Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_correlation.wasp
Title produced by softwarePearson Correlation
Date of computationTue, 13 Dec 2016 16:15:48 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/13/t148164247167uk5mfz3uky7o1.htm/, Retrieved Fri, 01 Nov 2024 03:42:22 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=299149, Retrieved Fri, 01 Nov 2024 03:42:22 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact65
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Pearson Correlation] [Pearson Collerala...] [2016-12-13 15:15:48] [e6dc02234f5305f92311fb16bc25f73e] [Current]
Feedback Forum

Post a new message
Dataseries X:
14
19
17
17
15
20
15
19
15
15
19
16
20
18
15
14
16
16
16
10
19
19
16
15
18
17
19
17
14
19
20
5
19
16
15
16
18
16
15
17
14
20
19
7
13
16
16
18
18
16
17
19
16
19
13
16
13
12
17
17
17
16
16
14
16
13
16
14
20
12
13
18
14
19
18
14
18
19
15
14
17
19
13
19
18
20
15
15
15
20
15
19
18
18
15
20
17
19
20
13
17
15
16
18
18
14
15
12
17
14
18
17
17
20
16
14
15
18
20
17
17
17
17
15
17
18
17
20
15
16
15
18
15
18
20
19
14
16
15
17
18
20
17
18
15
16
11
15
18
17
16
12
19
18
15
17
19
18
19
16
16
16
14
Dataseries Y:
13
16
17
15
16
16
17
16
17
17
17
15
16
14
16
17
15
17
16
15
16
15
17
14
16
15
16
16
13
15
17
15
13
17
15
14
14
18
15
17
13
16
15
15
16
15
13
17
18
18
11
14
13
15
17
16
15
17
16
16
16
15
12
17
14
14
16
15
15
14
13
18
15
16
14
15
17
16
10
16
17
17
20
17
18
15
17
14
15
17
16
17
15
16
18
18
16
15
13
15
17
16
16
15
16
16
14
15
12
19
16
16
17
16
14
15
14
16
15
17
15
16
16
15
14
11
16
18
13
11
16
18
15
19
17
13
14
16
13
17
14
19
14
16
12
16
16
15
12
15
17
14
15
18
15
18
15
15
16
13
16
14
16




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time3 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299149&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]3 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=299149&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299149&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R ServerBig Analytics Cloud Computing Center







Pearson Product Moment Correlation - Ungrouped Data
StatisticVariable XVariable Y
Mean16.423312883435615.4723926380368
Biased Variance5.961910497195982.86273476608077
Biased Standard Deviation2.44170237686661.69196180987656
Covariance0.582746345527532
Correlation0.140192146950596
Determination0.0196538380666175
T-Test1.79658139657275
p-value (2 sided)0.0742768318701033
p-value (1 sided)0.0371384159350516
95% CI of Correlation[-0.0138263071591274, 0.287712321269892]
Degrees of Freedom161
Number of Observations163

\begin{tabular}{lllllllll}
\hline
Pearson Product Moment Correlation - Ungrouped Data \tabularnewline
Statistic & Variable X & Variable Y \tabularnewline
Mean & 16.4233128834356 & 15.4723926380368 \tabularnewline
Biased Variance & 5.96191049719598 & 2.86273476608077 \tabularnewline
Biased Standard Deviation & 2.4417023768666 & 1.69196180987656 \tabularnewline
Covariance & 0.582746345527532 \tabularnewline
Correlation & 0.140192146950596 \tabularnewline
Determination & 0.0196538380666175 \tabularnewline
T-Test & 1.79658139657275 \tabularnewline
p-value (2 sided) & 0.0742768318701033 \tabularnewline
p-value (1 sided) & 0.0371384159350516 \tabularnewline
95% CI of Correlation & [-0.0138263071591274, 0.287712321269892] \tabularnewline
Degrees of Freedom & 161 \tabularnewline
Number of Observations & 163 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299149&T=1

[TABLE]
[ROW][C]Pearson Product Moment Correlation - Ungrouped Data[/C][/ROW]
[ROW][C]Statistic[/C][C]Variable X[/C][C]Variable Y[/C][/ROW]
[ROW][C]Mean[/C][C]16.4233128834356[/C][C]15.4723926380368[/C][/ROW]
[ROW][C]Biased Variance[/C][C]5.96191049719598[/C][C]2.86273476608077[/C][/ROW]
[ROW][C]Biased Standard Deviation[/C][C]2.4417023768666[/C][C]1.69196180987656[/C][/ROW]
[ROW][C]Covariance[/C][C]0.582746345527532[/C][/ROW]
[ROW][C]Correlation[/C][C]0.140192146950596[/C][/ROW]
[ROW][C]Determination[/C][C]0.0196538380666175[/C][/ROW]
[ROW][C]T-Test[/C][C]1.79658139657275[/C][/ROW]
[ROW][C]p-value (2 sided)[/C][C]0.0742768318701033[/C][/ROW]
[ROW][C]p-value (1 sided)[/C][C]0.0371384159350516[/C][/ROW]
[ROW][C]95% CI of Correlation[/C][C][-0.0138263071591274, 0.287712321269892][/C][/ROW]
[ROW][C]Degrees of Freedom[/C][C]161[/C][/ROW]
[ROW][C]Number of Observations[/C][C]163[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299149&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299149&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Pearson Product Moment Correlation - Ungrouped Data
StatisticVariable XVariable Y
Mean16.423312883435615.4723926380368
Biased Variance5.961910497195982.86273476608077
Biased Standard Deviation2.44170237686661.69196180987656
Covariance0.582746345527532
Correlation0.140192146950596
Determination0.0196538380666175
T-Test1.79658139657275
p-value (2 sided)0.0742768318701033
p-value (1 sided)0.0371384159350516
95% CI of Correlation[-0.0138263071591274, 0.287712321269892]
Degrees of Freedom161
Number of Observations163







Normality Tests
> jarque.x
	Jarque-Bera Normality Test
data:  x
JB = 86.912, p-value < 2.2e-16
alternative hypothesis: greater
> jarque.y
	Jarque-Bera Normality Test
data:  y
JB = 6.8303, p-value = 0.03287
alternative hypothesis: greater
> ad.x
	Anderson-Darling normality test
data:  x
A = 2.1504, p-value = 1.749e-05
> ad.y
	Anderson-Darling normality test
data:  y
A = 3.0308, p-value = 1.222e-07

\begin{tabular}{lllllllll}
\hline
Normality Tests \tabularnewline
> jarque.x
	Jarque-Bera Normality Test
data:  x
JB = 86.912, p-value < 2.2e-16
alternative hypothesis: greater
\tabularnewline
> jarque.y
	Jarque-Bera Normality Test
data:  y
JB = 6.8303, p-value = 0.03287
alternative hypothesis: greater
\tabularnewline
> ad.x
	Anderson-Darling normality test
data:  x
A = 2.1504, p-value = 1.749e-05
\tabularnewline
> ad.y
	Anderson-Darling normality test
data:  y
A = 3.0308, p-value = 1.222e-07
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=299149&T=2

[TABLE]
[ROW][C]Normality Tests[/C][/ROW]
[ROW][C]
> jarque.x
	Jarque-Bera Normality Test
data:  x
JB = 86.912, p-value < 2.2e-16
alternative hypothesis: greater
[/C][/ROW] [ROW][C]
> jarque.y
	Jarque-Bera Normality Test
data:  y
JB = 6.8303, p-value = 0.03287
alternative hypothesis: greater
[/C][/ROW] [ROW][C]
> ad.x
	Anderson-Darling normality test
data:  x
A = 2.1504, p-value = 1.749e-05
[/C][/ROW] [ROW][C]
> ad.y
	Anderson-Darling normality test
data:  y
A = 3.0308, p-value = 1.222e-07
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=299149&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299149&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Normality Tests
> jarque.x
	Jarque-Bera Normality Test
data:  x
JB = 86.912, p-value < 2.2e-16
alternative hypothesis: greater
> jarque.y
	Jarque-Bera Normality Test
data:  y
JB = 6.8303, p-value = 0.03287
alternative hypothesis: greater
> ad.x
	Anderson-Darling normality test
data:  x
A = 2.1504, p-value = 1.749e-05
> ad.y
	Anderson-Darling normality test
data:  y
A = 3.0308, p-value = 1.222e-07



Parameters (Session):
par1 = 50 ; par2 = 50 ; par3 = 0 ; par4 = 0 ; par5 = 0 ; par6 = Y ; par7 = Y ; par8 = terrain.colors ;
Parameters (R input):
R code (references can be found in the software module):
library(psychometric)
x <- x[!is.na(y)]
y <- y[!is.na(y)]
y <- y[!is.na(x)]
x <- x[!is.na(x)]
bitmap(file='test1.png')
histx <- hist(x, plot=FALSE)
histy <- hist(y, plot=FALSE)
maxcounts <- max(c(histx$counts, histx$counts))
xrange <- c(min(x),max(x))
yrange <- c(min(y),max(y))
nf <- layout(matrix(c(2,0,1,3),2,2,byrow=TRUE), c(3,1), c(1,3), TRUE)
par(mar=c(4,4,1,1))
plot(x, y, xlim=xrange, ylim=yrange, xlab=xlab, ylab=ylab, sub=main)
par(mar=c(0,4,1,1))
barplot(histx$counts, axes=FALSE, ylim=c(0, maxcounts), space=0)
par(mar=c(4,0,1,1))
barplot(histy$counts, axes=FALSE, xlim=c(0, maxcounts), space=0, horiz=TRUE)
dev.off()
lx = length(x)
makebiased = (lx-1)/lx
varx = var(x)*makebiased
vary = var(y)*makebiased
corxy <- cor.test(x,y,method='pearson', na.rm = T)
cxy <- as.matrix(corxy$estimate)[1,1]
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Pearson Product Moment Correlation - Ungrouped Data',3,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Statistic',1,TRUE)
a<-table.element(a,'Variable X',1,TRUE)
a<-table.element(a,'Variable Y',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Mean',header=TRUE)
a<-table.element(a,mean(x))
a<-table.element(a,mean(y))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Biased Variance',header=TRUE)
a<-table.element(a,varx)
a<-table.element(a,vary)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Biased Standard Deviation',header=TRUE)
a<-table.element(a,sqrt(varx))
a<-table.element(a,sqrt(vary))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Covariance',header=TRUE)
a<-table.element(a,cov(x,y),2)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Correlation',header=TRUE)
a<-table.element(a,cxy,2)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Determination',header=TRUE)
a<-table.element(a,cxy*cxy,2)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'T-Test',header=TRUE)
a<-table.element(a,as.matrix(corxy$statistic)[1,1],2)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value (2 sided)',header=TRUE)
a<-table.element(a,(p2 <- as.matrix(corxy$p.value)[1,1]),2)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value (1 sided)',header=TRUE)
a<-table.element(a,p2/2,2)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'95% CI of Correlation',header=TRUE)
a<-table.element(a,paste('[',CIr(r=cxy, n = lx, level = .95)[1],', ', CIr(r=cxy, n = lx, level = .95)[2],']',sep=''),2)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Degrees of Freedom',header=TRUE)
a<-table.element(a,lx-2,2)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Number of Observations',header=TRUE)
a<-table.element(a,lx,2)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')
library(moments)
library(nortest)
jarque.x <- jarque.test(x)
jarque.y <- jarque.test(y)
if(lx>7) {
ad.x <- ad.test(x)
ad.y <- ad.test(y)
}
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Normality Tests',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,paste('
',RC.texteval('jarque.x'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,paste('
',RC.texteval('jarque.y'),'
',sep=''))
a<-table.row.end(a)
if(lx>7) {
a<-table.row.start(a)
a<-table.element(a,paste('
',RC.texteval('ad.x'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,paste('
',RC.texteval('ad.y'),'
',sep=''))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')
library(car)
bitmap(file='test2.png')
qqPlot(x,main='QQplot of variable x')
dev.off()
bitmap(file='test3.png')
qqPlot(y,main='QQplot of variable y')
dev.off()