Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_autocorrelation.wasp
Title produced by software(Partial) Autocorrelation Function
Date of computationTue, 13 Dec 2016 11:50:25 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/13/t14816262450vdye4qco0qslqv.htm/, Retrieved Fri, 01 Nov 2024 03:38:35 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=299044, Retrieved Fri, 01 Nov 2024 03:38:35 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact124
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [(Partial) Autocorrelation Function] [] [2016-12-13 10:50:25] [7b02c9ca65294818d9c418453f92ae83] [Current]
Feedback Forum

Post a new message
Dataseries X:
2870
2690
2790
2650
3500
2690
2790
2900
2690
3110
3020
3220
2860
3090
3240
2830
4060
3080
3120
3270
2740
3190
3220
3050
3180
2850
3920
2690
3270
2790
2500
2930
2630
2590
2710
2940
3230
3140
3140
2600
3520
3090
2760
2840
2310
3440
2790
2380
2210
2730
2590
2580
2670
2490
2570
3020
4840
2590
3240
2320
2590
2330
2880
2620
3220
3130
2790
3090
2910
3770
3220
2950
2930
3710
2920
3000
3360
3210
3100
3460
3300
3060
3730
3620
2800
3300
4020
3000
3350
3440
3430
3470
2920
3170
3510
3040
3320
2980
1180
3010
3780
3220
3590
3670
3270
3260
4170
2580
3960
3440
4160
3320
3510
3440
3620
3320
4840
3400
3700
3740
3450
3760
4050
3760
3700
3650




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time1 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299044&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]1 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=299044&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299044&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center







Autocorrelation Function
Time lag kACF(k)T-STATP-value
1-0.556787-6.22510
20.0802270.8970.18573
3-0.002225-0.02490.490098
4-0.0055-0.06150.475534
5-0.085485-0.95580.17052
60.1423931.5920.056956
7-0.045188-0.50520.307146
8-0.078085-0.8730.192165
90.039680.44360.329035
100.0446540.49920.309243
115.1e-056e-040.499771
12-0.11109-1.2420.108276
130.0869420.9720.166454
140.0236670.26460.395876
150.00150.01680.493323
16-0.104227-1.16530.123059
170.1768511.97730.025107
18-0.160588-1.79540.037501
190.0209380.23410.407646
200.0934011.04430.149191
21-0.07678-0.85840.19615

\begin{tabular}{lllllllll}
\hline
Autocorrelation Function \tabularnewline
Time lag k & ACF(k) & T-STAT & P-value \tabularnewline
1 & -0.556787 & -6.2251 & 0 \tabularnewline
2 & 0.080227 & 0.897 & 0.18573 \tabularnewline
3 & -0.002225 & -0.0249 & 0.490098 \tabularnewline
4 & -0.0055 & -0.0615 & 0.475534 \tabularnewline
5 & -0.085485 & -0.9558 & 0.17052 \tabularnewline
6 & 0.142393 & 1.592 & 0.056956 \tabularnewline
7 & -0.045188 & -0.5052 & 0.307146 \tabularnewline
8 & -0.078085 & -0.873 & 0.192165 \tabularnewline
9 & 0.03968 & 0.4436 & 0.329035 \tabularnewline
10 & 0.044654 & 0.4992 & 0.309243 \tabularnewline
11 & 5.1e-05 & 6e-04 & 0.499771 \tabularnewline
12 & -0.11109 & -1.242 & 0.108276 \tabularnewline
13 & 0.086942 & 0.972 & 0.166454 \tabularnewline
14 & 0.023667 & 0.2646 & 0.395876 \tabularnewline
15 & 0.0015 & 0.0168 & 0.493323 \tabularnewline
16 & -0.104227 & -1.1653 & 0.123059 \tabularnewline
17 & 0.176851 & 1.9773 & 0.025107 \tabularnewline
18 & -0.160588 & -1.7954 & 0.037501 \tabularnewline
19 & 0.020938 & 0.2341 & 0.407646 \tabularnewline
20 & 0.093401 & 1.0443 & 0.149191 \tabularnewline
21 & -0.07678 & -0.8584 & 0.19615 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299044&T=1

[TABLE]
[ROW][C]Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]ACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]-0.556787[/C][C]-6.2251[/C][C]0[/C][/ROW]
[ROW][C]2[/C][C]0.080227[/C][C]0.897[/C][C]0.18573[/C][/ROW]
[ROW][C]3[/C][C]-0.002225[/C][C]-0.0249[/C][C]0.490098[/C][/ROW]
[ROW][C]4[/C][C]-0.0055[/C][C]-0.0615[/C][C]0.475534[/C][/ROW]
[ROW][C]5[/C][C]-0.085485[/C][C]-0.9558[/C][C]0.17052[/C][/ROW]
[ROW][C]6[/C][C]0.142393[/C][C]1.592[/C][C]0.056956[/C][/ROW]
[ROW][C]7[/C][C]-0.045188[/C][C]-0.5052[/C][C]0.307146[/C][/ROW]
[ROW][C]8[/C][C]-0.078085[/C][C]-0.873[/C][C]0.192165[/C][/ROW]
[ROW][C]9[/C][C]0.03968[/C][C]0.4436[/C][C]0.329035[/C][/ROW]
[ROW][C]10[/C][C]0.044654[/C][C]0.4992[/C][C]0.309243[/C][/ROW]
[ROW][C]11[/C][C]5.1e-05[/C][C]6e-04[/C][C]0.499771[/C][/ROW]
[ROW][C]12[/C][C]-0.11109[/C][C]-1.242[/C][C]0.108276[/C][/ROW]
[ROW][C]13[/C][C]0.086942[/C][C]0.972[/C][C]0.166454[/C][/ROW]
[ROW][C]14[/C][C]0.023667[/C][C]0.2646[/C][C]0.395876[/C][/ROW]
[ROW][C]15[/C][C]0.0015[/C][C]0.0168[/C][C]0.493323[/C][/ROW]
[ROW][C]16[/C][C]-0.104227[/C][C]-1.1653[/C][C]0.123059[/C][/ROW]
[ROW][C]17[/C][C]0.176851[/C][C]1.9773[/C][C]0.025107[/C][/ROW]
[ROW][C]18[/C][C]-0.160588[/C][C]-1.7954[/C][C]0.037501[/C][/ROW]
[ROW][C]19[/C][C]0.020938[/C][C]0.2341[/C][C]0.407646[/C][/ROW]
[ROW][C]20[/C][C]0.093401[/C][C]1.0443[/C][C]0.149191[/C][/ROW]
[ROW][C]21[/C][C]-0.07678[/C][C]-0.8584[/C][C]0.19615[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299044&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299044&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Autocorrelation Function
Time lag kACF(k)T-STATP-value
1-0.556787-6.22510
20.0802270.8970.18573
3-0.002225-0.02490.490098
4-0.0055-0.06150.475534
5-0.085485-0.95580.17052
60.1423931.5920.056956
7-0.045188-0.50520.307146
8-0.078085-0.8730.192165
90.039680.44360.329035
100.0446540.49920.309243
115.1e-056e-040.499771
12-0.11109-1.2420.108276
130.0869420.9720.166454
140.0236670.26460.395876
150.00150.01680.493323
16-0.104227-1.16530.123059
170.1768511.97730.025107
18-0.160588-1.79540.037501
190.0209380.23410.407646
200.0934011.04430.149191
21-0.07678-0.85840.19615







Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
1-0.556787-6.22510
2-0.333027-3.72340.000148
3-0.208821-2.33470.010577
4-0.14389-1.60870.055098
5-0.252972-2.82830.002726
6-0.091979-1.02840.152885
7-0.0048-0.05370.478642
8-0.120897-1.35170.089461
9-0.159846-1.78710.038169
10-0.067233-0.75170.226827
110.0458340.51240.304625
12-0.148441-1.65960.049749
13-0.170784-1.90940.02925
14-0.018428-0.2060.41855
150.0954531.06720.143971
16-0.132076-1.47670.071142
170.0270210.30210.381537
180.0414680.46360.32186
19-0.06077-0.67940.249062
20-0.029019-0.32440.373074
21-0.038848-0.43430.332396

\begin{tabular}{lllllllll}
\hline
Partial Autocorrelation Function \tabularnewline
Time lag k & PACF(k) & T-STAT & P-value \tabularnewline
1 & -0.556787 & -6.2251 & 0 \tabularnewline
2 & -0.333027 & -3.7234 & 0.000148 \tabularnewline
3 & -0.208821 & -2.3347 & 0.010577 \tabularnewline
4 & -0.14389 & -1.6087 & 0.055098 \tabularnewline
5 & -0.252972 & -2.8283 & 0.002726 \tabularnewline
6 & -0.091979 & -1.0284 & 0.152885 \tabularnewline
7 & -0.0048 & -0.0537 & 0.478642 \tabularnewline
8 & -0.120897 & -1.3517 & 0.089461 \tabularnewline
9 & -0.159846 & -1.7871 & 0.038169 \tabularnewline
10 & -0.067233 & -0.7517 & 0.226827 \tabularnewline
11 & 0.045834 & 0.5124 & 0.304625 \tabularnewline
12 & -0.148441 & -1.6596 & 0.049749 \tabularnewline
13 & -0.170784 & -1.9094 & 0.02925 \tabularnewline
14 & -0.018428 & -0.206 & 0.41855 \tabularnewline
15 & 0.095453 & 1.0672 & 0.143971 \tabularnewline
16 & -0.132076 & -1.4767 & 0.071142 \tabularnewline
17 & 0.027021 & 0.3021 & 0.381537 \tabularnewline
18 & 0.041468 & 0.4636 & 0.32186 \tabularnewline
19 & -0.06077 & -0.6794 & 0.249062 \tabularnewline
20 & -0.029019 & -0.3244 & 0.373074 \tabularnewline
21 & -0.038848 & -0.4343 & 0.332396 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299044&T=2

[TABLE]
[ROW][C]Partial Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]PACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]-0.556787[/C][C]-6.2251[/C][C]0[/C][/ROW]
[ROW][C]2[/C][C]-0.333027[/C][C]-3.7234[/C][C]0.000148[/C][/ROW]
[ROW][C]3[/C][C]-0.208821[/C][C]-2.3347[/C][C]0.010577[/C][/ROW]
[ROW][C]4[/C][C]-0.14389[/C][C]-1.6087[/C][C]0.055098[/C][/ROW]
[ROW][C]5[/C][C]-0.252972[/C][C]-2.8283[/C][C]0.002726[/C][/ROW]
[ROW][C]6[/C][C]-0.091979[/C][C]-1.0284[/C][C]0.152885[/C][/ROW]
[ROW][C]7[/C][C]-0.0048[/C][C]-0.0537[/C][C]0.478642[/C][/ROW]
[ROW][C]8[/C][C]-0.120897[/C][C]-1.3517[/C][C]0.089461[/C][/ROW]
[ROW][C]9[/C][C]-0.159846[/C][C]-1.7871[/C][C]0.038169[/C][/ROW]
[ROW][C]10[/C][C]-0.067233[/C][C]-0.7517[/C][C]0.226827[/C][/ROW]
[ROW][C]11[/C][C]0.045834[/C][C]0.5124[/C][C]0.304625[/C][/ROW]
[ROW][C]12[/C][C]-0.148441[/C][C]-1.6596[/C][C]0.049749[/C][/ROW]
[ROW][C]13[/C][C]-0.170784[/C][C]-1.9094[/C][C]0.02925[/C][/ROW]
[ROW][C]14[/C][C]-0.018428[/C][C]-0.206[/C][C]0.41855[/C][/ROW]
[ROW][C]15[/C][C]0.095453[/C][C]1.0672[/C][C]0.143971[/C][/ROW]
[ROW][C]16[/C][C]-0.132076[/C][C]-1.4767[/C][C]0.071142[/C][/ROW]
[ROW][C]17[/C][C]0.027021[/C][C]0.3021[/C][C]0.381537[/C][/ROW]
[ROW][C]18[/C][C]0.041468[/C][C]0.4636[/C][C]0.32186[/C][/ROW]
[ROW][C]19[/C][C]-0.06077[/C][C]-0.6794[/C][C]0.249062[/C][/ROW]
[ROW][C]20[/C][C]-0.029019[/C][C]-0.3244[/C][C]0.373074[/C][/ROW]
[ROW][C]21[/C][C]-0.038848[/C][C]-0.4343[/C][C]0.332396[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299044&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299044&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
1-0.556787-6.22510
2-0.333027-3.72340.000148
3-0.208821-2.33470.010577
4-0.14389-1.60870.055098
5-0.252972-2.82830.002726
6-0.091979-1.02840.152885
7-0.0048-0.05370.478642
8-0.120897-1.35170.089461
9-0.159846-1.78710.038169
10-0.067233-0.75170.226827
110.0458340.51240.304625
12-0.148441-1.65960.049749
13-0.170784-1.90940.02925
14-0.018428-0.2060.41855
150.0954531.06720.143971
16-0.132076-1.47670.071142
170.0270210.30210.381537
180.0414680.46360.32186
19-0.06077-0.67940.249062
20-0.029019-0.32440.373074
21-0.038848-0.43430.332396



Parameters (Session):
par1 = Default ; par2 = 1 ; par3 = 1 ; par4 = 0 ; par5 = 12 ; par6 = White Noise ; par7 = 0.95 ;
Parameters (R input):
par1 = Default ; par2 = 1 ; par3 = 1 ; par4 = 0 ; par5 = 12 ; par6 = White Noise ; par7 = 0.95 ; par8 = ;
R code (references can be found in the software module):
if (par1 == 'Default') {
par1 = 10*log10(length(x))
} else {
par1 <- as.numeric(par1)
}
par2 <- as.numeric(par2)
par3 <- as.numeric(par3)
par4 <- as.numeric(par4)
par5 <- as.numeric(par5)
if (par6 == 'White Noise') par6 <- 'white' else par6 <- 'ma'
par7 <- as.numeric(par7)
if (par8 != '') par8 <- as.numeric(par8)
x <- na.omit(x)
ox <- x
if (par8 == '') {
if (par2 == 0) {
x <- log(x)
} else {
x <- (x ^ par2 - 1) / par2
}
} else {
x <- log(x,base=par8)
}
if (par3 > 0) x <- diff(x,lag=1,difference=par3)
if (par4 > 0) x <- diff(x,lag=par5,difference=par4)
bitmap(file='picts.png')
op <- par(mfrow=c(2,1))
plot(ox,type='l',main='Original Time Series',xlab='time',ylab='value')
if (par8=='') {
mytitle <- paste('Working Time Series (lambda=',par2,', d=',par3,', D=',par4,')',sep='')
mysub <- paste('(lambda=',par2,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='')
} else {
mytitle <- paste('Working Time Series (base=',par8,', d=',par3,', D=',par4,')',sep='')
mysub <- paste('(base=',par8,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='')
}
plot(x,type='l', main=mytitle,xlab='time',ylab='value')
par(op)
dev.off()
bitmap(file='pic1.png')
racf <- acf(x, par1, main='Autocorrelation', xlab='time lag', ylab='ACF', ci.type=par6, ci=par7, sub=mysub)
dev.off()
bitmap(file='pic2.png')
rpacf <- pacf(x,par1,main='Partial Autocorrelation',xlab='lags',ylab='PACF',sub=mysub)
dev.off()
(myacf <- c(racf$acf))
(mypacf <- c(rpacf$acf))
lengthx <- length(x)
sqrtn <- sqrt(lengthx)
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,'ACF(k)',header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 2:(par1+1)) {
a<-table.row.start(a)
a<-table.element(a,i-1,header=TRUE)
a<-table.element(a,round(myacf[i],6))
mytstat <- myacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Partial Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,'PACF(k)',header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:par1) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,round(mypacf[i],6))
mytstat <- mypacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')