Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationTue, 13 Dec 2016 12:17:54 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/13/t14816278840pkorze4be76hml.htm/, Retrieved Fri, 01 Nov 2024 03:47:16 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=299061, Retrieved Fri, 01 Nov 2024 03:47:16 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact105
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Multiple Regression] [] [2016-12-13 11:17:54] [94ac3c9a028ddd47e8862e80eac9f626] [Current]
Feedback Forum

Post a new message
Dataseries X:
4	3	3	3	15
5	4	4	3	13
4	5	5	3	14
NA	4	4	3	13
NA	4	4	4	12
5	3	5	3	17
5	3	5	NA	12
NA	4	5	3	13
NA	4	5	4	13
5	4	5	3	16
5	4	5	3	12
4	4	4	3	12
4	4	4	4	13
4	3	4	3	16
4	4	4	4	15
5	4	5	3	12
NA	4	4	4	NA
NA	NA	NA	NA	NA
3	4	4	NA	15
NA	4	5	4	12
5	4	4	3	15
NA	4	4	3	11
5	4	4	3	13
NA	4	4	3	13
NA	4	5	4	14
NA	3	5	3	14
4	4	4	4	14
4	4	4	3	15
4	4	5	3	16
4	4	5	3	16
3	4	3	3	16
4	3	5	3	13
5	4	4	4	13
NA	4	5	2	14
4	2	4	3	13
5	4	5	3	14
NA	4	4	3	12
3	3	4	4	17
2	4	4	4	14
5	4	5	4	15
NA	4	4	3	13
5	4	5	3	14
4	3	3	3	15
4	4	5	3	19
4	4	4	3	14
3	4	5	3	13
NA	4	5	3	12
4	4	4	3	NA
3	4	3	3	14
NA	3	NA	NA	15
5	4	5	3	15
NA	5	5	3	12
NA	5	4	4	14
2	3	3	3	11
3	4	4	3	12
2	4	4	3	10
NA	4	4	3	NA
5	5	4	3	14
4	4	4	4	14
NA	4	4	3	15
5	4	5	3	15
5	4	4	3	13
4	5	4	3	15
5	4	4	3	16
4	4	4	3	12
4	2	4	2	17
5	4	5	3	15
3	4	4	3	NA
2	4	4	4	12
5	4	4	3	16
NA	4	4	3	15
NA	4	4	3	15
NA	4	3	3	12
NA	3	4	3	13
NA	5	4	4	10
4	4	4	3	14
5	3	5	3	11
3	4	4	3	12
2	4	4	5	14
5	4	5	3	12
NA	4	5	3	14
1	3	3	3	12
NA	4	5	3	13
5	4	4	4	13
NA	4	5	4	14
5	5	5	5	12
4	4	5	4	15
5	4	5	4	13
NA	4	4	3	13
5	4	4	4	11
5	4	2	3	12
NA	4	4	3	16
4	5	5	3	11
NA	4	5	3	13
4	5	5	3	12
NA	4	4	3	17
4	4	4	4	14
4	5	4	5	15
5	4	5	4	8
5	4	4	3	13
NA	4	NA	NA	13
NA	4	5	4	15
4	4	4	3	14
2	4	4	3	13
NA	4	4	3	14
NA	4	5	4	12
NA	4	4	4	19
NA	4	5	3	15
NA	4	4	3	14
4	4	4	4	14
NA	4	4	4	15
NA	4	3	3	13
NA	4	4	3	15
3	3	3	3	14
5	4	5	NA	11
4	4	4	4	17
5	4	4	3	13
NA	4	5	4	9
5	4	4	3	12
3	4	4	3	13
4	4	4	3	17
3	4	4	3	14
NA	4	4	4	13
4	4	4	3	16
NA	4	5	4	14
4	4	4	3	14
5	4	4	3	14
NA	4	5	3	10
NA	4	4	3	12
NA	4	4	3	13
2	3	3	3	14
4	4	4	NA	18
4	5	4	5	14
NA	3	4	3	14
2	3	3	3	13
NA	4	4	NA	13
4	4	5	5	16
NA	NA	3	NA	NA
4	4	4	3	13
5	5	5	4	14
4	5	5	3	8
NA	3	4	3	13
3	4	4	3	13
4	4	4	NA	16
3	4	3	3	14
4	5	5	3	13
2	4	4	4	14
5	5	5	4	12
4	3	4	3	16
NA	4	4	4	18
NA	3	3	3	16
4	4	4	4	15
5	4	4	3	18
4	4	4	3	15
2	4	3	3	14
NA	4	4	3	14
5	4	5	3	15
NA	4	3	3	9
NA	4	4	3	17
5	4	5	4	11
4	4	4	3	15
5	5	5	3	NA
3	4	4	4	15
NA	4	4	3	13
4	NA	4	4	NA
NA	3	4	3	15
4	4	4	4	15
NA	4	3	3	14
3	4	4	5	16




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time7 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time7 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299061&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]7 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=299061&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299061&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time7 seconds
R ServerBig Analytics Cloud Computing Center







Multiple Linear Regression - Estimated Regression Equation
Epsum[t] = + 15.621 + 0.240663TVDC1[t] -0.753849TVDC2[t] -0.13045TVDC3[t] + 0.242306TVDC4[t] + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
Epsum[t] =  +  15.621 +  0.240663TVDC1[t] -0.753849TVDC2[t] -0.13045TVDC3[t] +  0.242306TVDC4[t]  + e[t] \tabularnewline
 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299061&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]Epsum[t] =  +  15.621 +  0.240663TVDC1[t] -0.753849TVDC2[t] -0.13045TVDC3[t] +  0.242306TVDC4[t]  + e[t][/C][/ROW]
[ROW][C][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299061&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299061&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
Epsum[t] = + 15.621 + 0.240663TVDC1[t] -0.753849TVDC2[t] -0.13045TVDC3[t] + 0.242306TVDC4[t] + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)+15.62 1.687+9.2600e+00 6.321e-15 3.16e-15
TVDC1+0.2407 0.2209+1.0900e+00 0.2787 0.1393
TVDC2-0.7539 0.3675-2.0510e+00 0.04299 0.0215
TVDC3-0.1305 0.3422-3.8120e-01 0.7039 0.352
TVDC4+0.2423 0.3293+7.3590e-01 0.4636 0.2318

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & +15.62 &  1.687 & +9.2600e+00 &  6.321e-15 &  3.16e-15 \tabularnewline
TVDC1 & +0.2407 &  0.2209 & +1.0900e+00 &  0.2787 &  0.1393 \tabularnewline
TVDC2 & -0.7539 &  0.3675 & -2.0510e+00 &  0.04299 &  0.0215 \tabularnewline
TVDC3 & -0.1305 &  0.3422 & -3.8120e-01 &  0.7039 &  0.352 \tabularnewline
TVDC4 & +0.2423 &  0.3293 & +7.3590e-01 &  0.4636 &  0.2318 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299061&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]+15.62[/C][C] 1.687[/C][C]+9.2600e+00[/C][C] 6.321e-15[/C][C] 3.16e-15[/C][/ROW]
[ROW][C]TVDC1[/C][C]+0.2407[/C][C] 0.2209[/C][C]+1.0900e+00[/C][C] 0.2787[/C][C] 0.1393[/C][/ROW]
[ROW][C]TVDC2[/C][C]-0.7539[/C][C] 0.3675[/C][C]-2.0510e+00[/C][C] 0.04299[/C][C] 0.0215[/C][/ROW]
[ROW][C]TVDC3[/C][C]-0.1305[/C][C] 0.3422[/C][C]-3.8120e-01[/C][C] 0.7039[/C][C] 0.352[/C][/ROW]
[ROW][C]TVDC4[/C][C]+0.2423[/C][C] 0.3293[/C][C]+7.3590e-01[/C][C] 0.4636[/C][C] 0.2318[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299061&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299061&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)+15.62 1.687+9.2600e+00 6.321e-15 3.16e-15
TVDC1+0.2407 0.2209+1.0900e+00 0.2787 0.1393
TVDC2-0.7539 0.3675-2.0510e+00 0.04299 0.0215
TVDC3-0.1305 0.3422-3.8120e-01 0.7039 0.352
TVDC4+0.2423 0.3293+7.3590e-01 0.4636 0.2318







Multiple Linear Regression - Regression Statistics
Multiple R 0.2286
R-squared 0.05225
Adjusted R-squared 0.01235
F-TEST (value) 1.309
F-TEST (DF numerator)4
F-TEST (DF denominator)95
p-value 0.2721
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 1.877
Sum Squared Residuals 334.8

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R &  0.2286 \tabularnewline
R-squared &  0.05225 \tabularnewline
Adjusted R-squared &  0.01235 \tabularnewline
F-TEST (value) &  1.309 \tabularnewline
F-TEST (DF numerator) & 4 \tabularnewline
F-TEST (DF denominator) & 95 \tabularnewline
p-value &  0.2721 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation &  1.877 \tabularnewline
Sum Squared Residuals &  334.8 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299061&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C] 0.2286[/C][/ROW]
[ROW][C]R-squared[/C][C] 0.05225[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C] 0.01235[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C] 1.309[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]4[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]95[/C][/ROW]
[ROW][C]p-value[/C][C] 0.2721[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C] 1.877[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C] 334.8[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299061&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299061&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R 0.2286
R-squared 0.05225
Adjusted R-squared 0.01235
F-TEST (value) 1.309
F-TEST (DF numerator)4
F-TEST (DF denominator)95
p-value 0.2721
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 1.877
Sum Squared Residuals 334.8







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 15 14.66 0.3423
2 13 14.01-1.014
3 14 12.89 1.111
4 17 14.64 2.363
5 16 13.88 2.116
6 12 13.88-1.884
7 12 13.77-1.773
8 13 14.02-1.016
9 16 14.53 1.473
10 15 14.02 0.9843
11 12 13.88-1.884
12 15 14.01 0.9859
13 13 14.01-1.014
14 14 14.02-0.01569
15 15 13.77 1.227
16 16 13.64 2.357
17 16 13.64 2.357
18 16 13.66 2.337
19 13 14.4-1.397
20 13 14.26-1.256
21 13 15.28-2.281
22 14 13.88 0.1164
23 17 14.53 2.471
24 14 13.53 0.4656
25 15 14.13 0.8741
26 14 13.88 0.1164
27 15 14.66 0.3423
28 19 13.64 5.357
29 14 13.77 0.2266
30 13 13.4-0.4023
31 14 13.66 0.3368
32 15 13.88 1.116
33 11 14.18-3.176
34 12 13.53-1.533
35 10 13.29-3.292
36 14 13.26 0.7398
37 14 14.02-0.01569
38 15 13.88 1.116
39 13 14.01-1.014
40 15 13.02 1.98
41 16 14.01 1.986
42 12 13.77-1.773
43 17 15.04 1.961
44 15 13.88 1.116
45 12 13.53-1.534
46 16 14.01 1.986
47 14 13.77 0.2266
48 11 14.64-3.637
49 12 13.53-1.533
50 14 13.78 0.2233
51 12 13.88-1.884
52 12 13.94-1.936
53 13 14.26-1.256
54 12 13.61-1.614
55 15 13.89 1.115
56 13 14.13-1.126
57 11 14.26-3.256
58 12 14.28-2.275
59 11 12.89-1.889
60 12 12.89-0.8891
61 14 14.02-0.01569
62 15 13.5 1.496
63 8 14.13-6.126
64 13 14.01-1.014
65 14 13.77 0.2266
66 13 13.29-0.2921
67 14 14.02-0.01569
68 14 14.42-0.417
69 17 14.02 2.984
70 13 14.01-1.014
71 12 14.01-2.014
72 13 13.53-0.5327
73 17 13.77 3.227
74 14 13.53 0.4673
75 16 13.77 2.227
76 14 13.77 0.2266
77 14 14.01-0.01405
78 14 14.18-0.1764
79 14 13.5 0.4958
80 13 14.18-1.176
81 16 14.13 1.872
82 13 13.77-0.7734
83 14 13.37 0.6279
84 8 12.89-4.889
85 13 13.53-0.5327
86 14 13.66 0.3368
87 13 12.89 0.1109
88 14 13.53 0.4656
89 12 13.37-1.372
90 16 14.53 1.473
91 15 14.02 0.9843
92 18 14.01 3.986
93 15 13.77 1.227
94 14 13.42 0.5775
95 15 13.88 1.116
96 11 14.13-3.126
97 15 13.77 1.227
98 15 13.78 1.225
99 15 14.02 0.9843
100 16 14.02 1.983

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 &  15 &  14.66 &  0.3423 \tabularnewline
2 &  13 &  14.01 & -1.014 \tabularnewline
3 &  14 &  12.89 &  1.111 \tabularnewline
4 &  17 &  14.64 &  2.363 \tabularnewline
5 &  16 &  13.88 &  2.116 \tabularnewline
6 &  12 &  13.88 & -1.884 \tabularnewline
7 &  12 &  13.77 & -1.773 \tabularnewline
8 &  13 &  14.02 & -1.016 \tabularnewline
9 &  16 &  14.53 &  1.473 \tabularnewline
10 &  15 &  14.02 &  0.9843 \tabularnewline
11 &  12 &  13.88 & -1.884 \tabularnewline
12 &  15 &  14.01 &  0.9859 \tabularnewline
13 &  13 &  14.01 & -1.014 \tabularnewline
14 &  14 &  14.02 & -0.01569 \tabularnewline
15 &  15 &  13.77 &  1.227 \tabularnewline
16 &  16 &  13.64 &  2.357 \tabularnewline
17 &  16 &  13.64 &  2.357 \tabularnewline
18 &  16 &  13.66 &  2.337 \tabularnewline
19 &  13 &  14.4 & -1.397 \tabularnewline
20 &  13 &  14.26 & -1.256 \tabularnewline
21 &  13 &  15.28 & -2.281 \tabularnewline
22 &  14 &  13.88 &  0.1164 \tabularnewline
23 &  17 &  14.53 &  2.471 \tabularnewline
24 &  14 &  13.53 &  0.4656 \tabularnewline
25 &  15 &  14.13 &  0.8741 \tabularnewline
26 &  14 &  13.88 &  0.1164 \tabularnewline
27 &  15 &  14.66 &  0.3423 \tabularnewline
28 &  19 &  13.64 &  5.357 \tabularnewline
29 &  14 &  13.77 &  0.2266 \tabularnewline
30 &  13 &  13.4 & -0.4023 \tabularnewline
31 &  14 &  13.66 &  0.3368 \tabularnewline
32 &  15 &  13.88 &  1.116 \tabularnewline
33 &  11 &  14.18 & -3.176 \tabularnewline
34 &  12 &  13.53 & -1.533 \tabularnewline
35 &  10 &  13.29 & -3.292 \tabularnewline
36 &  14 &  13.26 &  0.7398 \tabularnewline
37 &  14 &  14.02 & -0.01569 \tabularnewline
38 &  15 &  13.88 &  1.116 \tabularnewline
39 &  13 &  14.01 & -1.014 \tabularnewline
40 &  15 &  13.02 &  1.98 \tabularnewline
41 &  16 &  14.01 &  1.986 \tabularnewline
42 &  12 &  13.77 & -1.773 \tabularnewline
43 &  17 &  15.04 &  1.961 \tabularnewline
44 &  15 &  13.88 &  1.116 \tabularnewline
45 &  12 &  13.53 & -1.534 \tabularnewline
46 &  16 &  14.01 &  1.986 \tabularnewline
47 &  14 &  13.77 &  0.2266 \tabularnewline
48 &  11 &  14.64 & -3.637 \tabularnewline
49 &  12 &  13.53 & -1.533 \tabularnewline
50 &  14 &  13.78 &  0.2233 \tabularnewline
51 &  12 &  13.88 & -1.884 \tabularnewline
52 &  12 &  13.94 & -1.936 \tabularnewline
53 &  13 &  14.26 & -1.256 \tabularnewline
54 &  12 &  13.61 & -1.614 \tabularnewline
55 &  15 &  13.89 &  1.115 \tabularnewline
56 &  13 &  14.13 & -1.126 \tabularnewline
57 &  11 &  14.26 & -3.256 \tabularnewline
58 &  12 &  14.28 & -2.275 \tabularnewline
59 &  11 &  12.89 & -1.889 \tabularnewline
60 &  12 &  12.89 & -0.8891 \tabularnewline
61 &  14 &  14.02 & -0.01569 \tabularnewline
62 &  15 &  13.5 &  1.496 \tabularnewline
63 &  8 &  14.13 & -6.126 \tabularnewline
64 &  13 &  14.01 & -1.014 \tabularnewline
65 &  14 &  13.77 &  0.2266 \tabularnewline
66 &  13 &  13.29 & -0.2921 \tabularnewline
67 &  14 &  14.02 & -0.01569 \tabularnewline
68 &  14 &  14.42 & -0.417 \tabularnewline
69 &  17 &  14.02 &  2.984 \tabularnewline
70 &  13 &  14.01 & -1.014 \tabularnewline
71 &  12 &  14.01 & -2.014 \tabularnewline
72 &  13 &  13.53 & -0.5327 \tabularnewline
73 &  17 &  13.77 &  3.227 \tabularnewline
74 &  14 &  13.53 &  0.4673 \tabularnewline
75 &  16 &  13.77 &  2.227 \tabularnewline
76 &  14 &  13.77 &  0.2266 \tabularnewline
77 &  14 &  14.01 & -0.01405 \tabularnewline
78 &  14 &  14.18 & -0.1764 \tabularnewline
79 &  14 &  13.5 &  0.4958 \tabularnewline
80 &  13 &  14.18 & -1.176 \tabularnewline
81 &  16 &  14.13 &  1.872 \tabularnewline
82 &  13 &  13.77 & -0.7734 \tabularnewline
83 &  14 &  13.37 &  0.6279 \tabularnewline
84 &  8 &  12.89 & -4.889 \tabularnewline
85 &  13 &  13.53 & -0.5327 \tabularnewline
86 &  14 &  13.66 &  0.3368 \tabularnewline
87 &  13 &  12.89 &  0.1109 \tabularnewline
88 &  14 &  13.53 &  0.4656 \tabularnewline
89 &  12 &  13.37 & -1.372 \tabularnewline
90 &  16 &  14.53 &  1.473 \tabularnewline
91 &  15 &  14.02 &  0.9843 \tabularnewline
92 &  18 &  14.01 &  3.986 \tabularnewline
93 &  15 &  13.77 &  1.227 \tabularnewline
94 &  14 &  13.42 &  0.5775 \tabularnewline
95 &  15 &  13.88 &  1.116 \tabularnewline
96 &  11 &  14.13 & -3.126 \tabularnewline
97 &  15 &  13.77 &  1.227 \tabularnewline
98 &  15 &  13.78 &  1.225 \tabularnewline
99 &  15 &  14.02 &  0.9843 \tabularnewline
100 &  16 &  14.02 &  1.983 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299061&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C] 15[/C][C] 14.66[/C][C] 0.3423[/C][/ROW]
[ROW][C]2[/C][C] 13[/C][C] 14.01[/C][C]-1.014[/C][/ROW]
[ROW][C]3[/C][C] 14[/C][C] 12.89[/C][C] 1.111[/C][/ROW]
[ROW][C]4[/C][C] 17[/C][C] 14.64[/C][C] 2.363[/C][/ROW]
[ROW][C]5[/C][C] 16[/C][C] 13.88[/C][C] 2.116[/C][/ROW]
[ROW][C]6[/C][C] 12[/C][C] 13.88[/C][C]-1.884[/C][/ROW]
[ROW][C]7[/C][C] 12[/C][C] 13.77[/C][C]-1.773[/C][/ROW]
[ROW][C]8[/C][C] 13[/C][C] 14.02[/C][C]-1.016[/C][/ROW]
[ROW][C]9[/C][C] 16[/C][C] 14.53[/C][C] 1.473[/C][/ROW]
[ROW][C]10[/C][C] 15[/C][C] 14.02[/C][C] 0.9843[/C][/ROW]
[ROW][C]11[/C][C] 12[/C][C] 13.88[/C][C]-1.884[/C][/ROW]
[ROW][C]12[/C][C] 15[/C][C] 14.01[/C][C] 0.9859[/C][/ROW]
[ROW][C]13[/C][C] 13[/C][C] 14.01[/C][C]-1.014[/C][/ROW]
[ROW][C]14[/C][C] 14[/C][C] 14.02[/C][C]-0.01569[/C][/ROW]
[ROW][C]15[/C][C] 15[/C][C] 13.77[/C][C] 1.227[/C][/ROW]
[ROW][C]16[/C][C] 16[/C][C] 13.64[/C][C] 2.357[/C][/ROW]
[ROW][C]17[/C][C] 16[/C][C] 13.64[/C][C] 2.357[/C][/ROW]
[ROW][C]18[/C][C] 16[/C][C] 13.66[/C][C] 2.337[/C][/ROW]
[ROW][C]19[/C][C] 13[/C][C] 14.4[/C][C]-1.397[/C][/ROW]
[ROW][C]20[/C][C] 13[/C][C] 14.26[/C][C]-1.256[/C][/ROW]
[ROW][C]21[/C][C] 13[/C][C] 15.28[/C][C]-2.281[/C][/ROW]
[ROW][C]22[/C][C] 14[/C][C] 13.88[/C][C] 0.1164[/C][/ROW]
[ROW][C]23[/C][C] 17[/C][C] 14.53[/C][C] 2.471[/C][/ROW]
[ROW][C]24[/C][C] 14[/C][C] 13.53[/C][C] 0.4656[/C][/ROW]
[ROW][C]25[/C][C] 15[/C][C] 14.13[/C][C] 0.8741[/C][/ROW]
[ROW][C]26[/C][C] 14[/C][C] 13.88[/C][C] 0.1164[/C][/ROW]
[ROW][C]27[/C][C] 15[/C][C] 14.66[/C][C] 0.3423[/C][/ROW]
[ROW][C]28[/C][C] 19[/C][C] 13.64[/C][C] 5.357[/C][/ROW]
[ROW][C]29[/C][C] 14[/C][C] 13.77[/C][C] 0.2266[/C][/ROW]
[ROW][C]30[/C][C] 13[/C][C] 13.4[/C][C]-0.4023[/C][/ROW]
[ROW][C]31[/C][C] 14[/C][C] 13.66[/C][C] 0.3368[/C][/ROW]
[ROW][C]32[/C][C] 15[/C][C] 13.88[/C][C] 1.116[/C][/ROW]
[ROW][C]33[/C][C] 11[/C][C] 14.18[/C][C]-3.176[/C][/ROW]
[ROW][C]34[/C][C] 12[/C][C] 13.53[/C][C]-1.533[/C][/ROW]
[ROW][C]35[/C][C] 10[/C][C] 13.29[/C][C]-3.292[/C][/ROW]
[ROW][C]36[/C][C] 14[/C][C] 13.26[/C][C] 0.7398[/C][/ROW]
[ROW][C]37[/C][C] 14[/C][C] 14.02[/C][C]-0.01569[/C][/ROW]
[ROW][C]38[/C][C] 15[/C][C] 13.88[/C][C] 1.116[/C][/ROW]
[ROW][C]39[/C][C] 13[/C][C] 14.01[/C][C]-1.014[/C][/ROW]
[ROW][C]40[/C][C] 15[/C][C] 13.02[/C][C] 1.98[/C][/ROW]
[ROW][C]41[/C][C] 16[/C][C] 14.01[/C][C] 1.986[/C][/ROW]
[ROW][C]42[/C][C] 12[/C][C] 13.77[/C][C]-1.773[/C][/ROW]
[ROW][C]43[/C][C] 17[/C][C] 15.04[/C][C] 1.961[/C][/ROW]
[ROW][C]44[/C][C] 15[/C][C] 13.88[/C][C] 1.116[/C][/ROW]
[ROW][C]45[/C][C] 12[/C][C] 13.53[/C][C]-1.534[/C][/ROW]
[ROW][C]46[/C][C] 16[/C][C] 14.01[/C][C] 1.986[/C][/ROW]
[ROW][C]47[/C][C] 14[/C][C] 13.77[/C][C] 0.2266[/C][/ROW]
[ROW][C]48[/C][C] 11[/C][C] 14.64[/C][C]-3.637[/C][/ROW]
[ROW][C]49[/C][C] 12[/C][C] 13.53[/C][C]-1.533[/C][/ROW]
[ROW][C]50[/C][C] 14[/C][C] 13.78[/C][C] 0.2233[/C][/ROW]
[ROW][C]51[/C][C] 12[/C][C] 13.88[/C][C]-1.884[/C][/ROW]
[ROW][C]52[/C][C] 12[/C][C] 13.94[/C][C]-1.936[/C][/ROW]
[ROW][C]53[/C][C] 13[/C][C] 14.26[/C][C]-1.256[/C][/ROW]
[ROW][C]54[/C][C] 12[/C][C] 13.61[/C][C]-1.614[/C][/ROW]
[ROW][C]55[/C][C] 15[/C][C] 13.89[/C][C] 1.115[/C][/ROW]
[ROW][C]56[/C][C] 13[/C][C] 14.13[/C][C]-1.126[/C][/ROW]
[ROW][C]57[/C][C] 11[/C][C] 14.26[/C][C]-3.256[/C][/ROW]
[ROW][C]58[/C][C] 12[/C][C] 14.28[/C][C]-2.275[/C][/ROW]
[ROW][C]59[/C][C] 11[/C][C] 12.89[/C][C]-1.889[/C][/ROW]
[ROW][C]60[/C][C] 12[/C][C] 12.89[/C][C]-0.8891[/C][/ROW]
[ROW][C]61[/C][C] 14[/C][C] 14.02[/C][C]-0.01569[/C][/ROW]
[ROW][C]62[/C][C] 15[/C][C] 13.5[/C][C] 1.496[/C][/ROW]
[ROW][C]63[/C][C] 8[/C][C] 14.13[/C][C]-6.126[/C][/ROW]
[ROW][C]64[/C][C] 13[/C][C] 14.01[/C][C]-1.014[/C][/ROW]
[ROW][C]65[/C][C] 14[/C][C] 13.77[/C][C] 0.2266[/C][/ROW]
[ROW][C]66[/C][C] 13[/C][C] 13.29[/C][C]-0.2921[/C][/ROW]
[ROW][C]67[/C][C] 14[/C][C] 14.02[/C][C]-0.01569[/C][/ROW]
[ROW][C]68[/C][C] 14[/C][C] 14.42[/C][C]-0.417[/C][/ROW]
[ROW][C]69[/C][C] 17[/C][C] 14.02[/C][C] 2.984[/C][/ROW]
[ROW][C]70[/C][C] 13[/C][C] 14.01[/C][C]-1.014[/C][/ROW]
[ROW][C]71[/C][C] 12[/C][C] 14.01[/C][C]-2.014[/C][/ROW]
[ROW][C]72[/C][C] 13[/C][C] 13.53[/C][C]-0.5327[/C][/ROW]
[ROW][C]73[/C][C] 17[/C][C] 13.77[/C][C] 3.227[/C][/ROW]
[ROW][C]74[/C][C] 14[/C][C] 13.53[/C][C] 0.4673[/C][/ROW]
[ROW][C]75[/C][C] 16[/C][C] 13.77[/C][C] 2.227[/C][/ROW]
[ROW][C]76[/C][C] 14[/C][C] 13.77[/C][C] 0.2266[/C][/ROW]
[ROW][C]77[/C][C] 14[/C][C] 14.01[/C][C]-0.01405[/C][/ROW]
[ROW][C]78[/C][C] 14[/C][C] 14.18[/C][C]-0.1764[/C][/ROW]
[ROW][C]79[/C][C] 14[/C][C] 13.5[/C][C] 0.4958[/C][/ROW]
[ROW][C]80[/C][C] 13[/C][C] 14.18[/C][C]-1.176[/C][/ROW]
[ROW][C]81[/C][C] 16[/C][C] 14.13[/C][C] 1.872[/C][/ROW]
[ROW][C]82[/C][C] 13[/C][C] 13.77[/C][C]-0.7734[/C][/ROW]
[ROW][C]83[/C][C] 14[/C][C] 13.37[/C][C] 0.6279[/C][/ROW]
[ROW][C]84[/C][C] 8[/C][C] 12.89[/C][C]-4.889[/C][/ROW]
[ROW][C]85[/C][C] 13[/C][C] 13.53[/C][C]-0.5327[/C][/ROW]
[ROW][C]86[/C][C] 14[/C][C] 13.66[/C][C] 0.3368[/C][/ROW]
[ROW][C]87[/C][C] 13[/C][C] 12.89[/C][C] 0.1109[/C][/ROW]
[ROW][C]88[/C][C] 14[/C][C] 13.53[/C][C] 0.4656[/C][/ROW]
[ROW][C]89[/C][C] 12[/C][C] 13.37[/C][C]-1.372[/C][/ROW]
[ROW][C]90[/C][C] 16[/C][C] 14.53[/C][C] 1.473[/C][/ROW]
[ROW][C]91[/C][C] 15[/C][C] 14.02[/C][C] 0.9843[/C][/ROW]
[ROW][C]92[/C][C] 18[/C][C] 14.01[/C][C] 3.986[/C][/ROW]
[ROW][C]93[/C][C] 15[/C][C] 13.77[/C][C] 1.227[/C][/ROW]
[ROW][C]94[/C][C] 14[/C][C] 13.42[/C][C] 0.5775[/C][/ROW]
[ROW][C]95[/C][C] 15[/C][C] 13.88[/C][C] 1.116[/C][/ROW]
[ROW][C]96[/C][C] 11[/C][C] 14.13[/C][C]-3.126[/C][/ROW]
[ROW][C]97[/C][C] 15[/C][C] 13.77[/C][C] 1.227[/C][/ROW]
[ROW][C]98[/C][C] 15[/C][C] 13.78[/C][C] 1.225[/C][/ROW]
[ROW][C]99[/C][C] 15[/C][C] 14.02[/C][C] 0.9843[/C][/ROW]
[ROW][C]100[/C][C] 16[/C][C] 14.02[/C][C] 1.983[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299061&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299061&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 15 14.66 0.3423
2 13 14.01-1.014
3 14 12.89 1.111
4 17 14.64 2.363
5 16 13.88 2.116
6 12 13.88-1.884
7 12 13.77-1.773
8 13 14.02-1.016
9 16 14.53 1.473
10 15 14.02 0.9843
11 12 13.88-1.884
12 15 14.01 0.9859
13 13 14.01-1.014
14 14 14.02-0.01569
15 15 13.77 1.227
16 16 13.64 2.357
17 16 13.64 2.357
18 16 13.66 2.337
19 13 14.4-1.397
20 13 14.26-1.256
21 13 15.28-2.281
22 14 13.88 0.1164
23 17 14.53 2.471
24 14 13.53 0.4656
25 15 14.13 0.8741
26 14 13.88 0.1164
27 15 14.66 0.3423
28 19 13.64 5.357
29 14 13.77 0.2266
30 13 13.4-0.4023
31 14 13.66 0.3368
32 15 13.88 1.116
33 11 14.18-3.176
34 12 13.53-1.533
35 10 13.29-3.292
36 14 13.26 0.7398
37 14 14.02-0.01569
38 15 13.88 1.116
39 13 14.01-1.014
40 15 13.02 1.98
41 16 14.01 1.986
42 12 13.77-1.773
43 17 15.04 1.961
44 15 13.88 1.116
45 12 13.53-1.534
46 16 14.01 1.986
47 14 13.77 0.2266
48 11 14.64-3.637
49 12 13.53-1.533
50 14 13.78 0.2233
51 12 13.88-1.884
52 12 13.94-1.936
53 13 14.26-1.256
54 12 13.61-1.614
55 15 13.89 1.115
56 13 14.13-1.126
57 11 14.26-3.256
58 12 14.28-2.275
59 11 12.89-1.889
60 12 12.89-0.8891
61 14 14.02-0.01569
62 15 13.5 1.496
63 8 14.13-6.126
64 13 14.01-1.014
65 14 13.77 0.2266
66 13 13.29-0.2921
67 14 14.02-0.01569
68 14 14.42-0.417
69 17 14.02 2.984
70 13 14.01-1.014
71 12 14.01-2.014
72 13 13.53-0.5327
73 17 13.77 3.227
74 14 13.53 0.4673
75 16 13.77 2.227
76 14 13.77 0.2266
77 14 14.01-0.01405
78 14 14.18-0.1764
79 14 13.5 0.4958
80 13 14.18-1.176
81 16 14.13 1.872
82 13 13.77-0.7734
83 14 13.37 0.6279
84 8 12.89-4.889
85 13 13.53-0.5327
86 14 13.66 0.3368
87 13 12.89 0.1109
88 14 13.53 0.4656
89 12 13.37-1.372
90 16 14.53 1.473
91 15 14.02 0.9843
92 18 14.01 3.986
93 15 13.77 1.227
94 14 13.42 0.5775
95 15 13.88 1.116
96 11 14.13-3.126
97 15 13.77 1.227
98 15 13.78 1.225
99 15 14.02 0.9843
100 16 14.02 1.983







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
8 0.6739 0.6523 0.3261
9 0.517 0.9661 0.483
10 0.4491 0.8982 0.5509
11 0.4737 0.9474 0.5263
12 0.4942 0.9884 0.5058
13 0.3863 0.7726 0.6137
14 0.2866 0.5731 0.7134
15 0.2339 0.4679 0.7661
16 0.1925 0.385 0.8075
17 0.1511 0.3023 0.8489
18 0.1313 0.2627 0.8687
19 0.2755 0.5509 0.7245
20 0.2128 0.4256 0.7872
21 0.2625 0.525 0.7375
22 0.201 0.402 0.799
23 0.2009 0.4019 0.7991
24 0.1962 0.3923 0.8038
25 0.1672 0.3344 0.8328
26 0.1246 0.2492 0.8754
27 0.09249 0.185 0.9075
28 0.354 0.7081 0.646
29 0.2965 0.593 0.7035
30 0.3237 0.6475 0.6763
31 0.2686 0.5371 0.7314
32 0.2318 0.4636 0.7682
33 0.3866 0.7733 0.6134
34 0.388 0.7759 0.612
35 0.5268 0.9464 0.4732
36 0.4684 0.9368 0.5316
37 0.4074 0.8148 0.5926
38 0.3664 0.7329 0.6336
39 0.3286 0.6572 0.6714
40 0.3254 0.6509 0.6746
41 0.3283 0.6565 0.6717
42 0.3247 0.6494 0.6753
43 0.3583 0.7166 0.6417
44 0.3318 0.6636 0.6682
45 0.3104 0.6208 0.6896
46 0.3209 0.6418 0.6791
47 0.2715 0.5431 0.7285
48 0.4134 0.8268 0.5866
49 0.3902 0.7803 0.6098
50 0.3431 0.6862 0.6569
51 0.3454 0.6907 0.6546
52 0.3655 0.731 0.6345
53 0.3364 0.6727 0.6636
54 0.3233 0.6466 0.6767
55 0.291 0.582 0.709
56 0.2548 0.5095 0.7452
57 0.3503 0.7007 0.6497
58 0.4421 0.8843 0.5579
59 0.4352 0.8704 0.5648
60 0.3891 0.7783 0.6109
61 0.3366 0.6732 0.6634
62 0.3086 0.6173 0.6914
63 0.8403 0.3195 0.1597
64 0.8218 0.3565 0.1782
65 0.7769 0.4462 0.2231
66 0.7272 0.5456 0.2728
67 0.6836 0.6328 0.3164
68 0.6636 0.6729 0.3364
69 0.7079 0.5842 0.2921
70 0.6936 0.6127 0.3064
71 0.7829 0.4341 0.2171
72 0.7294 0.5411 0.2706
73 0.8133 0.3733 0.1867
74 0.7733 0.4534 0.2267
75 0.7865 0.427 0.2135
76 0.7277 0.5446 0.2723
77 0.6863 0.6274 0.3137
78 0.6325 0.735 0.3675
79 0.5791 0.8419 0.4209
80 0.6193 0.7614 0.3807
81 0.6042 0.7917 0.3958
82 0.574 0.8521 0.426
83 0.5341 0.9319 0.4659
84 0.7683 0.4633 0.2317
85 0.7189 0.5621 0.2811
86 0.7407 0.5186 0.2593
87 0.6954 0.6092 0.3046
88 0.6298 0.7404 0.3702
89 0.5246 0.9508 0.4754
90 0.3991 0.7983 0.6009
91 0.285 0.5699 0.715
92 0.2918 0.5836 0.7082

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
8 &  0.6739 &  0.6523 &  0.3261 \tabularnewline
9 &  0.517 &  0.9661 &  0.483 \tabularnewline
10 &  0.4491 &  0.8982 &  0.5509 \tabularnewline
11 &  0.4737 &  0.9474 &  0.5263 \tabularnewline
12 &  0.4942 &  0.9884 &  0.5058 \tabularnewline
13 &  0.3863 &  0.7726 &  0.6137 \tabularnewline
14 &  0.2866 &  0.5731 &  0.7134 \tabularnewline
15 &  0.2339 &  0.4679 &  0.7661 \tabularnewline
16 &  0.1925 &  0.385 &  0.8075 \tabularnewline
17 &  0.1511 &  0.3023 &  0.8489 \tabularnewline
18 &  0.1313 &  0.2627 &  0.8687 \tabularnewline
19 &  0.2755 &  0.5509 &  0.7245 \tabularnewline
20 &  0.2128 &  0.4256 &  0.7872 \tabularnewline
21 &  0.2625 &  0.525 &  0.7375 \tabularnewline
22 &  0.201 &  0.402 &  0.799 \tabularnewline
23 &  0.2009 &  0.4019 &  0.7991 \tabularnewline
24 &  0.1962 &  0.3923 &  0.8038 \tabularnewline
25 &  0.1672 &  0.3344 &  0.8328 \tabularnewline
26 &  0.1246 &  0.2492 &  0.8754 \tabularnewline
27 &  0.09249 &  0.185 &  0.9075 \tabularnewline
28 &  0.354 &  0.7081 &  0.646 \tabularnewline
29 &  0.2965 &  0.593 &  0.7035 \tabularnewline
30 &  0.3237 &  0.6475 &  0.6763 \tabularnewline
31 &  0.2686 &  0.5371 &  0.7314 \tabularnewline
32 &  0.2318 &  0.4636 &  0.7682 \tabularnewline
33 &  0.3866 &  0.7733 &  0.6134 \tabularnewline
34 &  0.388 &  0.7759 &  0.612 \tabularnewline
35 &  0.5268 &  0.9464 &  0.4732 \tabularnewline
36 &  0.4684 &  0.9368 &  0.5316 \tabularnewline
37 &  0.4074 &  0.8148 &  0.5926 \tabularnewline
38 &  0.3664 &  0.7329 &  0.6336 \tabularnewline
39 &  0.3286 &  0.6572 &  0.6714 \tabularnewline
40 &  0.3254 &  0.6509 &  0.6746 \tabularnewline
41 &  0.3283 &  0.6565 &  0.6717 \tabularnewline
42 &  0.3247 &  0.6494 &  0.6753 \tabularnewline
43 &  0.3583 &  0.7166 &  0.6417 \tabularnewline
44 &  0.3318 &  0.6636 &  0.6682 \tabularnewline
45 &  0.3104 &  0.6208 &  0.6896 \tabularnewline
46 &  0.3209 &  0.6418 &  0.6791 \tabularnewline
47 &  0.2715 &  0.5431 &  0.7285 \tabularnewline
48 &  0.4134 &  0.8268 &  0.5866 \tabularnewline
49 &  0.3902 &  0.7803 &  0.6098 \tabularnewline
50 &  0.3431 &  0.6862 &  0.6569 \tabularnewline
51 &  0.3454 &  0.6907 &  0.6546 \tabularnewline
52 &  0.3655 &  0.731 &  0.6345 \tabularnewline
53 &  0.3364 &  0.6727 &  0.6636 \tabularnewline
54 &  0.3233 &  0.6466 &  0.6767 \tabularnewline
55 &  0.291 &  0.582 &  0.709 \tabularnewline
56 &  0.2548 &  0.5095 &  0.7452 \tabularnewline
57 &  0.3503 &  0.7007 &  0.6497 \tabularnewline
58 &  0.4421 &  0.8843 &  0.5579 \tabularnewline
59 &  0.4352 &  0.8704 &  0.5648 \tabularnewline
60 &  0.3891 &  0.7783 &  0.6109 \tabularnewline
61 &  0.3366 &  0.6732 &  0.6634 \tabularnewline
62 &  0.3086 &  0.6173 &  0.6914 \tabularnewline
63 &  0.8403 &  0.3195 &  0.1597 \tabularnewline
64 &  0.8218 &  0.3565 &  0.1782 \tabularnewline
65 &  0.7769 &  0.4462 &  0.2231 \tabularnewline
66 &  0.7272 &  0.5456 &  0.2728 \tabularnewline
67 &  0.6836 &  0.6328 &  0.3164 \tabularnewline
68 &  0.6636 &  0.6729 &  0.3364 \tabularnewline
69 &  0.7079 &  0.5842 &  0.2921 \tabularnewline
70 &  0.6936 &  0.6127 &  0.3064 \tabularnewline
71 &  0.7829 &  0.4341 &  0.2171 \tabularnewline
72 &  0.7294 &  0.5411 &  0.2706 \tabularnewline
73 &  0.8133 &  0.3733 &  0.1867 \tabularnewline
74 &  0.7733 &  0.4534 &  0.2267 \tabularnewline
75 &  0.7865 &  0.427 &  0.2135 \tabularnewline
76 &  0.7277 &  0.5446 &  0.2723 \tabularnewline
77 &  0.6863 &  0.6274 &  0.3137 \tabularnewline
78 &  0.6325 &  0.735 &  0.3675 \tabularnewline
79 &  0.5791 &  0.8419 &  0.4209 \tabularnewline
80 &  0.6193 &  0.7614 &  0.3807 \tabularnewline
81 &  0.6042 &  0.7917 &  0.3958 \tabularnewline
82 &  0.574 &  0.8521 &  0.426 \tabularnewline
83 &  0.5341 &  0.9319 &  0.4659 \tabularnewline
84 &  0.7683 &  0.4633 &  0.2317 \tabularnewline
85 &  0.7189 &  0.5621 &  0.2811 \tabularnewline
86 &  0.7407 &  0.5186 &  0.2593 \tabularnewline
87 &  0.6954 &  0.6092 &  0.3046 \tabularnewline
88 &  0.6298 &  0.7404 &  0.3702 \tabularnewline
89 &  0.5246 &  0.9508 &  0.4754 \tabularnewline
90 &  0.3991 &  0.7983 &  0.6009 \tabularnewline
91 &  0.285 &  0.5699 &  0.715 \tabularnewline
92 &  0.2918 &  0.5836 &  0.7082 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299061&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]8[/C][C] 0.6739[/C][C] 0.6523[/C][C] 0.3261[/C][/ROW]
[ROW][C]9[/C][C] 0.517[/C][C] 0.9661[/C][C] 0.483[/C][/ROW]
[ROW][C]10[/C][C] 0.4491[/C][C] 0.8982[/C][C] 0.5509[/C][/ROW]
[ROW][C]11[/C][C] 0.4737[/C][C] 0.9474[/C][C] 0.5263[/C][/ROW]
[ROW][C]12[/C][C] 0.4942[/C][C] 0.9884[/C][C] 0.5058[/C][/ROW]
[ROW][C]13[/C][C] 0.3863[/C][C] 0.7726[/C][C] 0.6137[/C][/ROW]
[ROW][C]14[/C][C] 0.2866[/C][C] 0.5731[/C][C] 0.7134[/C][/ROW]
[ROW][C]15[/C][C] 0.2339[/C][C] 0.4679[/C][C] 0.7661[/C][/ROW]
[ROW][C]16[/C][C] 0.1925[/C][C] 0.385[/C][C] 0.8075[/C][/ROW]
[ROW][C]17[/C][C] 0.1511[/C][C] 0.3023[/C][C] 0.8489[/C][/ROW]
[ROW][C]18[/C][C] 0.1313[/C][C] 0.2627[/C][C] 0.8687[/C][/ROW]
[ROW][C]19[/C][C] 0.2755[/C][C] 0.5509[/C][C] 0.7245[/C][/ROW]
[ROW][C]20[/C][C] 0.2128[/C][C] 0.4256[/C][C] 0.7872[/C][/ROW]
[ROW][C]21[/C][C] 0.2625[/C][C] 0.525[/C][C] 0.7375[/C][/ROW]
[ROW][C]22[/C][C] 0.201[/C][C] 0.402[/C][C] 0.799[/C][/ROW]
[ROW][C]23[/C][C] 0.2009[/C][C] 0.4019[/C][C] 0.7991[/C][/ROW]
[ROW][C]24[/C][C] 0.1962[/C][C] 0.3923[/C][C] 0.8038[/C][/ROW]
[ROW][C]25[/C][C] 0.1672[/C][C] 0.3344[/C][C] 0.8328[/C][/ROW]
[ROW][C]26[/C][C] 0.1246[/C][C] 0.2492[/C][C] 0.8754[/C][/ROW]
[ROW][C]27[/C][C] 0.09249[/C][C] 0.185[/C][C] 0.9075[/C][/ROW]
[ROW][C]28[/C][C] 0.354[/C][C] 0.7081[/C][C] 0.646[/C][/ROW]
[ROW][C]29[/C][C] 0.2965[/C][C] 0.593[/C][C] 0.7035[/C][/ROW]
[ROW][C]30[/C][C] 0.3237[/C][C] 0.6475[/C][C] 0.6763[/C][/ROW]
[ROW][C]31[/C][C] 0.2686[/C][C] 0.5371[/C][C] 0.7314[/C][/ROW]
[ROW][C]32[/C][C] 0.2318[/C][C] 0.4636[/C][C] 0.7682[/C][/ROW]
[ROW][C]33[/C][C] 0.3866[/C][C] 0.7733[/C][C] 0.6134[/C][/ROW]
[ROW][C]34[/C][C] 0.388[/C][C] 0.7759[/C][C] 0.612[/C][/ROW]
[ROW][C]35[/C][C] 0.5268[/C][C] 0.9464[/C][C] 0.4732[/C][/ROW]
[ROW][C]36[/C][C] 0.4684[/C][C] 0.9368[/C][C] 0.5316[/C][/ROW]
[ROW][C]37[/C][C] 0.4074[/C][C] 0.8148[/C][C] 0.5926[/C][/ROW]
[ROW][C]38[/C][C] 0.3664[/C][C] 0.7329[/C][C] 0.6336[/C][/ROW]
[ROW][C]39[/C][C] 0.3286[/C][C] 0.6572[/C][C] 0.6714[/C][/ROW]
[ROW][C]40[/C][C] 0.3254[/C][C] 0.6509[/C][C] 0.6746[/C][/ROW]
[ROW][C]41[/C][C] 0.3283[/C][C] 0.6565[/C][C] 0.6717[/C][/ROW]
[ROW][C]42[/C][C] 0.3247[/C][C] 0.6494[/C][C] 0.6753[/C][/ROW]
[ROW][C]43[/C][C] 0.3583[/C][C] 0.7166[/C][C] 0.6417[/C][/ROW]
[ROW][C]44[/C][C] 0.3318[/C][C] 0.6636[/C][C] 0.6682[/C][/ROW]
[ROW][C]45[/C][C] 0.3104[/C][C] 0.6208[/C][C] 0.6896[/C][/ROW]
[ROW][C]46[/C][C] 0.3209[/C][C] 0.6418[/C][C] 0.6791[/C][/ROW]
[ROW][C]47[/C][C] 0.2715[/C][C] 0.5431[/C][C] 0.7285[/C][/ROW]
[ROW][C]48[/C][C] 0.4134[/C][C] 0.8268[/C][C] 0.5866[/C][/ROW]
[ROW][C]49[/C][C] 0.3902[/C][C] 0.7803[/C][C] 0.6098[/C][/ROW]
[ROW][C]50[/C][C] 0.3431[/C][C] 0.6862[/C][C] 0.6569[/C][/ROW]
[ROW][C]51[/C][C] 0.3454[/C][C] 0.6907[/C][C] 0.6546[/C][/ROW]
[ROW][C]52[/C][C] 0.3655[/C][C] 0.731[/C][C] 0.6345[/C][/ROW]
[ROW][C]53[/C][C] 0.3364[/C][C] 0.6727[/C][C] 0.6636[/C][/ROW]
[ROW][C]54[/C][C] 0.3233[/C][C] 0.6466[/C][C] 0.6767[/C][/ROW]
[ROW][C]55[/C][C] 0.291[/C][C] 0.582[/C][C] 0.709[/C][/ROW]
[ROW][C]56[/C][C] 0.2548[/C][C] 0.5095[/C][C] 0.7452[/C][/ROW]
[ROW][C]57[/C][C] 0.3503[/C][C] 0.7007[/C][C] 0.6497[/C][/ROW]
[ROW][C]58[/C][C] 0.4421[/C][C] 0.8843[/C][C] 0.5579[/C][/ROW]
[ROW][C]59[/C][C] 0.4352[/C][C] 0.8704[/C][C] 0.5648[/C][/ROW]
[ROW][C]60[/C][C] 0.3891[/C][C] 0.7783[/C][C] 0.6109[/C][/ROW]
[ROW][C]61[/C][C] 0.3366[/C][C] 0.6732[/C][C] 0.6634[/C][/ROW]
[ROW][C]62[/C][C] 0.3086[/C][C] 0.6173[/C][C] 0.6914[/C][/ROW]
[ROW][C]63[/C][C] 0.8403[/C][C] 0.3195[/C][C] 0.1597[/C][/ROW]
[ROW][C]64[/C][C] 0.8218[/C][C] 0.3565[/C][C] 0.1782[/C][/ROW]
[ROW][C]65[/C][C] 0.7769[/C][C] 0.4462[/C][C] 0.2231[/C][/ROW]
[ROW][C]66[/C][C] 0.7272[/C][C] 0.5456[/C][C] 0.2728[/C][/ROW]
[ROW][C]67[/C][C] 0.6836[/C][C] 0.6328[/C][C] 0.3164[/C][/ROW]
[ROW][C]68[/C][C] 0.6636[/C][C] 0.6729[/C][C] 0.3364[/C][/ROW]
[ROW][C]69[/C][C] 0.7079[/C][C] 0.5842[/C][C] 0.2921[/C][/ROW]
[ROW][C]70[/C][C] 0.6936[/C][C] 0.6127[/C][C] 0.3064[/C][/ROW]
[ROW][C]71[/C][C] 0.7829[/C][C] 0.4341[/C][C] 0.2171[/C][/ROW]
[ROW][C]72[/C][C] 0.7294[/C][C] 0.5411[/C][C] 0.2706[/C][/ROW]
[ROW][C]73[/C][C] 0.8133[/C][C] 0.3733[/C][C] 0.1867[/C][/ROW]
[ROW][C]74[/C][C] 0.7733[/C][C] 0.4534[/C][C] 0.2267[/C][/ROW]
[ROW][C]75[/C][C] 0.7865[/C][C] 0.427[/C][C] 0.2135[/C][/ROW]
[ROW][C]76[/C][C] 0.7277[/C][C] 0.5446[/C][C] 0.2723[/C][/ROW]
[ROW][C]77[/C][C] 0.6863[/C][C] 0.6274[/C][C] 0.3137[/C][/ROW]
[ROW][C]78[/C][C] 0.6325[/C][C] 0.735[/C][C] 0.3675[/C][/ROW]
[ROW][C]79[/C][C] 0.5791[/C][C] 0.8419[/C][C] 0.4209[/C][/ROW]
[ROW][C]80[/C][C] 0.6193[/C][C] 0.7614[/C][C] 0.3807[/C][/ROW]
[ROW][C]81[/C][C] 0.6042[/C][C] 0.7917[/C][C] 0.3958[/C][/ROW]
[ROW][C]82[/C][C] 0.574[/C][C] 0.8521[/C][C] 0.426[/C][/ROW]
[ROW][C]83[/C][C] 0.5341[/C][C] 0.9319[/C][C] 0.4659[/C][/ROW]
[ROW][C]84[/C][C] 0.7683[/C][C] 0.4633[/C][C] 0.2317[/C][/ROW]
[ROW][C]85[/C][C] 0.7189[/C][C] 0.5621[/C][C] 0.2811[/C][/ROW]
[ROW][C]86[/C][C] 0.7407[/C][C] 0.5186[/C][C] 0.2593[/C][/ROW]
[ROW][C]87[/C][C] 0.6954[/C][C] 0.6092[/C][C] 0.3046[/C][/ROW]
[ROW][C]88[/C][C] 0.6298[/C][C] 0.7404[/C][C] 0.3702[/C][/ROW]
[ROW][C]89[/C][C] 0.5246[/C][C] 0.9508[/C][C] 0.4754[/C][/ROW]
[ROW][C]90[/C][C] 0.3991[/C][C] 0.7983[/C][C] 0.6009[/C][/ROW]
[ROW][C]91[/C][C] 0.285[/C][C] 0.5699[/C][C] 0.715[/C][/ROW]
[ROW][C]92[/C][C] 0.2918[/C][C] 0.5836[/C][C] 0.7082[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299061&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299061&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
8 0.6739 0.6523 0.3261
9 0.517 0.9661 0.483
10 0.4491 0.8982 0.5509
11 0.4737 0.9474 0.5263
12 0.4942 0.9884 0.5058
13 0.3863 0.7726 0.6137
14 0.2866 0.5731 0.7134
15 0.2339 0.4679 0.7661
16 0.1925 0.385 0.8075
17 0.1511 0.3023 0.8489
18 0.1313 0.2627 0.8687
19 0.2755 0.5509 0.7245
20 0.2128 0.4256 0.7872
21 0.2625 0.525 0.7375
22 0.201 0.402 0.799
23 0.2009 0.4019 0.7991
24 0.1962 0.3923 0.8038
25 0.1672 0.3344 0.8328
26 0.1246 0.2492 0.8754
27 0.09249 0.185 0.9075
28 0.354 0.7081 0.646
29 0.2965 0.593 0.7035
30 0.3237 0.6475 0.6763
31 0.2686 0.5371 0.7314
32 0.2318 0.4636 0.7682
33 0.3866 0.7733 0.6134
34 0.388 0.7759 0.612
35 0.5268 0.9464 0.4732
36 0.4684 0.9368 0.5316
37 0.4074 0.8148 0.5926
38 0.3664 0.7329 0.6336
39 0.3286 0.6572 0.6714
40 0.3254 0.6509 0.6746
41 0.3283 0.6565 0.6717
42 0.3247 0.6494 0.6753
43 0.3583 0.7166 0.6417
44 0.3318 0.6636 0.6682
45 0.3104 0.6208 0.6896
46 0.3209 0.6418 0.6791
47 0.2715 0.5431 0.7285
48 0.4134 0.8268 0.5866
49 0.3902 0.7803 0.6098
50 0.3431 0.6862 0.6569
51 0.3454 0.6907 0.6546
52 0.3655 0.731 0.6345
53 0.3364 0.6727 0.6636
54 0.3233 0.6466 0.6767
55 0.291 0.582 0.709
56 0.2548 0.5095 0.7452
57 0.3503 0.7007 0.6497
58 0.4421 0.8843 0.5579
59 0.4352 0.8704 0.5648
60 0.3891 0.7783 0.6109
61 0.3366 0.6732 0.6634
62 0.3086 0.6173 0.6914
63 0.8403 0.3195 0.1597
64 0.8218 0.3565 0.1782
65 0.7769 0.4462 0.2231
66 0.7272 0.5456 0.2728
67 0.6836 0.6328 0.3164
68 0.6636 0.6729 0.3364
69 0.7079 0.5842 0.2921
70 0.6936 0.6127 0.3064
71 0.7829 0.4341 0.2171
72 0.7294 0.5411 0.2706
73 0.8133 0.3733 0.1867
74 0.7733 0.4534 0.2267
75 0.7865 0.427 0.2135
76 0.7277 0.5446 0.2723
77 0.6863 0.6274 0.3137
78 0.6325 0.735 0.3675
79 0.5791 0.8419 0.4209
80 0.6193 0.7614 0.3807
81 0.6042 0.7917 0.3958
82 0.574 0.8521 0.426
83 0.5341 0.9319 0.4659
84 0.7683 0.4633 0.2317
85 0.7189 0.5621 0.2811
86 0.7407 0.5186 0.2593
87 0.6954 0.6092 0.3046
88 0.6298 0.7404 0.3702
89 0.5246 0.9508 0.4754
90 0.3991 0.7983 0.6009
91 0.285 0.5699 0.715
92 0.2918 0.5836 0.7082







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level0 0OK
5% type I error level00OK
10% type I error level00OK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 0 &  0 & OK \tabularnewline
5% type I error level & 0 & 0 & OK \tabularnewline
10% type I error level & 0 & 0 & OK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299061&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]0[/C][C] 0[/C][C]OK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]0[/C][C]0[/C][C]OK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]0[/C][C]0[/C][C]OK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299061&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299061&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level0 0OK
5% type I error level00OK
10% type I error level00OK







Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 1.5324, df1 = 2, df2 = 93, p-value = 0.2214
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = 2.4197, df1 = 8, df2 = 87, p-value = 0.02074
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 4.774, df1 = 2, df2 = 93, p-value = 0.01063

\begin{tabular}{lllllllll}
\hline
Ramsey RESET F-Test for powers (2 and 3) of fitted values \tabularnewline
> reset_test_fitted
	RESET test
data:  mylm
RESET = 1.5324, df1 = 2, df2 = 93, p-value = 0.2214
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of regressors \tabularnewline
> reset_test_regressors
	RESET test
data:  mylm
RESET = 2.4197, df1 = 8, df2 = 87, p-value = 0.02074
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of principal components \tabularnewline
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 4.774, df1 = 2, df2 = 93, p-value = 0.01063
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=299061&T=7

[TABLE]
[ROW][C]Ramsey RESET F-Test for powers (2 and 3) of fitted values[/C][/ROW]
[ROW][C]
> reset_test_fitted
	RESET test
data:  mylm
RESET = 1.5324, df1 = 2, df2 = 93, p-value = 0.2214
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of regressors[/C][/ROW] [ROW][C]
> reset_test_regressors
	RESET test
data:  mylm
RESET = 2.4197, df1 = 8, df2 = 87, p-value = 0.02074
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of principal components[/C][/ROW] [ROW][C]
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 4.774, df1 = 2, df2 = 93, p-value = 0.01063
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=299061&T=7

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299061&T=7

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 1.5324, df1 = 2, df2 = 93, p-value = 0.2214
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = 2.4197, df1 = 8, df2 = 87, p-value = 0.02074
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 4.774, df1 = 2, df2 = 93, p-value = 0.01063







Variance Inflation Factors (Multicollinearity)
> vif
   TVDC1    TVDC2    TVDC3    TVDC4 
1.342457 1.254867 1.420791 1.130461 

\begin{tabular}{lllllllll}
\hline
Variance Inflation Factors (Multicollinearity) \tabularnewline
> vif
   TVDC1    TVDC2    TVDC3    TVDC4 
1.342457 1.254867 1.420791 1.130461 
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=299061&T=8

[TABLE]
[ROW][C]Variance Inflation Factors (Multicollinearity)[/C][/ROW]
[ROW][C]
> vif
   TVDC1    TVDC2    TVDC3    TVDC4 
1.342457 1.254867 1.420791 1.130461 
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=299061&T=8

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299061&T=8

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Variance Inflation Factors (Multicollinearity)
> vif
   TVDC1    TVDC2    TVDC3    TVDC4 
1.342457 1.254867 1.420791 1.130461 



Parameters (Session):
par1 = 5 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ; par4 = 0 ; par5 = 0 ;
Parameters (R input):
par1 = 5 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ; par4 = 0 ; par5 = 0 ;
R code (references can be found in the software module):
library(lattice)
library(lmtest)
library(car)
library(MASS)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
mywarning <- ''
par1 <- as.numeric(par1)
if(is.na(par1)) {
par1 <- 1
mywarning = 'Warning: you did not specify the column number of the endogenous series! The first column was selected by default.'
}
if (par4=='') par4 <- 0
par4 <- as.numeric(par4)
if (par5=='') par5 <- 0
par5 <- as.numeric(par5)
x <- na.omit(t(y))
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'Seasonal Differences (s=12)'){
(n <- n - 12)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+12,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'First and Seasonal Differences (s=12)'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
(n <- n - 12)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+12,j] - x[i,j]
}
}
x <- x2
}
if(par4 > 0) {
x2 <- array(0, dim=c(n-par4,par4), dimnames=list(1:(n-par4), paste(colnames(x)[par1],'(t-',1:par4,')',sep='')))
for (i in 1:(n-par4)) {
for (j in 1:par4) {
x2[i,j] <- x[i+par4-j,par1]
}
}
x <- cbind(x[(par4+1):n,], x2)
n <- n - par4
}
if(par5 > 0) {
x2 <- array(0, dim=c(n-par5*12,par5), dimnames=list(1:(n-par5*12), paste(colnames(x)[par1],'(t-',1:par5,'s)',sep='')))
for (i in 1:(n-par5*12)) {
for (j in 1:par5) {
x2[i,j] <- x[i+par5*12-j*12,par1]
}
}
x <- cbind(x[(par5*12+1):n,], x2)
n <- n - par5*12
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
(k <- length(x[n,]))
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
print(x)
(k <- length(x[n,]))
head(x)
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
sresid <- studres(mylm)
hist(sresid, freq=FALSE, main='Distribution of Studentized Residuals')
xfit<-seq(min(sresid),max(sresid),length=40)
yfit<-dnorm(xfit)
lines(xfit, yfit)
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqPlot(mylm, main='QQ Plot')
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
print(z)
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, signif(mysum$coefficients[i,1],6), sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, mywarning)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Multiple Linear Regression - Ordinary Least Squares', 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,formatC(signif(mysum$coefficients[i,1],5),format='g',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,2],5),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,3],4),format='e',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4],4),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4]/2,4),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a,formatC(signif(sqrt(mysum$r.squared),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$adj.r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a,formatC(signif(mysum$fstatistic[1],6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[2],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[3],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a,formatC(signif(1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a,formatC(signif(mysum$sigma,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a,formatC(signif(sum(myerror*myerror),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
myr <- as.numeric(mysum$resid)
myr
if(n < 200) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,formatC(signif(x[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(x[i]-mysum$resid[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$resid[i],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,1],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,2],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,3],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant1,6))
a<-table.element(a,formatC(signif(numsignificant1/numgqtests,6),format='g',flag=' '))
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant5,6))
a<-table.element(a,signif(numsignificant5/numgqtests,6))
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant10,6))
a<-table.element(a,signif(numsignificant10/numgqtests,6))
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}
}
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of fitted values',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_fitted <- resettest(mylm,power=2:3,type='fitted')
a<-table.element(a,paste('
',RC.texteval('reset_test_fitted'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of regressors',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_regressors <- resettest(mylm,power=2:3,type='regressor')
a<-table.element(a,paste('
',RC.texteval('reset_test_regressors'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of principal components',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_principal_components <- resettest(mylm,power=2:3,type='princomp')
a<-table.element(a,paste('
',RC.texteval('reset_test_principal_components'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable8.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Variance Inflation Factors (Multicollinearity)',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
vif <- vif(mylm)
a<-table.element(a,paste('
',RC.texteval('vif'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable9.tab')