Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationTue, 13 Dec 2016 14:20:48 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/13/t1481635795ije92f8c9xprixs.htm/, Retrieved Fri, 01 Nov 2024 03:48:31 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=299109, Retrieved Fri, 01 Nov 2024 03:48:31 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact117
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Multiple Regression] [Multiple Regressi...] [2016-12-13 13:20:48] [fc6d28d208bad0c833791fcb11cb4db1] [Current]
Feedback Forum

Post a new message
Dataseries X:
3	4	3	4
5	5	5	4
5	4	4	4
5	4	4	4
4	4	3	4
5	5	5	5
5	4	3	3
5	5	5	4
5	5	4	1
5	4	3	3
5	5	5	4
NA	4	5	3
5	5	5	5
5	5	4	4
4	4	3	4
3	4	4	3
5	5	5	5
NA	NA	NA	NA
5	4	3	4
5	3	3	5
4	4	4	4
2	5	1	2
5	5	4	5
5	5	4	5
5	5	4	2
4	4	4	3
4	5	5	4
4	5	4	4
5	5	4	5
5	5	4	3
4	NA	4	2
5	5	4	5
5	5	5	5
1	1	1	2
5	5	4	5
4	5	4	3
4	4	4	3
4	4	4	4
5	5	4	4
4	4	5	3
4	4	4	3
5	4	4	4
3	3	4	NA
5	5	5	5
5	5	5	4
2	2	1	2
3	3	3	4
4	4	3	5
4	5	3	4
NA	NA	NA	4
5	5	4	4
5	5	5	3
4	4	4	4
5	5	3	4
5	5	5	4
4	4	4	4
5	5	4	5
4	5	3	1
4	4	4	4
3	4	3	3
4	4	3	1
4	5	4	4
5	4	4	4
4	5	4	4
4	5	4	3
4	4	4	4
4	3	3	4
4	4	4	4
2	4	4	3
4	5	4	3
4	4	3	3
5	5	5	5
3	3	3	3
3	4	3	3
5	4	5	4
4	3	3	4
5	5	5	4
4	5	4	5
4	3	3	4
5	5	3	5
5	5	5	4
5	4	3	3
4	4	3	3
5	4	4	4
5	5	5	4
2	5	4	2
5	4	5	5
5	5	4	4
5	5	5	5
5	4	4	2
4	4	4	3
4	4	4	3
5	5	5	5
4	4	4	3
5	5	5	4
5	5	4	4
5	4	5	4
4	4	4	3
5	5	5	5
5	5	5	2
3	4	2	3
5	4	5	4
5	5	5	4
5	5	5	5
4	3	NA	3
4	4	5	4
4	4	4	3
4	4	4	4
5	5	5	3
5	5	4	4
4	4	2	4
3	4	4	4
3	4	3	2
4	4	5	4
4	4	3	3
5	5	4	4
5	4	4	4
4	4	5	4
5	5	5	5
5	4	4	3
4	4	3	3
4	4	3	4
5	5	4	4
5	5	5	5
5	5	3	4
5	5	3	4
4	5	4	4
5	4	4	4
3	4	4	4
5	5	4	3
5	4	5	4
4	5	4	4
5	5	5	5
4	4	4	3
4	4	4	4
4	4	4	3
4	4	5	5
2	3	2	4
4	4	4	3
5	4	5	4
5	5	5	5
5	5	5	4
4	4	4	2
4	5	4	3
5	4	4	2
5	4	4	4
5	4	5	4
5	5	5	5
5	3	5	4
5	4	5	4
4	4	4	3
5	4	4	3
3	3	3	2
3	4	4	4
4	5	4	5
4	5	4	4
3	5	3	5
3	4	3	2
5	5	5	4
5	5	4	4
5	4	4	2
5	4	4	4
5	5	5	4
5	4	5	4
5	5	5	4
5	4	5	2
4	4	4	4
4	4	5	3
2	4	5	3




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time8 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time8 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299109&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]8 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=299109&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299109&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time8 seconds
R ServerBig Analytics Cloud Computing Center







Multiple Linear Regression - Estimated Regression Equation
Q1[t] = + 0.858704 + 0.336326Q2[t] + 0.36768Q3[t] + 0.144729Q4[t] + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
Q1[t] =  +  0.858704 +  0.336326Q2[t] +  0.36768Q3[t] +  0.144729Q4[t]  + e[t] \tabularnewline
 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299109&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]Q1[t] =  +  0.858704 +  0.336326Q2[t] +  0.36768Q3[t] +  0.144729Q4[t]  + e[t][/C][/ROW]
[ROW][C][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299109&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299109&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
Q1[t] = + 0.858704 + 0.336326Q2[t] + 0.36768Q3[t] + 0.144729Q4[t] + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)+0.8587 0.3543+2.4240e+00 0.01649 0.008245
Q2+0.3363 0.08637+3.8940e+00 0.0001449 7.247e-05
Q3+0.3677 0.06843+5.3730e+00 2.707e-07 1.353e-07
Q4+0.1447 0.06002+2.4110e+00 0.01703 0.008516

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & +0.8587 &  0.3543 & +2.4240e+00 &  0.01649 &  0.008245 \tabularnewline
Q2 & +0.3363 &  0.08637 & +3.8940e+00 &  0.0001449 &  7.247e-05 \tabularnewline
Q3 & +0.3677 &  0.06843 & +5.3730e+00 &  2.707e-07 &  1.353e-07 \tabularnewline
Q4 & +0.1447 &  0.06002 & +2.4110e+00 &  0.01703 &  0.008516 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299109&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]+0.8587[/C][C] 0.3543[/C][C]+2.4240e+00[/C][C] 0.01649[/C][C] 0.008245[/C][/ROW]
[ROW][C]Q2[/C][C]+0.3363[/C][C] 0.08637[/C][C]+3.8940e+00[/C][C] 0.0001449[/C][C] 7.247e-05[/C][/ROW]
[ROW][C]Q3[/C][C]+0.3677[/C][C] 0.06843[/C][C]+5.3730e+00[/C][C] 2.707e-07[/C][C] 1.353e-07[/C][/ROW]
[ROW][C]Q4[/C][C]+0.1447[/C][C] 0.06002[/C][C]+2.4110e+00[/C][C] 0.01703[/C][C] 0.008516[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299109&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299109&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)+0.8587 0.3543+2.4240e+00 0.01649 0.008245
Q2+0.3363 0.08637+3.8940e+00 0.0001449 7.247e-05
Q3+0.3677 0.06843+5.3730e+00 2.707e-07 1.353e-07
Q4+0.1447 0.06002+2.4110e+00 0.01703 0.008516







Multiple Linear Regression - Regression Statistics
Multiple R 0.6442
R-squared 0.415
Adjusted R-squared 0.404
F-TEST (value) 37.6
F-TEST (DF numerator)3
F-TEST (DF denominator)159
p-value 0
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 0.6441
Sum Squared Residuals 65.97

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R &  0.6442 \tabularnewline
R-squared &  0.415 \tabularnewline
Adjusted R-squared &  0.404 \tabularnewline
F-TEST (value) &  37.6 \tabularnewline
F-TEST (DF numerator) & 3 \tabularnewline
F-TEST (DF denominator) & 159 \tabularnewline
p-value &  0 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation &  0.6441 \tabularnewline
Sum Squared Residuals &  65.97 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299109&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C] 0.6442[/C][/ROW]
[ROW][C]R-squared[/C][C] 0.415[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C] 0.404[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C] 37.6[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]3[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]159[/C][/ROW]
[ROW][C]p-value[/C][C] 0[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C] 0.6441[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C] 65.97[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299109&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299109&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R 0.6442
R-squared 0.415
Adjusted R-squared 0.404
F-TEST (value) 37.6
F-TEST (DF numerator)3
F-TEST (DF denominator)159
p-value 0
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 0.6441
Sum Squared Residuals 65.97







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 3 3.886-0.886
2 5 4.958 0.04235
3 5 4.254 0.7464
4 5 4.254 0.7464
5 4 3.886 0.114
6 5 5.102-0.1024
7 5 3.741 1.259
8 5 4.958 0.04235
9 5 4.156 0.8442
10 5 3.741 1.259
11 5 4.958 0.04235
12 5 5.102-0.1024
13 5 4.59 0.41
14 4 3.886 0.114
15 3 4.109-1.109
16 5 5.102-0.1024
17 5 3.886 1.114
18 5 3.694 1.306
19 4 4.254-0.2536
20 2 3.197-1.197
21 5 4.735 0.2653
22 5 4.735 0.2653
23 5 4.301 0.6995
24 4 4.109-0.1089
25 4 4.958-0.9576
26 4 4.59-0.59
27 5 4.735 0.2653
28 5 4.445 0.5548
29 5 4.735 0.2653
30 5 5.102-0.1024
31 1 1.852-0.8522
32 5 4.735 0.2653
33 4 4.445-0.4452
34 4 4.109-0.1089
35 4 4.254-0.2536
36 5 4.59 0.41
37 4 4.477-0.4766
38 4 4.109-0.1089
39 5 4.254 0.7464
40 5 5.102-0.1024
41 5 4.958 0.04235
42 2 2.188-0.1885
43 3 3.55-0.5496
44 4 4.031-0.03069
45 4 4.222-0.2223
46 5 4.59 0.41
47 5 4.813 0.1871
48 4 4.254-0.2536
49 5 4.222 0.7777
50 5 4.958 0.04235
51 4 4.254-0.2536
52 5 4.735 0.2653
53 4 3.788 0.2119
54 4 4.254-0.2536
55 3 3.741-0.7412
56 4 3.452 0.5482
57 4 4.59-0.59
58 5 4.254 0.7464
59 4 4.59-0.59
60 4 4.445-0.4452
61 4 4.254-0.2536
62 4 3.55 0.4504
63 4 4.254-0.2536
64 2 4.109-2.109
65 4 4.445-0.4452
66 4 3.741 0.2588
67 5 5.102-0.1024
68 3 3.405-0.4049
69 3 3.741-0.7412
70 5 4.621 0.3787
71 4 3.55 0.4504
72 5 4.958 0.04235
73 4 4.735-0.7347
74 4 3.55 0.4504
75 5 4.367 0.633
76 5 4.958 0.04235
77 5 3.741 1.259
78 4 3.741 0.2588
79 5 4.254 0.7464
80 5 4.958 0.04235
81 2 4.301-2.301
82 5 4.766 0.2339
83 5 4.59 0.41
84 5 5.102-0.1024
85 5 3.964 1.036
86 4 4.109-0.1089
87 4 4.109-0.1089
88 5 5.102-0.1024
89 4 4.109-0.1089
90 5 4.958 0.04235
91 5 4.59 0.41
92 5 4.621 0.3787
93 4 4.109-0.1089
94 5 5.102-0.1024
95 5 4.668 0.3318
96 3 3.374-0.3736
97 5 4.621 0.3787
98 5 4.958 0.04235
99 5 5.102-0.1024
100 4 4.621-0.6213
101 4 4.109-0.1089
102 4 4.254-0.2536
103 5 4.813 0.1871
104 5 4.59 0.41
105 4 3.518 0.4817
106 3 4.254-1.254
107 3 3.596-0.5965
108 4 4.621-0.6213
109 4 3.741 0.2588
110 5 4.59 0.41
111 5 4.254 0.7464
112 4 4.621-0.6213
113 5 5.102-0.1024
114 5 4.109 0.8911
115 4 3.741 0.2588
116 4 3.886 0.114
117 5 4.59 0.41
118 5 5.102-0.1024
119 5 4.222 0.7777
120 5 4.222 0.7777
121 4 4.59-0.59
122 5 4.254 0.7464
123 3 4.254-1.254
124 5 4.445 0.5548
125 5 4.621 0.3787
126 4 4.59-0.59
127 5 5.102-0.1024
128 4 4.109-0.1089
129 4 4.254-0.2536
130 4 4.109-0.1089
131 4 4.766-0.7661
132 2 3.182-1.182
133 4 4.109-0.1089
134 5 4.621 0.3787
135 5 5.102-0.1024
136 5 4.958 0.04235
137 4 3.964 0.03582
138 4 4.445-0.4452
139 5 3.964 1.036
140 5 4.254 0.7464
141 5 4.621 0.3787
142 5 5.102-0.1024
143 5 4.285 0.715
144 5 4.621 0.3787
145 4 4.109-0.1089
146 5 4.109 0.8911
147 3 3.26-0.2602
148 3 4.254-1.254
149 4 4.735-0.7347
150 4 4.59-0.59
151 3 4.367-1.367
152 3 3.596-0.5965
153 5 4.958 0.04235
154 5 4.59 0.41
155 5 3.964 1.036
156 5 4.254 0.7464
157 5 4.958 0.04235
158 5 4.621 0.3787
159 5 4.958 0.04235
160 5 4.332 0.6681
161 4 4.254-0.2536
162 4 4.477-0.4766
163 2 4.477-2.477

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 &  3 &  3.886 & -0.886 \tabularnewline
2 &  5 &  4.958 &  0.04235 \tabularnewline
3 &  5 &  4.254 &  0.7464 \tabularnewline
4 &  5 &  4.254 &  0.7464 \tabularnewline
5 &  4 &  3.886 &  0.114 \tabularnewline
6 &  5 &  5.102 & -0.1024 \tabularnewline
7 &  5 &  3.741 &  1.259 \tabularnewline
8 &  5 &  4.958 &  0.04235 \tabularnewline
9 &  5 &  4.156 &  0.8442 \tabularnewline
10 &  5 &  3.741 &  1.259 \tabularnewline
11 &  5 &  4.958 &  0.04235 \tabularnewline
12 &  5 &  5.102 & -0.1024 \tabularnewline
13 &  5 &  4.59 &  0.41 \tabularnewline
14 &  4 &  3.886 &  0.114 \tabularnewline
15 &  3 &  4.109 & -1.109 \tabularnewline
16 &  5 &  5.102 & -0.1024 \tabularnewline
17 &  5 &  3.886 &  1.114 \tabularnewline
18 &  5 &  3.694 &  1.306 \tabularnewline
19 &  4 &  4.254 & -0.2536 \tabularnewline
20 &  2 &  3.197 & -1.197 \tabularnewline
21 &  5 &  4.735 &  0.2653 \tabularnewline
22 &  5 &  4.735 &  0.2653 \tabularnewline
23 &  5 &  4.301 &  0.6995 \tabularnewline
24 &  4 &  4.109 & -0.1089 \tabularnewline
25 &  4 &  4.958 & -0.9576 \tabularnewline
26 &  4 &  4.59 & -0.59 \tabularnewline
27 &  5 &  4.735 &  0.2653 \tabularnewline
28 &  5 &  4.445 &  0.5548 \tabularnewline
29 &  5 &  4.735 &  0.2653 \tabularnewline
30 &  5 &  5.102 & -0.1024 \tabularnewline
31 &  1 &  1.852 & -0.8522 \tabularnewline
32 &  5 &  4.735 &  0.2653 \tabularnewline
33 &  4 &  4.445 & -0.4452 \tabularnewline
34 &  4 &  4.109 & -0.1089 \tabularnewline
35 &  4 &  4.254 & -0.2536 \tabularnewline
36 &  5 &  4.59 &  0.41 \tabularnewline
37 &  4 &  4.477 & -0.4766 \tabularnewline
38 &  4 &  4.109 & -0.1089 \tabularnewline
39 &  5 &  4.254 &  0.7464 \tabularnewline
40 &  5 &  5.102 & -0.1024 \tabularnewline
41 &  5 &  4.958 &  0.04235 \tabularnewline
42 &  2 &  2.188 & -0.1885 \tabularnewline
43 &  3 &  3.55 & -0.5496 \tabularnewline
44 &  4 &  4.031 & -0.03069 \tabularnewline
45 &  4 &  4.222 & -0.2223 \tabularnewline
46 &  5 &  4.59 &  0.41 \tabularnewline
47 &  5 &  4.813 &  0.1871 \tabularnewline
48 &  4 &  4.254 & -0.2536 \tabularnewline
49 &  5 &  4.222 &  0.7777 \tabularnewline
50 &  5 &  4.958 &  0.04235 \tabularnewline
51 &  4 &  4.254 & -0.2536 \tabularnewline
52 &  5 &  4.735 &  0.2653 \tabularnewline
53 &  4 &  3.788 &  0.2119 \tabularnewline
54 &  4 &  4.254 & -0.2536 \tabularnewline
55 &  3 &  3.741 & -0.7412 \tabularnewline
56 &  4 &  3.452 &  0.5482 \tabularnewline
57 &  4 &  4.59 & -0.59 \tabularnewline
58 &  5 &  4.254 &  0.7464 \tabularnewline
59 &  4 &  4.59 & -0.59 \tabularnewline
60 &  4 &  4.445 & -0.4452 \tabularnewline
61 &  4 &  4.254 & -0.2536 \tabularnewline
62 &  4 &  3.55 &  0.4504 \tabularnewline
63 &  4 &  4.254 & -0.2536 \tabularnewline
64 &  2 &  4.109 & -2.109 \tabularnewline
65 &  4 &  4.445 & -0.4452 \tabularnewline
66 &  4 &  3.741 &  0.2588 \tabularnewline
67 &  5 &  5.102 & -0.1024 \tabularnewline
68 &  3 &  3.405 & -0.4049 \tabularnewline
69 &  3 &  3.741 & -0.7412 \tabularnewline
70 &  5 &  4.621 &  0.3787 \tabularnewline
71 &  4 &  3.55 &  0.4504 \tabularnewline
72 &  5 &  4.958 &  0.04235 \tabularnewline
73 &  4 &  4.735 & -0.7347 \tabularnewline
74 &  4 &  3.55 &  0.4504 \tabularnewline
75 &  5 &  4.367 &  0.633 \tabularnewline
76 &  5 &  4.958 &  0.04235 \tabularnewline
77 &  5 &  3.741 &  1.259 \tabularnewline
78 &  4 &  3.741 &  0.2588 \tabularnewline
79 &  5 &  4.254 &  0.7464 \tabularnewline
80 &  5 &  4.958 &  0.04235 \tabularnewline
81 &  2 &  4.301 & -2.301 \tabularnewline
82 &  5 &  4.766 &  0.2339 \tabularnewline
83 &  5 &  4.59 &  0.41 \tabularnewline
84 &  5 &  5.102 & -0.1024 \tabularnewline
85 &  5 &  3.964 &  1.036 \tabularnewline
86 &  4 &  4.109 & -0.1089 \tabularnewline
87 &  4 &  4.109 & -0.1089 \tabularnewline
88 &  5 &  5.102 & -0.1024 \tabularnewline
89 &  4 &  4.109 & -0.1089 \tabularnewline
90 &  5 &  4.958 &  0.04235 \tabularnewline
91 &  5 &  4.59 &  0.41 \tabularnewline
92 &  5 &  4.621 &  0.3787 \tabularnewline
93 &  4 &  4.109 & -0.1089 \tabularnewline
94 &  5 &  5.102 & -0.1024 \tabularnewline
95 &  5 &  4.668 &  0.3318 \tabularnewline
96 &  3 &  3.374 & -0.3736 \tabularnewline
97 &  5 &  4.621 &  0.3787 \tabularnewline
98 &  5 &  4.958 &  0.04235 \tabularnewline
99 &  5 &  5.102 & -0.1024 \tabularnewline
100 &  4 &  4.621 & -0.6213 \tabularnewline
101 &  4 &  4.109 & -0.1089 \tabularnewline
102 &  4 &  4.254 & -0.2536 \tabularnewline
103 &  5 &  4.813 &  0.1871 \tabularnewline
104 &  5 &  4.59 &  0.41 \tabularnewline
105 &  4 &  3.518 &  0.4817 \tabularnewline
106 &  3 &  4.254 & -1.254 \tabularnewline
107 &  3 &  3.596 & -0.5965 \tabularnewline
108 &  4 &  4.621 & -0.6213 \tabularnewline
109 &  4 &  3.741 &  0.2588 \tabularnewline
110 &  5 &  4.59 &  0.41 \tabularnewline
111 &  5 &  4.254 &  0.7464 \tabularnewline
112 &  4 &  4.621 & -0.6213 \tabularnewline
113 &  5 &  5.102 & -0.1024 \tabularnewline
114 &  5 &  4.109 &  0.8911 \tabularnewline
115 &  4 &  3.741 &  0.2588 \tabularnewline
116 &  4 &  3.886 &  0.114 \tabularnewline
117 &  5 &  4.59 &  0.41 \tabularnewline
118 &  5 &  5.102 & -0.1024 \tabularnewline
119 &  5 &  4.222 &  0.7777 \tabularnewline
120 &  5 &  4.222 &  0.7777 \tabularnewline
121 &  4 &  4.59 & -0.59 \tabularnewline
122 &  5 &  4.254 &  0.7464 \tabularnewline
123 &  3 &  4.254 & -1.254 \tabularnewline
124 &  5 &  4.445 &  0.5548 \tabularnewline
125 &  5 &  4.621 &  0.3787 \tabularnewline
126 &  4 &  4.59 & -0.59 \tabularnewline
127 &  5 &  5.102 & -0.1024 \tabularnewline
128 &  4 &  4.109 & -0.1089 \tabularnewline
129 &  4 &  4.254 & -0.2536 \tabularnewline
130 &  4 &  4.109 & -0.1089 \tabularnewline
131 &  4 &  4.766 & -0.7661 \tabularnewline
132 &  2 &  3.182 & -1.182 \tabularnewline
133 &  4 &  4.109 & -0.1089 \tabularnewline
134 &  5 &  4.621 &  0.3787 \tabularnewline
135 &  5 &  5.102 & -0.1024 \tabularnewline
136 &  5 &  4.958 &  0.04235 \tabularnewline
137 &  4 &  3.964 &  0.03582 \tabularnewline
138 &  4 &  4.445 & -0.4452 \tabularnewline
139 &  5 &  3.964 &  1.036 \tabularnewline
140 &  5 &  4.254 &  0.7464 \tabularnewline
141 &  5 &  4.621 &  0.3787 \tabularnewline
142 &  5 &  5.102 & -0.1024 \tabularnewline
143 &  5 &  4.285 &  0.715 \tabularnewline
144 &  5 &  4.621 &  0.3787 \tabularnewline
145 &  4 &  4.109 & -0.1089 \tabularnewline
146 &  5 &  4.109 &  0.8911 \tabularnewline
147 &  3 &  3.26 & -0.2602 \tabularnewline
148 &  3 &  4.254 & -1.254 \tabularnewline
149 &  4 &  4.735 & -0.7347 \tabularnewline
150 &  4 &  4.59 & -0.59 \tabularnewline
151 &  3 &  4.367 & -1.367 \tabularnewline
152 &  3 &  3.596 & -0.5965 \tabularnewline
153 &  5 &  4.958 &  0.04235 \tabularnewline
154 &  5 &  4.59 &  0.41 \tabularnewline
155 &  5 &  3.964 &  1.036 \tabularnewline
156 &  5 &  4.254 &  0.7464 \tabularnewline
157 &  5 &  4.958 &  0.04235 \tabularnewline
158 &  5 &  4.621 &  0.3787 \tabularnewline
159 &  5 &  4.958 &  0.04235 \tabularnewline
160 &  5 &  4.332 &  0.6681 \tabularnewline
161 &  4 &  4.254 & -0.2536 \tabularnewline
162 &  4 &  4.477 & -0.4766 \tabularnewline
163 &  2 &  4.477 & -2.477 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299109&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C] 3[/C][C] 3.886[/C][C]-0.886[/C][/ROW]
[ROW][C]2[/C][C] 5[/C][C] 4.958[/C][C] 0.04235[/C][/ROW]
[ROW][C]3[/C][C] 5[/C][C] 4.254[/C][C] 0.7464[/C][/ROW]
[ROW][C]4[/C][C] 5[/C][C] 4.254[/C][C] 0.7464[/C][/ROW]
[ROW][C]5[/C][C] 4[/C][C] 3.886[/C][C] 0.114[/C][/ROW]
[ROW][C]6[/C][C] 5[/C][C] 5.102[/C][C]-0.1024[/C][/ROW]
[ROW][C]7[/C][C] 5[/C][C] 3.741[/C][C] 1.259[/C][/ROW]
[ROW][C]8[/C][C] 5[/C][C] 4.958[/C][C] 0.04235[/C][/ROW]
[ROW][C]9[/C][C] 5[/C][C] 4.156[/C][C] 0.8442[/C][/ROW]
[ROW][C]10[/C][C] 5[/C][C] 3.741[/C][C] 1.259[/C][/ROW]
[ROW][C]11[/C][C] 5[/C][C] 4.958[/C][C] 0.04235[/C][/ROW]
[ROW][C]12[/C][C] 5[/C][C] 5.102[/C][C]-0.1024[/C][/ROW]
[ROW][C]13[/C][C] 5[/C][C] 4.59[/C][C] 0.41[/C][/ROW]
[ROW][C]14[/C][C] 4[/C][C] 3.886[/C][C] 0.114[/C][/ROW]
[ROW][C]15[/C][C] 3[/C][C] 4.109[/C][C]-1.109[/C][/ROW]
[ROW][C]16[/C][C] 5[/C][C] 5.102[/C][C]-0.1024[/C][/ROW]
[ROW][C]17[/C][C] 5[/C][C] 3.886[/C][C] 1.114[/C][/ROW]
[ROW][C]18[/C][C] 5[/C][C] 3.694[/C][C] 1.306[/C][/ROW]
[ROW][C]19[/C][C] 4[/C][C] 4.254[/C][C]-0.2536[/C][/ROW]
[ROW][C]20[/C][C] 2[/C][C] 3.197[/C][C]-1.197[/C][/ROW]
[ROW][C]21[/C][C] 5[/C][C] 4.735[/C][C] 0.2653[/C][/ROW]
[ROW][C]22[/C][C] 5[/C][C] 4.735[/C][C] 0.2653[/C][/ROW]
[ROW][C]23[/C][C] 5[/C][C] 4.301[/C][C] 0.6995[/C][/ROW]
[ROW][C]24[/C][C] 4[/C][C] 4.109[/C][C]-0.1089[/C][/ROW]
[ROW][C]25[/C][C] 4[/C][C] 4.958[/C][C]-0.9576[/C][/ROW]
[ROW][C]26[/C][C] 4[/C][C] 4.59[/C][C]-0.59[/C][/ROW]
[ROW][C]27[/C][C] 5[/C][C] 4.735[/C][C] 0.2653[/C][/ROW]
[ROW][C]28[/C][C] 5[/C][C] 4.445[/C][C] 0.5548[/C][/ROW]
[ROW][C]29[/C][C] 5[/C][C] 4.735[/C][C] 0.2653[/C][/ROW]
[ROW][C]30[/C][C] 5[/C][C] 5.102[/C][C]-0.1024[/C][/ROW]
[ROW][C]31[/C][C] 1[/C][C] 1.852[/C][C]-0.8522[/C][/ROW]
[ROW][C]32[/C][C] 5[/C][C] 4.735[/C][C] 0.2653[/C][/ROW]
[ROW][C]33[/C][C] 4[/C][C] 4.445[/C][C]-0.4452[/C][/ROW]
[ROW][C]34[/C][C] 4[/C][C] 4.109[/C][C]-0.1089[/C][/ROW]
[ROW][C]35[/C][C] 4[/C][C] 4.254[/C][C]-0.2536[/C][/ROW]
[ROW][C]36[/C][C] 5[/C][C] 4.59[/C][C] 0.41[/C][/ROW]
[ROW][C]37[/C][C] 4[/C][C] 4.477[/C][C]-0.4766[/C][/ROW]
[ROW][C]38[/C][C] 4[/C][C] 4.109[/C][C]-0.1089[/C][/ROW]
[ROW][C]39[/C][C] 5[/C][C] 4.254[/C][C] 0.7464[/C][/ROW]
[ROW][C]40[/C][C] 5[/C][C] 5.102[/C][C]-0.1024[/C][/ROW]
[ROW][C]41[/C][C] 5[/C][C] 4.958[/C][C] 0.04235[/C][/ROW]
[ROW][C]42[/C][C] 2[/C][C] 2.188[/C][C]-0.1885[/C][/ROW]
[ROW][C]43[/C][C] 3[/C][C] 3.55[/C][C]-0.5496[/C][/ROW]
[ROW][C]44[/C][C] 4[/C][C] 4.031[/C][C]-0.03069[/C][/ROW]
[ROW][C]45[/C][C] 4[/C][C] 4.222[/C][C]-0.2223[/C][/ROW]
[ROW][C]46[/C][C] 5[/C][C] 4.59[/C][C] 0.41[/C][/ROW]
[ROW][C]47[/C][C] 5[/C][C] 4.813[/C][C] 0.1871[/C][/ROW]
[ROW][C]48[/C][C] 4[/C][C] 4.254[/C][C]-0.2536[/C][/ROW]
[ROW][C]49[/C][C] 5[/C][C] 4.222[/C][C] 0.7777[/C][/ROW]
[ROW][C]50[/C][C] 5[/C][C] 4.958[/C][C] 0.04235[/C][/ROW]
[ROW][C]51[/C][C] 4[/C][C] 4.254[/C][C]-0.2536[/C][/ROW]
[ROW][C]52[/C][C] 5[/C][C] 4.735[/C][C] 0.2653[/C][/ROW]
[ROW][C]53[/C][C] 4[/C][C] 3.788[/C][C] 0.2119[/C][/ROW]
[ROW][C]54[/C][C] 4[/C][C] 4.254[/C][C]-0.2536[/C][/ROW]
[ROW][C]55[/C][C] 3[/C][C] 3.741[/C][C]-0.7412[/C][/ROW]
[ROW][C]56[/C][C] 4[/C][C] 3.452[/C][C] 0.5482[/C][/ROW]
[ROW][C]57[/C][C] 4[/C][C] 4.59[/C][C]-0.59[/C][/ROW]
[ROW][C]58[/C][C] 5[/C][C] 4.254[/C][C] 0.7464[/C][/ROW]
[ROW][C]59[/C][C] 4[/C][C] 4.59[/C][C]-0.59[/C][/ROW]
[ROW][C]60[/C][C] 4[/C][C] 4.445[/C][C]-0.4452[/C][/ROW]
[ROW][C]61[/C][C] 4[/C][C] 4.254[/C][C]-0.2536[/C][/ROW]
[ROW][C]62[/C][C] 4[/C][C] 3.55[/C][C] 0.4504[/C][/ROW]
[ROW][C]63[/C][C] 4[/C][C] 4.254[/C][C]-0.2536[/C][/ROW]
[ROW][C]64[/C][C] 2[/C][C] 4.109[/C][C]-2.109[/C][/ROW]
[ROW][C]65[/C][C] 4[/C][C] 4.445[/C][C]-0.4452[/C][/ROW]
[ROW][C]66[/C][C] 4[/C][C] 3.741[/C][C] 0.2588[/C][/ROW]
[ROW][C]67[/C][C] 5[/C][C] 5.102[/C][C]-0.1024[/C][/ROW]
[ROW][C]68[/C][C] 3[/C][C] 3.405[/C][C]-0.4049[/C][/ROW]
[ROW][C]69[/C][C] 3[/C][C] 3.741[/C][C]-0.7412[/C][/ROW]
[ROW][C]70[/C][C] 5[/C][C] 4.621[/C][C] 0.3787[/C][/ROW]
[ROW][C]71[/C][C] 4[/C][C] 3.55[/C][C] 0.4504[/C][/ROW]
[ROW][C]72[/C][C] 5[/C][C] 4.958[/C][C] 0.04235[/C][/ROW]
[ROW][C]73[/C][C] 4[/C][C] 4.735[/C][C]-0.7347[/C][/ROW]
[ROW][C]74[/C][C] 4[/C][C] 3.55[/C][C] 0.4504[/C][/ROW]
[ROW][C]75[/C][C] 5[/C][C] 4.367[/C][C] 0.633[/C][/ROW]
[ROW][C]76[/C][C] 5[/C][C] 4.958[/C][C] 0.04235[/C][/ROW]
[ROW][C]77[/C][C] 5[/C][C] 3.741[/C][C] 1.259[/C][/ROW]
[ROW][C]78[/C][C] 4[/C][C] 3.741[/C][C] 0.2588[/C][/ROW]
[ROW][C]79[/C][C] 5[/C][C] 4.254[/C][C] 0.7464[/C][/ROW]
[ROW][C]80[/C][C] 5[/C][C] 4.958[/C][C] 0.04235[/C][/ROW]
[ROW][C]81[/C][C] 2[/C][C] 4.301[/C][C]-2.301[/C][/ROW]
[ROW][C]82[/C][C] 5[/C][C] 4.766[/C][C] 0.2339[/C][/ROW]
[ROW][C]83[/C][C] 5[/C][C] 4.59[/C][C] 0.41[/C][/ROW]
[ROW][C]84[/C][C] 5[/C][C] 5.102[/C][C]-0.1024[/C][/ROW]
[ROW][C]85[/C][C] 5[/C][C] 3.964[/C][C] 1.036[/C][/ROW]
[ROW][C]86[/C][C] 4[/C][C] 4.109[/C][C]-0.1089[/C][/ROW]
[ROW][C]87[/C][C] 4[/C][C] 4.109[/C][C]-0.1089[/C][/ROW]
[ROW][C]88[/C][C] 5[/C][C] 5.102[/C][C]-0.1024[/C][/ROW]
[ROW][C]89[/C][C] 4[/C][C] 4.109[/C][C]-0.1089[/C][/ROW]
[ROW][C]90[/C][C] 5[/C][C] 4.958[/C][C] 0.04235[/C][/ROW]
[ROW][C]91[/C][C] 5[/C][C] 4.59[/C][C] 0.41[/C][/ROW]
[ROW][C]92[/C][C] 5[/C][C] 4.621[/C][C] 0.3787[/C][/ROW]
[ROW][C]93[/C][C] 4[/C][C] 4.109[/C][C]-0.1089[/C][/ROW]
[ROW][C]94[/C][C] 5[/C][C] 5.102[/C][C]-0.1024[/C][/ROW]
[ROW][C]95[/C][C] 5[/C][C] 4.668[/C][C] 0.3318[/C][/ROW]
[ROW][C]96[/C][C] 3[/C][C] 3.374[/C][C]-0.3736[/C][/ROW]
[ROW][C]97[/C][C] 5[/C][C] 4.621[/C][C] 0.3787[/C][/ROW]
[ROW][C]98[/C][C] 5[/C][C] 4.958[/C][C] 0.04235[/C][/ROW]
[ROW][C]99[/C][C] 5[/C][C] 5.102[/C][C]-0.1024[/C][/ROW]
[ROW][C]100[/C][C] 4[/C][C] 4.621[/C][C]-0.6213[/C][/ROW]
[ROW][C]101[/C][C] 4[/C][C] 4.109[/C][C]-0.1089[/C][/ROW]
[ROW][C]102[/C][C] 4[/C][C] 4.254[/C][C]-0.2536[/C][/ROW]
[ROW][C]103[/C][C] 5[/C][C] 4.813[/C][C] 0.1871[/C][/ROW]
[ROW][C]104[/C][C] 5[/C][C] 4.59[/C][C] 0.41[/C][/ROW]
[ROW][C]105[/C][C] 4[/C][C] 3.518[/C][C] 0.4817[/C][/ROW]
[ROW][C]106[/C][C] 3[/C][C] 4.254[/C][C]-1.254[/C][/ROW]
[ROW][C]107[/C][C] 3[/C][C] 3.596[/C][C]-0.5965[/C][/ROW]
[ROW][C]108[/C][C] 4[/C][C] 4.621[/C][C]-0.6213[/C][/ROW]
[ROW][C]109[/C][C] 4[/C][C] 3.741[/C][C] 0.2588[/C][/ROW]
[ROW][C]110[/C][C] 5[/C][C] 4.59[/C][C] 0.41[/C][/ROW]
[ROW][C]111[/C][C] 5[/C][C] 4.254[/C][C] 0.7464[/C][/ROW]
[ROW][C]112[/C][C] 4[/C][C] 4.621[/C][C]-0.6213[/C][/ROW]
[ROW][C]113[/C][C] 5[/C][C] 5.102[/C][C]-0.1024[/C][/ROW]
[ROW][C]114[/C][C] 5[/C][C] 4.109[/C][C] 0.8911[/C][/ROW]
[ROW][C]115[/C][C] 4[/C][C] 3.741[/C][C] 0.2588[/C][/ROW]
[ROW][C]116[/C][C] 4[/C][C] 3.886[/C][C] 0.114[/C][/ROW]
[ROW][C]117[/C][C] 5[/C][C] 4.59[/C][C] 0.41[/C][/ROW]
[ROW][C]118[/C][C] 5[/C][C] 5.102[/C][C]-0.1024[/C][/ROW]
[ROW][C]119[/C][C] 5[/C][C] 4.222[/C][C] 0.7777[/C][/ROW]
[ROW][C]120[/C][C] 5[/C][C] 4.222[/C][C] 0.7777[/C][/ROW]
[ROW][C]121[/C][C] 4[/C][C] 4.59[/C][C]-0.59[/C][/ROW]
[ROW][C]122[/C][C] 5[/C][C] 4.254[/C][C] 0.7464[/C][/ROW]
[ROW][C]123[/C][C] 3[/C][C] 4.254[/C][C]-1.254[/C][/ROW]
[ROW][C]124[/C][C] 5[/C][C] 4.445[/C][C] 0.5548[/C][/ROW]
[ROW][C]125[/C][C] 5[/C][C] 4.621[/C][C] 0.3787[/C][/ROW]
[ROW][C]126[/C][C] 4[/C][C] 4.59[/C][C]-0.59[/C][/ROW]
[ROW][C]127[/C][C] 5[/C][C] 5.102[/C][C]-0.1024[/C][/ROW]
[ROW][C]128[/C][C] 4[/C][C] 4.109[/C][C]-0.1089[/C][/ROW]
[ROW][C]129[/C][C] 4[/C][C] 4.254[/C][C]-0.2536[/C][/ROW]
[ROW][C]130[/C][C] 4[/C][C] 4.109[/C][C]-0.1089[/C][/ROW]
[ROW][C]131[/C][C] 4[/C][C] 4.766[/C][C]-0.7661[/C][/ROW]
[ROW][C]132[/C][C] 2[/C][C] 3.182[/C][C]-1.182[/C][/ROW]
[ROW][C]133[/C][C] 4[/C][C] 4.109[/C][C]-0.1089[/C][/ROW]
[ROW][C]134[/C][C] 5[/C][C] 4.621[/C][C] 0.3787[/C][/ROW]
[ROW][C]135[/C][C] 5[/C][C] 5.102[/C][C]-0.1024[/C][/ROW]
[ROW][C]136[/C][C] 5[/C][C] 4.958[/C][C] 0.04235[/C][/ROW]
[ROW][C]137[/C][C] 4[/C][C] 3.964[/C][C] 0.03582[/C][/ROW]
[ROW][C]138[/C][C] 4[/C][C] 4.445[/C][C]-0.4452[/C][/ROW]
[ROW][C]139[/C][C] 5[/C][C] 3.964[/C][C] 1.036[/C][/ROW]
[ROW][C]140[/C][C] 5[/C][C] 4.254[/C][C] 0.7464[/C][/ROW]
[ROW][C]141[/C][C] 5[/C][C] 4.621[/C][C] 0.3787[/C][/ROW]
[ROW][C]142[/C][C] 5[/C][C] 5.102[/C][C]-0.1024[/C][/ROW]
[ROW][C]143[/C][C] 5[/C][C] 4.285[/C][C] 0.715[/C][/ROW]
[ROW][C]144[/C][C] 5[/C][C] 4.621[/C][C] 0.3787[/C][/ROW]
[ROW][C]145[/C][C] 4[/C][C] 4.109[/C][C]-0.1089[/C][/ROW]
[ROW][C]146[/C][C] 5[/C][C] 4.109[/C][C] 0.8911[/C][/ROW]
[ROW][C]147[/C][C] 3[/C][C] 3.26[/C][C]-0.2602[/C][/ROW]
[ROW][C]148[/C][C] 3[/C][C] 4.254[/C][C]-1.254[/C][/ROW]
[ROW][C]149[/C][C] 4[/C][C] 4.735[/C][C]-0.7347[/C][/ROW]
[ROW][C]150[/C][C] 4[/C][C] 4.59[/C][C]-0.59[/C][/ROW]
[ROW][C]151[/C][C] 3[/C][C] 4.367[/C][C]-1.367[/C][/ROW]
[ROW][C]152[/C][C] 3[/C][C] 3.596[/C][C]-0.5965[/C][/ROW]
[ROW][C]153[/C][C] 5[/C][C] 4.958[/C][C] 0.04235[/C][/ROW]
[ROW][C]154[/C][C] 5[/C][C] 4.59[/C][C] 0.41[/C][/ROW]
[ROW][C]155[/C][C] 5[/C][C] 3.964[/C][C] 1.036[/C][/ROW]
[ROW][C]156[/C][C] 5[/C][C] 4.254[/C][C] 0.7464[/C][/ROW]
[ROW][C]157[/C][C] 5[/C][C] 4.958[/C][C] 0.04235[/C][/ROW]
[ROW][C]158[/C][C] 5[/C][C] 4.621[/C][C] 0.3787[/C][/ROW]
[ROW][C]159[/C][C] 5[/C][C] 4.958[/C][C] 0.04235[/C][/ROW]
[ROW][C]160[/C][C] 5[/C][C] 4.332[/C][C] 0.6681[/C][/ROW]
[ROW][C]161[/C][C] 4[/C][C] 4.254[/C][C]-0.2536[/C][/ROW]
[ROW][C]162[/C][C] 4[/C][C] 4.477[/C][C]-0.4766[/C][/ROW]
[ROW][C]163[/C][C] 2[/C][C] 4.477[/C][C]-2.477[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299109&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299109&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 3 3.886-0.886
2 5 4.958 0.04235
3 5 4.254 0.7464
4 5 4.254 0.7464
5 4 3.886 0.114
6 5 5.102-0.1024
7 5 3.741 1.259
8 5 4.958 0.04235
9 5 4.156 0.8442
10 5 3.741 1.259
11 5 4.958 0.04235
12 5 5.102-0.1024
13 5 4.59 0.41
14 4 3.886 0.114
15 3 4.109-1.109
16 5 5.102-0.1024
17 5 3.886 1.114
18 5 3.694 1.306
19 4 4.254-0.2536
20 2 3.197-1.197
21 5 4.735 0.2653
22 5 4.735 0.2653
23 5 4.301 0.6995
24 4 4.109-0.1089
25 4 4.958-0.9576
26 4 4.59-0.59
27 5 4.735 0.2653
28 5 4.445 0.5548
29 5 4.735 0.2653
30 5 5.102-0.1024
31 1 1.852-0.8522
32 5 4.735 0.2653
33 4 4.445-0.4452
34 4 4.109-0.1089
35 4 4.254-0.2536
36 5 4.59 0.41
37 4 4.477-0.4766
38 4 4.109-0.1089
39 5 4.254 0.7464
40 5 5.102-0.1024
41 5 4.958 0.04235
42 2 2.188-0.1885
43 3 3.55-0.5496
44 4 4.031-0.03069
45 4 4.222-0.2223
46 5 4.59 0.41
47 5 4.813 0.1871
48 4 4.254-0.2536
49 5 4.222 0.7777
50 5 4.958 0.04235
51 4 4.254-0.2536
52 5 4.735 0.2653
53 4 3.788 0.2119
54 4 4.254-0.2536
55 3 3.741-0.7412
56 4 3.452 0.5482
57 4 4.59-0.59
58 5 4.254 0.7464
59 4 4.59-0.59
60 4 4.445-0.4452
61 4 4.254-0.2536
62 4 3.55 0.4504
63 4 4.254-0.2536
64 2 4.109-2.109
65 4 4.445-0.4452
66 4 3.741 0.2588
67 5 5.102-0.1024
68 3 3.405-0.4049
69 3 3.741-0.7412
70 5 4.621 0.3787
71 4 3.55 0.4504
72 5 4.958 0.04235
73 4 4.735-0.7347
74 4 3.55 0.4504
75 5 4.367 0.633
76 5 4.958 0.04235
77 5 3.741 1.259
78 4 3.741 0.2588
79 5 4.254 0.7464
80 5 4.958 0.04235
81 2 4.301-2.301
82 5 4.766 0.2339
83 5 4.59 0.41
84 5 5.102-0.1024
85 5 3.964 1.036
86 4 4.109-0.1089
87 4 4.109-0.1089
88 5 5.102-0.1024
89 4 4.109-0.1089
90 5 4.958 0.04235
91 5 4.59 0.41
92 5 4.621 0.3787
93 4 4.109-0.1089
94 5 5.102-0.1024
95 5 4.668 0.3318
96 3 3.374-0.3736
97 5 4.621 0.3787
98 5 4.958 0.04235
99 5 5.102-0.1024
100 4 4.621-0.6213
101 4 4.109-0.1089
102 4 4.254-0.2536
103 5 4.813 0.1871
104 5 4.59 0.41
105 4 3.518 0.4817
106 3 4.254-1.254
107 3 3.596-0.5965
108 4 4.621-0.6213
109 4 3.741 0.2588
110 5 4.59 0.41
111 5 4.254 0.7464
112 4 4.621-0.6213
113 5 5.102-0.1024
114 5 4.109 0.8911
115 4 3.741 0.2588
116 4 3.886 0.114
117 5 4.59 0.41
118 5 5.102-0.1024
119 5 4.222 0.7777
120 5 4.222 0.7777
121 4 4.59-0.59
122 5 4.254 0.7464
123 3 4.254-1.254
124 5 4.445 0.5548
125 5 4.621 0.3787
126 4 4.59-0.59
127 5 5.102-0.1024
128 4 4.109-0.1089
129 4 4.254-0.2536
130 4 4.109-0.1089
131 4 4.766-0.7661
132 2 3.182-1.182
133 4 4.109-0.1089
134 5 4.621 0.3787
135 5 5.102-0.1024
136 5 4.958 0.04235
137 4 3.964 0.03582
138 4 4.445-0.4452
139 5 3.964 1.036
140 5 4.254 0.7464
141 5 4.621 0.3787
142 5 5.102-0.1024
143 5 4.285 0.715
144 5 4.621 0.3787
145 4 4.109-0.1089
146 5 4.109 0.8911
147 3 3.26-0.2602
148 3 4.254-1.254
149 4 4.735-0.7347
150 4 4.59-0.59
151 3 4.367-1.367
152 3 3.596-0.5965
153 5 4.958 0.04235
154 5 4.59 0.41
155 5 3.964 1.036
156 5 4.254 0.7464
157 5 4.958 0.04235
158 5 4.621 0.3787
159 5 4.958 0.04235
160 5 4.332 0.6681
161 4 4.254-0.2536
162 4 4.477-0.4766
163 2 4.477-2.477







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
7 0.571 0.858 0.429
8 0.4445 0.8889 0.5555
9 0.3713 0.7425 0.6287
10 0.4092 0.8184 0.5908
11 0.2953 0.5905 0.7047
12 0.2315 0.4631 0.7685
13 0.279 0.558 0.721
14 0.2041 0.4081 0.7959
15 0.7218 0.5564 0.2782
16 0.6449 0.7103 0.3551
17 0.6737 0.6526 0.3263
18 0.7587 0.4825 0.2413
19 0.7377 0.5246 0.2623
20 0.8428 0.3144 0.1572
21 0.823 0.354 0.177
22 0.7927 0.4145 0.2073
23 0.7794 0.4411 0.2206
24 0.7736 0.4528 0.2264
25 0.8344 0.3311 0.1656
26 0.8166 0.3668 0.1834
27 0.7886 0.4229 0.2114
28 0.7745 0.4509 0.2255
29 0.7394 0.5211 0.2606
30 0.6892 0.6216 0.3108
31 0.8429 0.3143 0.1571
32 0.8084 0.3831 0.1916
33 0.7909 0.4181 0.2091
34 0.7517 0.4965 0.2483
35 0.7188 0.5624 0.2812
36 0.6834 0.6331 0.3166
37 0.6651 0.6697 0.3349
38 0.6155 0.7689 0.3845
39 0.6185 0.763 0.3815
40 0.5725 0.855 0.4275
41 0.5195 0.961 0.4805
42 0.4713 0.9426 0.5287
43 0.4639 0.9279 0.5361
44 0.4143 0.8287 0.5857
45 0.3738 0.7476 0.6262
46 0.3403 0.6806 0.6597
47 0.2966 0.5933 0.7034
48 0.2629 0.5258 0.7371
49 0.2731 0.5463 0.7269
50 0.2331 0.4662 0.7669
51 0.2034 0.4069 0.7966
52 0.1733 0.3466 0.8267
53 0.1458 0.2917 0.8542
54 0.1241 0.2481 0.8759
55 0.1356 0.2713 0.8644
56 0.1304 0.2608 0.8696
57 0.1322 0.2643 0.8678
58 0.1404 0.2809 0.8596
59 0.1409 0.2818 0.8591
60 0.1294 0.2589 0.8706
61 0.1098 0.2197 0.8902
62 0.09861 0.1972 0.9014
63 0.08279 0.1656 0.9172
64 0.4022 0.8044 0.5978
65 0.3779 0.7558 0.6221
66 0.3413 0.6827 0.6587
67 0.3011 0.6022 0.6989
68 0.2752 0.5503 0.7248
69 0.2871 0.5742 0.7129
70 0.2644 0.5289 0.7356
71 0.2453 0.4906 0.7547
72 0.2106 0.4213 0.7894
73 0.2239 0.4479 0.7761
74 0.2066 0.4132 0.7934
75 0.2033 0.4066 0.7967
76 0.1725 0.3451 0.8275
77 0.2674 0.5349 0.7326
78 0.2373 0.4745 0.7627
79 0.251 0.5021 0.749
80 0.2162 0.4324 0.7838
81 0.7262 0.5475 0.2738
82 0.7001 0.5998 0.2999
83 0.6749 0.6503 0.3251
84 0.6346 0.7309 0.3654
85 0.6967 0.6066 0.3033
86 0.6568 0.6863 0.3432
87 0.6152 0.7697 0.3848
88 0.5722 0.8556 0.4278
89 0.5283 0.9434 0.4717
90 0.4827 0.9654 0.5173
91 0.4548 0.9095 0.5452
92 0.4286 0.8572 0.5714
93 0.3853 0.7706 0.6147
94 0.3436 0.6872 0.6564
95 0.3132 0.6265 0.6868
96 0.2847 0.5693 0.7153
97 0.2625 0.5251 0.7375
98 0.2261 0.4523 0.7739
99 0.1941 0.3881 0.8059
100 0.1877 0.3754 0.8123
101 0.1589 0.3179 0.8411
102 0.1349 0.2699 0.8651
103 0.1126 0.2252 0.8874
104 0.09929 0.1986 0.9007
105 0.09855 0.1971 0.9015
106 0.1532 0.3064 0.8468
107 0.1563 0.3127 0.8437
108 0.1507 0.3013 0.8493
109 0.1283 0.2566 0.8717
110 0.1139 0.2278 0.8861
111 0.1283 0.2565 0.8717
112 0.1234 0.2469 0.8766
113 0.1007 0.2015 0.8993
114 0.1178 0.2355 0.8822
115 0.1 0.2 0.9
116 0.08549 0.171 0.9145
117 0.07591 0.1518 0.9241
118 0.05988 0.1198 0.9401
119 0.08222 0.1644 0.9178
120 0.1318 0.2637 0.8682
121 0.117 0.234 0.883
122 0.147 0.2941 0.853
123 0.2055 0.411 0.7945
124 0.2043 0.4085 0.7957
125 0.1772 0.3543 0.8228
126 0.1557 0.3113 0.8443
127 0.1262 0.2525 0.8738
128 0.1001 0.2002 0.8999
129 0.07864 0.1573 0.9214
130 0.0602 0.1204 0.9398
131 0.06157 0.1231 0.9384
132 0.0679 0.1358 0.9321
133 0.05115 0.1023 0.9488
134 0.03982 0.07965 0.9602
135 0.02891 0.05782 0.9711
136 0.02053 0.04106 0.9795
137 0.01423 0.02847 0.9858
138 0.01034 0.02069 0.9897
139 0.0146 0.0292 0.9854
140 0.01786 0.03573 0.9821
141 0.01299 0.02598 0.987
142 0.008529 0.01706 0.9915
143 0.008632 0.01726 0.9914
144 0.007332 0.01466 0.9927
145 0.004441 0.008882 0.9956
146 0.007349 0.0147 0.9927
147 0.004409 0.008817 0.9956
148 0.00519 0.01038 0.9948
149 0.003341 0.006683 0.9967
150 0.002112 0.004225 0.9979
151 0.006392 0.01278 0.9936
152 0.01732 0.03464 0.9827
153 0.00921 0.01842 0.9908
154 0.005661 0.01132 0.9943
155 0.002929 0.005858 0.9971
156 0.001985 0.003971 0.998

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
7 &  0.571 &  0.858 &  0.429 \tabularnewline
8 &  0.4445 &  0.8889 &  0.5555 \tabularnewline
9 &  0.3713 &  0.7425 &  0.6287 \tabularnewline
10 &  0.4092 &  0.8184 &  0.5908 \tabularnewline
11 &  0.2953 &  0.5905 &  0.7047 \tabularnewline
12 &  0.2315 &  0.4631 &  0.7685 \tabularnewline
13 &  0.279 &  0.558 &  0.721 \tabularnewline
14 &  0.2041 &  0.4081 &  0.7959 \tabularnewline
15 &  0.7218 &  0.5564 &  0.2782 \tabularnewline
16 &  0.6449 &  0.7103 &  0.3551 \tabularnewline
17 &  0.6737 &  0.6526 &  0.3263 \tabularnewline
18 &  0.7587 &  0.4825 &  0.2413 \tabularnewline
19 &  0.7377 &  0.5246 &  0.2623 \tabularnewline
20 &  0.8428 &  0.3144 &  0.1572 \tabularnewline
21 &  0.823 &  0.354 &  0.177 \tabularnewline
22 &  0.7927 &  0.4145 &  0.2073 \tabularnewline
23 &  0.7794 &  0.4411 &  0.2206 \tabularnewline
24 &  0.7736 &  0.4528 &  0.2264 \tabularnewline
25 &  0.8344 &  0.3311 &  0.1656 \tabularnewline
26 &  0.8166 &  0.3668 &  0.1834 \tabularnewline
27 &  0.7886 &  0.4229 &  0.2114 \tabularnewline
28 &  0.7745 &  0.4509 &  0.2255 \tabularnewline
29 &  0.7394 &  0.5211 &  0.2606 \tabularnewline
30 &  0.6892 &  0.6216 &  0.3108 \tabularnewline
31 &  0.8429 &  0.3143 &  0.1571 \tabularnewline
32 &  0.8084 &  0.3831 &  0.1916 \tabularnewline
33 &  0.7909 &  0.4181 &  0.2091 \tabularnewline
34 &  0.7517 &  0.4965 &  0.2483 \tabularnewline
35 &  0.7188 &  0.5624 &  0.2812 \tabularnewline
36 &  0.6834 &  0.6331 &  0.3166 \tabularnewline
37 &  0.6651 &  0.6697 &  0.3349 \tabularnewline
38 &  0.6155 &  0.7689 &  0.3845 \tabularnewline
39 &  0.6185 &  0.763 &  0.3815 \tabularnewline
40 &  0.5725 &  0.855 &  0.4275 \tabularnewline
41 &  0.5195 &  0.961 &  0.4805 \tabularnewline
42 &  0.4713 &  0.9426 &  0.5287 \tabularnewline
43 &  0.4639 &  0.9279 &  0.5361 \tabularnewline
44 &  0.4143 &  0.8287 &  0.5857 \tabularnewline
45 &  0.3738 &  0.7476 &  0.6262 \tabularnewline
46 &  0.3403 &  0.6806 &  0.6597 \tabularnewline
47 &  0.2966 &  0.5933 &  0.7034 \tabularnewline
48 &  0.2629 &  0.5258 &  0.7371 \tabularnewline
49 &  0.2731 &  0.5463 &  0.7269 \tabularnewline
50 &  0.2331 &  0.4662 &  0.7669 \tabularnewline
51 &  0.2034 &  0.4069 &  0.7966 \tabularnewline
52 &  0.1733 &  0.3466 &  0.8267 \tabularnewline
53 &  0.1458 &  0.2917 &  0.8542 \tabularnewline
54 &  0.1241 &  0.2481 &  0.8759 \tabularnewline
55 &  0.1356 &  0.2713 &  0.8644 \tabularnewline
56 &  0.1304 &  0.2608 &  0.8696 \tabularnewline
57 &  0.1322 &  0.2643 &  0.8678 \tabularnewline
58 &  0.1404 &  0.2809 &  0.8596 \tabularnewline
59 &  0.1409 &  0.2818 &  0.8591 \tabularnewline
60 &  0.1294 &  0.2589 &  0.8706 \tabularnewline
61 &  0.1098 &  0.2197 &  0.8902 \tabularnewline
62 &  0.09861 &  0.1972 &  0.9014 \tabularnewline
63 &  0.08279 &  0.1656 &  0.9172 \tabularnewline
64 &  0.4022 &  0.8044 &  0.5978 \tabularnewline
65 &  0.3779 &  0.7558 &  0.6221 \tabularnewline
66 &  0.3413 &  0.6827 &  0.6587 \tabularnewline
67 &  0.3011 &  0.6022 &  0.6989 \tabularnewline
68 &  0.2752 &  0.5503 &  0.7248 \tabularnewline
69 &  0.2871 &  0.5742 &  0.7129 \tabularnewline
70 &  0.2644 &  0.5289 &  0.7356 \tabularnewline
71 &  0.2453 &  0.4906 &  0.7547 \tabularnewline
72 &  0.2106 &  0.4213 &  0.7894 \tabularnewline
73 &  0.2239 &  0.4479 &  0.7761 \tabularnewline
74 &  0.2066 &  0.4132 &  0.7934 \tabularnewline
75 &  0.2033 &  0.4066 &  0.7967 \tabularnewline
76 &  0.1725 &  0.3451 &  0.8275 \tabularnewline
77 &  0.2674 &  0.5349 &  0.7326 \tabularnewline
78 &  0.2373 &  0.4745 &  0.7627 \tabularnewline
79 &  0.251 &  0.5021 &  0.749 \tabularnewline
80 &  0.2162 &  0.4324 &  0.7838 \tabularnewline
81 &  0.7262 &  0.5475 &  0.2738 \tabularnewline
82 &  0.7001 &  0.5998 &  0.2999 \tabularnewline
83 &  0.6749 &  0.6503 &  0.3251 \tabularnewline
84 &  0.6346 &  0.7309 &  0.3654 \tabularnewline
85 &  0.6967 &  0.6066 &  0.3033 \tabularnewline
86 &  0.6568 &  0.6863 &  0.3432 \tabularnewline
87 &  0.6152 &  0.7697 &  0.3848 \tabularnewline
88 &  0.5722 &  0.8556 &  0.4278 \tabularnewline
89 &  0.5283 &  0.9434 &  0.4717 \tabularnewline
90 &  0.4827 &  0.9654 &  0.5173 \tabularnewline
91 &  0.4548 &  0.9095 &  0.5452 \tabularnewline
92 &  0.4286 &  0.8572 &  0.5714 \tabularnewline
93 &  0.3853 &  0.7706 &  0.6147 \tabularnewline
94 &  0.3436 &  0.6872 &  0.6564 \tabularnewline
95 &  0.3132 &  0.6265 &  0.6868 \tabularnewline
96 &  0.2847 &  0.5693 &  0.7153 \tabularnewline
97 &  0.2625 &  0.5251 &  0.7375 \tabularnewline
98 &  0.2261 &  0.4523 &  0.7739 \tabularnewline
99 &  0.1941 &  0.3881 &  0.8059 \tabularnewline
100 &  0.1877 &  0.3754 &  0.8123 \tabularnewline
101 &  0.1589 &  0.3179 &  0.8411 \tabularnewline
102 &  0.1349 &  0.2699 &  0.8651 \tabularnewline
103 &  0.1126 &  0.2252 &  0.8874 \tabularnewline
104 &  0.09929 &  0.1986 &  0.9007 \tabularnewline
105 &  0.09855 &  0.1971 &  0.9015 \tabularnewline
106 &  0.1532 &  0.3064 &  0.8468 \tabularnewline
107 &  0.1563 &  0.3127 &  0.8437 \tabularnewline
108 &  0.1507 &  0.3013 &  0.8493 \tabularnewline
109 &  0.1283 &  0.2566 &  0.8717 \tabularnewline
110 &  0.1139 &  0.2278 &  0.8861 \tabularnewline
111 &  0.1283 &  0.2565 &  0.8717 \tabularnewline
112 &  0.1234 &  0.2469 &  0.8766 \tabularnewline
113 &  0.1007 &  0.2015 &  0.8993 \tabularnewline
114 &  0.1178 &  0.2355 &  0.8822 \tabularnewline
115 &  0.1 &  0.2 &  0.9 \tabularnewline
116 &  0.08549 &  0.171 &  0.9145 \tabularnewline
117 &  0.07591 &  0.1518 &  0.9241 \tabularnewline
118 &  0.05988 &  0.1198 &  0.9401 \tabularnewline
119 &  0.08222 &  0.1644 &  0.9178 \tabularnewline
120 &  0.1318 &  0.2637 &  0.8682 \tabularnewline
121 &  0.117 &  0.234 &  0.883 \tabularnewline
122 &  0.147 &  0.2941 &  0.853 \tabularnewline
123 &  0.2055 &  0.411 &  0.7945 \tabularnewline
124 &  0.2043 &  0.4085 &  0.7957 \tabularnewline
125 &  0.1772 &  0.3543 &  0.8228 \tabularnewline
126 &  0.1557 &  0.3113 &  0.8443 \tabularnewline
127 &  0.1262 &  0.2525 &  0.8738 \tabularnewline
128 &  0.1001 &  0.2002 &  0.8999 \tabularnewline
129 &  0.07864 &  0.1573 &  0.9214 \tabularnewline
130 &  0.0602 &  0.1204 &  0.9398 \tabularnewline
131 &  0.06157 &  0.1231 &  0.9384 \tabularnewline
132 &  0.0679 &  0.1358 &  0.9321 \tabularnewline
133 &  0.05115 &  0.1023 &  0.9488 \tabularnewline
134 &  0.03982 &  0.07965 &  0.9602 \tabularnewline
135 &  0.02891 &  0.05782 &  0.9711 \tabularnewline
136 &  0.02053 &  0.04106 &  0.9795 \tabularnewline
137 &  0.01423 &  0.02847 &  0.9858 \tabularnewline
138 &  0.01034 &  0.02069 &  0.9897 \tabularnewline
139 &  0.0146 &  0.0292 &  0.9854 \tabularnewline
140 &  0.01786 &  0.03573 &  0.9821 \tabularnewline
141 &  0.01299 &  0.02598 &  0.987 \tabularnewline
142 &  0.008529 &  0.01706 &  0.9915 \tabularnewline
143 &  0.008632 &  0.01726 &  0.9914 \tabularnewline
144 &  0.007332 &  0.01466 &  0.9927 \tabularnewline
145 &  0.004441 &  0.008882 &  0.9956 \tabularnewline
146 &  0.007349 &  0.0147 &  0.9927 \tabularnewline
147 &  0.004409 &  0.008817 &  0.9956 \tabularnewline
148 &  0.00519 &  0.01038 &  0.9948 \tabularnewline
149 &  0.003341 &  0.006683 &  0.9967 \tabularnewline
150 &  0.002112 &  0.004225 &  0.9979 \tabularnewline
151 &  0.006392 &  0.01278 &  0.9936 \tabularnewline
152 &  0.01732 &  0.03464 &  0.9827 \tabularnewline
153 &  0.00921 &  0.01842 &  0.9908 \tabularnewline
154 &  0.005661 &  0.01132 &  0.9943 \tabularnewline
155 &  0.002929 &  0.005858 &  0.9971 \tabularnewline
156 &  0.001985 &  0.003971 &  0.998 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299109&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]7[/C][C] 0.571[/C][C] 0.858[/C][C] 0.429[/C][/ROW]
[ROW][C]8[/C][C] 0.4445[/C][C] 0.8889[/C][C] 0.5555[/C][/ROW]
[ROW][C]9[/C][C] 0.3713[/C][C] 0.7425[/C][C] 0.6287[/C][/ROW]
[ROW][C]10[/C][C] 0.4092[/C][C] 0.8184[/C][C] 0.5908[/C][/ROW]
[ROW][C]11[/C][C] 0.2953[/C][C] 0.5905[/C][C] 0.7047[/C][/ROW]
[ROW][C]12[/C][C] 0.2315[/C][C] 0.4631[/C][C] 0.7685[/C][/ROW]
[ROW][C]13[/C][C] 0.279[/C][C] 0.558[/C][C] 0.721[/C][/ROW]
[ROW][C]14[/C][C] 0.2041[/C][C] 0.4081[/C][C] 0.7959[/C][/ROW]
[ROW][C]15[/C][C] 0.7218[/C][C] 0.5564[/C][C] 0.2782[/C][/ROW]
[ROW][C]16[/C][C] 0.6449[/C][C] 0.7103[/C][C] 0.3551[/C][/ROW]
[ROW][C]17[/C][C] 0.6737[/C][C] 0.6526[/C][C] 0.3263[/C][/ROW]
[ROW][C]18[/C][C] 0.7587[/C][C] 0.4825[/C][C] 0.2413[/C][/ROW]
[ROW][C]19[/C][C] 0.7377[/C][C] 0.5246[/C][C] 0.2623[/C][/ROW]
[ROW][C]20[/C][C] 0.8428[/C][C] 0.3144[/C][C] 0.1572[/C][/ROW]
[ROW][C]21[/C][C] 0.823[/C][C] 0.354[/C][C] 0.177[/C][/ROW]
[ROW][C]22[/C][C] 0.7927[/C][C] 0.4145[/C][C] 0.2073[/C][/ROW]
[ROW][C]23[/C][C] 0.7794[/C][C] 0.4411[/C][C] 0.2206[/C][/ROW]
[ROW][C]24[/C][C] 0.7736[/C][C] 0.4528[/C][C] 0.2264[/C][/ROW]
[ROW][C]25[/C][C] 0.8344[/C][C] 0.3311[/C][C] 0.1656[/C][/ROW]
[ROW][C]26[/C][C] 0.8166[/C][C] 0.3668[/C][C] 0.1834[/C][/ROW]
[ROW][C]27[/C][C] 0.7886[/C][C] 0.4229[/C][C] 0.2114[/C][/ROW]
[ROW][C]28[/C][C] 0.7745[/C][C] 0.4509[/C][C] 0.2255[/C][/ROW]
[ROW][C]29[/C][C] 0.7394[/C][C] 0.5211[/C][C] 0.2606[/C][/ROW]
[ROW][C]30[/C][C] 0.6892[/C][C] 0.6216[/C][C] 0.3108[/C][/ROW]
[ROW][C]31[/C][C] 0.8429[/C][C] 0.3143[/C][C] 0.1571[/C][/ROW]
[ROW][C]32[/C][C] 0.8084[/C][C] 0.3831[/C][C] 0.1916[/C][/ROW]
[ROW][C]33[/C][C] 0.7909[/C][C] 0.4181[/C][C] 0.2091[/C][/ROW]
[ROW][C]34[/C][C] 0.7517[/C][C] 0.4965[/C][C] 0.2483[/C][/ROW]
[ROW][C]35[/C][C] 0.7188[/C][C] 0.5624[/C][C] 0.2812[/C][/ROW]
[ROW][C]36[/C][C] 0.6834[/C][C] 0.6331[/C][C] 0.3166[/C][/ROW]
[ROW][C]37[/C][C] 0.6651[/C][C] 0.6697[/C][C] 0.3349[/C][/ROW]
[ROW][C]38[/C][C] 0.6155[/C][C] 0.7689[/C][C] 0.3845[/C][/ROW]
[ROW][C]39[/C][C] 0.6185[/C][C] 0.763[/C][C] 0.3815[/C][/ROW]
[ROW][C]40[/C][C] 0.5725[/C][C] 0.855[/C][C] 0.4275[/C][/ROW]
[ROW][C]41[/C][C] 0.5195[/C][C] 0.961[/C][C] 0.4805[/C][/ROW]
[ROW][C]42[/C][C] 0.4713[/C][C] 0.9426[/C][C] 0.5287[/C][/ROW]
[ROW][C]43[/C][C] 0.4639[/C][C] 0.9279[/C][C] 0.5361[/C][/ROW]
[ROW][C]44[/C][C] 0.4143[/C][C] 0.8287[/C][C] 0.5857[/C][/ROW]
[ROW][C]45[/C][C] 0.3738[/C][C] 0.7476[/C][C] 0.6262[/C][/ROW]
[ROW][C]46[/C][C] 0.3403[/C][C] 0.6806[/C][C] 0.6597[/C][/ROW]
[ROW][C]47[/C][C] 0.2966[/C][C] 0.5933[/C][C] 0.7034[/C][/ROW]
[ROW][C]48[/C][C] 0.2629[/C][C] 0.5258[/C][C] 0.7371[/C][/ROW]
[ROW][C]49[/C][C] 0.2731[/C][C] 0.5463[/C][C] 0.7269[/C][/ROW]
[ROW][C]50[/C][C] 0.2331[/C][C] 0.4662[/C][C] 0.7669[/C][/ROW]
[ROW][C]51[/C][C] 0.2034[/C][C] 0.4069[/C][C] 0.7966[/C][/ROW]
[ROW][C]52[/C][C] 0.1733[/C][C] 0.3466[/C][C] 0.8267[/C][/ROW]
[ROW][C]53[/C][C] 0.1458[/C][C] 0.2917[/C][C] 0.8542[/C][/ROW]
[ROW][C]54[/C][C] 0.1241[/C][C] 0.2481[/C][C] 0.8759[/C][/ROW]
[ROW][C]55[/C][C] 0.1356[/C][C] 0.2713[/C][C] 0.8644[/C][/ROW]
[ROW][C]56[/C][C] 0.1304[/C][C] 0.2608[/C][C] 0.8696[/C][/ROW]
[ROW][C]57[/C][C] 0.1322[/C][C] 0.2643[/C][C] 0.8678[/C][/ROW]
[ROW][C]58[/C][C] 0.1404[/C][C] 0.2809[/C][C] 0.8596[/C][/ROW]
[ROW][C]59[/C][C] 0.1409[/C][C] 0.2818[/C][C] 0.8591[/C][/ROW]
[ROW][C]60[/C][C] 0.1294[/C][C] 0.2589[/C][C] 0.8706[/C][/ROW]
[ROW][C]61[/C][C] 0.1098[/C][C] 0.2197[/C][C] 0.8902[/C][/ROW]
[ROW][C]62[/C][C] 0.09861[/C][C] 0.1972[/C][C] 0.9014[/C][/ROW]
[ROW][C]63[/C][C] 0.08279[/C][C] 0.1656[/C][C] 0.9172[/C][/ROW]
[ROW][C]64[/C][C] 0.4022[/C][C] 0.8044[/C][C] 0.5978[/C][/ROW]
[ROW][C]65[/C][C] 0.3779[/C][C] 0.7558[/C][C] 0.6221[/C][/ROW]
[ROW][C]66[/C][C] 0.3413[/C][C] 0.6827[/C][C] 0.6587[/C][/ROW]
[ROW][C]67[/C][C] 0.3011[/C][C] 0.6022[/C][C] 0.6989[/C][/ROW]
[ROW][C]68[/C][C] 0.2752[/C][C] 0.5503[/C][C] 0.7248[/C][/ROW]
[ROW][C]69[/C][C] 0.2871[/C][C] 0.5742[/C][C] 0.7129[/C][/ROW]
[ROW][C]70[/C][C] 0.2644[/C][C] 0.5289[/C][C] 0.7356[/C][/ROW]
[ROW][C]71[/C][C] 0.2453[/C][C] 0.4906[/C][C] 0.7547[/C][/ROW]
[ROW][C]72[/C][C] 0.2106[/C][C] 0.4213[/C][C] 0.7894[/C][/ROW]
[ROW][C]73[/C][C] 0.2239[/C][C] 0.4479[/C][C] 0.7761[/C][/ROW]
[ROW][C]74[/C][C] 0.2066[/C][C] 0.4132[/C][C] 0.7934[/C][/ROW]
[ROW][C]75[/C][C] 0.2033[/C][C] 0.4066[/C][C] 0.7967[/C][/ROW]
[ROW][C]76[/C][C] 0.1725[/C][C] 0.3451[/C][C] 0.8275[/C][/ROW]
[ROW][C]77[/C][C] 0.2674[/C][C] 0.5349[/C][C] 0.7326[/C][/ROW]
[ROW][C]78[/C][C] 0.2373[/C][C] 0.4745[/C][C] 0.7627[/C][/ROW]
[ROW][C]79[/C][C] 0.251[/C][C] 0.5021[/C][C] 0.749[/C][/ROW]
[ROW][C]80[/C][C] 0.2162[/C][C] 0.4324[/C][C] 0.7838[/C][/ROW]
[ROW][C]81[/C][C] 0.7262[/C][C] 0.5475[/C][C] 0.2738[/C][/ROW]
[ROW][C]82[/C][C] 0.7001[/C][C] 0.5998[/C][C] 0.2999[/C][/ROW]
[ROW][C]83[/C][C] 0.6749[/C][C] 0.6503[/C][C] 0.3251[/C][/ROW]
[ROW][C]84[/C][C] 0.6346[/C][C] 0.7309[/C][C] 0.3654[/C][/ROW]
[ROW][C]85[/C][C] 0.6967[/C][C] 0.6066[/C][C] 0.3033[/C][/ROW]
[ROW][C]86[/C][C] 0.6568[/C][C] 0.6863[/C][C] 0.3432[/C][/ROW]
[ROW][C]87[/C][C] 0.6152[/C][C] 0.7697[/C][C] 0.3848[/C][/ROW]
[ROW][C]88[/C][C] 0.5722[/C][C] 0.8556[/C][C] 0.4278[/C][/ROW]
[ROW][C]89[/C][C] 0.5283[/C][C] 0.9434[/C][C] 0.4717[/C][/ROW]
[ROW][C]90[/C][C] 0.4827[/C][C] 0.9654[/C][C] 0.5173[/C][/ROW]
[ROW][C]91[/C][C] 0.4548[/C][C] 0.9095[/C][C] 0.5452[/C][/ROW]
[ROW][C]92[/C][C] 0.4286[/C][C] 0.8572[/C][C] 0.5714[/C][/ROW]
[ROW][C]93[/C][C] 0.3853[/C][C] 0.7706[/C][C] 0.6147[/C][/ROW]
[ROW][C]94[/C][C] 0.3436[/C][C] 0.6872[/C][C] 0.6564[/C][/ROW]
[ROW][C]95[/C][C] 0.3132[/C][C] 0.6265[/C][C] 0.6868[/C][/ROW]
[ROW][C]96[/C][C] 0.2847[/C][C] 0.5693[/C][C] 0.7153[/C][/ROW]
[ROW][C]97[/C][C] 0.2625[/C][C] 0.5251[/C][C] 0.7375[/C][/ROW]
[ROW][C]98[/C][C] 0.2261[/C][C] 0.4523[/C][C] 0.7739[/C][/ROW]
[ROW][C]99[/C][C] 0.1941[/C][C] 0.3881[/C][C] 0.8059[/C][/ROW]
[ROW][C]100[/C][C] 0.1877[/C][C] 0.3754[/C][C] 0.8123[/C][/ROW]
[ROW][C]101[/C][C] 0.1589[/C][C] 0.3179[/C][C] 0.8411[/C][/ROW]
[ROW][C]102[/C][C] 0.1349[/C][C] 0.2699[/C][C] 0.8651[/C][/ROW]
[ROW][C]103[/C][C] 0.1126[/C][C] 0.2252[/C][C] 0.8874[/C][/ROW]
[ROW][C]104[/C][C] 0.09929[/C][C] 0.1986[/C][C] 0.9007[/C][/ROW]
[ROW][C]105[/C][C] 0.09855[/C][C] 0.1971[/C][C] 0.9015[/C][/ROW]
[ROW][C]106[/C][C] 0.1532[/C][C] 0.3064[/C][C] 0.8468[/C][/ROW]
[ROW][C]107[/C][C] 0.1563[/C][C] 0.3127[/C][C] 0.8437[/C][/ROW]
[ROW][C]108[/C][C] 0.1507[/C][C] 0.3013[/C][C] 0.8493[/C][/ROW]
[ROW][C]109[/C][C] 0.1283[/C][C] 0.2566[/C][C] 0.8717[/C][/ROW]
[ROW][C]110[/C][C] 0.1139[/C][C] 0.2278[/C][C] 0.8861[/C][/ROW]
[ROW][C]111[/C][C] 0.1283[/C][C] 0.2565[/C][C] 0.8717[/C][/ROW]
[ROW][C]112[/C][C] 0.1234[/C][C] 0.2469[/C][C] 0.8766[/C][/ROW]
[ROW][C]113[/C][C] 0.1007[/C][C] 0.2015[/C][C] 0.8993[/C][/ROW]
[ROW][C]114[/C][C] 0.1178[/C][C] 0.2355[/C][C] 0.8822[/C][/ROW]
[ROW][C]115[/C][C] 0.1[/C][C] 0.2[/C][C] 0.9[/C][/ROW]
[ROW][C]116[/C][C] 0.08549[/C][C] 0.171[/C][C] 0.9145[/C][/ROW]
[ROW][C]117[/C][C] 0.07591[/C][C] 0.1518[/C][C] 0.9241[/C][/ROW]
[ROW][C]118[/C][C] 0.05988[/C][C] 0.1198[/C][C] 0.9401[/C][/ROW]
[ROW][C]119[/C][C] 0.08222[/C][C] 0.1644[/C][C] 0.9178[/C][/ROW]
[ROW][C]120[/C][C] 0.1318[/C][C] 0.2637[/C][C] 0.8682[/C][/ROW]
[ROW][C]121[/C][C] 0.117[/C][C] 0.234[/C][C] 0.883[/C][/ROW]
[ROW][C]122[/C][C] 0.147[/C][C] 0.2941[/C][C] 0.853[/C][/ROW]
[ROW][C]123[/C][C] 0.2055[/C][C] 0.411[/C][C] 0.7945[/C][/ROW]
[ROW][C]124[/C][C] 0.2043[/C][C] 0.4085[/C][C] 0.7957[/C][/ROW]
[ROW][C]125[/C][C] 0.1772[/C][C] 0.3543[/C][C] 0.8228[/C][/ROW]
[ROW][C]126[/C][C] 0.1557[/C][C] 0.3113[/C][C] 0.8443[/C][/ROW]
[ROW][C]127[/C][C] 0.1262[/C][C] 0.2525[/C][C] 0.8738[/C][/ROW]
[ROW][C]128[/C][C] 0.1001[/C][C] 0.2002[/C][C] 0.8999[/C][/ROW]
[ROW][C]129[/C][C] 0.07864[/C][C] 0.1573[/C][C] 0.9214[/C][/ROW]
[ROW][C]130[/C][C] 0.0602[/C][C] 0.1204[/C][C] 0.9398[/C][/ROW]
[ROW][C]131[/C][C] 0.06157[/C][C] 0.1231[/C][C] 0.9384[/C][/ROW]
[ROW][C]132[/C][C] 0.0679[/C][C] 0.1358[/C][C] 0.9321[/C][/ROW]
[ROW][C]133[/C][C] 0.05115[/C][C] 0.1023[/C][C] 0.9488[/C][/ROW]
[ROW][C]134[/C][C] 0.03982[/C][C] 0.07965[/C][C] 0.9602[/C][/ROW]
[ROW][C]135[/C][C] 0.02891[/C][C] 0.05782[/C][C] 0.9711[/C][/ROW]
[ROW][C]136[/C][C] 0.02053[/C][C] 0.04106[/C][C] 0.9795[/C][/ROW]
[ROW][C]137[/C][C] 0.01423[/C][C] 0.02847[/C][C] 0.9858[/C][/ROW]
[ROW][C]138[/C][C] 0.01034[/C][C] 0.02069[/C][C] 0.9897[/C][/ROW]
[ROW][C]139[/C][C] 0.0146[/C][C] 0.0292[/C][C] 0.9854[/C][/ROW]
[ROW][C]140[/C][C] 0.01786[/C][C] 0.03573[/C][C] 0.9821[/C][/ROW]
[ROW][C]141[/C][C] 0.01299[/C][C] 0.02598[/C][C] 0.987[/C][/ROW]
[ROW][C]142[/C][C] 0.008529[/C][C] 0.01706[/C][C] 0.9915[/C][/ROW]
[ROW][C]143[/C][C] 0.008632[/C][C] 0.01726[/C][C] 0.9914[/C][/ROW]
[ROW][C]144[/C][C] 0.007332[/C][C] 0.01466[/C][C] 0.9927[/C][/ROW]
[ROW][C]145[/C][C] 0.004441[/C][C] 0.008882[/C][C] 0.9956[/C][/ROW]
[ROW][C]146[/C][C] 0.007349[/C][C] 0.0147[/C][C] 0.9927[/C][/ROW]
[ROW][C]147[/C][C] 0.004409[/C][C] 0.008817[/C][C] 0.9956[/C][/ROW]
[ROW][C]148[/C][C] 0.00519[/C][C] 0.01038[/C][C] 0.9948[/C][/ROW]
[ROW][C]149[/C][C] 0.003341[/C][C] 0.006683[/C][C] 0.9967[/C][/ROW]
[ROW][C]150[/C][C] 0.002112[/C][C] 0.004225[/C][C] 0.9979[/C][/ROW]
[ROW][C]151[/C][C] 0.006392[/C][C] 0.01278[/C][C] 0.9936[/C][/ROW]
[ROW][C]152[/C][C] 0.01732[/C][C] 0.03464[/C][C] 0.9827[/C][/ROW]
[ROW][C]153[/C][C] 0.00921[/C][C] 0.01842[/C][C] 0.9908[/C][/ROW]
[ROW][C]154[/C][C] 0.005661[/C][C] 0.01132[/C][C] 0.9943[/C][/ROW]
[ROW][C]155[/C][C] 0.002929[/C][C] 0.005858[/C][C] 0.9971[/C][/ROW]
[ROW][C]156[/C][C] 0.001985[/C][C] 0.003971[/C][C] 0.998[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299109&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299109&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
7 0.571 0.858 0.429
8 0.4445 0.8889 0.5555
9 0.3713 0.7425 0.6287
10 0.4092 0.8184 0.5908
11 0.2953 0.5905 0.7047
12 0.2315 0.4631 0.7685
13 0.279 0.558 0.721
14 0.2041 0.4081 0.7959
15 0.7218 0.5564 0.2782
16 0.6449 0.7103 0.3551
17 0.6737 0.6526 0.3263
18 0.7587 0.4825 0.2413
19 0.7377 0.5246 0.2623
20 0.8428 0.3144 0.1572
21 0.823 0.354 0.177
22 0.7927 0.4145 0.2073
23 0.7794 0.4411 0.2206
24 0.7736 0.4528 0.2264
25 0.8344 0.3311 0.1656
26 0.8166 0.3668 0.1834
27 0.7886 0.4229 0.2114
28 0.7745 0.4509 0.2255
29 0.7394 0.5211 0.2606
30 0.6892 0.6216 0.3108
31 0.8429 0.3143 0.1571
32 0.8084 0.3831 0.1916
33 0.7909 0.4181 0.2091
34 0.7517 0.4965 0.2483
35 0.7188 0.5624 0.2812
36 0.6834 0.6331 0.3166
37 0.6651 0.6697 0.3349
38 0.6155 0.7689 0.3845
39 0.6185 0.763 0.3815
40 0.5725 0.855 0.4275
41 0.5195 0.961 0.4805
42 0.4713 0.9426 0.5287
43 0.4639 0.9279 0.5361
44 0.4143 0.8287 0.5857
45 0.3738 0.7476 0.6262
46 0.3403 0.6806 0.6597
47 0.2966 0.5933 0.7034
48 0.2629 0.5258 0.7371
49 0.2731 0.5463 0.7269
50 0.2331 0.4662 0.7669
51 0.2034 0.4069 0.7966
52 0.1733 0.3466 0.8267
53 0.1458 0.2917 0.8542
54 0.1241 0.2481 0.8759
55 0.1356 0.2713 0.8644
56 0.1304 0.2608 0.8696
57 0.1322 0.2643 0.8678
58 0.1404 0.2809 0.8596
59 0.1409 0.2818 0.8591
60 0.1294 0.2589 0.8706
61 0.1098 0.2197 0.8902
62 0.09861 0.1972 0.9014
63 0.08279 0.1656 0.9172
64 0.4022 0.8044 0.5978
65 0.3779 0.7558 0.6221
66 0.3413 0.6827 0.6587
67 0.3011 0.6022 0.6989
68 0.2752 0.5503 0.7248
69 0.2871 0.5742 0.7129
70 0.2644 0.5289 0.7356
71 0.2453 0.4906 0.7547
72 0.2106 0.4213 0.7894
73 0.2239 0.4479 0.7761
74 0.2066 0.4132 0.7934
75 0.2033 0.4066 0.7967
76 0.1725 0.3451 0.8275
77 0.2674 0.5349 0.7326
78 0.2373 0.4745 0.7627
79 0.251 0.5021 0.749
80 0.2162 0.4324 0.7838
81 0.7262 0.5475 0.2738
82 0.7001 0.5998 0.2999
83 0.6749 0.6503 0.3251
84 0.6346 0.7309 0.3654
85 0.6967 0.6066 0.3033
86 0.6568 0.6863 0.3432
87 0.6152 0.7697 0.3848
88 0.5722 0.8556 0.4278
89 0.5283 0.9434 0.4717
90 0.4827 0.9654 0.5173
91 0.4548 0.9095 0.5452
92 0.4286 0.8572 0.5714
93 0.3853 0.7706 0.6147
94 0.3436 0.6872 0.6564
95 0.3132 0.6265 0.6868
96 0.2847 0.5693 0.7153
97 0.2625 0.5251 0.7375
98 0.2261 0.4523 0.7739
99 0.1941 0.3881 0.8059
100 0.1877 0.3754 0.8123
101 0.1589 0.3179 0.8411
102 0.1349 0.2699 0.8651
103 0.1126 0.2252 0.8874
104 0.09929 0.1986 0.9007
105 0.09855 0.1971 0.9015
106 0.1532 0.3064 0.8468
107 0.1563 0.3127 0.8437
108 0.1507 0.3013 0.8493
109 0.1283 0.2566 0.8717
110 0.1139 0.2278 0.8861
111 0.1283 0.2565 0.8717
112 0.1234 0.2469 0.8766
113 0.1007 0.2015 0.8993
114 0.1178 0.2355 0.8822
115 0.1 0.2 0.9
116 0.08549 0.171 0.9145
117 0.07591 0.1518 0.9241
118 0.05988 0.1198 0.9401
119 0.08222 0.1644 0.9178
120 0.1318 0.2637 0.8682
121 0.117 0.234 0.883
122 0.147 0.2941 0.853
123 0.2055 0.411 0.7945
124 0.2043 0.4085 0.7957
125 0.1772 0.3543 0.8228
126 0.1557 0.3113 0.8443
127 0.1262 0.2525 0.8738
128 0.1001 0.2002 0.8999
129 0.07864 0.1573 0.9214
130 0.0602 0.1204 0.9398
131 0.06157 0.1231 0.9384
132 0.0679 0.1358 0.9321
133 0.05115 0.1023 0.9488
134 0.03982 0.07965 0.9602
135 0.02891 0.05782 0.9711
136 0.02053 0.04106 0.9795
137 0.01423 0.02847 0.9858
138 0.01034 0.02069 0.9897
139 0.0146 0.0292 0.9854
140 0.01786 0.03573 0.9821
141 0.01299 0.02598 0.987
142 0.008529 0.01706 0.9915
143 0.008632 0.01726 0.9914
144 0.007332 0.01466 0.9927
145 0.004441 0.008882 0.9956
146 0.007349 0.0147 0.9927
147 0.004409 0.008817 0.9956
148 0.00519 0.01038 0.9948
149 0.003341 0.006683 0.9967
150 0.002112 0.004225 0.9979
151 0.006392 0.01278 0.9936
152 0.01732 0.03464 0.9827
153 0.00921 0.01842 0.9908
154 0.005661 0.01132 0.9943
155 0.002929 0.005858 0.9971
156 0.001985 0.003971 0.998







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level6 0.04NOK
5% type I error level210.14NOK
10% type I error level230.153333NOK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 6 &  0.04 & NOK \tabularnewline
5% type I error level & 21 & 0.14 & NOK \tabularnewline
10% type I error level & 23 & 0.153333 & NOK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299109&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]6[/C][C] 0.04[/C][C]NOK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]21[/C][C]0.14[/C][C]NOK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]23[/C][C]0.153333[/C][C]NOK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299109&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299109&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level6 0.04NOK
5% type I error level210.14NOK
10% type I error level230.153333NOK







Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 1.8605, df1 = 2, df2 = 157, p-value = 0.159
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = 1.8463, df1 = 6, df2 = 153, p-value = 0.09365
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 1.676, df1 = 2, df2 = 157, p-value = 0.1905

\begin{tabular}{lllllllll}
\hline
Ramsey RESET F-Test for powers (2 and 3) of fitted values \tabularnewline
> reset_test_fitted
	RESET test
data:  mylm
RESET = 1.8605, df1 = 2, df2 = 157, p-value = 0.159
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of regressors \tabularnewline
> reset_test_regressors
	RESET test
data:  mylm
RESET = 1.8463, df1 = 6, df2 = 153, p-value = 0.09365
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of principal components \tabularnewline
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 1.676, df1 = 2, df2 = 157, p-value = 0.1905
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=299109&T=7

[TABLE]
[ROW][C]Ramsey RESET F-Test for powers (2 and 3) of fitted values[/C][/ROW]
[ROW][C]
> reset_test_fitted
	RESET test
data:  mylm
RESET = 1.8605, df1 = 2, df2 = 157, p-value = 0.159
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of regressors[/C][/ROW] [ROW][C]
> reset_test_regressors
	RESET test
data:  mylm
RESET = 1.8463, df1 = 6, df2 = 153, p-value = 0.09365
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of principal components[/C][/ROW] [ROW][C]
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 1.676, df1 = 2, df2 = 157, p-value = 0.1905
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=299109&T=7

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299109&T=7

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 1.8605, df1 = 2, df2 = 157, p-value = 0.159
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = 1.8463, df1 = 6, df2 = 153, p-value = 0.09365
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 1.676, df1 = 2, df2 = 157, p-value = 0.1905







Variance Inflation Factors (Multicollinearity)
> vif
      Q2       Q3       Q4 
1.324305 1.375786 1.189708 

\begin{tabular}{lllllllll}
\hline
Variance Inflation Factors (Multicollinearity) \tabularnewline
> vif
      Q2       Q3       Q4 
1.324305 1.375786 1.189708 
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=299109&T=8

[TABLE]
[ROW][C]Variance Inflation Factors (Multicollinearity)[/C][/ROW]
[ROW][C]
> vif
      Q2       Q3       Q4 
1.324305 1.375786 1.189708 
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=299109&T=8

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299109&T=8

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Variance Inflation Factors (Multicollinearity)
> vif
      Q2       Q3       Q4 
1.324305 1.375786 1.189708 



Parameters (Session):
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ; par4 = 0 ; par5 = 0 ;
Parameters (R input):
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ; par4 = 0 ; par5 = 0 ;
R code (references can be found in the software module):
library(lattice)
library(lmtest)
library(car)
library(MASS)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
mywarning <- ''
par1 <- as.numeric(par1)
if(is.na(par1)) {
par1 <- 1
mywarning = 'Warning: you did not specify the column number of the endogenous series! The first column was selected by default.'
}
if (par4=='') par4 <- 0
par4 <- as.numeric(par4)
if (par5=='') par5 <- 0
par5 <- as.numeric(par5)
x <- na.omit(t(y))
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'Seasonal Differences (s=12)'){
(n <- n - 12)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+12,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'First and Seasonal Differences (s=12)'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
(n <- n - 12)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+12,j] - x[i,j]
}
}
x <- x2
}
if(par4 > 0) {
x2 <- array(0, dim=c(n-par4,par4), dimnames=list(1:(n-par4), paste(colnames(x)[par1],'(t-',1:par4,')',sep='')))
for (i in 1:(n-par4)) {
for (j in 1:par4) {
x2[i,j] <- x[i+par4-j,par1]
}
}
x <- cbind(x[(par4+1):n,], x2)
n <- n - par4
}
if(par5 > 0) {
x2 <- array(0, dim=c(n-par5*12,par5), dimnames=list(1:(n-par5*12), paste(colnames(x)[par1],'(t-',1:par5,'s)',sep='')))
for (i in 1:(n-par5*12)) {
for (j in 1:par5) {
x2[i,j] <- x[i+par5*12-j*12,par1]
}
}
x <- cbind(x[(par5*12+1):n,], x2)
n <- n - par5*12
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
(k <- length(x[n,]))
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
print(x)
(k <- length(x[n,]))
head(x)
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
sresid <- studres(mylm)
hist(sresid, freq=FALSE, main='Distribution of Studentized Residuals')
xfit<-seq(min(sresid),max(sresid),length=40)
yfit<-dnorm(xfit)
lines(xfit, yfit)
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqPlot(mylm, main='QQ Plot')
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
print(z)
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, signif(mysum$coefficients[i,1],6), sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, mywarning)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Multiple Linear Regression - Ordinary Least Squares', 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,formatC(signif(mysum$coefficients[i,1],5),format='g',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,2],5),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,3],4),format='e',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4],4),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4]/2,4),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a,formatC(signif(sqrt(mysum$r.squared),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$adj.r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a,formatC(signif(mysum$fstatistic[1],6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[2],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[3],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a,formatC(signif(1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a,formatC(signif(mysum$sigma,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a,formatC(signif(sum(myerror*myerror),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
myr <- as.numeric(mysum$resid)
myr
if(n < 200) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,formatC(signif(x[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(x[i]-mysum$resid[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$resid[i],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,1],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,2],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,3],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant1,6))
a<-table.element(a,formatC(signif(numsignificant1/numgqtests,6),format='g',flag=' '))
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant5,6))
a<-table.element(a,signif(numsignificant5/numgqtests,6))
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant10,6))
a<-table.element(a,signif(numsignificant10/numgqtests,6))
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}
}
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of fitted values',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_fitted <- resettest(mylm,power=2:3,type='fitted')
a<-table.element(a,paste('
',RC.texteval('reset_test_fitted'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of regressors',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_regressors <- resettest(mylm,power=2:3,type='regressor')
a<-table.element(a,paste('
',RC.texteval('reset_test_regressors'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of principal components',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_principal_components <- resettest(mylm,power=2:3,type='princomp')
a<-table.element(a,paste('
',RC.texteval('reset_test_principal_components'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable8.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Variance Inflation Factors (Multicollinearity)',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
vif <- vif(mylm)
a<-table.element(a,paste('
',RC.texteval('vif'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable9.tab')