Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_exponentialsmoothing.wasp
Title produced by softwareExponential Smoothing
Date of computationTue, 13 Dec 2016 21:22:26 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/13/t1481660586eaokl7i9r2kjzh6.htm/, Retrieved Fri, 01 Nov 2024 03:38:19 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=299222, Retrieved Fri, 01 Nov 2024 03:38:19 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact88
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Exponential Smoothing] [exponential smoot...] [2016-12-13 20:22:26] [130d73899007e5ff8a4f636b9bcfb397] [Current]
Feedback Forum

Post a new message
Dataseries X:
5622
5601
5358
5182
5133
5086
5101
5107
5096
5051
4942
4914
4881
4756
4749
4712
4676
4580
4529
4453
4400
4523
4462
4441
4551
4736
4772
4761
4704
4717
4819
4631
4583
4525
4496
4474
4419
4400
4352
4260
4206
4126
4119
4069
4035
4004
3983
3912
3882
3832
3793
3762
3744
3711
3722
3702
3845
3788
3768
3867
3999
3968
3920




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time1 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299222&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]1 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=299222&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299222&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center







Estimated Parameters of Exponential Smoothing
ParameterValue
alpha0.99991868871046
betaFALSE
gammaFALSE

\begin{tabular}{lllllllll}
\hline
Estimated Parameters of Exponential Smoothing \tabularnewline
Parameter & Value \tabularnewline
alpha & 0.99991868871046 \tabularnewline
beta & FALSE \tabularnewline
gamma & FALSE \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299222&T=1

[TABLE]
[ROW][C]Estimated Parameters of Exponential Smoothing[/C][/ROW]
[ROW][C]Parameter[/C][C]Value[/C][/ROW]
[ROW][C]alpha[/C][C]0.99991868871046[/C][/ROW]
[ROW][C]beta[/C][C]FALSE[/C][/ROW]
[ROW][C]gamma[/C][C]FALSE[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299222&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299222&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Estimated Parameters of Exponential Smoothing
ParameterValue
alpha0.99991868871046
betaFALSE
gammaFALSE







Interpolation Forecasts of Exponential Smoothing
tObservedFittedResiduals
256015622-21
353585601.00170753708-243.001707537081
451825358.0197587822-176.0197587822
551335182.01431239357-49.0143123935713
650865133.00398541695-47.0039854169472
751015086.0038219546714.9961780453323
851075100.998780641436.00121935857442
950965106.99951203312-10.999512033115
1050515096.00089438451-45.0008943845078
1149425051.00365908075-109.003659080753
1249144942.00886322808-28.008863228084
1348814914.00227743679-33.0022774367872
1447564881.00268345774-125.002683457737
1547494756.01016412939-7.0101641293877
1647124749.00057000549-37.0005700054853
1746764712.00300856406-36.003008564061
1845804676.00292745105-96.0029274510534
1945294580.00780612183-51.007806121831
2044534529.00414751049-76.0041475104927
2144004453.00617999524-53.0061799952446
2245234400.00431000085122.995689999151
2344624522.98999906184-60.9899990618387
2444414462.00495917547-21.0049591754723
2545514441.00170794032109.998292059683
2647364550.99105589703185.008944102975
2747724735.9849566841836.0150433158215
2847614771.99707157039-10.9970715703857
2947044761.00089418607-57.0008941860706
3047174704.0046348162112.9953651837886
3148194716.9989433301102.001056669901
3246314818.99170616255-187.991706162548
3345834631.01528584805-48.0152858480515
3445254583.00390418481-58.0039041848104
3544964525.00471637225-29.0047163722475
3644744496.00235841089-22.0023584108912
3744194474.00178904014-55.0017890401359
3844004419.00447226639-19.0044722663933
3943524400.00154527815-48.0015452781472
4042604352.00390306755-92.0039030675462
4142064260.007480956-54.007480956001
4241264206.00439141792-80.0043914179214
4341194126.00650526023-7.00650526023492
4440694119.00056970798-50.0005697079778
4540354069.0040656108-34.0040656108008
4640044035.00276491442-31.0027649144245
4739834004.00252087479-21.0025208747948
4839123983.00170774206-71.0017077420557
4938823912.00577324042-30.0057732404161
5038323882.00243980812-50.0024398081155
5137933832.00406576286-39.004065762861
5237623793.00317147088-31.0031714708844
5337443762.00252090785-18.0025209078522
5437113744.00146380819-33.0014638081898
5537223711.0026833915810.997316608421
5637023721.99910579401-19.9991057940051
5738453702.00162615308142.998373846918
5837883844.98837261782-56.9883726178205
5937683788.00463379807-20.0046337980662
6038673768.0016266025798.9983733974291
6139993866.9919503146132.008049685403
6239683998.98926625525-30.9892662552506
6339203968.0025197772-48.0025197772011

\begin{tabular}{lllllllll}
\hline
Interpolation Forecasts of Exponential Smoothing \tabularnewline
t & Observed & Fitted & Residuals \tabularnewline
2 & 5601 & 5622 & -21 \tabularnewline
3 & 5358 & 5601.00170753708 & -243.001707537081 \tabularnewline
4 & 5182 & 5358.0197587822 & -176.0197587822 \tabularnewline
5 & 5133 & 5182.01431239357 & -49.0143123935713 \tabularnewline
6 & 5086 & 5133.00398541695 & -47.0039854169472 \tabularnewline
7 & 5101 & 5086.00382195467 & 14.9961780453323 \tabularnewline
8 & 5107 & 5100.99878064143 & 6.00121935857442 \tabularnewline
9 & 5096 & 5106.99951203312 & -10.999512033115 \tabularnewline
10 & 5051 & 5096.00089438451 & -45.0008943845078 \tabularnewline
11 & 4942 & 5051.00365908075 & -109.003659080753 \tabularnewline
12 & 4914 & 4942.00886322808 & -28.008863228084 \tabularnewline
13 & 4881 & 4914.00227743679 & -33.0022774367872 \tabularnewline
14 & 4756 & 4881.00268345774 & -125.002683457737 \tabularnewline
15 & 4749 & 4756.01016412939 & -7.0101641293877 \tabularnewline
16 & 4712 & 4749.00057000549 & -37.0005700054853 \tabularnewline
17 & 4676 & 4712.00300856406 & -36.003008564061 \tabularnewline
18 & 4580 & 4676.00292745105 & -96.0029274510534 \tabularnewline
19 & 4529 & 4580.00780612183 & -51.007806121831 \tabularnewline
20 & 4453 & 4529.00414751049 & -76.0041475104927 \tabularnewline
21 & 4400 & 4453.00617999524 & -53.0061799952446 \tabularnewline
22 & 4523 & 4400.00431000085 & 122.995689999151 \tabularnewline
23 & 4462 & 4522.98999906184 & -60.9899990618387 \tabularnewline
24 & 4441 & 4462.00495917547 & -21.0049591754723 \tabularnewline
25 & 4551 & 4441.00170794032 & 109.998292059683 \tabularnewline
26 & 4736 & 4550.99105589703 & 185.008944102975 \tabularnewline
27 & 4772 & 4735.98495668418 & 36.0150433158215 \tabularnewline
28 & 4761 & 4771.99707157039 & -10.9970715703857 \tabularnewline
29 & 4704 & 4761.00089418607 & -57.0008941860706 \tabularnewline
30 & 4717 & 4704.00463481621 & 12.9953651837886 \tabularnewline
31 & 4819 & 4716.9989433301 & 102.001056669901 \tabularnewline
32 & 4631 & 4818.99170616255 & -187.991706162548 \tabularnewline
33 & 4583 & 4631.01528584805 & -48.0152858480515 \tabularnewline
34 & 4525 & 4583.00390418481 & -58.0039041848104 \tabularnewline
35 & 4496 & 4525.00471637225 & -29.0047163722475 \tabularnewline
36 & 4474 & 4496.00235841089 & -22.0023584108912 \tabularnewline
37 & 4419 & 4474.00178904014 & -55.0017890401359 \tabularnewline
38 & 4400 & 4419.00447226639 & -19.0044722663933 \tabularnewline
39 & 4352 & 4400.00154527815 & -48.0015452781472 \tabularnewline
40 & 4260 & 4352.00390306755 & -92.0039030675462 \tabularnewline
41 & 4206 & 4260.007480956 & -54.007480956001 \tabularnewline
42 & 4126 & 4206.00439141792 & -80.0043914179214 \tabularnewline
43 & 4119 & 4126.00650526023 & -7.00650526023492 \tabularnewline
44 & 4069 & 4119.00056970798 & -50.0005697079778 \tabularnewline
45 & 4035 & 4069.0040656108 & -34.0040656108008 \tabularnewline
46 & 4004 & 4035.00276491442 & -31.0027649144245 \tabularnewline
47 & 3983 & 4004.00252087479 & -21.0025208747948 \tabularnewline
48 & 3912 & 3983.00170774206 & -71.0017077420557 \tabularnewline
49 & 3882 & 3912.00577324042 & -30.0057732404161 \tabularnewline
50 & 3832 & 3882.00243980812 & -50.0024398081155 \tabularnewline
51 & 3793 & 3832.00406576286 & -39.004065762861 \tabularnewline
52 & 3762 & 3793.00317147088 & -31.0031714708844 \tabularnewline
53 & 3744 & 3762.00252090785 & -18.0025209078522 \tabularnewline
54 & 3711 & 3744.00146380819 & -33.0014638081898 \tabularnewline
55 & 3722 & 3711.00268339158 & 10.997316608421 \tabularnewline
56 & 3702 & 3721.99910579401 & -19.9991057940051 \tabularnewline
57 & 3845 & 3702.00162615308 & 142.998373846918 \tabularnewline
58 & 3788 & 3844.98837261782 & -56.9883726178205 \tabularnewline
59 & 3768 & 3788.00463379807 & -20.0046337980662 \tabularnewline
60 & 3867 & 3768.00162660257 & 98.9983733974291 \tabularnewline
61 & 3999 & 3866.9919503146 & 132.008049685403 \tabularnewline
62 & 3968 & 3998.98926625525 & -30.9892662552506 \tabularnewline
63 & 3920 & 3968.0025197772 & -48.0025197772011 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299222&T=2

[TABLE]
[ROW][C]Interpolation Forecasts of Exponential Smoothing[/C][/ROW]
[ROW][C]t[/C][C]Observed[/C][C]Fitted[/C][C]Residuals[/C][/ROW]
[ROW][C]2[/C][C]5601[/C][C]5622[/C][C]-21[/C][/ROW]
[ROW][C]3[/C][C]5358[/C][C]5601.00170753708[/C][C]-243.001707537081[/C][/ROW]
[ROW][C]4[/C][C]5182[/C][C]5358.0197587822[/C][C]-176.0197587822[/C][/ROW]
[ROW][C]5[/C][C]5133[/C][C]5182.01431239357[/C][C]-49.0143123935713[/C][/ROW]
[ROW][C]6[/C][C]5086[/C][C]5133.00398541695[/C][C]-47.0039854169472[/C][/ROW]
[ROW][C]7[/C][C]5101[/C][C]5086.00382195467[/C][C]14.9961780453323[/C][/ROW]
[ROW][C]8[/C][C]5107[/C][C]5100.99878064143[/C][C]6.00121935857442[/C][/ROW]
[ROW][C]9[/C][C]5096[/C][C]5106.99951203312[/C][C]-10.999512033115[/C][/ROW]
[ROW][C]10[/C][C]5051[/C][C]5096.00089438451[/C][C]-45.0008943845078[/C][/ROW]
[ROW][C]11[/C][C]4942[/C][C]5051.00365908075[/C][C]-109.003659080753[/C][/ROW]
[ROW][C]12[/C][C]4914[/C][C]4942.00886322808[/C][C]-28.008863228084[/C][/ROW]
[ROW][C]13[/C][C]4881[/C][C]4914.00227743679[/C][C]-33.0022774367872[/C][/ROW]
[ROW][C]14[/C][C]4756[/C][C]4881.00268345774[/C][C]-125.002683457737[/C][/ROW]
[ROW][C]15[/C][C]4749[/C][C]4756.01016412939[/C][C]-7.0101641293877[/C][/ROW]
[ROW][C]16[/C][C]4712[/C][C]4749.00057000549[/C][C]-37.0005700054853[/C][/ROW]
[ROW][C]17[/C][C]4676[/C][C]4712.00300856406[/C][C]-36.003008564061[/C][/ROW]
[ROW][C]18[/C][C]4580[/C][C]4676.00292745105[/C][C]-96.0029274510534[/C][/ROW]
[ROW][C]19[/C][C]4529[/C][C]4580.00780612183[/C][C]-51.007806121831[/C][/ROW]
[ROW][C]20[/C][C]4453[/C][C]4529.00414751049[/C][C]-76.0041475104927[/C][/ROW]
[ROW][C]21[/C][C]4400[/C][C]4453.00617999524[/C][C]-53.0061799952446[/C][/ROW]
[ROW][C]22[/C][C]4523[/C][C]4400.00431000085[/C][C]122.995689999151[/C][/ROW]
[ROW][C]23[/C][C]4462[/C][C]4522.98999906184[/C][C]-60.9899990618387[/C][/ROW]
[ROW][C]24[/C][C]4441[/C][C]4462.00495917547[/C][C]-21.0049591754723[/C][/ROW]
[ROW][C]25[/C][C]4551[/C][C]4441.00170794032[/C][C]109.998292059683[/C][/ROW]
[ROW][C]26[/C][C]4736[/C][C]4550.99105589703[/C][C]185.008944102975[/C][/ROW]
[ROW][C]27[/C][C]4772[/C][C]4735.98495668418[/C][C]36.0150433158215[/C][/ROW]
[ROW][C]28[/C][C]4761[/C][C]4771.99707157039[/C][C]-10.9970715703857[/C][/ROW]
[ROW][C]29[/C][C]4704[/C][C]4761.00089418607[/C][C]-57.0008941860706[/C][/ROW]
[ROW][C]30[/C][C]4717[/C][C]4704.00463481621[/C][C]12.9953651837886[/C][/ROW]
[ROW][C]31[/C][C]4819[/C][C]4716.9989433301[/C][C]102.001056669901[/C][/ROW]
[ROW][C]32[/C][C]4631[/C][C]4818.99170616255[/C][C]-187.991706162548[/C][/ROW]
[ROW][C]33[/C][C]4583[/C][C]4631.01528584805[/C][C]-48.0152858480515[/C][/ROW]
[ROW][C]34[/C][C]4525[/C][C]4583.00390418481[/C][C]-58.0039041848104[/C][/ROW]
[ROW][C]35[/C][C]4496[/C][C]4525.00471637225[/C][C]-29.0047163722475[/C][/ROW]
[ROW][C]36[/C][C]4474[/C][C]4496.00235841089[/C][C]-22.0023584108912[/C][/ROW]
[ROW][C]37[/C][C]4419[/C][C]4474.00178904014[/C][C]-55.0017890401359[/C][/ROW]
[ROW][C]38[/C][C]4400[/C][C]4419.00447226639[/C][C]-19.0044722663933[/C][/ROW]
[ROW][C]39[/C][C]4352[/C][C]4400.00154527815[/C][C]-48.0015452781472[/C][/ROW]
[ROW][C]40[/C][C]4260[/C][C]4352.00390306755[/C][C]-92.0039030675462[/C][/ROW]
[ROW][C]41[/C][C]4206[/C][C]4260.007480956[/C][C]-54.007480956001[/C][/ROW]
[ROW][C]42[/C][C]4126[/C][C]4206.00439141792[/C][C]-80.0043914179214[/C][/ROW]
[ROW][C]43[/C][C]4119[/C][C]4126.00650526023[/C][C]-7.00650526023492[/C][/ROW]
[ROW][C]44[/C][C]4069[/C][C]4119.00056970798[/C][C]-50.0005697079778[/C][/ROW]
[ROW][C]45[/C][C]4035[/C][C]4069.0040656108[/C][C]-34.0040656108008[/C][/ROW]
[ROW][C]46[/C][C]4004[/C][C]4035.00276491442[/C][C]-31.0027649144245[/C][/ROW]
[ROW][C]47[/C][C]3983[/C][C]4004.00252087479[/C][C]-21.0025208747948[/C][/ROW]
[ROW][C]48[/C][C]3912[/C][C]3983.00170774206[/C][C]-71.0017077420557[/C][/ROW]
[ROW][C]49[/C][C]3882[/C][C]3912.00577324042[/C][C]-30.0057732404161[/C][/ROW]
[ROW][C]50[/C][C]3832[/C][C]3882.00243980812[/C][C]-50.0024398081155[/C][/ROW]
[ROW][C]51[/C][C]3793[/C][C]3832.00406576286[/C][C]-39.004065762861[/C][/ROW]
[ROW][C]52[/C][C]3762[/C][C]3793.00317147088[/C][C]-31.0031714708844[/C][/ROW]
[ROW][C]53[/C][C]3744[/C][C]3762.00252090785[/C][C]-18.0025209078522[/C][/ROW]
[ROW][C]54[/C][C]3711[/C][C]3744.00146380819[/C][C]-33.0014638081898[/C][/ROW]
[ROW][C]55[/C][C]3722[/C][C]3711.00268339158[/C][C]10.997316608421[/C][/ROW]
[ROW][C]56[/C][C]3702[/C][C]3721.99910579401[/C][C]-19.9991057940051[/C][/ROW]
[ROW][C]57[/C][C]3845[/C][C]3702.00162615308[/C][C]142.998373846918[/C][/ROW]
[ROW][C]58[/C][C]3788[/C][C]3844.98837261782[/C][C]-56.9883726178205[/C][/ROW]
[ROW][C]59[/C][C]3768[/C][C]3788.00463379807[/C][C]-20.0046337980662[/C][/ROW]
[ROW][C]60[/C][C]3867[/C][C]3768.00162660257[/C][C]98.9983733974291[/C][/ROW]
[ROW][C]61[/C][C]3999[/C][C]3866.9919503146[/C][C]132.008049685403[/C][/ROW]
[ROW][C]62[/C][C]3968[/C][C]3998.98926625525[/C][C]-30.9892662552506[/C][/ROW]
[ROW][C]63[/C][C]3920[/C][C]3968.0025197772[/C][C]-48.0025197772011[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299222&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299222&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Interpolation Forecasts of Exponential Smoothing
tObservedFittedResiduals
256015622-21
353585601.00170753708-243.001707537081
451825358.0197587822-176.0197587822
551335182.01431239357-49.0143123935713
650865133.00398541695-47.0039854169472
751015086.0038219546714.9961780453323
851075100.998780641436.00121935857442
950965106.99951203312-10.999512033115
1050515096.00089438451-45.0008943845078
1149425051.00365908075-109.003659080753
1249144942.00886322808-28.008863228084
1348814914.00227743679-33.0022774367872
1447564881.00268345774-125.002683457737
1547494756.01016412939-7.0101641293877
1647124749.00057000549-37.0005700054853
1746764712.00300856406-36.003008564061
1845804676.00292745105-96.0029274510534
1945294580.00780612183-51.007806121831
2044534529.00414751049-76.0041475104927
2144004453.00617999524-53.0061799952446
2245234400.00431000085122.995689999151
2344624522.98999906184-60.9899990618387
2444414462.00495917547-21.0049591754723
2545514441.00170794032109.998292059683
2647364550.99105589703185.008944102975
2747724735.9849566841836.0150433158215
2847614771.99707157039-10.9970715703857
2947044761.00089418607-57.0008941860706
3047174704.0046348162112.9953651837886
3148194716.9989433301102.001056669901
3246314818.99170616255-187.991706162548
3345834631.01528584805-48.0152858480515
3445254583.00390418481-58.0039041848104
3544964525.00471637225-29.0047163722475
3644744496.00235841089-22.0023584108912
3744194474.00178904014-55.0017890401359
3844004419.00447226639-19.0044722663933
3943524400.00154527815-48.0015452781472
4042604352.00390306755-92.0039030675462
4142064260.007480956-54.007480956001
4241264206.00439141792-80.0043914179214
4341194126.00650526023-7.00650526023492
4440694119.00056970798-50.0005697079778
4540354069.0040656108-34.0040656108008
4640044035.00276491442-31.0027649144245
4739834004.00252087479-21.0025208747948
4839123983.00170774206-71.0017077420557
4938823912.00577324042-30.0057732404161
5038323882.00243980812-50.0024398081155
5137933832.00406576286-39.004065762861
5237623793.00317147088-31.0031714708844
5337443762.00252090785-18.0025209078522
5437113744.00146380819-33.0014638081898
5537223711.0026833915810.997316608421
5637023721.99910579401-19.9991057940051
5738453702.00162615308142.998373846918
5837883844.98837261782-56.9883726178205
5937683788.00463379807-20.0046337980662
6038673768.0016266025798.9983733974291
6139993866.9919503146132.008049685403
6239683998.98926625525-30.9892662552506
6339203968.0025197772-48.0025197772011







Extrapolation Forecasts of Exponential Smoothing
tForecast95% Lower Bound95% Upper Bound
643920.003903146783777.496868460094062.51093783348
653920.003903146783718.476715343594121.53109094998
663920.003903146783673.187858464654166.81994782892
673920.003903146783635.007214742864205.00059155071
683920.003903146783601.369214373154238.63859192042
693920.003903146783570.958035990994269.04977030258
703920.003903146783542.992006958874297.0157993347
713920.003903146783516.961818054084323.04598823949
723920.003903146783492.513698762474347.4941075311
733920.003903146783469.390069212214370.61773708136
743920.003903146783447.3964763944392.61132989956
753920.003903146783426.381849029924413.62595726365

\begin{tabular}{lllllllll}
\hline
Extrapolation Forecasts of Exponential Smoothing \tabularnewline
t & Forecast & 95% Lower Bound & 95% Upper Bound \tabularnewline
64 & 3920.00390314678 & 3777.49686846009 & 4062.51093783348 \tabularnewline
65 & 3920.00390314678 & 3718.47671534359 & 4121.53109094998 \tabularnewline
66 & 3920.00390314678 & 3673.18785846465 & 4166.81994782892 \tabularnewline
67 & 3920.00390314678 & 3635.00721474286 & 4205.00059155071 \tabularnewline
68 & 3920.00390314678 & 3601.36921437315 & 4238.63859192042 \tabularnewline
69 & 3920.00390314678 & 3570.95803599099 & 4269.04977030258 \tabularnewline
70 & 3920.00390314678 & 3542.99200695887 & 4297.0157993347 \tabularnewline
71 & 3920.00390314678 & 3516.96181805408 & 4323.04598823949 \tabularnewline
72 & 3920.00390314678 & 3492.51369876247 & 4347.4941075311 \tabularnewline
73 & 3920.00390314678 & 3469.39006921221 & 4370.61773708136 \tabularnewline
74 & 3920.00390314678 & 3447.396476394 & 4392.61132989956 \tabularnewline
75 & 3920.00390314678 & 3426.38184902992 & 4413.62595726365 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299222&T=3

[TABLE]
[ROW][C]Extrapolation Forecasts of Exponential Smoothing[/C][/ROW]
[ROW][C]t[/C][C]Forecast[/C][C]95% Lower Bound[/C][C]95% Upper Bound[/C][/ROW]
[ROW][C]64[/C][C]3920.00390314678[/C][C]3777.49686846009[/C][C]4062.51093783348[/C][/ROW]
[ROW][C]65[/C][C]3920.00390314678[/C][C]3718.47671534359[/C][C]4121.53109094998[/C][/ROW]
[ROW][C]66[/C][C]3920.00390314678[/C][C]3673.18785846465[/C][C]4166.81994782892[/C][/ROW]
[ROW][C]67[/C][C]3920.00390314678[/C][C]3635.00721474286[/C][C]4205.00059155071[/C][/ROW]
[ROW][C]68[/C][C]3920.00390314678[/C][C]3601.36921437315[/C][C]4238.63859192042[/C][/ROW]
[ROW][C]69[/C][C]3920.00390314678[/C][C]3570.95803599099[/C][C]4269.04977030258[/C][/ROW]
[ROW][C]70[/C][C]3920.00390314678[/C][C]3542.99200695887[/C][C]4297.0157993347[/C][/ROW]
[ROW][C]71[/C][C]3920.00390314678[/C][C]3516.96181805408[/C][C]4323.04598823949[/C][/ROW]
[ROW][C]72[/C][C]3920.00390314678[/C][C]3492.51369876247[/C][C]4347.4941075311[/C][/ROW]
[ROW][C]73[/C][C]3920.00390314678[/C][C]3469.39006921221[/C][C]4370.61773708136[/C][/ROW]
[ROW][C]74[/C][C]3920.00390314678[/C][C]3447.396476394[/C][C]4392.61132989956[/C][/ROW]
[ROW][C]75[/C][C]3920.00390314678[/C][C]3426.38184902992[/C][C]4413.62595726365[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299222&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299222&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Extrapolation Forecasts of Exponential Smoothing
tForecast95% Lower Bound95% Upper Bound
643920.003903146783777.496868460094062.51093783348
653920.003903146783718.476715343594121.53109094998
663920.003903146783673.187858464654166.81994782892
673920.003903146783635.007214742864205.00059155071
683920.003903146783601.369214373154238.63859192042
693920.003903146783570.958035990994269.04977030258
703920.003903146783542.992006958874297.0157993347
713920.003903146783516.961818054084323.04598823949
723920.003903146783492.513698762474347.4941075311
733920.003903146783469.390069212214370.61773708136
743920.003903146783447.3964763944392.61132989956
753920.003903146783426.381849029924413.62595726365



Parameters (Session):
par1 = 12 ; par2 = Single ; par3 = additive ; par4 = 12 ;
Parameters (R input):
par1 = 12 ; par2 = Single ; par3 = additive ; par4 = 12 ;
R code (references can be found in the software module):
par1 <- as.numeric(par1)
par4 <- as.numeric(par4)
if (par2 == 'Single') K <- 1
if (par2 == 'Double') K <- 2
if (par2 == 'Triple') K <- par1
nx <- length(x)
nxmK <- nx - K
x <- ts(x, frequency = par1)
if (par2 == 'Single') fit <- HoltWinters(x, gamma=F, beta=F)
if (par2 == 'Double') fit <- HoltWinters(x, gamma=F)
if (par2 == 'Triple') fit <- HoltWinters(x, seasonal=par3)
fit
myresid <- x - fit$fitted[,'xhat']
bitmap(file='test1.png')
op <- par(mfrow=c(2,1))
plot(fit,ylab='Observed (black) / Fitted (red)',main='Interpolation Fit of Exponential Smoothing')
plot(myresid,ylab='Residuals',main='Interpolation Prediction Errors')
par(op)
dev.off()
bitmap(file='test2.png')
p <- predict(fit, par4, prediction.interval=TRUE)
np <- length(p[,1])
plot(fit,p,ylab='Observed (black) / Fitted (red)',main='Extrapolation Fit of Exponential Smoothing')
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(myresid),lag.max = nx/2,main='Residual ACF')
spectrum(myresid,main='Residals Periodogram')
cpgram(myresid,main='Residal Cumulative Periodogram')
qqnorm(myresid,main='Residual Normal QQ Plot')
qqline(myresid)
par(op)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Estimated Parameters of Exponential Smoothing',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'Value',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'alpha',header=TRUE)
a<-table.element(a,fit$alpha)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'beta',header=TRUE)
a<-table.element(a,fit$beta)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'gamma',header=TRUE)
a<-table.element(a,fit$gamma)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Interpolation Forecasts of Exponential Smoothing',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observed',header=TRUE)
a<-table.element(a,'Fitted',header=TRUE)
a<-table.element(a,'Residuals',header=TRUE)
a<-table.row.end(a)
for (i in 1:nxmK) {
a<-table.row.start(a)
a<-table.element(a,i+K,header=TRUE)
a<-table.element(a,x[i+K])
a<-table.element(a,fit$fitted[i,'xhat'])
a<-table.element(a,myresid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Extrapolation Forecasts of Exponential Smoothing',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Forecast',header=TRUE)
a<-table.element(a,'95% Lower Bound',header=TRUE)
a<-table.element(a,'95% Upper Bound',header=TRUE)
a<-table.row.end(a)
for (i in 1:np) {
a<-table.row.start(a)
a<-table.element(a,nx+i,header=TRUE)
a<-table.element(a,p[i,'fit'])
a<-table.element(a,p[i,'lwr'])
a<-table.element(a,p[i,'upr'])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')