Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_exponentialsmoothing.wasp
Title produced by softwareExponential Smoothing
Date of computationTue, 13 Dec 2016 14:09:09 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/13/t148163473029i7foqpid3snu0.htm/, Retrieved Fri, 01 Nov 2024 03:38:42 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=299102, Retrieved Fri, 01 Nov 2024 03:38:42 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywordsTriple + multiplicative
Estimated Impact90
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Exponential Smoothing] [Exponential Smoot...] [2016-12-13 13:09:09] [064355853487111be0140b49d1988237] [Current]
Feedback Forum

Post a new message
Dataseries X:
4150
4300
4300
4450
4500
4400
3950
2150
4350
4550
4600
4250
4350
4400
4300
4350
4350
4400
3850
2300
4300
4350
4350
4200
4150
4450
4300
4350
4300
4350
3900
2250
4300
4450
4400
4250
4250
4300
4450
3900
4350
4500
3800
2450
4400
4500
4500
4400
4450
4600
4700
4700
2950
3750
4050
2550
4600
5000
5100
4900
4950
5000
4950
5100
5250
5200
4300
2650
4950
5200
5350
5150
5350
5550
5400
5450
5450
5200
4400
2650
5100
5200
5300
4900
5200
5300
5250
5150
5050
4900
4150
2800
5100
5250
5200
5000
5150
5250
5250
5350
5450
5300
4300
3000
5300
5400
5550
5350
5500
5750
5750
5700
5800
5800
4600
3150
5500
5750
5950
5600
6100
6250
6150
6050
6300
5950




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time1 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299102&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]1 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=299102&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299102&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center







Estimated Parameters of Exponential Smoothing
ParameterValue
alpha0.317106223625649
beta0.0177886936480929
gamma0.153355983873058

\begin{tabular}{lllllllll}
\hline
Estimated Parameters of Exponential Smoothing \tabularnewline
Parameter & Value \tabularnewline
alpha & 0.317106223625649 \tabularnewline
beta & 0.0177886936480929 \tabularnewline
gamma & 0.153355983873058 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299102&T=1

[TABLE]
[ROW][C]Estimated Parameters of Exponential Smoothing[/C][/ROW]
[ROW][C]Parameter[/C][C]Value[/C][/ROW]
[ROW][C]alpha[/C][C]0.317106223625649[/C][/ROW]
[ROW][C]beta[/C][C]0.0177886936480929[/C][/ROW]
[ROW][C]gamma[/C][C]0.153355983873058[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299102&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299102&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Estimated Parameters of Exponential Smoothing
ParameterValue
alpha0.317106223625649
beta0.0177886936480929
gamma0.153355983873058







Interpolation Forecasts of Exponential Smoothing
tObservedFittedResiduals
1343504374.67036564046-24.6703656404634
1444004410.32899477209-10.3289947720887
1543004298.136128721021.86387127898251
1643504355.1011216482-5.10112164820112
1743504368.64824297984-18.6482429798352
1844004421.51961025705-21.5196102570499
1938503917.31368582071-67.3136858207072
2023002111.71042729569188.289572704314
2143004385.96909239181-85.9690923918097
2243504560.00656712805-210.006567128047
2343504549.23795271499-199.237952714994
2442004145.378112178754.6218878212976
2541504257.00188104877-107.001881048773
2644504264.89792330227185.102076697734
2743004217.4416590153282.5583409846804
2843504298.5054267903651.4945732096357
2943004328.75188000292-28.7518800029184
3043504377.79977532126-27.7997753212576
3139003871.8896953106628.1103046893368
3222502126.8495741011123.150425898895
3343004326.54027085487-26.5402708548745
3444504505.14285680586-55.14285680586
3544004545.85228866284-145.852288662836
3642504184.6028740514165.3971259485925
3742504284.94793041835-34.9479304183478
3843004349.2024571853-49.202457185299
3944504217.58226321382232.417736786183
4039004344.95900471703-444.959004717031
4143504207.85162737267142.148372627328
4245004309.96820730617190.03179269383
4338003879.34949760703-79.3494976070269
4424502123.33699536249326.663004637505
4544004421.84056236915-21.8405623691515
4645004605.88887044011-105.88887044011
4745004624.29565395837-124.295653958371
4844004287.84692843093112.153071569074
4944504397.0846872662652.9153127337386
5046004493.52292082796106.477079172044
5147004440.55842035839259.441579641609
5247004507.38023398012192.619766019877
5329504648.6268449388-1698.6268449388
5437504166.71825892779-416.71825892779
5540503551.90773165233498.092268347667
5625502078.48102353457471.518976465432
5746004354.08168343422245.918316565783
5850004615.7979145037384.202085496297
5951004793.19446092731306.805539072689
6049004604.96831172962295.031688270384
6149504778.56984940259171.430150597411
6250004933.8288569107566.1711430892474
6349504884.4155552625365.584444737472
6451004886.81018542892213.189814571083
6552504807.86530156635442.134698433646
6652005207.12669024327-7.12669024326624
6743004719.01052768958-419.010527689585
6826502598.4423042081251.5576957918825
6949505038.64148087022-88.6414808702211
7052005240.86051002033-40.8605100203276
7153505285.274445898964.7255541010991
7251505000.46017913046149.539820869541
7353505122.82066051108227.179339488921
7455505294.89896167004255.101038329964
7554005304.1202542660395.8797457339688
7654505335.80201392315114.197986076851
7754505242.37520729996207.624792700037
7852005536.3735077347-336.373507734696
7944004877.5301841265-477.530184126497
8026502709.67678051581-59.6767805158115
8151005164.56715504591-64.5671550459101
8252005386.08818065106-186.088180651062
8353005396.04440911681-96.0444091168074
8449005064.50260711429-164.502607114294
8552005091.08567806305108.914321936947
8653005222.5580009765877.4419990234237
8752505156.6976516854693.3023483145416
8851505184.7711785246-34.7711785246011
8950505053.20891727918-3.20891727917751
9049005207.56419821053-307.564198210525
9141504565.93723689786-415.93723689786
9228002560.36235508099239.637644919007
9351005062.2445137657937.7554862342085
9452505297.84762029531-47.8476202953116
9552005358.71301446618-158.713014466183
9650005000.54014454784-0.540144547844648
9751505106.4868978632343.5131021367652
9852505211.9133814877138.0866185122941
9952505133.87214297085116.127857029148
10053505154.13204268372195.867957316275
10154505097.46627174695352.533728253052
10253005337.33852010153-37.3385201015308
10343004744.11712816666-444.117128166663
10430002711.45565580297288.544344197032
10553005338.63607237238-38.6360723723783
10654005554.30569023434-154.305690234344
10755505574.6681500287-24.6681500287004
10853505263.2520297132686.7479702867367
10955005411.2689251140688.7310748859427
11057505539.68600443244210.313995567559
11157505522.86743605613227.132563943871
11257005590.73925976519109.260740234806
11358005518.91056799381281.089432006191
11458005705.1882180915194.8117819084891
11546005065.25247340018-465.252473400177
11631502960.21579405319189.784205946809
11755005690.48611722252-190.486117222519
11857505860.93102293365-110.931022933654
11959505916.7184684164533.2815315835496
12056005619.39094514706-19.3909451470581
12161005743.66079341521356.339206584791
12262505981.87245565237268.127544347625
12361505982.60112220473167.398877795275
12460506021.6205959567428.3794040432622
12563005938.68264214326361.317357856743
12659506140.10732890316-190.107328903163

\begin{tabular}{lllllllll}
\hline
Interpolation Forecasts of Exponential Smoothing \tabularnewline
t & Observed & Fitted & Residuals \tabularnewline
13 & 4350 & 4374.67036564046 & -24.6703656404634 \tabularnewline
14 & 4400 & 4410.32899477209 & -10.3289947720887 \tabularnewline
15 & 4300 & 4298.13612872102 & 1.86387127898251 \tabularnewline
16 & 4350 & 4355.1011216482 & -5.10112164820112 \tabularnewline
17 & 4350 & 4368.64824297984 & -18.6482429798352 \tabularnewline
18 & 4400 & 4421.51961025705 & -21.5196102570499 \tabularnewline
19 & 3850 & 3917.31368582071 & -67.3136858207072 \tabularnewline
20 & 2300 & 2111.71042729569 & 188.289572704314 \tabularnewline
21 & 4300 & 4385.96909239181 & -85.9690923918097 \tabularnewline
22 & 4350 & 4560.00656712805 & -210.006567128047 \tabularnewline
23 & 4350 & 4549.23795271499 & -199.237952714994 \tabularnewline
24 & 4200 & 4145.3781121787 & 54.6218878212976 \tabularnewline
25 & 4150 & 4257.00188104877 & -107.001881048773 \tabularnewline
26 & 4450 & 4264.89792330227 & 185.102076697734 \tabularnewline
27 & 4300 & 4217.44165901532 & 82.5583409846804 \tabularnewline
28 & 4350 & 4298.50542679036 & 51.4945732096357 \tabularnewline
29 & 4300 & 4328.75188000292 & -28.7518800029184 \tabularnewline
30 & 4350 & 4377.79977532126 & -27.7997753212576 \tabularnewline
31 & 3900 & 3871.88969531066 & 28.1103046893368 \tabularnewline
32 & 2250 & 2126.8495741011 & 123.150425898895 \tabularnewline
33 & 4300 & 4326.54027085487 & -26.5402708548745 \tabularnewline
34 & 4450 & 4505.14285680586 & -55.14285680586 \tabularnewline
35 & 4400 & 4545.85228866284 & -145.852288662836 \tabularnewline
36 & 4250 & 4184.60287405141 & 65.3971259485925 \tabularnewline
37 & 4250 & 4284.94793041835 & -34.9479304183478 \tabularnewline
38 & 4300 & 4349.2024571853 & -49.202457185299 \tabularnewline
39 & 4450 & 4217.58226321382 & 232.417736786183 \tabularnewline
40 & 3900 & 4344.95900471703 & -444.959004717031 \tabularnewline
41 & 4350 & 4207.85162737267 & 142.148372627328 \tabularnewline
42 & 4500 & 4309.96820730617 & 190.03179269383 \tabularnewline
43 & 3800 & 3879.34949760703 & -79.3494976070269 \tabularnewline
44 & 2450 & 2123.33699536249 & 326.663004637505 \tabularnewline
45 & 4400 & 4421.84056236915 & -21.8405623691515 \tabularnewline
46 & 4500 & 4605.88887044011 & -105.88887044011 \tabularnewline
47 & 4500 & 4624.29565395837 & -124.295653958371 \tabularnewline
48 & 4400 & 4287.84692843093 & 112.153071569074 \tabularnewline
49 & 4450 & 4397.08468726626 & 52.9153127337386 \tabularnewline
50 & 4600 & 4493.52292082796 & 106.477079172044 \tabularnewline
51 & 4700 & 4440.55842035839 & 259.441579641609 \tabularnewline
52 & 4700 & 4507.38023398012 & 192.619766019877 \tabularnewline
53 & 2950 & 4648.6268449388 & -1698.6268449388 \tabularnewline
54 & 3750 & 4166.71825892779 & -416.71825892779 \tabularnewline
55 & 4050 & 3551.90773165233 & 498.092268347667 \tabularnewline
56 & 2550 & 2078.48102353457 & 471.518976465432 \tabularnewline
57 & 4600 & 4354.08168343422 & 245.918316565783 \tabularnewline
58 & 5000 & 4615.7979145037 & 384.202085496297 \tabularnewline
59 & 5100 & 4793.19446092731 & 306.805539072689 \tabularnewline
60 & 4900 & 4604.96831172962 & 295.031688270384 \tabularnewline
61 & 4950 & 4778.56984940259 & 171.430150597411 \tabularnewline
62 & 5000 & 4933.82885691075 & 66.1711430892474 \tabularnewline
63 & 4950 & 4884.41555526253 & 65.584444737472 \tabularnewline
64 & 5100 & 4886.81018542892 & 213.189814571083 \tabularnewline
65 & 5250 & 4807.86530156635 & 442.134698433646 \tabularnewline
66 & 5200 & 5207.12669024327 & -7.12669024326624 \tabularnewline
67 & 4300 & 4719.01052768958 & -419.010527689585 \tabularnewline
68 & 2650 & 2598.44230420812 & 51.5576957918825 \tabularnewline
69 & 4950 & 5038.64148087022 & -88.6414808702211 \tabularnewline
70 & 5200 & 5240.86051002033 & -40.8605100203276 \tabularnewline
71 & 5350 & 5285.2744458989 & 64.7255541010991 \tabularnewline
72 & 5150 & 5000.46017913046 & 149.539820869541 \tabularnewline
73 & 5350 & 5122.82066051108 & 227.179339488921 \tabularnewline
74 & 5550 & 5294.89896167004 & 255.101038329964 \tabularnewline
75 & 5400 & 5304.12025426603 & 95.8797457339688 \tabularnewline
76 & 5450 & 5335.80201392315 & 114.197986076851 \tabularnewline
77 & 5450 & 5242.37520729996 & 207.624792700037 \tabularnewline
78 & 5200 & 5536.3735077347 & -336.373507734696 \tabularnewline
79 & 4400 & 4877.5301841265 & -477.530184126497 \tabularnewline
80 & 2650 & 2709.67678051581 & -59.6767805158115 \tabularnewline
81 & 5100 & 5164.56715504591 & -64.5671550459101 \tabularnewline
82 & 5200 & 5386.08818065106 & -186.088180651062 \tabularnewline
83 & 5300 & 5396.04440911681 & -96.0444091168074 \tabularnewline
84 & 4900 & 5064.50260711429 & -164.502607114294 \tabularnewline
85 & 5200 & 5091.08567806305 & 108.914321936947 \tabularnewline
86 & 5300 & 5222.55800097658 & 77.4419990234237 \tabularnewline
87 & 5250 & 5156.69765168546 & 93.3023483145416 \tabularnewline
88 & 5150 & 5184.7711785246 & -34.7711785246011 \tabularnewline
89 & 5050 & 5053.20891727918 & -3.20891727917751 \tabularnewline
90 & 4900 & 5207.56419821053 & -307.564198210525 \tabularnewline
91 & 4150 & 4565.93723689786 & -415.93723689786 \tabularnewline
92 & 2800 & 2560.36235508099 & 239.637644919007 \tabularnewline
93 & 5100 & 5062.24451376579 & 37.7554862342085 \tabularnewline
94 & 5250 & 5297.84762029531 & -47.8476202953116 \tabularnewline
95 & 5200 & 5358.71301446618 & -158.713014466183 \tabularnewline
96 & 5000 & 5000.54014454784 & -0.540144547844648 \tabularnewline
97 & 5150 & 5106.48689786323 & 43.5131021367652 \tabularnewline
98 & 5250 & 5211.91338148771 & 38.0866185122941 \tabularnewline
99 & 5250 & 5133.87214297085 & 116.127857029148 \tabularnewline
100 & 5350 & 5154.13204268372 & 195.867957316275 \tabularnewline
101 & 5450 & 5097.46627174695 & 352.533728253052 \tabularnewline
102 & 5300 & 5337.33852010153 & -37.3385201015308 \tabularnewline
103 & 4300 & 4744.11712816666 & -444.117128166663 \tabularnewline
104 & 3000 & 2711.45565580297 & 288.544344197032 \tabularnewline
105 & 5300 & 5338.63607237238 & -38.6360723723783 \tabularnewline
106 & 5400 & 5554.30569023434 & -154.305690234344 \tabularnewline
107 & 5550 & 5574.6681500287 & -24.6681500287004 \tabularnewline
108 & 5350 & 5263.25202971326 & 86.7479702867367 \tabularnewline
109 & 5500 & 5411.26892511406 & 88.7310748859427 \tabularnewline
110 & 5750 & 5539.68600443244 & 210.313995567559 \tabularnewline
111 & 5750 & 5522.86743605613 & 227.132563943871 \tabularnewline
112 & 5700 & 5590.73925976519 & 109.260740234806 \tabularnewline
113 & 5800 & 5518.91056799381 & 281.089432006191 \tabularnewline
114 & 5800 & 5705.18821809151 & 94.8117819084891 \tabularnewline
115 & 4600 & 5065.25247340018 & -465.252473400177 \tabularnewline
116 & 3150 & 2960.21579405319 & 189.784205946809 \tabularnewline
117 & 5500 & 5690.48611722252 & -190.486117222519 \tabularnewline
118 & 5750 & 5860.93102293365 & -110.931022933654 \tabularnewline
119 & 5950 & 5916.71846841645 & 33.2815315835496 \tabularnewline
120 & 5600 & 5619.39094514706 & -19.3909451470581 \tabularnewline
121 & 6100 & 5743.66079341521 & 356.339206584791 \tabularnewline
122 & 6250 & 5981.87245565237 & 268.127544347625 \tabularnewline
123 & 6150 & 5982.60112220473 & 167.398877795275 \tabularnewline
124 & 6050 & 6021.62059595674 & 28.3794040432622 \tabularnewline
125 & 6300 & 5938.68264214326 & 361.317357856743 \tabularnewline
126 & 5950 & 6140.10732890316 & -190.107328903163 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299102&T=2

[TABLE]
[ROW][C]Interpolation Forecasts of Exponential Smoothing[/C][/ROW]
[ROW][C]t[/C][C]Observed[/C][C]Fitted[/C][C]Residuals[/C][/ROW]
[ROW][C]13[/C][C]4350[/C][C]4374.67036564046[/C][C]-24.6703656404634[/C][/ROW]
[ROW][C]14[/C][C]4400[/C][C]4410.32899477209[/C][C]-10.3289947720887[/C][/ROW]
[ROW][C]15[/C][C]4300[/C][C]4298.13612872102[/C][C]1.86387127898251[/C][/ROW]
[ROW][C]16[/C][C]4350[/C][C]4355.1011216482[/C][C]-5.10112164820112[/C][/ROW]
[ROW][C]17[/C][C]4350[/C][C]4368.64824297984[/C][C]-18.6482429798352[/C][/ROW]
[ROW][C]18[/C][C]4400[/C][C]4421.51961025705[/C][C]-21.5196102570499[/C][/ROW]
[ROW][C]19[/C][C]3850[/C][C]3917.31368582071[/C][C]-67.3136858207072[/C][/ROW]
[ROW][C]20[/C][C]2300[/C][C]2111.71042729569[/C][C]188.289572704314[/C][/ROW]
[ROW][C]21[/C][C]4300[/C][C]4385.96909239181[/C][C]-85.9690923918097[/C][/ROW]
[ROW][C]22[/C][C]4350[/C][C]4560.00656712805[/C][C]-210.006567128047[/C][/ROW]
[ROW][C]23[/C][C]4350[/C][C]4549.23795271499[/C][C]-199.237952714994[/C][/ROW]
[ROW][C]24[/C][C]4200[/C][C]4145.3781121787[/C][C]54.6218878212976[/C][/ROW]
[ROW][C]25[/C][C]4150[/C][C]4257.00188104877[/C][C]-107.001881048773[/C][/ROW]
[ROW][C]26[/C][C]4450[/C][C]4264.89792330227[/C][C]185.102076697734[/C][/ROW]
[ROW][C]27[/C][C]4300[/C][C]4217.44165901532[/C][C]82.5583409846804[/C][/ROW]
[ROW][C]28[/C][C]4350[/C][C]4298.50542679036[/C][C]51.4945732096357[/C][/ROW]
[ROW][C]29[/C][C]4300[/C][C]4328.75188000292[/C][C]-28.7518800029184[/C][/ROW]
[ROW][C]30[/C][C]4350[/C][C]4377.79977532126[/C][C]-27.7997753212576[/C][/ROW]
[ROW][C]31[/C][C]3900[/C][C]3871.88969531066[/C][C]28.1103046893368[/C][/ROW]
[ROW][C]32[/C][C]2250[/C][C]2126.8495741011[/C][C]123.150425898895[/C][/ROW]
[ROW][C]33[/C][C]4300[/C][C]4326.54027085487[/C][C]-26.5402708548745[/C][/ROW]
[ROW][C]34[/C][C]4450[/C][C]4505.14285680586[/C][C]-55.14285680586[/C][/ROW]
[ROW][C]35[/C][C]4400[/C][C]4545.85228866284[/C][C]-145.852288662836[/C][/ROW]
[ROW][C]36[/C][C]4250[/C][C]4184.60287405141[/C][C]65.3971259485925[/C][/ROW]
[ROW][C]37[/C][C]4250[/C][C]4284.94793041835[/C][C]-34.9479304183478[/C][/ROW]
[ROW][C]38[/C][C]4300[/C][C]4349.2024571853[/C][C]-49.202457185299[/C][/ROW]
[ROW][C]39[/C][C]4450[/C][C]4217.58226321382[/C][C]232.417736786183[/C][/ROW]
[ROW][C]40[/C][C]3900[/C][C]4344.95900471703[/C][C]-444.959004717031[/C][/ROW]
[ROW][C]41[/C][C]4350[/C][C]4207.85162737267[/C][C]142.148372627328[/C][/ROW]
[ROW][C]42[/C][C]4500[/C][C]4309.96820730617[/C][C]190.03179269383[/C][/ROW]
[ROW][C]43[/C][C]3800[/C][C]3879.34949760703[/C][C]-79.3494976070269[/C][/ROW]
[ROW][C]44[/C][C]2450[/C][C]2123.33699536249[/C][C]326.663004637505[/C][/ROW]
[ROW][C]45[/C][C]4400[/C][C]4421.84056236915[/C][C]-21.8405623691515[/C][/ROW]
[ROW][C]46[/C][C]4500[/C][C]4605.88887044011[/C][C]-105.88887044011[/C][/ROW]
[ROW][C]47[/C][C]4500[/C][C]4624.29565395837[/C][C]-124.295653958371[/C][/ROW]
[ROW][C]48[/C][C]4400[/C][C]4287.84692843093[/C][C]112.153071569074[/C][/ROW]
[ROW][C]49[/C][C]4450[/C][C]4397.08468726626[/C][C]52.9153127337386[/C][/ROW]
[ROW][C]50[/C][C]4600[/C][C]4493.52292082796[/C][C]106.477079172044[/C][/ROW]
[ROW][C]51[/C][C]4700[/C][C]4440.55842035839[/C][C]259.441579641609[/C][/ROW]
[ROW][C]52[/C][C]4700[/C][C]4507.38023398012[/C][C]192.619766019877[/C][/ROW]
[ROW][C]53[/C][C]2950[/C][C]4648.6268449388[/C][C]-1698.6268449388[/C][/ROW]
[ROW][C]54[/C][C]3750[/C][C]4166.71825892779[/C][C]-416.71825892779[/C][/ROW]
[ROW][C]55[/C][C]4050[/C][C]3551.90773165233[/C][C]498.092268347667[/C][/ROW]
[ROW][C]56[/C][C]2550[/C][C]2078.48102353457[/C][C]471.518976465432[/C][/ROW]
[ROW][C]57[/C][C]4600[/C][C]4354.08168343422[/C][C]245.918316565783[/C][/ROW]
[ROW][C]58[/C][C]5000[/C][C]4615.7979145037[/C][C]384.202085496297[/C][/ROW]
[ROW][C]59[/C][C]5100[/C][C]4793.19446092731[/C][C]306.805539072689[/C][/ROW]
[ROW][C]60[/C][C]4900[/C][C]4604.96831172962[/C][C]295.031688270384[/C][/ROW]
[ROW][C]61[/C][C]4950[/C][C]4778.56984940259[/C][C]171.430150597411[/C][/ROW]
[ROW][C]62[/C][C]5000[/C][C]4933.82885691075[/C][C]66.1711430892474[/C][/ROW]
[ROW][C]63[/C][C]4950[/C][C]4884.41555526253[/C][C]65.584444737472[/C][/ROW]
[ROW][C]64[/C][C]5100[/C][C]4886.81018542892[/C][C]213.189814571083[/C][/ROW]
[ROW][C]65[/C][C]5250[/C][C]4807.86530156635[/C][C]442.134698433646[/C][/ROW]
[ROW][C]66[/C][C]5200[/C][C]5207.12669024327[/C][C]-7.12669024326624[/C][/ROW]
[ROW][C]67[/C][C]4300[/C][C]4719.01052768958[/C][C]-419.010527689585[/C][/ROW]
[ROW][C]68[/C][C]2650[/C][C]2598.44230420812[/C][C]51.5576957918825[/C][/ROW]
[ROW][C]69[/C][C]4950[/C][C]5038.64148087022[/C][C]-88.6414808702211[/C][/ROW]
[ROW][C]70[/C][C]5200[/C][C]5240.86051002033[/C][C]-40.8605100203276[/C][/ROW]
[ROW][C]71[/C][C]5350[/C][C]5285.2744458989[/C][C]64.7255541010991[/C][/ROW]
[ROW][C]72[/C][C]5150[/C][C]5000.46017913046[/C][C]149.539820869541[/C][/ROW]
[ROW][C]73[/C][C]5350[/C][C]5122.82066051108[/C][C]227.179339488921[/C][/ROW]
[ROW][C]74[/C][C]5550[/C][C]5294.89896167004[/C][C]255.101038329964[/C][/ROW]
[ROW][C]75[/C][C]5400[/C][C]5304.12025426603[/C][C]95.8797457339688[/C][/ROW]
[ROW][C]76[/C][C]5450[/C][C]5335.80201392315[/C][C]114.197986076851[/C][/ROW]
[ROW][C]77[/C][C]5450[/C][C]5242.37520729996[/C][C]207.624792700037[/C][/ROW]
[ROW][C]78[/C][C]5200[/C][C]5536.3735077347[/C][C]-336.373507734696[/C][/ROW]
[ROW][C]79[/C][C]4400[/C][C]4877.5301841265[/C][C]-477.530184126497[/C][/ROW]
[ROW][C]80[/C][C]2650[/C][C]2709.67678051581[/C][C]-59.6767805158115[/C][/ROW]
[ROW][C]81[/C][C]5100[/C][C]5164.56715504591[/C][C]-64.5671550459101[/C][/ROW]
[ROW][C]82[/C][C]5200[/C][C]5386.08818065106[/C][C]-186.088180651062[/C][/ROW]
[ROW][C]83[/C][C]5300[/C][C]5396.04440911681[/C][C]-96.0444091168074[/C][/ROW]
[ROW][C]84[/C][C]4900[/C][C]5064.50260711429[/C][C]-164.502607114294[/C][/ROW]
[ROW][C]85[/C][C]5200[/C][C]5091.08567806305[/C][C]108.914321936947[/C][/ROW]
[ROW][C]86[/C][C]5300[/C][C]5222.55800097658[/C][C]77.4419990234237[/C][/ROW]
[ROW][C]87[/C][C]5250[/C][C]5156.69765168546[/C][C]93.3023483145416[/C][/ROW]
[ROW][C]88[/C][C]5150[/C][C]5184.7711785246[/C][C]-34.7711785246011[/C][/ROW]
[ROW][C]89[/C][C]5050[/C][C]5053.20891727918[/C][C]-3.20891727917751[/C][/ROW]
[ROW][C]90[/C][C]4900[/C][C]5207.56419821053[/C][C]-307.564198210525[/C][/ROW]
[ROW][C]91[/C][C]4150[/C][C]4565.93723689786[/C][C]-415.93723689786[/C][/ROW]
[ROW][C]92[/C][C]2800[/C][C]2560.36235508099[/C][C]239.637644919007[/C][/ROW]
[ROW][C]93[/C][C]5100[/C][C]5062.24451376579[/C][C]37.7554862342085[/C][/ROW]
[ROW][C]94[/C][C]5250[/C][C]5297.84762029531[/C][C]-47.8476202953116[/C][/ROW]
[ROW][C]95[/C][C]5200[/C][C]5358.71301446618[/C][C]-158.713014466183[/C][/ROW]
[ROW][C]96[/C][C]5000[/C][C]5000.54014454784[/C][C]-0.540144547844648[/C][/ROW]
[ROW][C]97[/C][C]5150[/C][C]5106.48689786323[/C][C]43.5131021367652[/C][/ROW]
[ROW][C]98[/C][C]5250[/C][C]5211.91338148771[/C][C]38.0866185122941[/C][/ROW]
[ROW][C]99[/C][C]5250[/C][C]5133.87214297085[/C][C]116.127857029148[/C][/ROW]
[ROW][C]100[/C][C]5350[/C][C]5154.13204268372[/C][C]195.867957316275[/C][/ROW]
[ROW][C]101[/C][C]5450[/C][C]5097.46627174695[/C][C]352.533728253052[/C][/ROW]
[ROW][C]102[/C][C]5300[/C][C]5337.33852010153[/C][C]-37.3385201015308[/C][/ROW]
[ROW][C]103[/C][C]4300[/C][C]4744.11712816666[/C][C]-444.117128166663[/C][/ROW]
[ROW][C]104[/C][C]3000[/C][C]2711.45565580297[/C][C]288.544344197032[/C][/ROW]
[ROW][C]105[/C][C]5300[/C][C]5338.63607237238[/C][C]-38.6360723723783[/C][/ROW]
[ROW][C]106[/C][C]5400[/C][C]5554.30569023434[/C][C]-154.305690234344[/C][/ROW]
[ROW][C]107[/C][C]5550[/C][C]5574.6681500287[/C][C]-24.6681500287004[/C][/ROW]
[ROW][C]108[/C][C]5350[/C][C]5263.25202971326[/C][C]86.7479702867367[/C][/ROW]
[ROW][C]109[/C][C]5500[/C][C]5411.26892511406[/C][C]88.7310748859427[/C][/ROW]
[ROW][C]110[/C][C]5750[/C][C]5539.68600443244[/C][C]210.313995567559[/C][/ROW]
[ROW][C]111[/C][C]5750[/C][C]5522.86743605613[/C][C]227.132563943871[/C][/ROW]
[ROW][C]112[/C][C]5700[/C][C]5590.73925976519[/C][C]109.260740234806[/C][/ROW]
[ROW][C]113[/C][C]5800[/C][C]5518.91056799381[/C][C]281.089432006191[/C][/ROW]
[ROW][C]114[/C][C]5800[/C][C]5705.18821809151[/C][C]94.8117819084891[/C][/ROW]
[ROW][C]115[/C][C]4600[/C][C]5065.25247340018[/C][C]-465.252473400177[/C][/ROW]
[ROW][C]116[/C][C]3150[/C][C]2960.21579405319[/C][C]189.784205946809[/C][/ROW]
[ROW][C]117[/C][C]5500[/C][C]5690.48611722252[/C][C]-190.486117222519[/C][/ROW]
[ROW][C]118[/C][C]5750[/C][C]5860.93102293365[/C][C]-110.931022933654[/C][/ROW]
[ROW][C]119[/C][C]5950[/C][C]5916.71846841645[/C][C]33.2815315835496[/C][/ROW]
[ROW][C]120[/C][C]5600[/C][C]5619.39094514706[/C][C]-19.3909451470581[/C][/ROW]
[ROW][C]121[/C][C]6100[/C][C]5743.66079341521[/C][C]356.339206584791[/C][/ROW]
[ROW][C]122[/C][C]6250[/C][C]5981.87245565237[/C][C]268.127544347625[/C][/ROW]
[ROW][C]123[/C][C]6150[/C][C]5982.60112220473[/C][C]167.398877795275[/C][/ROW]
[ROW][C]124[/C][C]6050[/C][C]6021.62059595674[/C][C]28.3794040432622[/C][/ROW]
[ROW][C]125[/C][C]6300[/C][C]5938.68264214326[/C][C]361.317357856743[/C][/ROW]
[ROW][C]126[/C][C]5950[/C][C]6140.10732890316[/C][C]-190.107328903163[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299102&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299102&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Interpolation Forecasts of Exponential Smoothing
tObservedFittedResiduals
1343504374.67036564046-24.6703656404634
1444004410.32899477209-10.3289947720887
1543004298.136128721021.86387127898251
1643504355.1011216482-5.10112164820112
1743504368.64824297984-18.6482429798352
1844004421.51961025705-21.5196102570499
1938503917.31368582071-67.3136858207072
2023002111.71042729569188.289572704314
2143004385.96909239181-85.9690923918097
2243504560.00656712805-210.006567128047
2343504549.23795271499-199.237952714994
2442004145.378112178754.6218878212976
2541504257.00188104877-107.001881048773
2644504264.89792330227185.102076697734
2743004217.4416590153282.5583409846804
2843504298.5054267903651.4945732096357
2943004328.75188000292-28.7518800029184
3043504377.79977532126-27.7997753212576
3139003871.8896953106628.1103046893368
3222502126.8495741011123.150425898895
3343004326.54027085487-26.5402708548745
3444504505.14285680586-55.14285680586
3544004545.85228866284-145.852288662836
3642504184.6028740514165.3971259485925
3742504284.94793041835-34.9479304183478
3843004349.2024571853-49.202457185299
3944504217.58226321382232.417736786183
4039004344.95900471703-444.959004717031
4143504207.85162737267142.148372627328
4245004309.96820730617190.03179269383
4338003879.34949760703-79.3494976070269
4424502123.33699536249326.663004637505
4544004421.84056236915-21.8405623691515
4645004605.88887044011-105.88887044011
4745004624.29565395837-124.295653958371
4844004287.84692843093112.153071569074
4944504397.0846872662652.9153127337386
5046004493.52292082796106.477079172044
5147004440.55842035839259.441579641609
5247004507.38023398012192.619766019877
5329504648.6268449388-1698.6268449388
5437504166.71825892779-416.71825892779
5540503551.90773165233498.092268347667
5625502078.48102353457471.518976465432
5746004354.08168343422245.918316565783
5850004615.7979145037384.202085496297
5951004793.19446092731306.805539072689
6049004604.96831172962295.031688270384
6149504778.56984940259171.430150597411
6250004933.8288569107566.1711430892474
6349504884.4155552625365.584444737472
6451004886.81018542892213.189814571083
6552504807.86530156635442.134698433646
6652005207.12669024327-7.12669024326624
6743004719.01052768958-419.010527689585
6826502598.4423042081251.5576957918825
6949505038.64148087022-88.6414808702211
7052005240.86051002033-40.8605100203276
7153505285.274445898964.7255541010991
7251505000.46017913046149.539820869541
7353505122.82066051108227.179339488921
7455505294.89896167004255.101038329964
7554005304.1202542660395.8797457339688
7654505335.80201392315114.197986076851
7754505242.37520729996207.624792700037
7852005536.3735077347-336.373507734696
7944004877.5301841265-477.530184126497
8026502709.67678051581-59.6767805158115
8151005164.56715504591-64.5671550459101
8252005386.08818065106-186.088180651062
8353005396.04440911681-96.0444091168074
8449005064.50260711429-164.502607114294
8552005091.08567806305108.914321936947
8653005222.5580009765877.4419990234237
8752505156.6976516854693.3023483145416
8851505184.7711785246-34.7711785246011
8950505053.20891727918-3.20891727917751
9049005207.56419821053-307.564198210525
9141504565.93723689786-415.93723689786
9228002560.36235508099239.637644919007
9351005062.2445137657937.7554862342085
9452505297.84762029531-47.8476202953116
9552005358.71301446618-158.713014466183
9650005000.54014454784-0.540144547844648
9751505106.4868978632343.5131021367652
9852505211.9133814877138.0866185122941
9952505133.87214297085116.127857029148
10053505154.13204268372195.867957316275
10154505097.46627174695352.533728253052
10253005337.33852010153-37.3385201015308
10343004744.11712816666-444.117128166663
10430002711.45565580297288.544344197032
10553005338.63607237238-38.6360723723783
10654005554.30569023434-154.305690234344
10755505574.6681500287-24.6681500287004
10853505263.2520297132686.7479702867367
10955005411.2689251140688.7310748859427
11057505539.68600443244210.313995567559
11157505522.86743605613227.132563943871
11257005590.73925976519109.260740234806
11358005518.91056799381281.089432006191
11458005705.1882180915194.8117819084891
11546005065.25247340018-465.252473400177
11631502960.21579405319189.784205946809
11755005690.48611722252-190.486117222519
11857505860.93102293365-110.931022933654
11959505916.7184684164533.2815315835496
12056005619.39094514706-19.3909451470581
12161005743.66079341521356.339206584791
12262505981.87245565237268.127544347625
12361505982.60112220473167.398877795275
12460506021.6205959567428.3794040432622
12563005938.68264214326361.317357856743
12659506140.10732890316-190.107328903163







Extrapolation Forecasts of Exponential Smoothing
tForecast95% Lower Bound95% Upper Bound
1275309.0268360865095.054355292585522.99931687942
1283251.594655113473015.415367221993487.77394300495
1296067.404513867265649.788003723396485.02102401114
1306330.112622647445862.26352268556797.96172260938
1316450.357063532835942.059847062526958.65428000314
1326113.829721256125597.958590366966629.70085214529
1336302.568722147635741.486629260666863.65081503461
1346428.840025405035827.862521182347029.81752962772
1356329.895628530985708.818365137326950.97289192465
1366300.366608680345653.77749531026946.95572205048
1376240.285932385155571.76605465846908.80581011189
1386268.376192353535603.14755759836933.60482710875
1395491.136352743194844.791772658826137.48093282756
1403362.812497906842900.893905951733824.73108986195
1416274.34472600715451.959380471927096.73007154228
1426545.401086216025664.538648559057426.26352387298
1436669.115065385715747.573206855347590.65692391608
1446320.590362302285419.791891569997221.38883303457

\begin{tabular}{lllllllll}
\hline
Extrapolation Forecasts of Exponential Smoothing \tabularnewline
t & Forecast & 95% Lower Bound & 95% Upper Bound \tabularnewline
127 & 5309.026836086 & 5095.05435529258 & 5522.99931687942 \tabularnewline
128 & 3251.59465511347 & 3015.41536722199 & 3487.77394300495 \tabularnewline
129 & 6067.40451386726 & 5649.78800372339 & 6485.02102401114 \tabularnewline
130 & 6330.11262264744 & 5862.2635226855 & 6797.96172260938 \tabularnewline
131 & 6450.35706353283 & 5942.05984706252 & 6958.65428000314 \tabularnewline
132 & 6113.82972125612 & 5597.95859036696 & 6629.70085214529 \tabularnewline
133 & 6302.56872214763 & 5741.48662926066 & 6863.65081503461 \tabularnewline
134 & 6428.84002540503 & 5827.86252118234 & 7029.81752962772 \tabularnewline
135 & 6329.89562853098 & 5708.81836513732 & 6950.97289192465 \tabularnewline
136 & 6300.36660868034 & 5653.7774953102 & 6946.95572205048 \tabularnewline
137 & 6240.28593238515 & 5571.7660546584 & 6908.80581011189 \tabularnewline
138 & 6268.37619235353 & 5603.1475575983 & 6933.60482710875 \tabularnewline
139 & 5491.13635274319 & 4844.79177265882 & 6137.48093282756 \tabularnewline
140 & 3362.81249790684 & 2900.89390595173 & 3824.73108986195 \tabularnewline
141 & 6274.3447260071 & 5451.95938047192 & 7096.73007154228 \tabularnewline
142 & 6545.40108621602 & 5664.53864855905 & 7426.26352387298 \tabularnewline
143 & 6669.11506538571 & 5747.57320685534 & 7590.65692391608 \tabularnewline
144 & 6320.59036230228 & 5419.79189156999 & 7221.38883303457 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299102&T=3

[TABLE]
[ROW][C]Extrapolation Forecasts of Exponential Smoothing[/C][/ROW]
[ROW][C]t[/C][C]Forecast[/C][C]95% Lower Bound[/C][C]95% Upper Bound[/C][/ROW]
[ROW][C]127[/C][C]5309.026836086[/C][C]5095.05435529258[/C][C]5522.99931687942[/C][/ROW]
[ROW][C]128[/C][C]3251.59465511347[/C][C]3015.41536722199[/C][C]3487.77394300495[/C][/ROW]
[ROW][C]129[/C][C]6067.40451386726[/C][C]5649.78800372339[/C][C]6485.02102401114[/C][/ROW]
[ROW][C]130[/C][C]6330.11262264744[/C][C]5862.2635226855[/C][C]6797.96172260938[/C][/ROW]
[ROW][C]131[/C][C]6450.35706353283[/C][C]5942.05984706252[/C][C]6958.65428000314[/C][/ROW]
[ROW][C]132[/C][C]6113.82972125612[/C][C]5597.95859036696[/C][C]6629.70085214529[/C][/ROW]
[ROW][C]133[/C][C]6302.56872214763[/C][C]5741.48662926066[/C][C]6863.65081503461[/C][/ROW]
[ROW][C]134[/C][C]6428.84002540503[/C][C]5827.86252118234[/C][C]7029.81752962772[/C][/ROW]
[ROW][C]135[/C][C]6329.89562853098[/C][C]5708.81836513732[/C][C]6950.97289192465[/C][/ROW]
[ROW][C]136[/C][C]6300.36660868034[/C][C]5653.7774953102[/C][C]6946.95572205048[/C][/ROW]
[ROW][C]137[/C][C]6240.28593238515[/C][C]5571.7660546584[/C][C]6908.80581011189[/C][/ROW]
[ROW][C]138[/C][C]6268.37619235353[/C][C]5603.1475575983[/C][C]6933.60482710875[/C][/ROW]
[ROW][C]139[/C][C]5491.13635274319[/C][C]4844.79177265882[/C][C]6137.48093282756[/C][/ROW]
[ROW][C]140[/C][C]3362.81249790684[/C][C]2900.89390595173[/C][C]3824.73108986195[/C][/ROW]
[ROW][C]141[/C][C]6274.3447260071[/C][C]5451.95938047192[/C][C]7096.73007154228[/C][/ROW]
[ROW][C]142[/C][C]6545.40108621602[/C][C]5664.53864855905[/C][C]7426.26352387298[/C][/ROW]
[ROW][C]143[/C][C]6669.11506538571[/C][C]5747.57320685534[/C][C]7590.65692391608[/C][/ROW]
[ROW][C]144[/C][C]6320.59036230228[/C][C]5419.79189156999[/C][C]7221.38883303457[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299102&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299102&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Extrapolation Forecasts of Exponential Smoothing
tForecast95% Lower Bound95% Upper Bound
1275309.0268360865095.054355292585522.99931687942
1283251.594655113473015.415367221993487.77394300495
1296067.404513867265649.788003723396485.02102401114
1306330.112622647445862.26352268556797.96172260938
1316450.357063532835942.059847062526958.65428000314
1326113.829721256125597.958590366966629.70085214529
1336302.568722147635741.486629260666863.65081503461
1346428.840025405035827.862521182347029.81752962772
1356329.895628530985708.818365137326950.97289192465
1366300.366608680345653.77749531026946.95572205048
1376240.285932385155571.76605465846908.80581011189
1386268.376192353535603.14755759836933.60482710875
1395491.136352743194844.791772658826137.48093282756
1403362.812497906842900.893905951733824.73108986195
1416274.34472600715451.959380471927096.73007154228
1426545.401086216025664.538648559057426.26352387298
1436669.115065385715747.573206855347590.65692391608
1446320.590362302285419.791891569997221.38883303457



Parameters (Session):
par1 = 12 ; par2 = Triple ; par3 = multiplicative ; par4 = 18 ;
Parameters (R input):
par1 = 12 ; par2 = Triple ; par3 = multiplicative ; par4 = 18 ;
R code (references can be found in the software module):
par1 <- as.numeric(par1)
par4 <- as.numeric(par4)
if (par2 == 'Single') K <- 1
if (par2 == 'Double') K <- 2
if (par2 == 'Triple') K <- par1
nx <- length(x)
nxmK <- nx - K
x <- ts(x, frequency = par1)
if (par2 == 'Single') fit <- HoltWinters(x, gamma=F, beta=F)
if (par2 == 'Double') fit <- HoltWinters(x, gamma=F)
if (par2 == 'Triple') fit <- HoltWinters(x, seasonal=par3)
fit
myresid <- x - fit$fitted[,'xhat']
bitmap(file='test1.png')
op <- par(mfrow=c(2,1))
plot(fit,ylab='Observed (black) / Fitted (red)',main='Interpolation Fit of Exponential Smoothing')
plot(myresid,ylab='Residuals',main='Interpolation Prediction Errors')
par(op)
dev.off()
bitmap(file='test2.png')
p <- predict(fit, par4, prediction.interval=TRUE)
np <- length(p[,1])
plot(fit,p,ylab='Observed (black) / Fitted (red)',main='Extrapolation Fit of Exponential Smoothing')
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(myresid),lag.max = nx/2,main='Residual ACF')
spectrum(myresid,main='Residals Periodogram')
cpgram(myresid,main='Residal Cumulative Periodogram')
qqnorm(myresid,main='Residual Normal QQ Plot')
qqline(myresid)
par(op)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Estimated Parameters of Exponential Smoothing',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'Value',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'alpha',header=TRUE)
a<-table.element(a,fit$alpha)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'beta',header=TRUE)
a<-table.element(a,fit$beta)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'gamma',header=TRUE)
a<-table.element(a,fit$gamma)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Interpolation Forecasts of Exponential Smoothing',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observed',header=TRUE)
a<-table.element(a,'Fitted',header=TRUE)
a<-table.element(a,'Residuals',header=TRUE)
a<-table.row.end(a)
for (i in 1:nxmK) {
a<-table.row.start(a)
a<-table.element(a,i+K,header=TRUE)
a<-table.element(a,x[i+K])
a<-table.element(a,fit$fitted[i,'xhat'])
a<-table.element(a,myresid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Extrapolation Forecasts of Exponential Smoothing',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Forecast',header=TRUE)
a<-table.element(a,'95% Lower Bound',header=TRUE)
a<-table.element(a,'95% Upper Bound',header=TRUE)
a<-table.row.end(a)
for (i in 1:np) {
a<-table.row.start(a)
a<-table.element(a,nx+i,header=TRUE)
a<-table.element(a,p[i,'fit'])
a<-table.element(a,p[i,'lwr'])
a<-table.element(a,p[i,'upr'])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')