71222627656 \tabularnewline
66 & 17020 & 5864.69981640998 & 11155.30018359 \tabularnewline
67 & 6520 & 7317.20358680388 & -797.203586803885 \tabularnewline
68 & 3960 & 7213.40169922155 & -3253.40169922155 \tabularnewline
69 & 7010 & 6789.78439113003 & 220.215608869969 \tabularnewline
70 & 3040 & 6818.45811545112 & -3778.45811545112 \tabularnewline
71 & 4950 & 6326.47452302017 & -1376.47452302017 \tabularnewline
72 & 2650 & 6147.24721388159 & -3497.24721388159 \tabularnewline
73 & 12420 & 5691.87939046477 & 6728.12060953523 \tabularnewline
74 & 4420 & 6567.93116784239 & -2147.93116784239 \tabularnewline
75 & 15300 & 6288.25441611973 & 9011.74558388027 \tabularnewline
76 & 6240 & 7461.65129679463 & -1221.65129679463 \tabularnewline
77 & 5560 & 7302.58313318653 & -1742.58313318653 \tabularnewline
78 & 5300 & 7075.68573647625 & -1775.68573647625 \tabularnewline
79 & 9430 & 6844.47813248362 & 2585.52186751638 \tabularnewline
80 & 3450 & 7181.13247608684 & -3731.13247608684 \tabularnewline
81 & 4510 & 6695.31103693565 & -2185.31103693565 \tabularnewline
82 & 4100 & 6410.76714583518 & -2310.76714583518 \tabularnewline
83 & 10510 & 6109.88792819069 & 4400.11207180931 \tabularnewline
84 & 3600 & 6682.81552935561 & -3082.81552935561 \tabularnewline
85 & 8080 & 6281.40982030934 & 1798.59017969066 \tabularnewline
86 & 1330 & 6515.59975463645 & -5185.59975463645 \tabularnewline
87 & 3840 & 5840.39576447908 & -2000.39576447908 \tabularnewline
88 & 10060 & 5579.92922907736 & 4480.07077092264 \tabularnewline
89 & 6000 & 6163.2680527129 & -163.268052712899 \tabularnewline
90 & 1190 & 6142.00932742111 & -4952.00932742111 \tabularnewline
91 & 5800 & 5497.2205632706 & 302.779436729398 \tabularnewline
92 & 3180 & 5536.64471736859 & -2356.64471736859 \tabularnewline
93 & 3210 & 5229.79189573926 & -2019.79189573926 \tabularnewline
94 & 3480 & 4966.79983853868 & -1486.79983853868 \tabularnewline
95 & 7010 & 4773.20734566473 & 2236.79265433527 \tabularnewline
96 & 2040 & 5064.45452956308 & -3024.45452956308 \tabularnewline
97 & 700 & 4670.64786051103 & -3970.64786051103 \tabularnewline
98 & 7610 & 4153.63972147566 & 3456.36027852434 \tabularnewline
99 & 160 & 4603.68375917727 & -4443.68375917727 \tabularnewline
100 & 6980 & 4025.08279744448 & 2954.91720255552 \tabularnewline
101 & 1680 & 4409.83518485468 & -2729.83518485468 \tabularnewline
102 & 6550 & 4054.39016470289 & 2495.60983529711 \tabularnewline
103 & 790 & 4379.33728719571 & -3589.33728719571 \tabularnewline
104 & 9140 & 3911.97864537838 & 5228.02135462162 \tabularnewline
105 & 2770 & 4592.70624609849 & -1822.70624609849 \tabularnewline
106 & 650 & 4355.37621900758 & -3705.37621900758 \tabularnewline
107 & 5410 & 3872.90843775023 & 1537.09156224977 \tabularnewline
108 & 4670 & 4073.0492903373 & 596.950709662697 \tabularnewline
109 & 5070 & 4150.77675102903 & 919.223248970971 \tabularnewline
110 & 1470 & 4270.46651401077 & -2800.46651401077 \tabularnewline
111 & 3210 & 3905.82476493025 & -695.824764930249 \tabularnewline
112 & 2140 & 3815.22316049459 & -1675.22316049459 \tabularnewline
113 & 8270 & 3597.09653755987 & 4672.90346244013 \tabularnewline
114 & 2810 & 4205.54362425195 & -1395.54362425195 \tabularnewline
115 & 5490 & 4023.83337507757 & 1466.16662492243 \tabularnewline
116 & 1310 & 4214.73926874938 & -2904.73926874938 \tabularnewline
117 & 4280 & 3836.52042475303 & 443.479575246971 \tabularnewline
118 & 2180 & 3894.26479241124 & -1714.26479241124 \tabularnewline
119 & 3640 & 3671.05465611264 & -31.0546561126448 \tabularnewline
120 & 1490 & 3667.01110691634 & -2177.01110691634 \tabularnewline
121 & 80 & 3383.54792897004 & -3303.54792897004 \tabularnewline
122 & 340 & 2953.40120557082 & -2613.40120557082 \tabularnewline
123 & 21070 & 2613.11676300354 & 18456.8832369965 \tabularnewline
124 & 16890 & 5016.34142305297 & 11873.658576947 \tabularnewline
125 & 9850 & 6562.38084534983 & 3287.61915465017 \tabularnewline
126 & 9060 & 6990.45352283575 & 2069.54647716425 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299223&T=2

[TABLE]
[ROW][C]Interpolation Forecasts of Exponential Smoothing[/C][/ROW]
[ROW][C]t[/C][C]Observed[/C][C]Fitted[/C][C]Residuals[/C][/ROW]
[ROW][C]2[/C][C]1720[/C][C]2180[/C][C]-460[/C][/ROW]
[ROW][C]3[/C][C]1580[/C][C]2120.10454910357[/C][C]-540.104549103566[/C][/ROW]
[ROW][C]4[/C][C]1470[/C][C]2049.77888497362[/C][C]-579.778884973624[/C][/ROW]
[ROW][C]5[/C][C]1330[/C][C]1974.28732467857[/C][C]-644.287324678565[/C][/ROW]
[ROW][C]6[/C][C]4110[/C][C]1890.39628159491[/C][C]2219.60371840509[/C][/ROW]
[ROW][C]7[/C][C]1210[/C][C]2179.40533708464[/C][C]-969.40533708464[/C][/ROW]
[ROW][C]8[/C][C]2960[/C][C]2053.18148976704[/C][C]906.818510232956[/C][/ROW]
[ROW][C]9[/C][C]1580[/C][C]2171.25606270538[/C][C]-591.256062705382[/C][/ROW]
[ROW][C]10[/C][C]4680[/C][C]2094.27008776845[/C][C]2585.72991223155[/C][/ROW]
[ROW][C]11[/C][C]2350[/C][C]2430.95152035433[/C][C]-80.9515203543306[/C][/ROW]
[ROW][C]12[/C][C]1670[/C][C]2420.41102511004[/C][C]-750.411025110038[/C][/ROW]
[ROW][C]13[/C][C]3290[/C][C]2322.70188009564[/C][C]967.298119904355[/C][/ROW]
[ROW][C]14[/C][C]990[/C][C]2448.65135192813[/C][C]-1458.65135192813[/C][/ROW]
[ROW][C]15[/C][C]1870[/C][C]2258.72400317937[/C][C]-388.724003179374[/C][/ROW]
[ROW][C]16[/C][C]1420[/C][C]2208.10922177786[/C][C]-788.109221777862[/C][/ROW]
[ROW][C]17[/C][C]900[/C][C]2105.49148874738[/C][C]-1205.49148874738[/C][/ROW]
[ROW][C]18[/C][C]3430[/C][C]1948.52745337708[/C][C]1481.47254662292[/C][/ROW]
[ROW][C]19[/C][C]5000[/C][C]2141.42629287853[/C][C]2858.57370712147[/C][/ROW]
[ROW][C]20[/C][C]2780[/C][C]2513.63403441925[/C][C]266.365965580748[/C][/ROW]
[ROW][C]21[/C][C]1840[/C][C]2548.31688140169[/C][C]-708.316881401693[/C][/ROW]
[ROW][C]22[/C][C]4300[/C][C]2456.08870968624[/C][C]1843.91129031376[/C][/ROW]
[ROW][C]23[/C][C]530[/C][C]2696.17979261312[/C][C]-2166.17979261312[/C][/ROW]
[ROW][C]24[/C][C]4650[/C][C]2414.12693304506[/C][C]2235.87306695494[/C][/ROW]
[ROW][C]25[/C][C]4200[/C][C]2705.2543797678[/C][C]1494.7456202322[/C][/ROW]
[ROW][C]26[/C][C]1420[/C][C]2899.8814730271[/C][C]-1479.8814730271[/C][/ROW]
[ROW][C]27[/C][C]1010[/C][C]2707.18980324398[/C][C]-1697.18980324398[/C][/ROW]
[ROW][C]28[/C][C]1710[/C][C]2486.20295863065[/C][C]-776.202958630653[/C][/ROW]
[ROW][C]29[/C][C]1820[/C][C]2385.13551038211[/C][C]-565.135510382112[/C][/ROW]
[ROW][C]30[/C][C]3630[/C][C]2311.55062731271[/C][C]1318.44937268729[/C][/ROW]
[ROW][C]31[/C][C]1020[/C][C]2483.22262657625[/C][C]-1463.22262657625[/C][/ROW]
[ROW][C]32[/C][C]1560[/C][C]2292.70006357484[/C][C]-732.700063574837[/C][/ROW]
[ROW][C]33[/C][C]5340[/C][C]2197.29701861905[/C][C]3142.70298138095[/C][/ROW]
[ROW][C]34[/C][C]4090[/C][C]2606.50052319162[/C][C]1483.49947680838[/C][/ROW]
[ROW][C]35[/C][C]2260[/C][C]2799.66328420914[/C][C]-539.663284209143[/C][/ROW]
[ROW][C]36[/C][C]3860[/C][C]2729.3950760788[/C][C]1130.6049239212[/C][/ROW]
[ROW][C]37[/C][C]5300[/C][C]2876.60831891356[/C][C]2423.39168108644[/C][/ROW]
[ROW][C]38[/C][C]3310[/C][C]3192.15209595125[/C][C]117.847904048745[/C][/ROW]
[ROW][C]39[/C][C]2650[/C][C]3207.49677714734[/C][C]-557.49677714734[/C][/ROW]
[ROW][C]40[/C][C]4690[/C][C]3134.9065144505[/C][C]1555.0934855495[/C][/ROW]
[ROW][C]41[/C][C]4550[/C][C]3337.3913525007[/C][C]1212.6086474993[/C][/ROW]
[ROW][C]42[/C][C]4530[/C][C]3495.28209533306[/C][C]1034.71790466694[/C][/ROW]
[ROW][C]43[/C][C]2070[/C][C]3630.01012892141[/C][C]-1560.01012892141[/C][/ROW]
[ROW][C]44[/C][C]2380[/C][C]3426.88510701977[/C][C]-1046.88510701977[/C][/ROW]
[ROW][C]45[/C][C]5330[/C][C]3290.57281240736[/C][C]2039.42718759264[/C][/ROW]
[ROW][C]46[/C][C]2440[/C][C]3556.1215319102[/C][C]-1116.1215319102[/C][/ROW]
[ROW][C]47[/C][C]2630[/C][C]3410.79413536894[/C][C]-780.794135368939[/C][/ROW]
[ROW][C]48[/C][C]8300[/C][C]3309.1288814663[/C][C]4990.8711185337[/C][/ROW]
[ROW][C]49[/C][C]5940[/C][C]3958.97774235883[/C][C]1981.02225764117[/C][/ROW]
[ROW][C]50[/C][C]4630[/C][C]4216.9217018312[/C][C]413.078298168797[/C][/ROW]
[ROW][C]51[/C][C]5820[/C][C]4270.70759514501[/C][C]1549.29240485499[/C][/ROW]
[ROW][C]52[/C][C]5490[/C][C]4472.43708896938[/C][C]1017.56291103062[/C][/ROW]
[ROW][C]53[/C][C]7290[/C][C]4604.93141369039[/C][C]2685.06858630961[/C][/ROW]
[ROW][C]54[/C][C]17160[/C][C]4954.54748687488[/C][C]12205.4525131251[/C][/ROW]
[ROW][C]55[/C][C]1990[/C][C]6543.78896876324[/C][C]-4553.78896876324[/C][/ROW]
[ROW][C]56[/C][C]3860[/C][C]5950.85148273871[/C][C]-2090.85148273871[/C][/ROW]
[ROW][C]57[/C][C]6220[/C][C]5678.60693422542[/C][C]541.393065774577[/C][/ROW]
[ROW][C]58[/C][C]6980[/C][C]5749.10037289232[/C][C]1230.89962710768[/C][/ROW]
[ROW][C]59[/C][C]7860[/C][C]5909.37273848768[/C][C]1950.62726151232[/C][/ROW]
[ROW][C]60[/C][C]6510[/C][C]6163.35904144237[/C][C]346.640958557632[/C][/ROW]
[ROW][C]61[/C][C]6070[/C][C]6208.49429472928[/C][C]-138.494294729284[/C][/ROW]
[ROW][C]62[/C][C]4660[/C][C]6190.46129857843[/C][C]-1530.46129857843[/C][/ROW]
[ROW][C]63[/C][C]8290[/C][C]5991.18375606126[/C][C]2298.81624393874[/C][/ROW]
[ROW][C]64[/C][C]5670[/C][C]6290.50687662378[/C][C]-620.506876623775[/C][/ROW]
[ROW][C]65[/C][C]3560[/C][C]6209.71222627656[/C][C]-2649.71222627656[/C][/ROW]
[ROW][C]66[/C][C]17020[/C][C]5864.69981640998[/C][C]11155.30018359[/C][/ROW]
[ROW][C]67[/C][C]6520[/C][C]7317.20358680388[/C][C]-797.203586803885[/C][/ROW]
[ROW][C]68[/C][C]3960[/C][C]7213.40169922155[/C][C]-3253.40169922155[/C][/ROW]
[ROW][C]69[/C][C]7010[/C][C]6789.78439113003[/C][C]220.215608869969[/C][/ROW]
[ROW][C]70[/C][C]3040[/C][C]6818.45811545112[/C][C]-3778.45811545112[/C][/ROW]
[ROW][C]71[/C][C]4950[/C][C]6326.47452302017[/C][C]-1376.47452302017[/C][/ROW]
[ROW][C]72[/C][C]2650[/C][C]6147.24721388159[/C][C]-3497.24721388159[/C][/ROW]
[ROW][C]73[/C][C]12420[/C][C]5691.87939046477[/C][C]6728.12060953523[/C][/ROW]
[ROW][C]74[/C][C]4420[/C][C]6567.93116784239[/C][C]-2147.93116784239[/C][/ROW]
[ROW][C]75[/C][C]15300[/C][C]6288.25441611973[/C][C]9011.74558388027[/C][/ROW]
[ROW][C]76[/C][C]6240[/C][C]7461.65129679463[/C][C]-1221.65129679463[/C][/ROW]
[ROW][C]77[/C][C]5560[/C][C]7302.58313318653[/C][C]-1742.58313318653[/C][/ROW]
[ROW][C]78[/C][C]5300[/C][C]7075.68573647625[/C][C]-1775.68573647625[/C][/ROW]
[ROW][C]79[/C][C]9430[/C][C]6844.47813248362[/C][C]2585.52186751638[/C][/ROW]
[ROW][C]80[/C][C]3450[/C][C]7181.13247608684[/C][C]-3731.13247608684[/C][/ROW]
[ROW][C]81[/C][C]4510[/C][C]6695.31103693565[/C][C]-2185.31103693565[/C][/ROW]
[ROW][C]82[/C][C]4100[/C][C]6410.76714583518[/C][C]-2310.76714583518[/C][/ROW]
[ROW][C]83[/C][C]10510[/C][C]6109.88792819069[/C][C]4400.11207180931[/C][/ROW]
[ROW][C]84[/C][C]3600[/C][C]6682.81552935561[/C][C]-3082.81552935561[/C][/ROW]
[ROW][C]85[/C][C]8080[/C][C]6281.40982030934[/C][C]1798.59017969066[/C][/ROW]
[ROW][C]86[/C][C]1330[/C][C]6515.59975463645[/C][C]-5185.59975463645[/C][/ROW]
[ROW][C]87[/C][C]3840[/C][C]5840.39576447908[/C][C]-2000.39576447908[/C][/ROW]
[ROW][C]88[/C][C]10060[/C][C]5579.92922907736[/C][C]4480.07077092264[/C][/ROW]
[ROW][C]89[/C][C]6000[/C][C]6163.2680527129[/C][C]-163.268052712899[/C][/ROW]
[ROW][C]90[/C][C]1190[/C][C]6142.00932742111[/C][C]-4952.00932742111[/C][/ROW]
[ROW][C]91[/C][C]5800[/C][C]5497.2205632706[/C][C]302.779436729398[/C][/ROW]
[ROW][C]92[/C][C]3180[/C][C]5536.64471736859[/C][C]-2356.64471736859[/C][/ROW]
[ROW][C]93[/C][C]3210[/C][C]5229.79189573926[/C][C]-2019.79189573926[/C][/ROW]
[ROW][C]94[/C][C]3480[/C][C]4966.79983853868[/C][C]-1486.79983853868[/C][/ROW]
[ROW][C]95[/C][C]7010[/C][C]4773.20734566473[/C][C]2236.79265433527[/C][/ROW]
[ROW][C]96[/C][C]2040[/C][C]5064.45452956308[/C][C]-3024.45452956308[/C][/ROW]
[ROW][C]97[/C][C]700[/C][C]4670.64786051103[/C][C]-3970.64786051103[/C][/ROW]
[ROW][C]98[/C][C]7610[/C][C]4153.63972147566[/C][C]3456.36027852434[/C][/ROW]
[ROW][C]99[/C][C]160[/C][C]4603.68375917727[/C][C]-4443.68375917727[/C][/ROW]
[ROW][C]100[/C][C]6980[/C][C]4025.08279744448[/C][C]2954.91720255552[/C][/ROW]
[ROW][C]101[/C][C]1680[/C][C]4409.83518485468[/C][C]-2729.83518485468[/C][/ROW]
[ROW][C]102[/C][C]6550[/C][C]4054.39016470289[/C][C]2495.60983529711[/C][/ROW]
[ROW][C]103[/C][C]790[/C][C]4379.33728719571[/C][C]-3589.33728719571[/C][/ROW]
[ROW][C]104[/C][C]9140[/C][C]3911.97864537838[/C][C]5228.02135462162[/C][/ROW]
[ROW][C]105[/C][C]2770[/C][C]4592.70624609849[/C][C]-1822.70624609849[/C][/ROW]
[ROW][C]106[/C][C]650[/C][C]4355.37621900758[/C][C]-3705.37621900758[/C][/ROW]
[ROW][C]107[/C][C]5410[/C][C]3872.90843775023[/C][C]1537.09156224977[/C][/ROW]
[ROW][C]108[/C][C]4670[/C][C]4073.0492903373[/C][C]596.950709662697[/C][/ROW]
[ROW][C]109[/C][C]5070[/C][C]4150.77675102903[/C][C]919.223248970971[/C][/ROW]
[ROW][C]110[/C][C]1470[/C][C]4270.46651401077[/C][C]-2800.46651401077[/C][/ROW]
[ROW][C]111[/C][C]3210[/C][C]3905.82476493025[/C][C]-695.824764930249[/C][/ROW]
[ROW][C]112[/C][C]2140[/C][C]3815.22316049459[/C][C]-1675.22316049459[/C][/ROW]
[ROW][C]113[/C][C]8270[/C][C]3597.09653755987[/C][C]4672.90346244013[/C][/ROW]
[ROW][C]114[/C][C]2810[/C][C]4205.54362425195[/C][C]-1395.54362425195[/C][/ROW]
[ROW][C]115[/C][C]5490[/C][C]4023.83337507757[/C][C]1466.16662492243[/C][/ROW]
[ROW][C]116[/C][C]1310[/C][C]4214.73926874938[/C][C]-2904.73926874938[/C][/ROW]
[ROW][C]117[/C][C]4280[/C][C]3836.52042475303[/C][C]443.479575246971[/C][/ROW]
[ROW][C]118[/C][C]2180[/C][C]3894.26479241124[/C][C]-1714.26479241124[/C][/ROW]
[ROW][C]119[/C][C]3640[/C][C]3671.05465611264[/C][C]-31.0546561126448[/C][/ROW]
[ROW][C]120[/C][C]1490[/C][C]3667.01110691634[/C][C]-2177.01110691634[/C][/ROW]
[ROW][C]121[/C][C]80[/C][C]3383.54792897004[/C][C]-3303.54792897004[/C][/ROW]
[ROW][C]122[/C][C]340[/C][C]2953.40120557082[/C][C]-2613.40120557082[/C][/ROW]
[ROW][C]123[/C][C]21070[/C][C]2613.11676300354[/C][C]18456.8832369965[/C][/ROW]
[ROW][C]124[/C][C]16890[/C][C]5016.34142305297[/C][C]11873.658576947[/C][/ROW]
[ROW][C]125[/C][C]9850[/C][C]6562.38084534983[/C][C]3287.61915465017[/C][/ROW]
[ROW][C]126[/C][C]9060[/C][C]6990.45352283575[/C][C]2069.54647716425[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299223&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299223&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Interpolation Forecasts of Exponential Smoothing
tObservedFittedResiduals
217202180-460
315802120.10454910357-540.104549103566
414702049.77888497362-579.778884973624
513301974.28732467857-644.287324678565
641101890.396281594912219.60371840509
712102179.40533708464-969.40533708464
829602053.18148976704906.818510232956
915802171.25606270538-591.256062705382
1046802094.270087768452585.72991223155
1123502430.95152035433-80.9515203543306
1216702420.41102511004-750.411025110038
1332902322.70188009564967.298119904355
149902448.65135192813-1458.65135192813
1518702258.72400317937-388.724003179374
1614202208.10922177786-788.109221777862
179002105.49148874738-1205.49148874738
1834301948.527453377081481.47254662292
1950002141.426292878532858.57370712147
2027802513.63403441925266.365965580748
2118402548.31688140169-708.316881401693
2243002456.088709686241843.91129031376
235302696.17979261312-2166.17979261312
2446502414.126933045062235.87306695494
2542002705.25437976781494.7456202322
2614202899.8814730271-1479.8814730271
2710102707.18980324398-1697.18980324398
2817102486.20295863065-776.202958630653
2918202385.13551038211-565.135510382112
3036302311.550627312711318.44937268729
3110202483.22262657625-1463.22262657625
3215602292.70006357484-732.700063574837
3353402197.297018619053142.70298138095
3440902606.500523191621483.49947680838
3522602799.66328420914-539.663284209143
3638602729.39507607881130.6049239212
3753002876.608318913562423.39168108644
3833103192.15209595125117.847904048745
3926503207.49677714734-557.49677714734
4046903134.90651445051555.0934855495
4145503337.39135250071212.6086474993
4245303495.282095333061034.71790466694
4320703630.01012892141-1560.01012892141
4423803426.88510701977-1046.88510701977
4553303290.572812407362039.42718759264
4624403556.1215319102-1116.1215319102
4726303410.79413536894-780.794135368939
4883003309.12888146634990.8711185337
4959403958.977742358831981.02225764117
5046304216.9217018312413.078298168797
5158204270.707595145011549.29240485499
5254904472.437088969381017.56291103062
5372904604.931413690392685.06858630961
54171604954.5474868748812205.4525131251
5519906543.78896876324-4553.78896876324
5638605950.85148273871-2090.85148273871
5762205678.60693422542541.393065774577
5869805749.100372892321230.89962710768
5978605909.372738487681950.62726151232
6065106163.35904144237346.640958557632
6160706208.49429472928-138.494294729284
6246606190.46129857843-1530.46129857843
6382905991.183756061262298.81624393874
6456706290.50687662378-620.506876623775
6535606209.71222627656-2649.71222627656
66170205864.6998164099811155.30018359
6765207317.20358680388-797.203586803885
6839607213.40169922155-3253.40169922155
6970106789.78439113003220.215608869969
7030406818.45811545112-3778.45811545112
7149506326.47452302017-1376.47452302017
7226506147.24721388159-3497.24721388159
73124205691.879390464776728.12060953523
7444206567.93116784239-2147.93116784239
75153006288.254416119739011.74558388027
7662407461.65129679463-1221.65129679463
7755607302.58313318653-1742.58313318653
7853007075.68573647625-1775.68573647625
7994306844.478132483622585.52186751638
8034507181.13247608684-3731.13247608684
8145106695.31103693565-2185.31103693565
8241006410.76714583518-2310.76714583518
83105106109.887928190694400.11207180931
8436006682.81552935561-3082.81552935561
8580806281.409820309341798.59017969066
8613306515.59975463645-5185.59975463645
8738405840.39576447908-2000.39576447908
88100605579.929229077364480.07077092264
8960006163.2680527129-163.268052712899
9011906142.00932742111-4952.00932742111
9158005497.2205632706302.779436729398
9231805536.64471736859-2356.64471736859
9332105229.79189573926-2019.79189573926
9434804966.79983853868-1486.79983853868
9570104773.207345664732236.79265433527
9620405064.45452956308-3024.45452956308
977004670.64786051103-3970.64786051103
9876104153.639721475663456.36027852434
991604603.68375917727-4443.68375917727
10069804025.082797444482954.91720255552
10116804409.83518485468-2729.83518485468
10265504054.390164702892495.60983529711
1037904379.33728719571-3589.33728719571
10491403911.978645378385228.02135462162
10527704592.70624609849-1822.70624609849
1066504355.37621900758-3705.37621900758
10754103872.908437750231537.09156224977
10846704073.0492903373596.950709662697
10950704150.77675102903919.223248970971
11014704270.46651401077-2800.46651401077
11132103905.82476493025-695.824764930249
11221403815.22316049459-1675.22316049459
11382703597.096537559874672.90346244013
11428104205.54362425195-1395.54362425195
11554904023.833375077571466.16662492243
11613104214.73926874938-2904.73926874938
11742803836.52042475303443.479575246971
11821803894.26479241124-1714.26479241124
11936403671.05465611264-31.0546561126448
12014903667.01110691634-2177.01110691634
121803383.54792897004-3303.54792897004
1223402953.40120557082-2613.40120557082
123210702613.1167630035418456.8832369965
124168905016.3414230529711873.658576947
12598506562.380845349833287.61915465017
12690606990.453522835752069.54647716425







Extrapolation Forecasts of Exponential Smoothing
tForecast95% Lower Bound95% Upper Bound
1277259.92399979418488.54729949878914031.3007000896
1287259.92399979418431.38761398398514088.4603856044
1297259.92399979418374.70244000656414145.1455595818
1307259.92399979418318.48015269762114201.3678468907
1317259.92399979418262.70959423069614257.1384053577
1327259.92399979418207.38004796689614312.4679516215
1337259.92399979418152.48121441165914367.3667851767
1347259.9239997941898.003188830369314421.844810758
1357259.9239997941843.93644038507514475.9115592033
1367259.92399979418-9.7282073321994214529.5762069206
1377259.92399979418-62.999594482077614582.8475940704
1387259.92399979418-115.88624197847314635.7342415668

\begin{tabular}{lllllllll}
\hline
Extrapolation Forecasts of Exponential Smoothing \tabularnewline
t & Forecast & 95% Lower Bound & 95% Upper Bound \tabularnewline
127 & 7259.92399979418 & 488.547299498789 & 14031.3007000896 \tabularnewline
128 & 7259.92399979418 & 431.387613983985 & 14088.4603856044 \tabularnewline
129 & 7259.92399979418 & 374.702440006564 & 14145.1455595818 \tabularnewline
130 & 7259.92399979418 & 318.480152697621 & 14201.3678468907 \tabularnewline
131 & 7259.92399979418 & 262.709594230696 & 14257.1384053577 \tabularnewline
132 & 7259.92399979418 & 207.380047966896 & 14312.4679516215 \tabularnewline
133 & 7259.92399979418 & 152.481214411659 & 14367.3667851767 \tabularnewline
134 & 7259.92399979418 & 98.0031888303693 & 14421.844810758 \tabularnewline
135 & 7259.92399979418 & 43.936440385075 & 14475.9115592033 \tabularnewline
136 & 7259.92399979418 & -9.72820733219942 & 14529.5762069206 \tabularnewline
137 & 7259.92399979418 & -62.9995944820776 & 14582.8475940704 \tabularnewline
138 & 7259.92399979418 & -115.886241978473 & 14635.7342415668 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299223&T=3

[TABLE]
[ROW][C]Extrapolation Forecasts of Exponential Smoothing[/C][/ROW]
[ROW][C]t[/C][C]Forecast[/C][C]95% Lower Bound[/C][C]95% Upper Bound[/C][/ROW]
[ROW][C]127[/C][C]7259.92399979418[/C][C]488.547299498789[/C][C]14031.3007000896[/C][/ROW]
[ROW][C]128[/C][C]7259.92399979418[/C][C]431.387613983985[/C][C]14088.4603856044[/C][/ROW]
[ROW][C]129[/C][C]7259.92399979418[/C][C]374.702440006564[/C][C]14145.1455595818[/C][/ROW]
[ROW][C]130[/C][C]7259.92399979418[/C][C]318.480152697621[/C][C]14201.3678468907[/C][/ROW]
[ROW][C]131[/C][C]7259.92399979418[/C][C]262.709594230696[/C][C]14257.1384053577[/C][/ROW]
[ROW][C]132[/C][C]7259.92399979418[/C][C]207.380047966896[/C][C]14312.4679516215[/C][/ROW]
[ROW][C]133[/C][C]7259.92399979418[/C][C]152.481214411659[/C][C]14367.3667851767[/C][/ROW]
[ROW][C]134[/C][C]7259.92399979418[/C][C]98.0031888303693[/C][C]14421.844810758[/C][/ROW]
[ROW][C]135[/C][C]7259.92399979418[/C][C]43.936440385075[/C][C]14475.9115592033[/C][/ROW]
[ROW][C]136[/C][C]7259.92399979418[/C][C]-9.72820733219942[/C][C]14529.5762069206[/C][/ROW]
[ROW][C]137[/C][C]7259.92399979418[/C][C]-62.9995944820776[/C][C]14582.8475940704[/C][/ROW]
[ROW][C]138[/C][C]7259.92399979418[/C][C]-115.886241978473[/C][C]14635.7342415668[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299223&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299223&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Extrapolation Forecasts of Exponential Smoothing
tForecast95% Lower Bound95% Upper Bound
1277259.92399979418488.54729949878914031.3007000896
1287259.92399979418431.38761398398514088.4603856044
1297259.92399979418374.70244000656414145.1455595818
1307259.92399979418318.48015269762114201.3678468907
1317259.92399979418262.70959423069614257.1384053577
1327259.92399979418207.38004796689614312.4679516215
1337259.92399979418152.48121441165914367.3667851767
1347259.9239997941898.003188830369314421.844810758
1357259.9239997941843.93644038507514475.9115592033
1367259.92399979418-9.7282073321994214529.5762069206
1377259.92399979418-62.999594482077614582.8475940704
1387259.92399979418-115.88624197847314635.7342415668



Parameters (Session):
par1 = 12 ; par2 = Single ; par3 = additive ; par4 = 12 ;
Parameters (R input):
par1 = 12 ; par2 = Single ; par3 = additive ; par4 = 12 ;
R code (references can be found in the software module):
par1 <- as.numeric(par1)
par4 <- as.numeric(par4)
if (par2 == 'Single') K <- 1
if (par2 == 'Double') K <- 2
if (par2 == 'Triple') K <- par1
nx <- length(x)
nxmK <- nx - K
x <- ts(x, frequency = par1)
if (par2 == 'Single') fit <- HoltWinters(x, gamma=F, beta=F)
if (par2 == 'Double') fit <- HoltWinters(x, gamma=F)
if (par2 == 'Triple') fit <- HoltWinters(x, seasonal=par3)
fit
myresid <- x - fit$fitted[,'xhat']
bitmap(file='test1.png')
op <- par(mfrow=c(2,1))
plot(fit,ylab='Observed (black) / Fitted (red)',main='Interpolation Fit of Exponential Smoothing')
plot(myresid,ylab='Residuals',main='Interpolation Prediction Errors')
par(op)
dev.off()
bitmap(file='test2.png')
p <- predict(fit, par4, prediction.interval=TRUE)
np <- length(p[,1])
plot(fit,p,ylab='Observed (black) / Fitted (red)',main='Extrapolation Fit of Exponential Smoothing')
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(myresid),lag.max = nx/2,main='Residual ACF')
spectrum(myresid,main='Residals Periodogram')
cpgram(myresid,main='Residal Cumulative Periodogram')
qqnorm(myresid,main='Residual Normal QQ Plot')
qqline(myresid)
par(op)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Estimated Parameters of Exponential Smoothing',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'Value',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'alpha',header=TRUE)
a<-table.element(a,fit$alpha)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'beta',header=TRUE)
a<-table.element(a,fit$beta)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'gamma',header=TRUE)
a<-table.element(a,fit$gamma)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Interpolation Forecasts of Exponential Smoothing',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observed',header=TRUE)
a<-table.element(a,'Fitted',header=TRUE)
a<-table.element(a,'Residuals',header=TRUE)
a<-table.row.end(a)
for (i in 1:nxmK) {
a<-table.row.start(a)
a<-table.element(a,i+K,header=TRUE)
a<-table.element(a,x[i+K])
a<-table.element(a,fit$fitted[i,'xhat'])
a<-table.element(a,myresid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Extrapolation Forecasts of Exponential Smoothing',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Forecast',header=TRUE)
a<-table.element(a,'95% Lower Bound',header=TRUE)
a<-table.element(a,'95% Upper Bound',header=TRUE)
a<-table.row.end(a)
for (i in 1:np) {
a<-table.row.start(a)
a<-table.element(a,nx+i,header=TRUE)
a<-table.element(a,p[i,'fit'])
a<-table.element(a,p[i,'lwr'])
a<-table.element(a,p[i,'upr'])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')