Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_decomposeloess.wasp
Title produced by softwareDecomposition by Loess
Date of computationTue, 13 Dec 2016 16:07:13 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/13/t14816416475qsn1ul70vlmyuf.htm/, Retrieved Fri, 01 Nov 2024 03:45:28 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=299139, Retrieved Fri, 01 Nov 2024 03:45:28 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact77
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Decomposition by Loess] [] [2016-12-13 15:07:13] [9b171b8beffcb53bb49a1e7c02b89c12] [Current]
Feedback Forum

Post a new message
Dataseries X:
2669.94
2778.72
2648.44
2631.32
3057.32
2730.66
2730.62
2738.7
2616.36
2773.54
2872.76
2999.42
2730.62
2907.22
2778.04
2833.94
2914.44
2788.86
2742.8
2726.52
2746.44
2927.42
2879.56
3262.02
2883.14
2903.2
2877.7
2874.3
3026.66
2979.42
3109.68
2966.76
2961.04
3103.84
3359.12
3976.24
3049.42
3089.14
3166.26
3459.04
3457.32
3292.66
3432.86
3388.4
3312.9
3390.04
3757.44
4612.38
3613.34
3525.14
3473.06
3662.22
3717.4
3466.9
3443.4
3383.16
3843.64
3692.4
3558.38
3811.02
3470.54
3354.68
3499.96
3537.36
3414.98
3649
3549.72
3680.78
3484.64
3451.92
3831.14
3906.02
3499.54
3620.62
3473.64
3494.32
3799.66
3476.4
3446.86
3441.94
3514.68
3464.96
3579.48
3944.24
3702.42
3716.28
3538.36
3482.58
3665.5
3484.5
3425.08
3421.44
3602.34
3593.44
3478.5
4365.26
3445.2
3473.48
3472.32
3403.82
3575.4
3512.96
3433.04
3495.2
3478.96
3559.28
3887.1
4083.16
3659.52
3693.48
3779.52
3891.62
3895.86
3745.04
3884.46
3862.98




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time2 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299139&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]2 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=299139&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299139&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center







Seasonal Decomposition by Loess - Parameters
ComponentWindowDegreeJump
Seasonal11610117
Trend1912
Low-pass1312

\begin{tabular}{lllllllll}
\hline
Seasonal Decomposition by Loess - Parameters \tabularnewline
Component & Window & Degree & Jump \tabularnewline
Seasonal & 1161 & 0 & 117 \tabularnewline
Trend & 19 & 1 & 2 \tabularnewline
Low-pass & 13 & 1 & 2 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299139&T=1

[TABLE]
[ROW][C]Seasonal Decomposition by Loess - Parameters[/C][/ROW]
[ROW][C]Component[/C][C]Window[/C][C]Degree[/C][C]Jump[/C][/ROW]
[ROW][C]Seasonal[/C][C]1161[/C][C]0[/C][C]117[/C][/ROW]
[ROW][C]Trend[/C][C]19[/C][C]1[/C][C]2[/C][/ROW]
[ROW][C]Low-pass[/C][C]13[/C][C]1[/C][C]2[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299139&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299139&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Seasonal Decomposition by Loess - Parameters
ComponentWindowDegreeJump
Seasonal11610117
Trend1912
Low-pass1312







Seasonal Decomposition by Loess - Time Series Components
tObservedFittedSeasonalTrendRemainder
12669.942624.55541836263-72.08708082673592787.4116624641-45.3845816373669
22778.722817.20602624558-47.26647257434512787.5004463287638.4860262455845
32648.442601.03055067746-91.73978087087472787.58923019342-47.4094493225439
42631.322519.95688003207-44.8110614555352787.49418142346-111.363119967927
53057.323256.0433456638271.1975216826732787.3991326535198.723345663823
62730.662752.45912336672-79.10891168278482787.9697883160721.7991233667176
72730.622755.08898873291-82.38943271153932788.5404439786324.46898873291
82738.72790.0936865064-103.0121417538172790.3184552474251.3936865063984
92616.362518.99802826915-78.37449478535472792.09646651621-97.3619717308538
102773.542797.06026450099-45.0264436637542795.0461791627723.5202645009854
112872.762864.6690901977382.85501799293832797.99589180933-8.09090980226665
122999.422707.57940668128489.7632679257562801.49732539296-291.84059331872
132730.622728.32832185014-72.08708082673592804.9987589766-2.2916781498634
142907.223050.04853588293-47.26647257434512811.65793669142142.828535882929
152778.042829.50266646464-91.73978087087472818.3171144062351.462666464643
162833.942884.58442495431-44.8110614555352828.1066365012250.6444249543147
172914.442919.7863197211271.1975216826732837.896158596215.34631972111765
182788.862810.34962131905-79.10891168278482846.4792903637421.4896213190477
192742.82712.92701058027-82.38943271153932855.06242213127-29.8729894197254
202726.522695.28776038215-103.0121417538172860.76438137166-31.2322396178474
212746.442704.78815417329-78.37449478535472866.46634061206-41.6518458267101
222927.423025.28077751223-45.0264436637542874.5856661515297.8607775122332
232879.562793.5599903160982.85501799293832882.70499169098-86.0000096839149
243262.023135.20818441019489.7632679257562899.06854766406-126.811815589813
252883.142922.9349771896-72.08708082673592915.4321036371439.7949771895974
262903.22916.60856831668-47.26647257434512937.0579042576713.4085683166791
272877.72888.45607599268-91.73978087087472958.6837048781910.756075992681
282874.32806.83304852967-44.8110614555352986.57801292586-67.4669514703287
293026.662967.6501573437971.1975216826733014.47232097353-59.0098426562067
302979.422991.09448886896-79.10891168278483046.8544228138311.6744888689564
313109.683222.51290805742-82.38943271153933079.23652465412112.832908057416
322966.762927.6564049027-103.0121417538173108.87573685112-39.1035950973019
332961.042861.93954573724-78.37449478535473138.51494904812-99.1004542627606
343103.843083.33788306334-45.0264436637543169.36856060041-20.5021169366582
353359.123435.1628098543582.85501799293833200.2221721527176.0428098543521
363976.244230.4404405303489.7632679257563232.27629154395254.200440530296
373049.422906.59666989155-72.08708082673593264.33041093519-142.823330108452
383089.142931.78633098157-47.26647257434513293.76014159278-157.353669018434
393166.263101.0699086205-91.73978087087473323.18987225037-65.1900913794966
403459.043608.32994770495-44.8110614555353354.56111375058149.289947704952
413457.323457.5101230665371.1975216826733385.932355250790.190123066532578
423292.663238.62510409253-79.10891168278483425.80380759026-54.0348959074731
433432.863482.43417278182-82.38943271153933465.6752599297249.5741727818181
443388.43375.38331293351-103.0121417538173504.42882882031-13.0166870664916
453312.93160.99209707446-78.37449478535473543.1823977109-151.907902925542
463390.043256.48072736989-45.0264436637543568.62571629387-133.559272630113
473757.443837.9559471302282.85501799293833594.0690348768480.5159471302236
484612.385126.16848224393489.7632679257563608.82824983032513.788482243926
493613.343675.17961604294-72.08708082673593623.587464783861.839616042937
503525.143463.20351733612-47.26647257434513634.34295523823-61.9364826638807
513473.063392.76133517822-91.73978087087473645.09844569265-80.2986648217775
523662.223724.55509671687-44.8110614555353644.6959647386762.335096716869
533717.43719.3089945326571.1975216826733644.293483784681.90899453264728
543466.93386.08395570046-79.10891168278483626.82495598233-80.8160442995422
553443.43359.83300453157-82.38943271153933609.35642817997-83.5669954684345
563383.163275.71852210149-103.0121417538173593.61361965233-107.441477898514
573843.644187.78368366067-78.37449478535473577.87081112469344.143683660665
583692.43861.51173951372-45.0264436637543568.31470415004169.111739513718
593558.383475.1463848316882.85501799293833558.75859717538-83.2336151683212
603811.023576.46765233617489.7632679257563555.80907973807-234.552347663828
613470.543460.30751852597-72.08708082673593552.85956230076-10.2324814740259
623354.683203.21761957654-47.26647257434513553.40885299781-151.462380423462
633499.963537.70163717602-91.73978087087473553.9581436948537.7416371760214
643537.363562.50914519695-44.8110614555353557.0219162585925.1491451969468
653414.983198.67678949571.1975216826733560.08568882232-216.303210504996
6636493807.87467670003-79.10891168278483569.23423498275158.874676700033
673549.723603.44665156836-82.38943271153933578.3827811431853.7266515683582
683680.783878.780206619-103.0121417538173585.79193513482198.000206619
693484.643454.4534056589-78.37449478535473593.20108912645-30.186594341099
703451.923352.04238888466-45.0264436637543596.8240547791-99.8776111153429
713831.143978.9779615753282.85501799293833600.44702043174147.837961575321
723906.023724.02442182431489.7632679257563598.25231024993-181.995578175687
733499.543475.10948075861-72.08708082673593596.05760006812-24.4305192413858
743620.623698.58814346259-47.26647257434513589.9183291117577.9681434625904
753473.643455.24072271549-91.73978087087473583.77905815539-18.3992772845131
763494.323454.38339989262-44.8110614555353579.06766156291-39.9366001073786
773799.663953.7662133468971.1975216826733574.35626497044154.106213346887
783476.43458.33281567938-79.10891168278483573.5760960034-18.0671843206192
793446.863403.31350567517-82.38943271153933572.79592703637-43.5464943248289
803441.943410.3042977458-103.0121417538173576.58784400801-31.6357022541961
813514.683527.3547338057-78.37449478535473580.3797609796612.6747338056957
823464.963392.0262196959-45.0264436637543582.92022396785-72.9337803040976
833579.483490.6442950510282.85501799293833585.46068695604-88.8357049489832
843944.243813.40143744501489.7632679257563585.31529462924-130.838562554994
853702.423891.7571785243-72.08708082673593585.16990230243189.337178524304
863716.283892.29904252999-47.26647257434513587.52743004436176.01904252999
873538.363578.5748230846-91.73978087087473589.8849577862840.214823084596
883482.583417.20301529249-44.8110614555353592.76804616305-65.3769847075141
893665.53664.1513437775171.1975216826733595.65113453982-1.34865622249254
903484.53452.66168129237-79.10891168278483595.44723039041-31.8383187076265
913425.083337.30610647054-82.38943271153933595.243326241-87.7738935294642
923421.443356.98677184393-103.0121417538173588.90536990989-64.4532281560714
933602.343700.48708120658-78.37449478535473582.5674135787798.1470812065804
943593.443654.30111432928-45.0264436637543577.6053293344760.8611143292796
953478.53301.5017369168982.85501799293833572.64324509017-176.998263083113
964365.264671.14929192488489.7632679257563569.60744014937305.889291924876
973445.23395.91544561817-72.08708082673593566.57163520856-49.2845543818275
983473.483429.77021963355-47.26647257434513564.4562529408-43.7097803664506
993472.323474.03891019785-91.73978087087473562.340870673031.71891019784698
1003403.823289.0022268268-44.8110614555353563.44883462874-114.817773173203
1013575.43515.0456797328871.1975216826733564.55679858445-60.3543202671212
1023512.963532.35251989627-79.10891168278483572.6763917865119.3925198962729
1033433.043367.67344772296-82.38943271153933580.79598498858-65.3665522770357
1043495.23493.04246249014-103.0121417538173600.36967926367-2.15753750985505
1053478.963416.35112124659-78.37449478535473619.94337353877-62.608878753415
1063559.283514.96443938865-45.0264436637543648.6220042751-44.3155606113469
1073887.14014.0443469956382.85501799293833677.30063501143126.94434699563
1084083.163967.58644661311489.7632679257563708.97028546113-115.573553386888
1093659.523650.4871449159-72.08708082673593740.63993591083-9.03285508409726
1103693.483661.67074389067-47.26647257434513772.55572868368-31.8092561093331
1113779.523846.30825941435-91.73978087087473804.4715214565266.7882594143507
1123891.623991.18889870219-44.8110614555353836.8621627533599.5688987021863
1133895.863851.2696742671571.1975216826733869.25280405017-44.5903257328464
1143745.043667.48219219134-79.10891168278483901.70671949144-77.5578078086596
1153884.463917.14879777882-82.38943271153933934.1606349327232.6887977788238
1163862.983862.43581824081-103.0121417538173966.53632351301-0.54418175919136

\begin{tabular}{lllllllll}
\hline
Seasonal Decomposition by Loess - Time Series Components \tabularnewline
t & Observed & Fitted & Seasonal & Trend & Remainder \tabularnewline
1 & 2669.94 & 2624.55541836263 & -72.0870808267359 & 2787.4116624641 & -45.3845816373669 \tabularnewline
2 & 2778.72 & 2817.20602624558 & -47.2664725743451 & 2787.50044632876 & 38.4860262455845 \tabularnewline
3 & 2648.44 & 2601.03055067746 & -91.7397808708747 & 2787.58923019342 & -47.4094493225439 \tabularnewline
4 & 2631.32 & 2519.95688003207 & -44.811061455535 & 2787.49418142346 & -111.363119967927 \tabularnewline
5 & 3057.32 & 3256.04334566382 & 71.197521682673 & 2787.3991326535 & 198.723345663823 \tabularnewline
6 & 2730.66 & 2752.45912336672 & -79.1089116827848 & 2787.96978831607 & 21.7991233667176 \tabularnewline
7 & 2730.62 & 2755.08898873291 & -82.3894327115393 & 2788.54044397863 & 24.46898873291 \tabularnewline
8 & 2738.7 & 2790.0936865064 & -103.012141753817 & 2790.31845524742 & 51.3936865063984 \tabularnewline
9 & 2616.36 & 2518.99802826915 & -78.3744947853547 & 2792.09646651621 & -97.3619717308538 \tabularnewline
10 & 2773.54 & 2797.06026450099 & -45.026443663754 & 2795.04617916277 & 23.5202645009854 \tabularnewline
11 & 2872.76 & 2864.66909019773 & 82.8550179929383 & 2797.99589180933 & -8.09090980226665 \tabularnewline
12 & 2999.42 & 2707.57940668128 & 489.763267925756 & 2801.49732539296 & -291.84059331872 \tabularnewline
13 & 2730.62 & 2728.32832185014 & -72.0870808267359 & 2804.9987589766 & -2.2916781498634 \tabularnewline
14 & 2907.22 & 3050.04853588293 & -47.2664725743451 & 2811.65793669142 & 142.828535882929 \tabularnewline
15 & 2778.04 & 2829.50266646464 & -91.7397808708747 & 2818.31711440623 & 51.462666464643 \tabularnewline
16 & 2833.94 & 2884.58442495431 & -44.811061455535 & 2828.10663650122 & 50.6444249543147 \tabularnewline
17 & 2914.44 & 2919.78631972112 & 71.197521682673 & 2837.89615859621 & 5.34631972111765 \tabularnewline
18 & 2788.86 & 2810.34962131905 & -79.1089116827848 & 2846.47929036374 & 21.4896213190477 \tabularnewline
19 & 2742.8 & 2712.92701058027 & -82.3894327115393 & 2855.06242213127 & -29.8729894197254 \tabularnewline
20 & 2726.52 & 2695.28776038215 & -103.012141753817 & 2860.76438137166 & -31.2322396178474 \tabularnewline
21 & 2746.44 & 2704.78815417329 & -78.3744947853547 & 2866.46634061206 & -41.6518458267101 \tabularnewline
22 & 2927.42 & 3025.28077751223 & -45.026443663754 & 2874.58566615152 & 97.8607775122332 \tabularnewline
23 & 2879.56 & 2793.55999031609 & 82.8550179929383 & 2882.70499169098 & -86.0000096839149 \tabularnewline
24 & 3262.02 & 3135.20818441019 & 489.763267925756 & 2899.06854766406 & -126.811815589813 \tabularnewline
25 & 2883.14 & 2922.9349771896 & -72.0870808267359 & 2915.43210363714 & 39.7949771895974 \tabularnewline
26 & 2903.2 & 2916.60856831668 & -47.2664725743451 & 2937.05790425767 & 13.4085683166791 \tabularnewline
27 & 2877.7 & 2888.45607599268 & -91.7397808708747 & 2958.68370487819 & 10.756075992681 \tabularnewline
28 & 2874.3 & 2806.83304852967 & -44.811061455535 & 2986.57801292586 & -67.4669514703287 \tabularnewline
29 & 3026.66 & 2967.65015734379 & 71.197521682673 & 3014.47232097353 & -59.0098426562067 \tabularnewline
30 & 2979.42 & 2991.09448886896 & -79.1089116827848 & 3046.85442281383 & 11.6744888689564 \tabularnewline
31 & 3109.68 & 3222.51290805742 & -82.3894327115393 & 3079.23652465412 & 112.832908057416 \tabularnewline
32 & 2966.76 & 2927.6564049027 & -103.012141753817 & 3108.87573685112 & -39.1035950973019 \tabularnewline
33 & 2961.04 & 2861.93954573724 & -78.3744947853547 & 3138.51494904812 & -99.1004542627606 \tabularnewline
34 & 3103.84 & 3083.33788306334 & -45.026443663754 & 3169.36856060041 & -20.5021169366582 \tabularnewline
35 & 3359.12 & 3435.16280985435 & 82.8550179929383 & 3200.22217215271 & 76.0428098543521 \tabularnewline
36 & 3976.24 & 4230.4404405303 & 489.763267925756 & 3232.27629154395 & 254.200440530296 \tabularnewline
37 & 3049.42 & 2906.59666989155 & -72.0870808267359 & 3264.33041093519 & -142.823330108452 \tabularnewline
38 & 3089.14 & 2931.78633098157 & -47.2664725743451 & 3293.76014159278 & -157.353669018434 \tabularnewline
39 & 3166.26 & 3101.0699086205 & -91.7397808708747 & 3323.18987225037 & -65.1900913794966 \tabularnewline
40 & 3459.04 & 3608.32994770495 & -44.811061455535 & 3354.56111375058 & 149.289947704952 \tabularnewline
41 & 3457.32 & 3457.51012306653 & 71.197521682673 & 3385.93235525079 & 0.190123066532578 \tabularnewline
42 & 3292.66 & 3238.62510409253 & -79.1089116827848 & 3425.80380759026 & -54.0348959074731 \tabularnewline
43 & 3432.86 & 3482.43417278182 & -82.3894327115393 & 3465.67525992972 & 49.5741727818181 \tabularnewline
44 & 3388.4 & 3375.38331293351 & -103.012141753817 & 3504.42882882031 & -13.0166870664916 \tabularnewline
45 & 3312.9 & 3160.99209707446 & -78.3744947853547 & 3543.1823977109 & -151.907902925542 \tabularnewline
46 & 3390.04 & 3256.48072736989 & -45.026443663754 & 3568.62571629387 & -133.559272630113 \tabularnewline
47 & 3757.44 & 3837.95594713022 & 82.8550179929383 & 3594.06903487684 & 80.5159471302236 \tabularnewline
48 & 4612.38 & 5126.16848224393 & 489.763267925756 & 3608.82824983032 & 513.788482243926 \tabularnewline
49 & 3613.34 & 3675.17961604294 & -72.0870808267359 & 3623.5874647838 & 61.839616042937 \tabularnewline
50 & 3525.14 & 3463.20351733612 & -47.2664725743451 & 3634.34295523823 & -61.9364826638807 \tabularnewline
51 & 3473.06 & 3392.76133517822 & -91.7397808708747 & 3645.09844569265 & -80.2986648217775 \tabularnewline
52 & 3662.22 & 3724.55509671687 & -44.811061455535 & 3644.69596473867 & 62.335096716869 \tabularnewline
53 & 3717.4 & 3719.30899453265 & 71.197521682673 & 3644.29348378468 & 1.90899453264728 \tabularnewline
54 & 3466.9 & 3386.08395570046 & -79.1089116827848 & 3626.82495598233 & -80.8160442995422 \tabularnewline
55 & 3443.4 & 3359.83300453157 & -82.3894327115393 & 3609.35642817997 & -83.5669954684345 \tabularnewline
56 & 3383.16 & 3275.71852210149 & -103.012141753817 & 3593.61361965233 & -107.441477898514 \tabularnewline
57 & 3843.64 & 4187.78368366067 & -78.3744947853547 & 3577.87081112469 & 344.143683660665 \tabularnewline
58 & 3692.4 & 3861.51173951372 & -45.026443663754 & 3568.31470415004 & 169.111739513718 \tabularnewline
59 & 3558.38 & 3475.14638483168 & 82.8550179929383 & 3558.75859717538 & -83.2336151683212 \tabularnewline
60 & 3811.02 & 3576.46765233617 & 489.763267925756 & 3555.80907973807 & -234.552347663828 \tabularnewline
61 & 3470.54 & 3460.30751852597 & -72.0870808267359 & 3552.85956230076 & -10.2324814740259 \tabularnewline
62 & 3354.68 & 3203.21761957654 & -47.2664725743451 & 3553.40885299781 & -151.462380423462 \tabularnewline
63 & 3499.96 & 3537.70163717602 & -91.7397808708747 & 3553.95814369485 & 37.7416371760214 \tabularnewline
64 & 3537.36 & 3562.50914519695 & -44.811061455535 & 3557.02191625859 & 25.1491451969468 \tabularnewline
65 & 3414.98 & 3198.676789495 & 71.197521682673 & 3560.08568882232 & -216.303210504996 \tabularnewline
66 & 3649 & 3807.87467670003 & -79.1089116827848 & 3569.23423498275 & 158.874676700033 \tabularnewline
67 & 3549.72 & 3603.44665156836 & -82.3894327115393 & 3578.38278114318 & 53.7266515683582 \tabularnewline
68 & 3680.78 & 3878.780206619 & -103.012141753817 & 3585.79193513482 & 198.000206619 \tabularnewline
69 & 3484.64 & 3454.4534056589 & -78.3744947853547 & 3593.20108912645 & -30.186594341099 \tabularnewline
70 & 3451.92 & 3352.04238888466 & -45.026443663754 & 3596.8240547791 & -99.8776111153429 \tabularnewline
71 & 3831.14 & 3978.97796157532 & 82.8550179929383 & 3600.44702043174 & 147.837961575321 \tabularnewline
72 & 3906.02 & 3724.02442182431 & 489.763267925756 & 3598.25231024993 & -181.995578175687 \tabularnewline
73 & 3499.54 & 3475.10948075861 & -72.0870808267359 & 3596.05760006812 & -24.4305192413858 \tabularnewline
74 & 3620.62 & 3698.58814346259 & -47.2664725743451 & 3589.91832911175 & 77.9681434625904 \tabularnewline
75 & 3473.64 & 3455.24072271549 & -91.7397808708747 & 3583.77905815539 & -18.3992772845131 \tabularnewline
76 & 3494.32 & 3454.38339989262 & -44.811061455535 & 3579.06766156291 & -39.9366001073786 \tabularnewline
77 & 3799.66 & 3953.76621334689 & 71.197521682673 & 3574.35626497044 & 154.106213346887 \tabularnewline
78 & 3476.4 & 3458.33281567938 & -79.1089116827848 & 3573.5760960034 & -18.0671843206192 \tabularnewline
79 & 3446.86 & 3403.31350567517 & -82.3894327115393 & 3572.79592703637 & -43.5464943248289 \tabularnewline
80 & 3441.94 & 3410.3042977458 & -103.012141753817 & 3576.58784400801 & -31.6357022541961 \tabularnewline
81 & 3514.68 & 3527.3547338057 & -78.3744947853547 & 3580.37976097966 & 12.6747338056957 \tabularnewline
82 & 3464.96 & 3392.0262196959 & -45.026443663754 & 3582.92022396785 & -72.9337803040976 \tabularnewline
83 & 3579.48 & 3490.64429505102 & 82.8550179929383 & 3585.46068695604 & -88.8357049489832 \tabularnewline
84 & 3944.24 & 3813.40143744501 & 489.763267925756 & 3585.31529462924 & -130.838562554994 \tabularnewline
85 & 3702.42 & 3891.7571785243 & -72.0870808267359 & 3585.16990230243 & 189.337178524304 \tabularnewline
86 & 3716.28 & 3892.29904252999 & -47.2664725743451 & 3587.52743004436 & 176.01904252999 \tabularnewline
87 & 3538.36 & 3578.5748230846 & -91.7397808708747 & 3589.88495778628 & 40.214823084596 \tabularnewline
88 & 3482.58 & 3417.20301529249 & -44.811061455535 & 3592.76804616305 & -65.3769847075141 \tabularnewline
89 & 3665.5 & 3664.15134377751 & 71.197521682673 & 3595.65113453982 & -1.34865622249254 \tabularnewline
90 & 3484.5 & 3452.66168129237 & -79.1089116827848 & 3595.44723039041 & -31.8383187076265 \tabularnewline
91 & 3425.08 & 3337.30610647054 & -82.3894327115393 & 3595.243326241 & -87.7738935294642 \tabularnewline
92 & 3421.44 & 3356.98677184393 & -103.012141753817 & 3588.90536990989 & -64.4532281560714 \tabularnewline
93 & 3602.34 & 3700.48708120658 & -78.3744947853547 & 3582.56741357877 & 98.1470812065804 \tabularnewline
94 & 3593.44 & 3654.30111432928 & -45.026443663754 & 3577.60532933447 & 60.8611143292796 \tabularnewline
95 & 3478.5 & 3301.50173691689 & 82.8550179929383 & 3572.64324509017 & -176.998263083113 \tabularnewline
96 & 4365.26 & 4671.14929192488 & 489.763267925756 & 3569.60744014937 & 305.889291924876 \tabularnewline
97 & 3445.2 & 3395.91544561817 & -72.0870808267359 & 3566.57163520856 & -49.2845543818275 \tabularnewline
98 & 3473.48 & 3429.77021963355 & -47.2664725743451 & 3564.4562529408 & -43.7097803664506 \tabularnewline
99 & 3472.32 & 3474.03891019785 & -91.7397808708747 & 3562.34087067303 & 1.71891019784698 \tabularnewline
100 & 3403.82 & 3289.0022268268 & -44.811061455535 & 3563.44883462874 & -114.817773173203 \tabularnewline
101 & 3575.4 & 3515.04567973288 & 71.197521682673 & 3564.55679858445 & -60.3543202671212 \tabularnewline
102 & 3512.96 & 3532.35251989627 & -79.1089116827848 & 3572.67639178651 & 19.3925198962729 \tabularnewline
103 & 3433.04 & 3367.67344772296 & -82.3894327115393 & 3580.79598498858 & -65.3665522770357 \tabularnewline
104 & 3495.2 & 3493.04246249014 & -103.012141753817 & 3600.36967926367 & -2.15753750985505 \tabularnewline
105 & 3478.96 & 3416.35112124659 & -78.3744947853547 & 3619.94337353877 & -62.608878753415 \tabularnewline
106 & 3559.28 & 3514.96443938865 & -45.026443663754 & 3648.6220042751 & -44.3155606113469 \tabularnewline
107 & 3887.1 & 4014.04434699563 & 82.8550179929383 & 3677.30063501143 & 126.94434699563 \tabularnewline
108 & 4083.16 & 3967.58644661311 & 489.763267925756 & 3708.97028546113 & -115.573553386888 \tabularnewline
109 & 3659.52 & 3650.4871449159 & -72.0870808267359 & 3740.63993591083 & -9.03285508409726 \tabularnewline
110 & 3693.48 & 3661.67074389067 & -47.2664725743451 & 3772.55572868368 & -31.8092561093331 \tabularnewline
111 & 3779.52 & 3846.30825941435 & -91.7397808708747 & 3804.47152145652 & 66.7882594143507 \tabularnewline
112 & 3891.62 & 3991.18889870219 & -44.811061455535 & 3836.86216275335 & 99.5688987021863 \tabularnewline
113 & 3895.86 & 3851.26967426715 & 71.197521682673 & 3869.25280405017 & -44.5903257328464 \tabularnewline
114 & 3745.04 & 3667.48219219134 & -79.1089116827848 & 3901.70671949144 & -77.5578078086596 \tabularnewline
115 & 3884.46 & 3917.14879777882 & -82.3894327115393 & 3934.16063493272 & 32.6887977788238 \tabularnewline
116 & 3862.98 & 3862.43581824081 & -103.012141753817 & 3966.53632351301 & -0.54418175919136 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299139&T=2

[TABLE]
[ROW][C]Seasonal Decomposition by Loess - Time Series Components[/C][/ROW]
[ROW][C]t[/C][C]Observed[/C][C]Fitted[/C][C]Seasonal[/C][C]Trend[/C][C]Remainder[/C][/ROW]
[ROW][C]1[/C][C]2669.94[/C][C]2624.55541836263[/C][C]-72.0870808267359[/C][C]2787.4116624641[/C][C]-45.3845816373669[/C][/ROW]
[ROW][C]2[/C][C]2778.72[/C][C]2817.20602624558[/C][C]-47.2664725743451[/C][C]2787.50044632876[/C][C]38.4860262455845[/C][/ROW]
[ROW][C]3[/C][C]2648.44[/C][C]2601.03055067746[/C][C]-91.7397808708747[/C][C]2787.58923019342[/C][C]-47.4094493225439[/C][/ROW]
[ROW][C]4[/C][C]2631.32[/C][C]2519.95688003207[/C][C]-44.811061455535[/C][C]2787.49418142346[/C][C]-111.363119967927[/C][/ROW]
[ROW][C]5[/C][C]3057.32[/C][C]3256.04334566382[/C][C]71.197521682673[/C][C]2787.3991326535[/C][C]198.723345663823[/C][/ROW]
[ROW][C]6[/C][C]2730.66[/C][C]2752.45912336672[/C][C]-79.1089116827848[/C][C]2787.96978831607[/C][C]21.7991233667176[/C][/ROW]
[ROW][C]7[/C][C]2730.62[/C][C]2755.08898873291[/C][C]-82.3894327115393[/C][C]2788.54044397863[/C][C]24.46898873291[/C][/ROW]
[ROW][C]8[/C][C]2738.7[/C][C]2790.0936865064[/C][C]-103.012141753817[/C][C]2790.31845524742[/C][C]51.3936865063984[/C][/ROW]
[ROW][C]9[/C][C]2616.36[/C][C]2518.99802826915[/C][C]-78.3744947853547[/C][C]2792.09646651621[/C][C]-97.3619717308538[/C][/ROW]
[ROW][C]10[/C][C]2773.54[/C][C]2797.06026450099[/C][C]-45.026443663754[/C][C]2795.04617916277[/C][C]23.5202645009854[/C][/ROW]
[ROW][C]11[/C][C]2872.76[/C][C]2864.66909019773[/C][C]82.8550179929383[/C][C]2797.99589180933[/C][C]-8.09090980226665[/C][/ROW]
[ROW][C]12[/C][C]2999.42[/C][C]2707.57940668128[/C][C]489.763267925756[/C][C]2801.49732539296[/C][C]-291.84059331872[/C][/ROW]
[ROW][C]13[/C][C]2730.62[/C][C]2728.32832185014[/C][C]-72.0870808267359[/C][C]2804.9987589766[/C][C]-2.2916781498634[/C][/ROW]
[ROW][C]14[/C][C]2907.22[/C][C]3050.04853588293[/C][C]-47.2664725743451[/C][C]2811.65793669142[/C][C]142.828535882929[/C][/ROW]
[ROW][C]15[/C][C]2778.04[/C][C]2829.50266646464[/C][C]-91.7397808708747[/C][C]2818.31711440623[/C][C]51.462666464643[/C][/ROW]
[ROW][C]16[/C][C]2833.94[/C][C]2884.58442495431[/C][C]-44.811061455535[/C][C]2828.10663650122[/C][C]50.6444249543147[/C][/ROW]
[ROW][C]17[/C][C]2914.44[/C][C]2919.78631972112[/C][C]71.197521682673[/C][C]2837.89615859621[/C][C]5.34631972111765[/C][/ROW]
[ROW][C]18[/C][C]2788.86[/C][C]2810.34962131905[/C][C]-79.1089116827848[/C][C]2846.47929036374[/C][C]21.4896213190477[/C][/ROW]
[ROW][C]19[/C][C]2742.8[/C][C]2712.92701058027[/C][C]-82.3894327115393[/C][C]2855.06242213127[/C][C]-29.8729894197254[/C][/ROW]
[ROW][C]20[/C][C]2726.52[/C][C]2695.28776038215[/C][C]-103.012141753817[/C][C]2860.76438137166[/C][C]-31.2322396178474[/C][/ROW]
[ROW][C]21[/C][C]2746.44[/C][C]2704.78815417329[/C][C]-78.3744947853547[/C][C]2866.46634061206[/C][C]-41.6518458267101[/C][/ROW]
[ROW][C]22[/C][C]2927.42[/C][C]3025.28077751223[/C][C]-45.026443663754[/C][C]2874.58566615152[/C][C]97.8607775122332[/C][/ROW]
[ROW][C]23[/C][C]2879.56[/C][C]2793.55999031609[/C][C]82.8550179929383[/C][C]2882.70499169098[/C][C]-86.0000096839149[/C][/ROW]
[ROW][C]24[/C][C]3262.02[/C][C]3135.20818441019[/C][C]489.763267925756[/C][C]2899.06854766406[/C][C]-126.811815589813[/C][/ROW]
[ROW][C]25[/C][C]2883.14[/C][C]2922.9349771896[/C][C]-72.0870808267359[/C][C]2915.43210363714[/C][C]39.7949771895974[/C][/ROW]
[ROW][C]26[/C][C]2903.2[/C][C]2916.60856831668[/C][C]-47.2664725743451[/C][C]2937.05790425767[/C][C]13.4085683166791[/C][/ROW]
[ROW][C]27[/C][C]2877.7[/C][C]2888.45607599268[/C][C]-91.7397808708747[/C][C]2958.68370487819[/C][C]10.756075992681[/C][/ROW]
[ROW][C]28[/C][C]2874.3[/C][C]2806.83304852967[/C][C]-44.811061455535[/C][C]2986.57801292586[/C][C]-67.4669514703287[/C][/ROW]
[ROW][C]29[/C][C]3026.66[/C][C]2967.65015734379[/C][C]71.197521682673[/C][C]3014.47232097353[/C][C]-59.0098426562067[/C][/ROW]
[ROW][C]30[/C][C]2979.42[/C][C]2991.09448886896[/C][C]-79.1089116827848[/C][C]3046.85442281383[/C][C]11.6744888689564[/C][/ROW]
[ROW][C]31[/C][C]3109.68[/C][C]3222.51290805742[/C][C]-82.3894327115393[/C][C]3079.23652465412[/C][C]112.832908057416[/C][/ROW]
[ROW][C]32[/C][C]2966.76[/C][C]2927.6564049027[/C][C]-103.012141753817[/C][C]3108.87573685112[/C][C]-39.1035950973019[/C][/ROW]
[ROW][C]33[/C][C]2961.04[/C][C]2861.93954573724[/C][C]-78.3744947853547[/C][C]3138.51494904812[/C][C]-99.1004542627606[/C][/ROW]
[ROW][C]34[/C][C]3103.84[/C][C]3083.33788306334[/C][C]-45.026443663754[/C][C]3169.36856060041[/C][C]-20.5021169366582[/C][/ROW]
[ROW][C]35[/C][C]3359.12[/C][C]3435.16280985435[/C][C]82.8550179929383[/C][C]3200.22217215271[/C][C]76.0428098543521[/C][/ROW]
[ROW][C]36[/C][C]3976.24[/C][C]4230.4404405303[/C][C]489.763267925756[/C][C]3232.27629154395[/C][C]254.200440530296[/C][/ROW]
[ROW][C]37[/C][C]3049.42[/C][C]2906.59666989155[/C][C]-72.0870808267359[/C][C]3264.33041093519[/C][C]-142.823330108452[/C][/ROW]
[ROW][C]38[/C][C]3089.14[/C][C]2931.78633098157[/C][C]-47.2664725743451[/C][C]3293.76014159278[/C][C]-157.353669018434[/C][/ROW]
[ROW][C]39[/C][C]3166.26[/C][C]3101.0699086205[/C][C]-91.7397808708747[/C][C]3323.18987225037[/C][C]-65.1900913794966[/C][/ROW]
[ROW][C]40[/C][C]3459.04[/C][C]3608.32994770495[/C][C]-44.811061455535[/C][C]3354.56111375058[/C][C]149.289947704952[/C][/ROW]
[ROW][C]41[/C][C]3457.32[/C][C]3457.51012306653[/C][C]71.197521682673[/C][C]3385.93235525079[/C][C]0.190123066532578[/C][/ROW]
[ROW][C]42[/C][C]3292.66[/C][C]3238.62510409253[/C][C]-79.1089116827848[/C][C]3425.80380759026[/C][C]-54.0348959074731[/C][/ROW]
[ROW][C]43[/C][C]3432.86[/C][C]3482.43417278182[/C][C]-82.3894327115393[/C][C]3465.67525992972[/C][C]49.5741727818181[/C][/ROW]
[ROW][C]44[/C][C]3388.4[/C][C]3375.38331293351[/C][C]-103.012141753817[/C][C]3504.42882882031[/C][C]-13.0166870664916[/C][/ROW]
[ROW][C]45[/C][C]3312.9[/C][C]3160.99209707446[/C][C]-78.3744947853547[/C][C]3543.1823977109[/C][C]-151.907902925542[/C][/ROW]
[ROW][C]46[/C][C]3390.04[/C][C]3256.48072736989[/C][C]-45.026443663754[/C][C]3568.62571629387[/C][C]-133.559272630113[/C][/ROW]
[ROW][C]47[/C][C]3757.44[/C][C]3837.95594713022[/C][C]82.8550179929383[/C][C]3594.06903487684[/C][C]80.5159471302236[/C][/ROW]
[ROW][C]48[/C][C]4612.38[/C][C]5126.16848224393[/C][C]489.763267925756[/C][C]3608.82824983032[/C][C]513.788482243926[/C][/ROW]
[ROW][C]49[/C][C]3613.34[/C][C]3675.17961604294[/C][C]-72.0870808267359[/C][C]3623.5874647838[/C][C]61.839616042937[/C][/ROW]
[ROW][C]50[/C][C]3525.14[/C][C]3463.20351733612[/C][C]-47.2664725743451[/C][C]3634.34295523823[/C][C]-61.9364826638807[/C][/ROW]
[ROW][C]51[/C][C]3473.06[/C][C]3392.76133517822[/C][C]-91.7397808708747[/C][C]3645.09844569265[/C][C]-80.2986648217775[/C][/ROW]
[ROW][C]52[/C][C]3662.22[/C][C]3724.55509671687[/C][C]-44.811061455535[/C][C]3644.69596473867[/C][C]62.335096716869[/C][/ROW]
[ROW][C]53[/C][C]3717.4[/C][C]3719.30899453265[/C][C]71.197521682673[/C][C]3644.29348378468[/C][C]1.90899453264728[/C][/ROW]
[ROW][C]54[/C][C]3466.9[/C][C]3386.08395570046[/C][C]-79.1089116827848[/C][C]3626.82495598233[/C][C]-80.8160442995422[/C][/ROW]
[ROW][C]55[/C][C]3443.4[/C][C]3359.83300453157[/C][C]-82.3894327115393[/C][C]3609.35642817997[/C][C]-83.5669954684345[/C][/ROW]
[ROW][C]56[/C][C]3383.16[/C][C]3275.71852210149[/C][C]-103.012141753817[/C][C]3593.61361965233[/C][C]-107.441477898514[/C][/ROW]
[ROW][C]57[/C][C]3843.64[/C][C]4187.78368366067[/C][C]-78.3744947853547[/C][C]3577.87081112469[/C][C]344.143683660665[/C][/ROW]
[ROW][C]58[/C][C]3692.4[/C][C]3861.51173951372[/C][C]-45.026443663754[/C][C]3568.31470415004[/C][C]169.111739513718[/C][/ROW]
[ROW][C]59[/C][C]3558.38[/C][C]3475.14638483168[/C][C]82.8550179929383[/C][C]3558.75859717538[/C][C]-83.2336151683212[/C][/ROW]
[ROW][C]60[/C][C]3811.02[/C][C]3576.46765233617[/C][C]489.763267925756[/C][C]3555.80907973807[/C][C]-234.552347663828[/C][/ROW]
[ROW][C]61[/C][C]3470.54[/C][C]3460.30751852597[/C][C]-72.0870808267359[/C][C]3552.85956230076[/C][C]-10.2324814740259[/C][/ROW]
[ROW][C]62[/C][C]3354.68[/C][C]3203.21761957654[/C][C]-47.2664725743451[/C][C]3553.40885299781[/C][C]-151.462380423462[/C][/ROW]
[ROW][C]63[/C][C]3499.96[/C][C]3537.70163717602[/C][C]-91.7397808708747[/C][C]3553.95814369485[/C][C]37.7416371760214[/C][/ROW]
[ROW][C]64[/C][C]3537.36[/C][C]3562.50914519695[/C][C]-44.811061455535[/C][C]3557.02191625859[/C][C]25.1491451969468[/C][/ROW]
[ROW][C]65[/C][C]3414.98[/C][C]3198.676789495[/C][C]71.197521682673[/C][C]3560.08568882232[/C][C]-216.303210504996[/C][/ROW]
[ROW][C]66[/C][C]3649[/C][C]3807.87467670003[/C][C]-79.1089116827848[/C][C]3569.23423498275[/C][C]158.874676700033[/C][/ROW]
[ROW][C]67[/C][C]3549.72[/C][C]3603.44665156836[/C][C]-82.3894327115393[/C][C]3578.38278114318[/C][C]53.7266515683582[/C][/ROW]
[ROW][C]68[/C][C]3680.78[/C][C]3878.780206619[/C][C]-103.012141753817[/C][C]3585.79193513482[/C][C]198.000206619[/C][/ROW]
[ROW][C]69[/C][C]3484.64[/C][C]3454.4534056589[/C][C]-78.3744947853547[/C][C]3593.20108912645[/C][C]-30.186594341099[/C][/ROW]
[ROW][C]70[/C][C]3451.92[/C][C]3352.04238888466[/C][C]-45.026443663754[/C][C]3596.8240547791[/C][C]-99.8776111153429[/C][/ROW]
[ROW][C]71[/C][C]3831.14[/C][C]3978.97796157532[/C][C]82.8550179929383[/C][C]3600.44702043174[/C][C]147.837961575321[/C][/ROW]
[ROW][C]72[/C][C]3906.02[/C][C]3724.02442182431[/C][C]489.763267925756[/C][C]3598.25231024993[/C][C]-181.995578175687[/C][/ROW]
[ROW][C]73[/C][C]3499.54[/C][C]3475.10948075861[/C][C]-72.0870808267359[/C][C]3596.05760006812[/C][C]-24.4305192413858[/C][/ROW]
[ROW][C]74[/C][C]3620.62[/C][C]3698.58814346259[/C][C]-47.2664725743451[/C][C]3589.91832911175[/C][C]77.9681434625904[/C][/ROW]
[ROW][C]75[/C][C]3473.64[/C][C]3455.24072271549[/C][C]-91.7397808708747[/C][C]3583.77905815539[/C][C]-18.3992772845131[/C][/ROW]
[ROW][C]76[/C][C]3494.32[/C][C]3454.38339989262[/C][C]-44.811061455535[/C][C]3579.06766156291[/C][C]-39.9366001073786[/C][/ROW]
[ROW][C]77[/C][C]3799.66[/C][C]3953.76621334689[/C][C]71.197521682673[/C][C]3574.35626497044[/C][C]154.106213346887[/C][/ROW]
[ROW][C]78[/C][C]3476.4[/C][C]3458.33281567938[/C][C]-79.1089116827848[/C][C]3573.5760960034[/C][C]-18.0671843206192[/C][/ROW]
[ROW][C]79[/C][C]3446.86[/C][C]3403.31350567517[/C][C]-82.3894327115393[/C][C]3572.79592703637[/C][C]-43.5464943248289[/C][/ROW]
[ROW][C]80[/C][C]3441.94[/C][C]3410.3042977458[/C][C]-103.012141753817[/C][C]3576.58784400801[/C][C]-31.6357022541961[/C][/ROW]
[ROW][C]81[/C][C]3514.68[/C][C]3527.3547338057[/C][C]-78.3744947853547[/C][C]3580.37976097966[/C][C]12.6747338056957[/C][/ROW]
[ROW][C]82[/C][C]3464.96[/C][C]3392.0262196959[/C][C]-45.026443663754[/C][C]3582.92022396785[/C][C]-72.9337803040976[/C][/ROW]
[ROW][C]83[/C][C]3579.48[/C][C]3490.64429505102[/C][C]82.8550179929383[/C][C]3585.46068695604[/C][C]-88.8357049489832[/C][/ROW]
[ROW][C]84[/C][C]3944.24[/C][C]3813.40143744501[/C][C]489.763267925756[/C][C]3585.31529462924[/C][C]-130.838562554994[/C][/ROW]
[ROW][C]85[/C][C]3702.42[/C][C]3891.7571785243[/C][C]-72.0870808267359[/C][C]3585.16990230243[/C][C]189.337178524304[/C][/ROW]
[ROW][C]86[/C][C]3716.28[/C][C]3892.29904252999[/C][C]-47.2664725743451[/C][C]3587.52743004436[/C][C]176.01904252999[/C][/ROW]
[ROW][C]87[/C][C]3538.36[/C][C]3578.5748230846[/C][C]-91.7397808708747[/C][C]3589.88495778628[/C][C]40.214823084596[/C][/ROW]
[ROW][C]88[/C][C]3482.58[/C][C]3417.20301529249[/C][C]-44.811061455535[/C][C]3592.76804616305[/C][C]-65.3769847075141[/C][/ROW]
[ROW][C]89[/C][C]3665.5[/C][C]3664.15134377751[/C][C]71.197521682673[/C][C]3595.65113453982[/C][C]-1.34865622249254[/C][/ROW]
[ROW][C]90[/C][C]3484.5[/C][C]3452.66168129237[/C][C]-79.1089116827848[/C][C]3595.44723039041[/C][C]-31.8383187076265[/C][/ROW]
[ROW][C]91[/C][C]3425.08[/C][C]3337.30610647054[/C][C]-82.3894327115393[/C][C]3595.243326241[/C][C]-87.7738935294642[/C][/ROW]
[ROW][C]92[/C][C]3421.44[/C][C]3356.98677184393[/C][C]-103.012141753817[/C][C]3588.90536990989[/C][C]-64.4532281560714[/C][/ROW]
[ROW][C]93[/C][C]3602.34[/C][C]3700.48708120658[/C][C]-78.3744947853547[/C][C]3582.56741357877[/C][C]98.1470812065804[/C][/ROW]
[ROW][C]94[/C][C]3593.44[/C][C]3654.30111432928[/C][C]-45.026443663754[/C][C]3577.60532933447[/C][C]60.8611143292796[/C][/ROW]
[ROW][C]95[/C][C]3478.5[/C][C]3301.50173691689[/C][C]82.8550179929383[/C][C]3572.64324509017[/C][C]-176.998263083113[/C][/ROW]
[ROW][C]96[/C][C]4365.26[/C][C]4671.14929192488[/C][C]489.763267925756[/C][C]3569.60744014937[/C][C]305.889291924876[/C][/ROW]
[ROW][C]97[/C][C]3445.2[/C][C]3395.91544561817[/C][C]-72.0870808267359[/C][C]3566.57163520856[/C][C]-49.2845543818275[/C][/ROW]
[ROW][C]98[/C][C]3473.48[/C][C]3429.77021963355[/C][C]-47.2664725743451[/C][C]3564.4562529408[/C][C]-43.7097803664506[/C][/ROW]
[ROW][C]99[/C][C]3472.32[/C][C]3474.03891019785[/C][C]-91.7397808708747[/C][C]3562.34087067303[/C][C]1.71891019784698[/C][/ROW]
[ROW][C]100[/C][C]3403.82[/C][C]3289.0022268268[/C][C]-44.811061455535[/C][C]3563.44883462874[/C][C]-114.817773173203[/C][/ROW]
[ROW][C]101[/C][C]3575.4[/C][C]3515.04567973288[/C][C]71.197521682673[/C][C]3564.55679858445[/C][C]-60.3543202671212[/C][/ROW]
[ROW][C]102[/C][C]3512.96[/C][C]3532.35251989627[/C][C]-79.1089116827848[/C][C]3572.67639178651[/C][C]19.3925198962729[/C][/ROW]
[ROW][C]103[/C][C]3433.04[/C][C]3367.67344772296[/C][C]-82.3894327115393[/C][C]3580.79598498858[/C][C]-65.3665522770357[/C][/ROW]
[ROW][C]104[/C][C]3495.2[/C][C]3493.04246249014[/C][C]-103.012141753817[/C][C]3600.36967926367[/C][C]-2.15753750985505[/C][/ROW]
[ROW][C]105[/C][C]3478.96[/C][C]3416.35112124659[/C][C]-78.3744947853547[/C][C]3619.94337353877[/C][C]-62.608878753415[/C][/ROW]
[ROW][C]106[/C][C]3559.28[/C][C]3514.96443938865[/C][C]-45.026443663754[/C][C]3648.6220042751[/C][C]-44.3155606113469[/C][/ROW]
[ROW][C]107[/C][C]3887.1[/C][C]4014.04434699563[/C][C]82.8550179929383[/C][C]3677.30063501143[/C][C]126.94434699563[/C][/ROW]
[ROW][C]108[/C][C]4083.16[/C][C]3967.58644661311[/C][C]489.763267925756[/C][C]3708.97028546113[/C][C]-115.573553386888[/C][/ROW]
[ROW][C]109[/C][C]3659.52[/C][C]3650.4871449159[/C][C]-72.0870808267359[/C][C]3740.63993591083[/C][C]-9.03285508409726[/C][/ROW]
[ROW][C]110[/C][C]3693.48[/C][C]3661.67074389067[/C][C]-47.2664725743451[/C][C]3772.55572868368[/C][C]-31.8092561093331[/C][/ROW]
[ROW][C]111[/C][C]3779.52[/C][C]3846.30825941435[/C][C]-91.7397808708747[/C][C]3804.47152145652[/C][C]66.7882594143507[/C][/ROW]
[ROW][C]112[/C][C]3891.62[/C][C]3991.18889870219[/C][C]-44.811061455535[/C][C]3836.86216275335[/C][C]99.5688987021863[/C][/ROW]
[ROW][C]113[/C][C]3895.86[/C][C]3851.26967426715[/C][C]71.197521682673[/C][C]3869.25280405017[/C][C]-44.5903257328464[/C][/ROW]
[ROW][C]114[/C][C]3745.04[/C][C]3667.48219219134[/C][C]-79.1089116827848[/C][C]3901.70671949144[/C][C]-77.5578078086596[/C][/ROW]
[ROW][C]115[/C][C]3884.46[/C][C]3917.14879777882[/C][C]-82.3894327115393[/C][C]3934.16063493272[/C][C]32.6887977788238[/C][/ROW]
[ROW][C]116[/C][C]3862.98[/C][C]3862.43581824081[/C][C]-103.012141753817[/C][C]3966.53632351301[/C][C]-0.54418175919136[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299139&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299139&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Seasonal Decomposition by Loess - Time Series Components
tObservedFittedSeasonalTrendRemainder
12669.942624.55541836263-72.08708082673592787.4116624641-45.3845816373669
22778.722817.20602624558-47.26647257434512787.5004463287638.4860262455845
32648.442601.03055067746-91.73978087087472787.58923019342-47.4094493225439
42631.322519.95688003207-44.8110614555352787.49418142346-111.363119967927
53057.323256.0433456638271.1975216826732787.3991326535198.723345663823
62730.662752.45912336672-79.10891168278482787.9697883160721.7991233667176
72730.622755.08898873291-82.38943271153932788.5404439786324.46898873291
82738.72790.0936865064-103.0121417538172790.3184552474251.3936865063984
92616.362518.99802826915-78.37449478535472792.09646651621-97.3619717308538
102773.542797.06026450099-45.0264436637542795.0461791627723.5202645009854
112872.762864.6690901977382.85501799293832797.99589180933-8.09090980226665
122999.422707.57940668128489.7632679257562801.49732539296-291.84059331872
132730.622728.32832185014-72.08708082673592804.9987589766-2.2916781498634
142907.223050.04853588293-47.26647257434512811.65793669142142.828535882929
152778.042829.50266646464-91.73978087087472818.3171144062351.462666464643
162833.942884.58442495431-44.8110614555352828.1066365012250.6444249543147
172914.442919.7863197211271.1975216826732837.896158596215.34631972111765
182788.862810.34962131905-79.10891168278482846.4792903637421.4896213190477
192742.82712.92701058027-82.38943271153932855.06242213127-29.8729894197254
202726.522695.28776038215-103.0121417538172860.76438137166-31.2322396178474
212746.442704.78815417329-78.37449478535472866.46634061206-41.6518458267101
222927.423025.28077751223-45.0264436637542874.5856661515297.8607775122332
232879.562793.5599903160982.85501799293832882.70499169098-86.0000096839149
243262.023135.20818441019489.7632679257562899.06854766406-126.811815589813
252883.142922.9349771896-72.08708082673592915.4321036371439.7949771895974
262903.22916.60856831668-47.26647257434512937.0579042576713.4085683166791
272877.72888.45607599268-91.73978087087472958.6837048781910.756075992681
282874.32806.83304852967-44.8110614555352986.57801292586-67.4669514703287
293026.662967.6501573437971.1975216826733014.47232097353-59.0098426562067
302979.422991.09448886896-79.10891168278483046.8544228138311.6744888689564
313109.683222.51290805742-82.38943271153933079.23652465412112.832908057416
322966.762927.6564049027-103.0121417538173108.87573685112-39.1035950973019
332961.042861.93954573724-78.37449478535473138.51494904812-99.1004542627606
343103.843083.33788306334-45.0264436637543169.36856060041-20.5021169366582
353359.123435.1628098543582.85501799293833200.2221721527176.0428098543521
363976.244230.4404405303489.7632679257563232.27629154395254.200440530296
373049.422906.59666989155-72.08708082673593264.33041093519-142.823330108452
383089.142931.78633098157-47.26647257434513293.76014159278-157.353669018434
393166.263101.0699086205-91.73978087087473323.18987225037-65.1900913794966
403459.043608.32994770495-44.8110614555353354.56111375058149.289947704952
413457.323457.5101230665371.1975216826733385.932355250790.190123066532578
423292.663238.62510409253-79.10891168278483425.80380759026-54.0348959074731
433432.863482.43417278182-82.38943271153933465.6752599297249.5741727818181
443388.43375.38331293351-103.0121417538173504.42882882031-13.0166870664916
453312.93160.99209707446-78.37449478535473543.1823977109-151.907902925542
463390.043256.48072736989-45.0264436637543568.62571629387-133.559272630113
473757.443837.9559471302282.85501799293833594.0690348768480.5159471302236
484612.385126.16848224393489.7632679257563608.82824983032513.788482243926
493613.343675.17961604294-72.08708082673593623.587464783861.839616042937
503525.143463.20351733612-47.26647257434513634.34295523823-61.9364826638807
513473.063392.76133517822-91.73978087087473645.09844569265-80.2986648217775
523662.223724.55509671687-44.8110614555353644.6959647386762.335096716869
533717.43719.3089945326571.1975216826733644.293483784681.90899453264728
543466.93386.08395570046-79.10891168278483626.82495598233-80.8160442995422
553443.43359.83300453157-82.38943271153933609.35642817997-83.5669954684345
563383.163275.71852210149-103.0121417538173593.61361965233-107.441477898514
573843.644187.78368366067-78.37449478535473577.87081112469344.143683660665
583692.43861.51173951372-45.0264436637543568.31470415004169.111739513718
593558.383475.1463848316882.85501799293833558.75859717538-83.2336151683212
603811.023576.46765233617489.7632679257563555.80907973807-234.552347663828
613470.543460.30751852597-72.08708082673593552.85956230076-10.2324814740259
623354.683203.21761957654-47.26647257434513553.40885299781-151.462380423462
633499.963537.70163717602-91.73978087087473553.9581436948537.7416371760214
643537.363562.50914519695-44.8110614555353557.0219162585925.1491451969468
653414.983198.67678949571.1975216826733560.08568882232-216.303210504996
6636493807.87467670003-79.10891168278483569.23423498275158.874676700033
673549.723603.44665156836-82.38943271153933578.3827811431853.7266515683582
683680.783878.780206619-103.0121417538173585.79193513482198.000206619
693484.643454.4534056589-78.37449478535473593.20108912645-30.186594341099
703451.923352.04238888466-45.0264436637543596.8240547791-99.8776111153429
713831.143978.9779615753282.85501799293833600.44702043174147.837961575321
723906.023724.02442182431489.7632679257563598.25231024993-181.995578175687
733499.543475.10948075861-72.08708082673593596.05760006812-24.4305192413858
743620.623698.58814346259-47.26647257434513589.9183291117577.9681434625904
753473.643455.24072271549-91.73978087087473583.77905815539-18.3992772845131
763494.323454.38339989262-44.8110614555353579.06766156291-39.9366001073786
773799.663953.7662133468971.1975216826733574.35626497044154.106213346887
783476.43458.33281567938-79.10891168278483573.5760960034-18.0671843206192
793446.863403.31350567517-82.38943271153933572.79592703637-43.5464943248289
803441.943410.3042977458-103.0121417538173576.58784400801-31.6357022541961
813514.683527.3547338057-78.37449478535473580.3797609796612.6747338056957
823464.963392.0262196959-45.0264436637543582.92022396785-72.9337803040976
833579.483490.6442950510282.85501799293833585.46068695604-88.8357049489832
843944.243813.40143744501489.7632679257563585.31529462924-130.838562554994
853702.423891.7571785243-72.08708082673593585.16990230243189.337178524304
863716.283892.29904252999-47.26647257434513587.52743004436176.01904252999
873538.363578.5748230846-91.73978087087473589.8849577862840.214823084596
883482.583417.20301529249-44.8110614555353592.76804616305-65.3769847075141
893665.53664.1513437775171.1975216826733595.65113453982-1.34865622249254
903484.53452.66168129237-79.10891168278483595.44723039041-31.8383187076265
913425.083337.30610647054-82.38943271153933595.243326241-87.7738935294642
923421.443356.98677184393-103.0121417538173588.90536990989-64.4532281560714
933602.343700.48708120658-78.37449478535473582.5674135787798.1470812065804
943593.443654.30111432928-45.0264436637543577.6053293344760.8611143292796
953478.53301.5017369168982.85501799293833572.64324509017-176.998263083113
964365.264671.14929192488489.7632679257563569.60744014937305.889291924876
973445.23395.91544561817-72.08708082673593566.57163520856-49.2845543818275
983473.483429.77021963355-47.26647257434513564.4562529408-43.7097803664506
993472.323474.03891019785-91.73978087087473562.340870673031.71891019784698
1003403.823289.0022268268-44.8110614555353563.44883462874-114.817773173203
1013575.43515.0456797328871.1975216826733564.55679858445-60.3543202671212
1023512.963532.35251989627-79.10891168278483572.6763917865119.3925198962729
1033433.043367.67344772296-82.38943271153933580.79598498858-65.3665522770357
1043495.23493.04246249014-103.0121417538173600.36967926367-2.15753750985505
1053478.963416.35112124659-78.37449478535473619.94337353877-62.608878753415
1063559.283514.96443938865-45.0264436637543648.6220042751-44.3155606113469
1073887.14014.0443469956382.85501799293833677.30063501143126.94434699563
1084083.163967.58644661311489.7632679257563708.97028546113-115.573553386888
1093659.523650.4871449159-72.08708082673593740.63993591083-9.03285508409726
1103693.483661.67074389067-47.26647257434513772.55572868368-31.8092561093331
1113779.523846.30825941435-91.73978087087473804.4715214565266.7882594143507
1123891.623991.18889870219-44.8110614555353836.8621627533599.5688987021863
1133895.863851.2696742671571.1975216826733869.25280405017-44.5903257328464
1143745.043667.48219219134-79.10891168278483901.70671949144-77.5578078086596
1153884.463917.14879777882-82.38943271153933934.1606349327232.6887977788238
1163862.983862.43581824081-103.0121417538173966.53632351301-0.54418175919136



Parameters (Session):
par1 = 12 ; par2 = periodic ; par3 = 0 ; par5 = 1 ; par7 = 1 ; par8 = FALSE ;
Parameters (R input):
par1 = 12 ; par2 = periodic ; par3 = 0 ; par4 = ; par5 = 1 ; par6 = ; par7 = 1 ; par8 = FALSE ;
R code (references can be found in the software module):
par1 <- as.numeric(par1) #seasonal period
if (par2 != 'periodic') par2 <- as.numeric(par2) #s.window
par3 <- as.numeric(par3) #s.degree
if (par4 == '') par4 <- NULL else par4 <- as.numeric(par4)#t.window
par5 <- as.numeric(par5)#t.degree
if (par6 != '') par6 <- as.numeric(par6)#l.window
par7 <- as.numeric(par7)#l.degree
if (par8 == 'FALSE') par8 <- FALSE else par9 <- TRUE #robust
nx <- length(x)
x <- ts(x,frequency=par1)
if (par6 != '') {
m <- stl(x,s.window=par2, s.degree=par3, t.window=par4, t.degre=par5, l.window=par6, l.degree=par7, robust=par8)
} else {
m <- stl(x,s.window=par2, s.degree=par3, t.window=par4, t.degre=par5, l.degree=par7, robust=par8)
}
m$time.series
m$win
m$deg
m$jump
m$inner
m$outer
bitmap(file='test1.png')
plot(m,main=main)
dev.off()
mylagmax <- nx/2
bitmap(file='test2.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(x),lag.max = mylagmax,main='Observed')
acf(as.numeric(m$time.series[,'trend']),na.action=na.pass,lag.max = mylagmax,main='Trend')
acf(as.numeric(m$time.series[,'seasonal']),na.action=na.pass,lag.max = mylagmax,main='Seasonal')
acf(as.numeric(m$time.series[,'remainder']),na.action=na.pass,lag.max = mylagmax,main='Remainder')
par(op)
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
spectrum(as.numeric(x),main='Observed')
spectrum(as.numeric(m$time.series[!is.na(m$time.series[,'trend']),'trend']),main='Trend')
spectrum(as.numeric(m$time.series[!is.na(m$time.series[,'seasonal']),'seasonal']),main='Seasonal')
spectrum(as.numeric(m$time.series[!is.na(m$time.series[,'remainder']),'remainder']),main='Remainder')
par(op)
dev.off()
bitmap(file='test4.png')
op <- par(mfrow = c(2,2))
cpgram(as.numeric(x),main='Observed')
cpgram(as.numeric(m$time.series[!is.na(m$time.series[,'trend']),'trend']),main='Trend')
cpgram(as.numeric(m$time.series[!is.na(m$time.series[,'seasonal']),'seasonal']),main='Seasonal')
cpgram(as.numeric(m$time.series[!is.na(m$time.series[,'remainder']),'remainder']),main='Remainder')
par(op)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Seasonal Decomposition by Loess - Parameters',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Component',header=TRUE)
a<-table.element(a,'Window',header=TRUE)
a<-table.element(a,'Degree',header=TRUE)
a<-table.element(a,'Jump',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,m$win['s'])
a<-table.element(a,m$deg['s'])
a<-table.element(a,m$jump['s'])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Trend',header=TRUE)
a<-table.element(a,m$win['t'])
a<-table.element(a,m$deg['t'])
a<-table.element(a,m$jump['t'])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Low-pass',header=TRUE)
a<-table.element(a,m$win['l'])
a<-table.element(a,m$deg['l'])
a<-table.element(a,m$jump['l'])
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Seasonal Decomposition by Loess - Time Series Components',6,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observed',header=TRUE)
a<-table.element(a,'Fitted',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,'Trend',header=TRUE)
a<-table.element(a,'Remainder',header=TRUE)
a<-table.row.end(a)
for (i in 1:nx) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]+m$time.series[i,'remainder'])
a<-table.element(a,m$time.series[i,'seasonal'])
a<-table.element(a,m$time.series[i,'trend'])
a<-table.element(a,m$time.series[i,'remainder'])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')