Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_decompose.wasp
Title produced by softwareClassical Decomposition
Date of computationTue, 13 Dec 2016 16:26:24 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/13/t14816429793wmko3x41i1ett8.htm/, Retrieved Fri, 01 Nov 2024 03:34:00 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=299154, Retrieved Fri, 01 Nov 2024 03:34:00 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact61
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Classical Decomposition] [] [2016-12-13 15:26:24] [9b171b8beffcb53bb49a1e7c02b89c12] [Current]
Feedback Forum

Post a new message
Dataseries X:
6600
6160
6320
5820
6080
6240
5740
6980
6540
6780
6580
6020
6440
6440
7040
6620
6460
6320
6560
6080
6040
6260
5780
5120
6040
5860
5900
5160
5800
5300
5600
5620
6300
5800
5460
5420
5800
5260
5900
5840
5640
5560
5540
5540
5480
5440
5260
5420
5600
5200
5480
5300
4660
4940
4880
4980
5160
5180
4860
5220
4900
4740
4920
4780
4300
4540
4420
4660
4760
4560
4600
4800
4980
4300
4800
3980
4120
4580
4240
4540
4200
4780
4820
4320
4300
3700
3920
3740
4120
4160
4160
3960
3960
4160
3920
3460
4040
3720
4060
4140
3700
3900
3720
3760
3520
3800
3520
3640
4200
3860
4160
3920
3860
3860
3780




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time1 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299154&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]1 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=299154&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299154&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center







Classical Decomposition by Moving Averages
tObservationsFitTrendSeasonalRandom
16600NANA183.087NA
26160NANA-174.1NA
36320NANA208.4NA
45820NANA-67.8501NA
56080NANA-131.392NA
66240NANA-40.5584NA
757406216.426315-98.5793-476.421
869806383.18632063.18596.82
965406427.726361.6766.0503112.283
1067806598.746425173.736181.264
1165806449.26474.17-24.9682130.802
1260206336.336493.33-157.005-316.328
1364406713.926530.83183.087-273.921
1464406353.46527.5-174.186.6001
1570406677.576469.17208.4362.433
1666206358.826426.67-67.8501261.183
1764606240.276371.67-131.392219.725
1863206260.276300.83-40.558459.7251
1965606148.096246.67-98.5793411.913
2060806269.016205.8363.18-189.013
2160406200.226134.1766.0503-160.217
2262606199.576025.83173.73660.4311
2357805912.535937.5-24.9682-132.532
2451205710.495867.5-157.005-590.495
2560405968.095785183.08771.9126
2658605551.735725.83-174.1308.267
2759005925.95717.5208.4-25.8999
2851605641.325709.17-67.8501-481.317
2958005545.275676.67-131.392254.725
3053005635.275675.83-40.5584-335.275
3156005579.755678.33-98.579320.2459
3256205706.515643.3363.18-86.5133
3363005684.385618.3366.0503615.616
3458005820.45646.67173.736-20.4022
3554605643.375668.33-24.9682-183.365
3654205515.495672.5-157.005-95.4948
3758005863.925680.83183.087-63.9207
3852605500.95675-174.1-240.9
3959005845.95637.5208.454.1001
4058405520.485588.33-67.8501319.517
4156405433.615565-131.392206.392
4255605516.115556.67-40.558443.8918
4355405449.755548.33-98.579390.2459
4455405600.685537.563.18-60.68
4554805583.555517.566.0503-103.55
4654405651.245477.5173.736-211.236
4752605389.25414.17-24.9682-129.198
4854205190.495347.5-157.005229.505
4956005477.255294.17183.087122.746
5052005069.235243.33-174.1130.767
5154805415.075206.67208.464.9334
5253005114.655182.5-67.8501185.35
5346605023.615155-131.392-363.608
5449405089.445130-40.5584-149.442
5548804993.925092.5-98.5793-113.921
5649805107.355044.1763.18-127.347
5751605067.725001.6766.050392.283
5851805130.44956.67173.73649.5978
5948604895.034920-24.9682-35.0318
6052204731.334888.33-157.005488.672
6149005035.594852.5183.087-135.587
6247404645.94820-174.194.1001
6349204998.44790208.4-78.3999
6447804679.654747.5-67.8501100.35
6543004579.444710.83-131.392-279.442
6645404641.944682.5-40.5584-101.942
6744204569.754668.33-98.5793-149.754
6846604716.514653.3363.18-56.5133
6947604696.05463066.050363.9497
7045604765.44591.67173.736-205.402
7146004525.874550.83-24.968274.1348
7248004387.994545-157.005412.005
7349804722.254539.17183.087257.746
7443004352.574526.67-174.1-52.5666
7548004706.734498.33208.493.2668
7639804416.324484.17-67.8501-436.317
7741204371.114502.5-131.392-251.108
7845804451.114491.67-40.5584128.892
7942404344.754443.33-98.5793-104.754
8045404453.18439063.1886.82
8142004394.384328.3366.0503-194.384
8247804455.44281.67173.736324.598
8348204246.74271.67-24.9682573.302
8443204097.164254.17-157.005222.839
8543004416.424233.33183.087-116.421
8637004031.734205.83-174.1-331.733
8739204380.074171.67208.4-460.067
8837404067.984135.83-67.8501-327.983
8941203941.114072.5-131.392178.892
9041603958.613999.17-40.5584201.392
9141603853.923952.5-98.5793306.079
9239604005.683942.563.18-45.68
9339604015.223949.1766.0503-55.217
9441604145.43971.67173.73614.5978
9539203945.873970.83-24.9682-25.8652
9634603785.493942.5-157.005-325.495
9740404096.423913.33183.087-56.4207
9837203712.573886.67-174.17.43345
9940604068.43860208.4-8.39988
10041403758.823826.67-67.8501381.183
10137003663.613795-131.39236.3918
10239003745.273785.83-40.5584154.725
10337203701.423800-98.579318.5793
10437603875.683812.563.18-115.68
10535203888.553822.566.0503-368.55
10638003991.243817.5173.736-191.236
10735203790.033815-24.9682-270.032
10836403662.993820-157.005-22.9948
10942004003.923820.83183.087196.079
1103860NANA-174.1NA
1114160NANA208.4NA
1123920NANA-67.8501NA
1133860NANA-131.392NA
1143860NANA-40.5584NA
1153780NANA-98.5793NA

\begin{tabular}{lllllllll}
\hline
Classical Decomposition by Moving Averages \tabularnewline
t & Observations & Fit & Trend & Seasonal & Random \tabularnewline
1 & 6600 & NA & NA & 183.087 & NA \tabularnewline
2 & 6160 & NA & NA & -174.1 & NA \tabularnewline
3 & 6320 & NA & NA & 208.4 & NA \tabularnewline
4 & 5820 & NA & NA & -67.8501 & NA \tabularnewline
5 & 6080 & NA & NA & -131.392 & NA \tabularnewline
6 & 6240 & NA & NA & -40.5584 & NA \tabularnewline
7 & 5740 & 6216.42 & 6315 & -98.5793 & -476.421 \tabularnewline
8 & 6980 & 6383.18 & 6320 & 63.18 & 596.82 \tabularnewline
9 & 6540 & 6427.72 & 6361.67 & 66.0503 & 112.283 \tabularnewline
10 & 6780 & 6598.74 & 6425 & 173.736 & 181.264 \tabularnewline
11 & 6580 & 6449.2 & 6474.17 & -24.9682 & 130.802 \tabularnewline
12 & 6020 & 6336.33 & 6493.33 & -157.005 & -316.328 \tabularnewline
13 & 6440 & 6713.92 & 6530.83 & 183.087 & -273.921 \tabularnewline
14 & 6440 & 6353.4 & 6527.5 & -174.1 & 86.6001 \tabularnewline
15 & 7040 & 6677.57 & 6469.17 & 208.4 & 362.433 \tabularnewline
16 & 6620 & 6358.82 & 6426.67 & -67.8501 & 261.183 \tabularnewline
17 & 6460 & 6240.27 & 6371.67 & -131.392 & 219.725 \tabularnewline
18 & 6320 & 6260.27 & 6300.83 & -40.5584 & 59.7251 \tabularnewline
19 & 6560 & 6148.09 & 6246.67 & -98.5793 & 411.913 \tabularnewline
20 & 6080 & 6269.01 & 6205.83 & 63.18 & -189.013 \tabularnewline
21 & 6040 & 6200.22 & 6134.17 & 66.0503 & -160.217 \tabularnewline
22 & 6260 & 6199.57 & 6025.83 & 173.736 & 60.4311 \tabularnewline
23 & 5780 & 5912.53 & 5937.5 & -24.9682 & -132.532 \tabularnewline
24 & 5120 & 5710.49 & 5867.5 & -157.005 & -590.495 \tabularnewline
25 & 6040 & 5968.09 & 5785 & 183.087 & 71.9126 \tabularnewline
26 & 5860 & 5551.73 & 5725.83 & -174.1 & 308.267 \tabularnewline
27 & 5900 & 5925.9 & 5717.5 & 208.4 & -25.8999 \tabularnewline
28 & 5160 & 5641.32 & 5709.17 & -67.8501 & -481.317 \tabularnewline
29 & 5800 & 5545.27 & 5676.67 & -131.392 & 254.725 \tabularnewline
30 & 5300 & 5635.27 & 5675.83 & -40.5584 & -335.275 \tabularnewline
31 & 5600 & 5579.75 & 5678.33 & -98.5793 & 20.2459 \tabularnewline
32 & 5620 & 5706.51 & 5643.33 & 63.18 & -86.5133 \tabularnewline
33 & 6300 & 5684.38 & 5618.33 & 66.0503 & 615.616 \tabularnewline
34 & 5800 & 5820.4 & 5646.67 & 173.736 & -20.4022 \tabularnewline
35 & 5460 & 5643.37 & 5668.33 & -24.9682 & -183.365 \tabularnewline
36 & 5420 & 5515.49 & 5672.5 & -157.005 & -95.4948 \tabularnewline
37 & 5800 & 5863.92 & 5680.83 & 183.087 & -63.9207 \tabularnewline
38 & 5260 & 5500.9 & 5675 & -174.1 & -240.9 \tabularnewline
39 & 5900 & 5845.9 & 5637.5 & 208.4 & 54.1001 \tabularnewline
40 & 5840 & 5520.48 & 5588.33 & -67.8501 & 319.517 \tabularnewline
41 & 5640 & 5433.61 & 5565 & -131.392 & 206.392 \tabularnewline
42 & 5560 & 5516.11 & 5556.67 & -40.5584 & 43.8918 \tabularnewline
43 & 5540 & 5449.75 & 5548.33 & -98.5793 & 90.2459 \tabularnewline
44 & 5540 & 5600.68 & 5537.5 & 63.18 & -60.68 \tabularnewline
45 & 5480 & 5583.55 & 5517.5 & 66.0503 & -103.55 \tabularnewline
46 & 5440 & 5651.24 & 5477.5 & 173.736 & -211.236 \tabularnewline
47 & 5260 & 5389.2 & 5414.17 & -24.9682 & -129.198 \tabularnewline
48 & 5420 & 5190.49 & 5347.5 & -157.005 & 229.505 \tabularnewline
49 & 5600 & 5477.25 & 5294.17 & 183.087 & 122.746 \tabularnewline
50 & 5200 & 5069.23 & 5243.33 & -174.1 & 130.767 \tabularnewline
51 & 5480 & 5415.07 & 5206.67 & 208.4 & 64.9334 \tabularnewline
52 & 5300 & 5114.65 & 5182.5 & -67.8501 & 185.35 \tabularnewline
53 & 4660 & 5023.61 & 5155 & -131.392 & -363.608 \tabularnewline
54 & 4940 & 5089.44 & 5130 & -40.5584 & -149.442 \tabularnewline
55 & 4880 & 4993.92 & 5092.5 & -98.5793 & -113.921 \tabularnewline
56 & 4980 & 5107.35 & 5044.17 & 63.18 & -127.347 \tabularnewline
57 & 5160 & 5067.72 & 5001.67 & 66.0503 & 92.283 \tabularnewline
58 & 5180 & 5130.4 & 4956.67 & 173.736 & 49.5978 \tabularnewline
59 & 4860 & 4895.03 & 4920 & -24.9682 & -35.0318 \tabularnewline
60 & 5220 & 4731.33 & 4888.33 & -157.005 & 488.672 \tabularnewline
61 & 4900 & 5035.59 & 4852.5 & 183.087 & -135.587 \tabularnewline
62 & 4740 & 4645.9 & 4820 & -174.1 & 94.1001 \tabularnewline
63 & 4920 & 4998.4 & 4790 & 208.4 & -78.3999 \tabularnewline
64 & 4780 & 4679.65 & 4747.5 & -67.8501 & 100.35 \tabularnewline
65 & 4300 & 4579.44 & 4710.83 & -131.392 & -279.442 \tabularnewline
66 & 4540 & 4641.94 & 4682.5 & -40.5584 & -101.942 \tabularnewline
67 & 4420 & 4569.75 & 4668.33 & -98.5793 & -149.754 \tabularnewline
68 & 4660 & 4716.51 & 4653.33 & 63.18 & -56.5133 \tabularnewline
69 & 4760 & 4696.05 & 4630 & 66.0503 & 63.9497 \tabularnewline
70 & 4560 & 4765.4 & 4591.67 & 173.736 & -205.402 \tabularnewline
71 & 4600 & 4525.87 & 4550.83 & -24.9682 & 74.1348 \tabularnewline
72 & 4800 & 4387.99 & 4545 & -157.005 & 412.005 \tabularnewline
73 & 4980 & 4722.25 & 4539.17 & 183.087 & 257.746 \tabularnewline
74 & 4300 & 4352.57 & 4526.67 & -174.1 & -52.5666 \tabularnewline
75 & 4800 & 4706.73 & 4498.33 & 208.4 & 93.2668 \tabularnewline
76 & 3980 & 4416.32 & 4484.17 & -67.8501 & -436.317 \tabularnewline
77 & 4120 & 4371.11 & 4502.5 & -131.392 & -251.108 \tabularnewline
78 & 4580 & 4451.11 & 4491.67 & -40.5584 & 128.892 \tabularnewline
79 & 4240 & 4344.75 & 4443.33 & -98.5793 & -104.754 \tabularnewline
80 & 4540 & 4453.18 & 4390 & 63.18 & 86.82 \tabularnewline
81 & 4200 & 4394.38 & 4328.33 & 66.0503 & -194.384 \tabularnewline
82 & 4780 & 4455.4 & 4281.67 & 173.736 & 324.598 \tabularnewline
83 & 4820 & 4246.7 & 4271.67 & -24.9682 & 573.302 \tabularnewline
84 & 4320 & 4097.16 & 4254.17 & -157.005 & 222.839 \tabularnewline
85 & 4300 & 4416.42 & 4233.33 & 183.087 & -116.421 \tabularnewline
86 & 3700 & 4031.73 & 4205.83 & -174.1 & -331.733 \tabularnewline
87 & 3920 & 4380.07 & 4171.67 & 208.4 & -460.067 \tabularnewline
88 & 3740 & 4067.98 & 4135.83 & -67.8501 & -327.983 \tabularnewline
89 & 4120 & 3941.11 & 4072.5 & -131.392 & 178.892 \tabularnewline
90 & 4160 & 3958.61 & 3999.17 & -40.5584 & 201.392 \tabularnewline
91 & 4160 & 3853.92 & 3952.5 & -98.5793 & 306.079 \tabularnewline
92 & 3960 & 4005.68 & 3942.5 & 63.18 & -45.68 \tabularnewline
93 & 3960 & 4015.22 & 3949.17 & 66.0503 & -55.217 \tabularnewline
94 & 4160 & 4145.4 & 3971.67 & 173.736 & 14.5978 \tabularnewline
95 & 3920 & 3945.87 & 3970.83 & -24.9682 & -25.8652 \tabularnewline
96 & 3460 & 3785.49 & 3942.5 & -157.005 & -325.495 \tabularnewline
97 & 4040 & 4096.42 & 3913.33 & 183.087 & -56.4207 \tabularnewline
98 & 3720 & 3712.57 & 3886.67 & -174.1 & 7.43345 \tabularnewline
99 & 4060 & 4068.4 & 3860 & 208.4 & -8.39988 \tabularnewline
100 & 4140 & 3758.82 & 3826.67 & -67.8501 & 381.183 \tabularnewline
101 & 3700 & 3663.61 & 3795 & -131.392 & 36.3918 \tabularnewline
102 & 3900 & 3745.27 & 3785.83 & -40.5584 & 154.725 \tabularnewline
103 & 3720 & 3701.42 & 3800 & -98.5793 & 18.5793 \tabularnewline
104 & 3760 & 3875.68 & 3812.5 & 63.18 & -115.68 \tabularnewline
105 & 3520 & 3888.55 & 3822.5 & 66.0503 & -368.55 \tabularnewline
106 & 3800 & 3991.24 & 3817.5 & 173.736 & -191.236 \tabularnewline
107 & 3520 & 3790.03 & 3815 & -24.9682 & -270.032 \tabularnewline
108 & 3640 & 3662.99 & 3820 & -157.005 & -22.9948 \tabularnewline
109 & 4200 & 4003.92 & 3820.83 & 183.087 & 196.079 \tabularnewline
110 & 3860 & NA & NA & -174.1 & NA \tabularnewline
111 & 4160 & NA & NA & 208.4 & NA \tabularnewline
112 & 3920 & NA & NA & -67.8501 & NA \tabularnewline
113 & 3860 & NA & NA & -131.392 & NA \tabularnewline
114 & 3860 & NA & NA & -40.5584 & NA \tabularnewline
115 & 3780 & NA & NA & -98.5793 & NA \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299154&T=1

[TABLE]
[ROW][C]Classical Decomposition by Moving Averages[/C][/ROW]
[ROW][C]t[/C][C]Observations[/C][C]Fit[/C][C]Trend[/C][C]Seasonal[/C][C]Random[/C][/ROW]
[ROW][C]1[/C][C]6600[/C][C]NA[/C][C]NA[/C][C]183.087[/C][C]NA[/C][/ROW]
[ROW][C]2[/C][C]6160[/C][C]NA[/C][C]NA[/C][C]-174.1[/C][C]NA[/C][/ROW]
[ROW][C]3[/C][C]6320[/C][C]NA[/C][C]NA[/C][C]208.4[/C][C]NA[/C][/ROW]
[ROW][C]4[/C][C]5820[/C][C]NA[/C][C]NA[/C][C]-67.8501[/C][C]NA[/C][/ROW]
[ROW][C]5[/C][C]6080[/C][C]NA[/C][C]NA[/C][C]-131.392[/C][C]NA[/C][/ROW]
[ROW][C]6[/C][C]6240[/C][C]NA[/C][C]NA[/C][C]-40.5584[/C][C]NA[/C][/ROW]
[ROW][C]7[/C][C]5740[/C][C]6216.42[/C][C]6315[/C][C]-98.5793[/C][C]-476.421[/C][/ROW]
[ROW][C]8[/C][C]6980[/C][C]6383.18[/C][C]6320[/C][C]63.18[/C][C]596.82[/C][/ROW]
[ROW][C]9[/C][C]6540[/C][C]6427.72[/C][C]6361.67[/C][C]66.0503[/C][C]112.283[/C][/ROW]
[ROW][C]10[/C][C]6780[/C][C]6598.74[/C][C]6425[/C][C]173.736[/C][C]181.264[/C][/ROW]
[ROW][C]11[/C][C]6580[/C][C]6449.2[/C][C]6474.17[/C][C]-24.9682[/C][C]130.802[/C][/ROW]
[ROW][C]12[/C][C]6020[/C][C]6336.33[/C][C]6493.33[/C][C]-157.005[/C][C]-316.328[/C][/ROW]
[ROW][C]13[/C][C]6440[/C][C]6713.92[/C][C]6530.83[/C][C]183.087[/C][C]-273.921[/C][/ROW]
[ROW][C]14[/C][C]6440[/C][C]6353.4[/C][C]6527.5[/C][C]-174.1[/C][C]86.6001[/C][/ROW]
[ROW][C]15[/C][C]7040[/C][C]6677.57[/C][C]6469.17[/C][C]208.4[/C][C]362.433[/C][/ROW]
[ROW][C]16[/C][C]6620[/C][C]6358.82[/C][C]6426.67[/C][C]-67.8501[/C][C]261.183[/C][/ROW]
[ROW][C]17[/C][C]6460[/C][C]6240.27[/C][C]6371.67[/C][C]-131.392[/C][C]219.725[/C][/ROW]
[ROW][C]18[/C][C]6320[/C][C]6260.27[/C][C]6300.83[/C][C]-40.5584[/C][C]59.7251[/C][/ROW]
[ROW][C]19[/C][C]6560[/C][C]6148.09[/C][C]6246.67[/C][C]-98.5793[/C][C]411.913[/C][/ROW]
[ROW][C]20[/C][C]6080[/C][C]6269.01[/C][C]6205.83[/C][C]63.18[/C][C]-189.013[/C][/ROW]
[ROW][C]21[/C][C]6040[/C][C]6200.22[/C][C]6134.17[/C][C]66.0503[/C][C]-160.217[/C][/ROW]
[ROW][C]22[/C][C]6260[/C][C]6199.57[/C][C]6025.83[/C][C]173.736[/C][C]60.4311[/C][/ROW]
[ROW][C]23[/C][C]5780[/C][C]5912.53[/C][C]5937.5[/C][C]-24.9682[/C][C]-132.532[/C][/ROW]
[ROW][C]24[/C][C]5120[/C][C]5710.49[/C][C]5867.5[/C][C]-157.005[/C][C]-590.495[/C][/ROW]
[ROW][C]25[/C][C]6040[/C][C]5968.09[/C][C]5785[/C][C]183.087[/C][C]71.9126[/C][/ROW]
[ROW][C]26[/C][C]5860[/C][C]5551.73[/C][C]5725.83[/C][C]-174.1[/C][C]308.267[/C][/ROW]
[ROW][C]27[/C][C]5900[/C][C]5925.9[/C][C]5717.5[/C][C]208.4[/C][C]-25.8999[/C][/ROW]
[ROW][C]28[/C][C]5160[/C][C]5641.32[/C][C]5709.17[/C][C]-67.8501[/C][C]-481.317[/C][/ROW]
[ROW][C]29[/C][C]5800[/C][C]5545.27[/C][C]5676.67[/C][C]-131.392[/C][C]254.725[/C][/ROW]
[ROW][C]30[/C][C]5300[/C][C]5635.27[/C][C]5675.83[/C][C]-40.5584[/C][C]-335.275[/C][/ROW]
[ROW][C]31[/C][C]5600[/C][C]5579.75[/C][C]5678.33[/C][C]-98.5793[/C][C]20.2459[/C][/ROW]
[ROW][C]32[/C][C]5620[/C][C]5706.51[/C][C]5643.33[/C][C]63.18[/C][C]-86.5133[/C][/ROW]
[ROW][C]33[/C][C]6300[/C][C]5684.38[/C][C]5618.33[/C][C]66.0503[/C][C]615.616[/C][/ROW]
[ROW][C]34[/C][C]5800[/C][C]5820.4[/C][C]5646.67[/C][C]173.736[/C][C]-20.4022[/C][/ROW]
[ROW][C]35[/C][C]5460[/C][C]5643.37[/C][C]5668.33[/C][C]-24.9682[/C][C]-183.365[/C][/ROW]
[ROW][C]36[/C][C]5420[/C][C]5515.49[/C][C]5672.5[/C][C]-157.005[/C][C]-95.4948[/C][/ROW]
[ROW][C]37[/C][C]5800[/C][C]5863.92[/C][C]5680.83[/C][C]183.087[/C][C]-63.9207[/C][/ROW]
[ROW][C]38[/C][C]5260[/C][C]5500.9[/C][C]5675[/C][C]-174.1[/C][C]-240.9[/C][/ROW]
[ROW][C]39[/C][C]5900[/C][C]5845.9[/C][C]5637.5[/C][C]208.4[/C][C]54.1001[/C][/ROW]
[ROW][C]40[/C][C]5840[/C][C]5520.48[/C][C]5588.33[/C][C]-67.8501[/C][C]319.517[/C][/ROW]
[ROW][C]41[/C][C]5640[/C][C]5433.61[/C][C]5565[/C][C]-131.392[/C][C]206.392[/C][/ROW]
[ROW][C]42[/C][C]5560[/C][C]5516.11[/C][C]5556.67[/C][C]-40.5584[/C][C]43.8918[/C][/ROW]
[ROW][C]43[/C][C]5540[/C][C]5449.75[/C][C]5548.33[/C][C]-98.5793[/C][C]90.2459[/C][/ROW]
[ROW][C]44[/C][C]5540[/C][C]5600.68[/C][C]5537.5[/C][C]63.18[/C][C]-60.68[/C][/ROW]
[ROW][C]45[/C][C]5480[/C][C]5583.55[/C][C]5517.5[/C][C]66.0503[/C][C]-103.55[/C][/ROW]
[ROW][C]46[/C][C]5440[/C][C]5651.24[/C][C]5477.5[/C][C]173.736[/C][C]-211.236[/C][/ROW]
[ROW][C]47[/C][C]5260[/C][C]5389.2[/C][C]5414.17[/C][C]-24.9682[/C][C]-129.198[/C][/ROW]
[ROW][C]48[/C][C]5420[/C][C]5190.49[/C][C]5347.5[/C][C]-157.005[/C][C]229.505[/C][/ROW]
[ROW][C]49[/C][C]5600[/C][C]5477.25[/C][C]5294.17[/C][C]183.087[/C][C]122.746[/C][/ROW]
[ROW][C]50[/C][C]5200[/C][C]5069.23[/C][C]5243.33[/C][C]-174.1[/C][C]130.767[/C][/ROW]
[ROW][C]51[/C][C]5480[/C][C]5415.07[/C][C]5206.67[/C][C]208.4[/C][C]64.9334[/C][/ROW]
[ROW][C]52[/C][C]5300[/C][C]5114.65[/C][C]5182.5[/C][C]-67.8501[/C][C]185.35[/C][/ROW]
[ROW][C]53[/C][C]4660[/C][C]5023.61[/C][C]5155[/C][C]-131.392[/C][C]-363.608[/C][/ROW]
[ROW][C]54[/C][C]4940[/C][C]5089.44[/C][C]5130[/C][C]-40.5584[/C][C]-149.442[/C][/ROW]
[ROW][C]55[/C][C]4880[/C][C]4993.92[/C][C]5092.5[/C][C]-98.5793[/C][C]-113.921[/C][/ROW]
[ROW][C]56[/C][C]4980[/C][C]5107.35[/C][C]5044.17[/C][C]63.18[/C][C]-127.347[/C][/ROW]
[ROW][C]57[/C][C]5160[/C][C]5067.72[/C][C]5001.67[/C][C]66.0503[/C][C]92.283[/C][/ROW]
[ROW][C]58[/C][C]5180[/C][C]5130.4[/C][C]4956.67[/C][C]173.736[/C][C]49.5978[/C][/ROW]
[ROW][C]59[/C][C]4860[/C][C]4895.03[/C][C]4920[/C][C]-24.9682[/C][C]-35.0318[/C][/ROW]
[ROW][C]60[/C][C]5220[/C][C]4731.33[/C][C]4888.33[/C][C]-157.005[/C][C]488.672[/C][/ROW]
[ROW][C]61[/C][C]4900[/C][C]5035.59[/C][C]4852.5[/C][C]183.087[/C][C]-135.587[/C][/ROW]
[ROW][C]62[/C][C]4740[/C][C]4645.9[/C][C]4820[/C][C]-174.1[/C][C]94.1001[/C][/ROW]
[ROW][C]63[/C][C]4920[/C][C]4998.4[/C][C]4790[/C][C]208.4[/C][C]-78.3999[/C][/ROW]
[ROW][C]64[/C][C]4780[/C][C]4679.65[/C][C]4747.5[/C][C]-67.8501[/C][C]100.35[/C][/ROW]
[ROW][C]65[/C][C]4300[/C][C]4579.44[/C][C]4710.83[/C][C]-131.392[/C][C]-279.442[/C][/ROW]
[ROW][C]66[/C][C]4540[/C][C]4641.94[/C][C]4682.5[/C][C]-40.5584[/C][C]-101.942[/C][/ROW]
[ROW][C]67[/C][C]4420[/C][C]4569.75[/C][C]4668.33[/C][C]-98.5793[/C][C]-149.754[/C][/ROW]
[ROW][C]68[/C][C]4660[/C][C]4716.51[/C][C]4653.33[/C][C]63.18[/C][C]-56.5133[/C][/ROW]
[ROW][C]69[/C][C]4760[/C][C]4696.05[/C][C]4630[/C][C]66.0503[/C][C]63.9497[/C][/ROW]
[ROW][C]70[/C][C]4560[/C][C]4765.4[/C][C]4591.67[/C][C]173.736[/C][C]-205.402[/C][/ROW]
[ROW][C]71[/C][C]4600[/C][C]4525.87[/C][C]4550.83[/C][C]-24.9682[/C][C]74.1348[/C][/ROW]
[ROW][C]72[/C][C]4800[/C][C]4387.99[/C][C]4545[/C][C]-157.005[/C][C]412.005[/C][/ROW]
[ROW][C]73[/C][C]4980[/C][C]4722.25[/C][C]4539.17[/C][C]183.087[/C][C]257.746[/C][/ROW]
[ROW][C]74[/C][C]4300[/C][C]4352.57[/C][C]4526.67[/C][C]-174.1[/C][C]-52.5666[/C][/ROW]
[ROW][C]75[/C][C]4800[/C][C]4706.73[/C][C]4498.33[/C][C]208.4[/C][C]93.2668[/C][/ROW]
[ROW][C]76[/C][C]3980[/C][C]4416.32[/C][C]4484.17[/C][C]-67.8501[/C][C]-436.317[/C][/ROW]
[ROW][C]77[/C][C]4120[/C][C]4371.11[/C][C]4502.5[/C][C]-131.392[/C][C]-251.108[/C][/ROW]
[ROW][C]78[/C][C]4580[/C][C]4451.11[/C][C]4491.67[/C][C]-40.5584[/C][C]128.892[/C][/ROW]
[ROW][C]79[/C][C]4240[/C][C]4344.75[/C][C]4443.33[/C][C]-98.5793[/C][C]-104.754[/C][/ROW]
[ROW][C]80[/C][C]4540[/C][C]4453.18[/C][C]4390[/C][C]63.18[/C][C]86.82[/C][/ROW]
[ROW][C]81[/C][C]4200[/C][C]4394.38[/C][C]4328.33[/C][C]66.0503[/C][C]-194.384[/C][/ROW]
[ROW][C]82[/C][C]4780[/C][C]4455.4[/C][C]4281.67[/C][C]173.736[/C][C]324.598[/C][/ROW]
[ROW][C]83[/C][C]4820[/C][C]4246.7[/C][C]4271.67[/C][C]-24.9682[/C][C]573.302[/C][/ROW]
[ROW][C]84[/C][C]4320[/C][C]4097.16[/C][C]4254.17[/C][C]-157.005[/C][C]222.839[/C][/ROW]
[ROW][C]85[/C][C]4300[/C][C]4416.42[/C][C]4233.33[/C][C]183.087[/C][C]-116.421[/C][/ROW]
[ROW][C]86[/C][C]3700[/C][C]4031.73[/C][C]4205.83[/C][C]-174.1[/C][C]-331.733[/C][/ROW]
[ROW][C]87[/C][C]3920[/C][C]4380.07[/C][C]4171.67[/C][C]208.4[/C][C]-460.067[/C][/ROW]
[ROW][C]88[/C][C]3740[/C][C]4067.98[/C][C]4135.83[/C][C]-67.8501[/C][C]-327.983[/C][/ROW]
[ROW][C]89[/C][C]4120[/C][C]3941.11[/C][C]4072.5[/C][C]-131.392[/C][C]178.892[/C][/ROW]
[ROW][C]90[/C][C]4160[/C][C]3958.61[/C][C]3999.17[/C][C]-40.5584[/C][C]201.392[/C][/ROW]
[ROW][C]91[/C][C]4160[/C][C]3853.92[/C][C]3952.5[/C][C]-98.5793[/C][C]306.079[/C][/ROW]
[ROW][C]92[/C][C]3960[/C][C]4005.68[/C][C]3942.5[/C][C]63.18[/C][C]-45.68[/C][/ROW]
[ROW][C]93[/C][C]3960[/C][C]4015.22[/C][C]3949.17[/C][C]66.0503[/C][C]-55.217[/C][/ROW]
[ROW][C]94[/C][C]4160[/C][C]4145.4[/C][C]3971.67[/C][C]173.736[/C][C]14.5978[/C][/ROW]
[ROW][C]95[/C][C]3920[/C][C]3945.87[/C][C]3970.83[/C][C]-24.9682[/C][C]-25.8652[/C][/ROW]
[ROW][C]96[/C][C]3460[/C][C]3785.49[/C][C]3942.5[/C][C]-157.005[/C][C]-325.495[/C][/ROW]
[ROW][C]97[/C][C]4040[/C][C]4096.42[/C][C]3913.33[/C][C]183.087[/C][C]-56.4207[/C][/ROW]
[ROW][C]98[/C][C]3720[/C][C]3712.57[/C][C]3886.67[/C][C]-174.1[/C][C]7.43345[/C][/ROW]
[ROW][C]99[/C][C]4060[/C][C]4068.4[/C][C]3860[/C][C]208.4[/C][C]-8.39988[/C][/ROW]
[ROW][C]100[/C][C]4140[/C][C]3758.82[/C][C]3826.67[/C][C]-67.8501[/C][C]381.183[/C][/ROW]
[ROW][C]101[/C][C]3700[/C][C]3663.61[/C][C]3795[/C][C]-131.392[/C][C]36.3918[/C][/ROW]
[ROW][C]102[/C][C]3900[/C][C]3745.27[/C][C]3785.83[/C][C]-40.5584[/C][C]154.725[/C][/ROW]
[ROW][C]103[/C][C]3720[/C][C]3701.42[/C][C]3800[/C][C]-98.5793[/C][C]18.5793[/C][/ROW]
[ROW][C]104[/C][C]3760[/C][C]3875.68[/C][C]3812.5[/C][C]63.18[/C][C]-115.68[/C][/ROW]
[ROW][C]105[/C][C]3520[/C][C]3888.55[/C][C]3822.5[/C][C]66.0503[/C][C]-368.55[/C][/ROW]
[ROW][C]106[/C][C]3800[/C][C]3991.24[/C][C]3817.5[/C][C]173.736[/C][C]-191.236[/C][/ROW]
[ROW][C]107[/C][C]3520[/C][C]3790.03[/C][C]3815[/C][C]-24.9682[/C][C]-270.032[/C][/ROW]
[ROW][C]108[/C][C]3640[/C][C]3662.99[/C][C]3820[/C][C]-157.005[/C][C]-22.9948[/C][/ROW]
[ROW][C]109[/C][C]4200[/C][C]4003.92[/C][C]3820.83[/C][C]183.087[/C][C]196.079[/C][/ROW]
[ROW][C]110[/C][C]3860[/C][C]NA[/C][C]NA[/C][C]-174.1[/C][C]NA[/C][/ROW]
[ROW][C]111[/C][C]4160[/C][C]NA[/C][C]NA[/C][C]208.4[/C][C]NA[/C][/ROW]
[ROW][C]112[/C][C]3920[/C][C]NA[/C][C]NA[/C][C]-67.8501[/C][C]NA[/C][/ROW]
[ROW][C]113[/C][C]3860[/C][C]NA[/C][C]NA[/C][C]-131.392[/C][C]NA[/C][/ROW]
[ROW][C]114[/C][C]3860[/C][C]NA[/C][C]NA[/C][C]-40.5584[/C][C]NA[/C][/ROW]
[ROW][C]115[/C][C]3780[/C][C]NA[/C][C]NA[/C][C]-98.5793[/C][C]NA[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299154&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299154&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Classical Decomposition by Moving Averages
tObservationsFitTrendSeasonalRandom
16600NANA183.087NA
26160NANA-174.1NA
36320NANA208.4NA
45820NANA-67.8501NA
56080NANA-131.392NA
66240NANA-40.5584NA
757406216.426315-98.5793-476.421
869806383.18632063.18596.82
965406427.726361.6766.0503112.283
1067806598.746425173.736181.264
1165806449.26474.17-24.9682130.802
1260206336.336493.33-157.005-316.328
1364406713.926530.83183.087-273.921
1464406353.46527.5-174.186.6001
1570406677.576469.17208.4362.433
1666206358.826426.67-67.8501261.183
1764606240.276371.67-131.392219.725
1863206260.276300.83-40.558459.7251
1965606148.096246.67-98.5793411.913
2060806269.016205.8363.18-189.013
2160406200.226134.1766.0503-160.217
2262606199.576025.83173.73660.4311
2357805912.535937.5-24.9682-132.532
2451205710.495867.5-157.005-590.495
2560405968.095785183.08771.9126
2658605551.735725.83-174.1308.267
2759005925.95717.5208.4-25.8999
2851605641.325709.17-67.8501-481.317
2958005545.275676.67-131.392254.725
3053005635.275675.83-40.5584-335.275
3156005579.755678.33-98.579320.2459
3256205706.515643.3363.18-86.5133
3363005684.385618.3366.0503615.616
3458005820.45646.67173.736-20.4022
3554605643.375668.33-24.9682-183.365
3654205515.495672.5-157.005-95.4948
3758005863.925680.83183.087-63.9207
3852605500.95675-174.1-240.9
3959005845.95637.5208.454.1001
4058405520.485588.33-67.8501319.517
4156405433.615565-131.392206.392
4255605516.115556.67-40.558443.8918
4355405449.755548.33-98.579390.2459
4455405600.685537.563.18-60.68
4554805583.555517.566.0503-103.55
4654405651.245477.5173.736-211.236
4752605389.25414.17-24.9682-129.198
4854205190.495347.5-157.005229.505
4956005477.255294.17183.087122.746
5052005069.235243.33-174.1130.767
5154805415.075206.67208.464.9334
5253005114.655182.5-67.8501185.35
5346605023.615155-131.392-363.608
5449405089.445130-40.5584-149.442
5548804993.925092.5-98.5793-113.921
5649805107.355044.1763.18-127.347
5751605067.725001.6766.050392.283
5851805130.44956.67173.73649.5978
5948604895.034920-24.9682-35.0318
6052204731.334888.33-157.005488.672
6149005035.594852.5183.087-135.587
6247404645.94820-174.194.1001
6349204998.44790208.4-78.3999
6447804679.654747.5-67.8501100.35
6543004579.444710.83-131.392-279.442
6645404641.944682.5-40.5584-101.942
6744204569.754668.33-98.5793-149.754
6846604716.514653.3363.18-56.5133
6947604696.05463066.050363.9497
7045604765.44591.67173.736-205.402
7146004525.874550.83-24.968274.1348
7248004387.994545-157.005412.005
7349804722.254539.17183.087257.746
7443004352.574526.67-174.1-52.5666
7548004706.734498.33208.493.2668
7639804416.324484.17-67.8501-436.317
7741204371.114502.5-131.392-251.108
7845804451.114491.67-40.5584128.892
7942404344.754443.33-98.5793-104.754
8045404453.18439063.1886.82
8142004394.384328.3366.0503-194.384
8247804455.44281.67173.736324.598
8348204246.74271.67-24.9682573.302
8443204097.164254.17-157.005222.839
8543004416.424233.33183.087-116.421
8637004031.734205.83-174.1-331.733
8739204380.074171.67208.4-460.067
8837404067.984135.83-67.8501-327.983
8941203941.114072.5-131.392178.892
9041603958.613999.17-40.5584201.392
9141603853.923952.5-98.5793306.079
9239604005.683942.563.18-45.68
9339604015.223949.1766.0503-55.217
9441604145.43971.67173.73614.5978
9539203945.873970.83-24.9682-25.8652
9634603785.493942.5-157.005-325.495
9740404096.423913.33183.087-56.4207
9837203712.573886.67-174.17.43345
9940604068.43860208.4-8.39988
10041403758.823826.67-67.8501381.183
10137003663.613795-131.39236.3918
10239003745.273785.83-40.5584154.725
10337203701.423800-98.579318.5793
10437603875.683812.563.18-115.68
10535203888.553822.566.0503-368.55
10638003991.243817.5173.736-191.236
10735203790.033815-24.9682-270.032
10836403662.993820-157.005-22.9948
10942004003.923820.83183.087196.079
1103860NANA-174.1NA
1114160NANA208.4NA
1123920NANA-67.8501NA
1133860NANA-131.392NA
1143860NANA-40.5584NA
1153780NANA-98.5793NA



Parameters (Session):
par1 = 12 ; par2 = periodic ; par3 = 0 ; par5 = 1 ; par7 = 1 ; par8 = FALSE ;
Parameters (R input):
par1 = additive ; par2 = 12 ;
R code (references can be found in the software module):
par2 <- as.numeric(par2)
x <- ts(x,freq=par2)
m <- decompose(x,type=par1)
m$figure
bitmap(file='test1.png')
plot(m)
dev.off()
mylagmax <- length(x)/2
bitmap(file='test2.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(x),lag.max = mylagmax,main='Observed')
acf(as.numeric(m$trend),na.action=na.pass,lag.max = mylagmax,main='Trend')
acf(as.numeric(m$seasonal),na.action=na.pass,lag.max = mylagmax,main='Seasonal')
acf(as.numeric(m$random),na.action=na.pass,lag.max = mylagmax,main='Random')
par(op)
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
spectrum(as.numeric(x),main='Observed')
spectrum(as.numeric(m$trend[!is.na(m$trend)]),main='Trend')
spectrum(as.numeric(m$seasonal[!is.na(m$seasonal)]),main='Seasonal')
spectrum(as.numeric(m$random[!is.na(m$random)]),main='Random')
par(op)
dev.off()
bitmap(file='test4.png')
op <- par(mfrow = c(2,2))
cpgram(as.numeric(x),main='Observed')
cpgram(as.numeric(m$trend[!is.na(m$trend)]),main='Trend')
cpgram(as.numeric(m$seasonal[!is.na(m$seasonal)]),main='Seasonal')
cpgram(as.numeric(m$random[!is.na(m$random)]),main='Random')
par(op)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Classical Decomposition by Moving Averages',6,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observations',header=TRUE)
a<-table.element(a,'Fit',header=TRUE)
a<-table.element(a,'Trend',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,'Random',header=TRUE)
a<-table.row.end(a)
for (i in 1:length(m$trend)) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
if (par1 == 'additive') a<-table.element(a,signif(m$trend[i]+m$seasonal[i],6)) else a<-table.element(a,signif(m$trend[i]*m$seasonal[i],6))
a<-table.element(a,signif(m$trend[i],6))
a<-table.element(a,signif(m$seasonal[i],6))
a<-table.element(a,signif(m$random[i],6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')