Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationTue, 13 Dec 2016 10:51:15 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/13/t1481622837mzzus2nz6j4hjyw.htm/, Retrieved Fri, 01 Nov 2024 03:37:25 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=299025, Retrieved Fri, 01 Nov 2024 03:37:25 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact154
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Multiple Regression] [Multiple Regressi...] [2016-12-13 09:51:15] [94c1b173d9287822f5e2740a4a602bdd] [Current]
Feedback Forum

Post a new message
Dataseries X:
14	4	3	3	3
19	5	4	4	3
17	4	5	5	3
17	NA	4	4	3
15	NA	4	4	4
20	5	3	5	3
15	5	3	5	NA
19	NA	4	5	3
15	NA	4	5	4
15	5	4	5	3
19	5	4	5	3
16	4	4	4	3
20	4	4	4	4
18	4	3	4	3
15	4	4	4	4
14	5	4	5	3
20	NA	4	4	4
16	3	4	4	NA
16	NA	4	5	4
16	5	4	4	3
10	NA	4	4	3
19	5	4	4	3
19	NA	4	4	3
16	NA	4	5	4
15	NA	3	5	3
18	4	4	4	4
17	4	4	4	3
19	4	4	5	3
17	4	4	5	3
14	3	4	3	3
19	4	3	5	3
20	5	4	4	4
5	NA	4	5	2
19	4	2	4	3
16	5	4	5	3
15	NA	4	4	3
16	3	3	4	4
18	2	4	4	4
16	5	4	5	4
15	NA	4	4	3
17	5	4	5	3
15	4	3	3	3
19	4	4	5	3
17	4	4	4	3
9	3	4	5	3
14	NA	4	5	3
15	4	4	4	3
16	3	4	3	3
18	5	4	5	3
18	NA	5	5	3
16	NA	5	4	4
17	2	3	3	3
19	3	4	4	3
16	2	4	4	3
19	NA	4	4	3
13	5	5	4	3
16	4	4	4	4
13	NA	4	4	3
12	5	4	5	3
17	5	4	4	3
17	4	5	4	3
17	5	4	4	3
16	4	4	4	3
16	4	2	4	2
14	5	4	5	3
16	3	4	4	3
13	2	4	4	4
16	5	4	4	3
14	NA	4	4	3
20	NA	4	4	3
12	NA	4	3	3
13	NA	3	4	3
18	NA	5	4	4
14	4	4	4	3
19	5	3	5	3
18	3	4	4	3
14	2	4	4	5
18	5	4	5	3
19	NA	4	5	3
15	1	3	3	3
14	NA	4	5	3
17	5	4	4	4
19	NA	4	5	4
13	5	5	5	5
19	4	4	5	4
18	5	4	5	4
20	NA	4	4	3
15	5	4	4	4
15	5	4	2	3
15	NA	4	4	3
20	4	5	5	3
15	NA	4	5	3
19	4	5	5	3
18	NA	4	4	3
18	4	4	4	4
15	4	5	4	5
20	5	4	5	4
17	5	4	4	3
12	NA	4	NA	NA
18	NA	4	5	4
19	4	4	4	3
20	2	4	4	3
13	NA	4	4	3
17	NA	4	5	4
15	NA	4	4	4
16	NA	4	5	3
18	NA	4	4	3
18	4	4	4	4
14	NA	4	4	4
15	NA	4	3	3
12	NA	4	4	3
17	3	3	3	3
14	5	4	5	NA
18	4	4	4	4
17	5	4	4	3
17	NA	4	5	4
20	5	4	4	3
16	3	4	4	3
14	4	4	4	3
15	3	4	4	3
18	NA	4	4	4
20	4	4	4	3
17	NA	4	5	4
17	4	4	4	3
17	5	4	4	3
17	NA	4	5	3
15	NA	4	4	3
17	NA	4	4	3
18	2	3	3	3
17	4	4	4	NA
20	4	5	4	5
15	NA	3	4	3
16	2	3	3	3
15	NA	4	4	NA
18	4	4	5	5
11	NA	NA	3	NA
15	4	4	4	3
18	5	5	5	4
20	4	5	5	3
19	NA	3	4	3
14	3	4	4	3
16	4	4	4	NA
15	3	4	3	3
17	4	5	5	3
18	2	4	4	4
20	5	5	5	4
17	4	3	4	3
18	NA	4	4	4
15	NA	3	3	3
16	4	4	4	4
11	5	4	4	3
15	4	4	4	3
18	2	4	3	3
17	NA	4	4	3
16	5	4	5	3
12	NA	4	3	3
19	NA	4	4	3
18	5	4	5	4
15	4	4	4	3
17	5	5	5	3
19	3	4	4	4
18	NA	4	4	3
19	4	NA	4	4
16	NA	3	4	3
16	4	4	4	4
16	NA	4	3	3
14	3	4	4	5




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time7 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time7 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299025&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]7 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=299025&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299025&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time7 seconds
R ServerBig Analytics Cloud Computing Center







Multiple Linear Regression - Estimated Regression Equation
ITHSOM[t] = + 14.3292 + 0.0424531TVDC1[t] -0.282698TVDC2[t] + 0.680656TVDC3[t] + 0.155867TVDC4[t] + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
ITHSOM[t] =  +  14.3292 +  0.0424531TVDC1[t] -0.282698TVDC2[t] +  0.680656TVDC3[t] +  0.155867TVDC4[t]  + e[t] \tabularnewline
 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299025&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]ITHSOM[t] =  +  14.3292 +  0.0424531TVDC1[t] -0.282698TVDC2[t] +  0.680656TVDC3[t] +  0.155867TVDC4[t]  + e[t][/C][/ROW]
[ROW][C][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299025&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299025&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
ITHSOM[t] = + 14.3292 + 0.0424531TVDC1[t] -0.282698TVDC2[t] + 0.680656TVDC3[t] + 0.155867TVDC4[t] + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)+14.33 1.936+7.4030e+00 4.65e-11 2.325e-11
TVDC1+0.04245 0.2542+1.6700e-01 0.8677 0.4338
TVDC2-0.2827 0.4187-6.7510e-01 0.5012 0.2506
TVDC3+0.6807 0.3955+1.7210e+00 0.08842 0.04421
TVDC4+0.1559 0.3771+4.1340e-01 0.6803 0.3401

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & +14.33 &  1.936 & +7.4030e+00 &  4.65e-11 &  2.325e-11 \tabularnewline
TVDC1 & +0.04245 &  0.2542 & +1.6700e-01 &  0.8677 &  0.4338 \tabularnewline
TVDC2 & -0.2827 &  0.4187 & -6.7510e-01 &  0.5012 &  0.2506 \tabularnewline
TVDC3 & +0.6807 &  0.3955 & +1.7210e+00 &  0.08842 &  0.04421 \tabularnewline
TVDC4 & +0.1559 &  0.3771 & +4.1340e-01 &  0.6803 &  0.3401 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299025&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]+14.33[/C][C] 1.936[/C][C]+7.4030e+00[/C][C] 4.65e-11[/C][C] 2.325e-11[/C][/ROW]
[ROW][C]TVDC1[/C][C]+0.04245[/C][C] 0.2542[/C][C]+1.6700e-01[/C][C] 0.8677[/C][C] 0.4338[/C][/ROW]
[ROW][C]TVDC2[/C][C]-0.2827[/C][C] 0.4187[/C][C]-6.7510e-01[/C][C] 0.5012[/C][C] 0.2506[/C][/ROW]
[ROW][C]TVDC3[/C][C]+0.6807[/C][C] 0.3955[/C][C]+1.7210e+00[/C][C] 0.08842[/C][C] 0.04421[/C][/ROW]
[ROW][C]TVDC4[/C][C]+0.1559[/C][C] 0.3771[/C][C]+4.1340e-01[/C][C] 0.6803[/C][C] 0.3401[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299025&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299025&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)+14.33 1.936+7.4030e+00 4.65e-11 2.325e-11
TVDC1+0.04245 0.2542+1.6700e-01 0.8677 0.4338
TVDC2-0.2827 0.4187-6.7510e-01 0.5012 0.2506
TVDC3+0.6807 0.3955+1.7210e+00 0.08842 0.04421
TVDC4+0.1559 0.3771+4.1340e-01 0.6803 0.3401







Multiple Linear Regression - Regression Statistics
Multiple R 0.2044
R-squared 0.04176
Adjusted R-squared 0.002651
F-TEST (value) 1.068
F-TEST (DF numerator)4
F-TEST (DF denominator)98
p-value 0.3767
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 2.174
Sum Squared Residuals 463.2

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R &  0.2044 \tabularnewline
R-squared &  0.04176 \tabularnewline
Adjusted R-squared &  0.002651 \tabularnewline
F-TEST (value) &  1.068 \tabularnewline
F-TEST (DF numerator) & 4 \tabularnewline
F-TEST (DF denominator) & 98 \tabularnewline
p-value &  0.3767 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation &  2.174 \tabularnewline
Sum Squared Residuals &  463.2 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299025&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C] 0.2044[/C][/ROW]
[ROW][C]R-squared[/C][C] 0.04176[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C] 0.002651[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C] 1.068[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]4[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]98[/C][/ROW]
[ROW][C]p-value[/C][C] 0.3767[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C] 2.174[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C] 463.2[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299025&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299025&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R 0.2044
R-squared 0.04176
Adjusted R-squared 0.002651
F-TEST (value) 1.068
F-TEST (DF numerator)4
F-TEST (DF denominator)98
p-value 0.3767
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 2.174
Sum Squared Residuals 463.2







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 14 16.16-2.161
2 19 16.6 2.399
3 17 16.96 0.04356
4 20 17.56 2.436
5 15 17.28-2.282
6 19 17.28 1.718
7 16 16.56-0.5585
8 20 16.71 3.286
9 18 16.84 1.159
10 15 16.71-1.714
11 14 17.28-3.282
12 16 16.6-0.6009
13 19 16.6 2.399
14 18 16.71 1.286
15 17 16.56 0.4415
16 19 17.24 1.761
17 17 17.24-0.2391
18 14 15.84-1.835
19 19 17.52 1.478
20 20 16.76 3.243
21 19 17.12 1.876
22 16 17.28-1.282
23 16 16.95-0.9546
24 18 16.63 1.371
25 16 17.44-1.437
26 17 17.28-0.2816
27 15 16.16-1.161
28 19 17.24 1.761
29 17 16.56 0.4415
30 9 17.2-8.197
31 15 16.56-1.558
32 16 15.84 0.1646
33 18 17.28 0.7184
34 17 16.08 0.9244
35 19 16.52 2.484
36 16 16.47-0.4736
37 13 16.32-3.318
38 16 16.71-0.7144
39 12 17.28-5.282
40 17 16.6 0.3991
41 17 16.28 0.7242
42 17 16.6 0.3991
43 16 16.56-0.5585
44 16 16.97-0.968
45 14 17.28-3.282
46 16 16.52-0.516
47 13 16.63-3.629
48 16 16.6-0.6009
49 14 16.56-2.558
50 19 17.56 1.436
51 18 16.52 1.484
52 14 16.79-2.785
53 18 17.28 0.7184
54 15 16.03-1.033
55 17 16.76 0.2432
56 13 17.31-4.311
57 19 17.39 1.605
58 18 17.44 0.5625
59 15 16.76-1.757
60 15 15.24-0.2396
61 20 16.96 3.044
62 19 16.96 2.044
63 18 16.71 1.286
64 15 16.59-1.588
65 20 17.44 2.563
66 17 16.6 0.3991
67 19 16.56 2.442
68 20 16.47 3.526
69 18 16.71 1.286
70 17 16.12 0.8819
71 18 16.71 1.286
72 17 16.6 0.3991
73 20 16.6 3.399
74 16 16.52-0.516
75 14 16.56-2.558
76 15 16.52-1.516
77 20 16.56 3.442
78 17 16.56 0.4415
79 17 16.6 0.3991
80 18 16.08 1.924
81 20 16.59 3.412
82 16 16.08-0.07562
83 18 17.55 0.4491
84 15 16.56-1.558
85 18 17.15 0.8452
86 20 16.96 3.044
87 14 16.52-2.516
88 15 15.84-0.8354
89 17 16.96 0.04356
90 18 16.63 1.371
91 20 17.15 2.845
92 17 16.84 0.1588
93 16 16.71-0.7144
94 11 16.6-5.601
95 15 16.56-1.558
96 18 15.79 2.207
97 16 17.28-1.282
98 18 17.44 0.5625
99 15 16.56-1.558
100 17 17 0.001105
101 19 16.67 2.328
102 16 16.71-0.7144
103 14 16.83-2.828

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 &  14 &  16.16 & -2.161 \tabularnewline
2 &  19 &  16.6 &  2.399 \tabularnewline
3 &  17 &  16.96 &  0.04356 \tabularnewline
4 &  20 &  17.56 &  2.436 \tabularnewline
5 &  15 &  17.28 & -2.282 \tabularnewline
6 &  19 &  17.28 &  1.718 \tabularnewline
7 &  16 &  16.56 & -0.5585 \tabularnewline
8 &  20 &  16.71 &  3.286 \tabularnewline
9 &  18 &  16.84 &  1.159 \tabularnewline
10 &  15 &  16.71 & -1.714 \tabularnewline
11 &  14 &  17.28 & -3.282 \tabularnewline
12 &  16 &  16.6 & -0.6009 \tabularnewline
13 &  19 &  16.6 &  2.399 \tabularnewline
14 &  18 &  16.71 &  1.286 \tabularnewline
15 &  17 &  16.56 &  0.4415 \tabularnewline
16 &  19 &  17.24 &  1.761 \tabularnewline
17 &  17 &  17.24 & -0.2391 \tabularnewline
18 &  14 &  15.84 & -1.835 \tabularnewline
19 &  19 &  17.52 &  1.478 \tabularnewline
20 &  20 &  16.76 &  3.243 \tabularnewline
21 &  19 &  17.12 &  1.876 \tabularnewline
22 &  16 &  17.28 & -1.282 \tabularnewline
23 &  16 &  16.95 & -0.9546 \tabularnewline
24 &  18 &  16.63 &  1.371 \tabularnewline
25 &  16 &  17.44 & -1.437 \tabularnewline
26 &  17 &  17.28 & -0.2816 \tabularnewline
27 &  15 &  16.16 & -1.161 \tabularnewline
28 &  19 &  17.24 &  1.761 \tabularnewline
29 &  17 &  16.56 &  0.4415 \tabularnewline
30 &  9 &  17.2 & -8.197 \tabularnewline
31 &  15 &  16.56 & -1.558 \tabularnewline
32 &  16 &  15.84 &  0.1646 \tabularnewline
33 &  18 &  17.28 &  0.7184 \tabularnewline
34 &  17 &  16.08 &  0.9244 \tabularnewline
35 &  19 &  16.52 &  2.484 \tabularnewline
36 &  16 &  16.47 & -0.4736 \tabularnewline
37 &  13 &  16.32 & -3.318 \tabularnewline
38 &  16 &  16.71 & -0.7144 \tabularnewline
39 &  12 &  17.28 & -5.282 \tabularnewline
40 &  17 &  16.6 &  0.3991 \tabularnewline
41 &  17 &  16.28 &  0.7242 \tabularnewline
42 &  17 &  16.6 &  0.3991 \tabularnewline
43 &  16 &  16.56 & -0.5585 \tabularnewline
44 &  16 &  16.97 & -0.968 \tabularnewline
45 &  14 &  17.28 & -3.282 \tabularnewline
46 &  16 &  16.52 & -0.516 \tabularnewline
47 &  13 &  16.63 & -3.629 \tabularnewline
48 &  16 &  16.6 & -0.6009 \tabularnewline
49 &  14 &  16.56 & -2.558 \tabularnewline
50 &  19 &  17.56 &  1.436 \tabularnewline
51 &  18 &  16.52 &  1.484 \tabularnewline
52 &  14 &  16.79 & -2.785 \tabularnewline
53 &  18 &  17.28 &  0.7184 \tabularnewline
54 &  15 &  16.03 & -1.033 \tabularnewline
55 &  17 &  16.76 &  0.2432 \tabularnewline
56 &  13 &  17.31 & -4.311 \tabularnewline
57 &  19 &  17.39 &  1.605 \tabularnewline
58 &  18 &  17.44 &  0.5625 \tabularnewline
59 &  15 &  16.76 & -1.757 \tabularnewline
60 &  15 &  15.24 & -0.2396 \tabularnewline
61 &  20 &  16.96 &  3.044 \tabularnewline
62 &  19 &  16.96 &  2.044 \tabularnewline
63 &  18 &  16.71 &  1.286 \tabularnewline
64 &  15 &  16.59 & -1.588 \tabularnewline
65 &  20 &  17.44 &  2.563 \tabularnewline
66 &  17 &  16.6 &  0.3991 \tabularnewline
67 &  19 &  16.56 &  2.442 \tabularnewline
68 &  20 &  16.47 &  3.526 \tabularnewline
69 &  18 &  16.71 &  1.286 \tabularnewline
70 &  17 &  16.12 &  0.8819 \tabularnewline
71 &  18 &  16.71 &  1.286 \tabularnewline
72 &  17 &  16.6 &  0.3991 \tabularnewline
73 &  20 &  16.6 &  3.399 \tabularnewline
74 &  16 &  16.52 & -0.516 \tabularnewline
75 &  14 &  16.56 & -2.558 \tabularnewline
76 &  15 &  16.52 & -1.516 \tabularnewline
77 &  20 &  16.56 &  3.442 \tabularnewline
78 &  17 &  16.56 &  0.4415 \tabularnewline
79 &  17 &  16.6 &  0.3991 \tabularnewline
80 &  18 &  16.08 &  1.924 \tabularnewline
81 &  20 &  16.59 &  3.412 \tabularnewline
82 &  16 &  16.08 & -0.07562 \tabularnewline
83 &  18 &  17.55 &  0.4491 \tabularnewline
84 &  15 &  16.56 & -1.558 \tabularnewline
85 &  18 &  17.15 &  0.8452 \tabularnewline
86 &  20 &  16.96 &  3.044 \tabularnewline
87 &  14 &  16.52 & -2.516 \tabularnewline
88 &  15 &  15.84 & -0.8354 \tabularnewline
89 &  17 &  16.96 &  0.04356 \tabularnewline
90 &  18 &  16.63 &  1.371 \tabularnewline
91 &  20 &  17.15 &  2.845 \tabularnewline
92 &  17 &  16.84 &  0.1588 \tabularnewline
93 &  16 &  16.71 & -0.7144 \tabularnewline
94 &  11 &  16.6 & -5.601 \tabularnewline
95 &  15 &  16.56 & -1.558 \tabularnewline
96 &  18 &  15.79 &  2.207 \tabularnewline
97 &  16 &  17.28 & -1.282 \tabularnewline
98 &  18 &  17.44 &  0.5625 \tabularnewline
99 &  15 &  16.56 & -1.558 \tabularnewline
100 &  17 &  17 &  0.001105 \tabularnewline
101 &  19 &  16.67 &  2.328 \tabularnewline
102 &  16 &  16.71 & -0.7144 \tabularnewline
103 &  14 &  16.83 & -2.828 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299025&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C] 14[/C][C] 16.16[/C][C]-2.161[/C][/ROW]
[ROW][C]2[/C][C] 19[/C][C] 16.6[/C][C] 2.399[/C][/ROW]
[ROW][C]3[/C][C] 17[/C][C] 16.96[/C][C] 0.04356[/C][/ROW]
[ROW][C]4[/C][C] 20[/C][C] 17.56[/C][C] 2.436[/C][/ROW]
[ROW][C]5[/C][C] 15[/C][C] 17.28[/C][C]-2.282[/C][/ROW]
[ROW][C]6[/C][C] 19[/C][C] 17.28[/C][C] 1.718[/C][/ROW]
[ROW][C]7[/C][C] 16[/C][C] 16.56[/C][C]-0.5585[/C][/ROW]
[ROW][C]8[/C][C] 20[/C][C] 16.71[/C][C] 3.286[/C][/ROW]
[ROW][C]9[/C][C] 18[/C][C] 16.84[/C][C] 1.159[/C][/ROW]
[ROW][C]10[/C][C] 15[/C][C] 16.71[/C][C]-1.714[/C][/ROW]
[ROW][C]11[/C][C] 14[/C][C] 17.28[/C][C]-3.282[/C][/ROW]
[ROW][C]12[/C][C] 16[/C][C] 16.6[/C][C]-0.6009[/C][/ROW]
[ROW][C]13[/C][C] 19[/C][C] 16.6[/C][C] 2.399[/C][/ROW]
[ROW][C]14[/C][C] 18[/C][C] 16.71[/C][C] 1.286[/C][/ROW]
[ROW][C]15[/C][C] 17[/C][C] 16.56[/C][C] 0.4415[/C][/ROW]
[ROW][C]16[/C][C] 19[/C][C] 17.24[/C][C] 1.761[/C][/ROW]
[ROW][C]17[/C][C] 17[/C][C] 17.24[/C][C]-0.2391[/C][/ROW]
[ROW][C]18[/C][C] 14[/C][C] 15.84[/C][C]-1.835[/C][/ROW]
[ROW][C]19[/C][C] 19[/C][C] 17.52[/C][C] 1.478[/C][/ROW]
[ROW][C]20[/C][C] 20[/C][C] 16.76[/C][C] 3.243[/C][/ROW]
[ROW][C]21[/C][C] 19[/C][C] 17.12[/C][C] 1.876[/C][/ROW]
[ROW][C]22[/C][C] 16[/C][C] 17.28[/C][C]-1.282[/C][/ROW]
[ROW][C]23[/C][C] 16[/C][C] 16.95[/C][C]-0.9546[/C][/ROW]
[ROW][C]24[/C][C] 18[/C][C] 16.63[/C][C] 1.371[/C][/ROW]
[ROW][C]25[/C][C] 16[/C][C] 17.44[/C][C]-1.437[/C][/ROW]
[ROW][C]26[/C][C] 17[/C][C] 17.28[/C][C]-0.2816[/C][/ROW]
[ROW][C]27[/C][C] 15[/C][C] 16.16[/C][C]-1.161[/C][/ROW]
[ROW][C]28[/C][C] 19[/C][C] 17.24[/C][C] 1.761[/C][/ROW]
[ROW][C]29[/C][C] 17[/C][C] 16.56[/C][C] 0.4415[/C][/ROW]
[ROW][C]30[/C][C] 9[/C][C] 17.2[/C][C]-8.197[/C][/ROW]
[ROW][C]31[/C][C] 15[/C][C] 16.56[/C][C]-1.558[/C][/ROW]
[ROW][C]32[/C][C] 16[/C][C] 15.84[/C][C] 0.1646[/C][/ROW]
[ROW][C]33[/C][C] 18[/C][C] 17.28[/C][C] 0.7184[/C][/ROW]
[ROW][C]34[/C][C] 17[/C][C] 16.08[/C][C] 0.9244[/C][/ROW]
[ROW][C]35[/C][C] 19[/C][C] 16.52[/C][C] 2.484[/C][/ROW]
[ROW][C]36[/C][C] 16[/C][C] 16.47[/C][C]-0.4736[/C][/ROW]
[ROW][C]37[/C][C] 13[/C][C] 16.32[/C][C]-3.318[/C][/ROW]
[ROW][C]38[/C][C] 16[/C][C] 16.71[/C][C]-0.7144[/C][/ROW]
[ROW][C]39[/C][C] 12[/C][C] 17.28[/C][C]-5.282[/C][/ROW]
[ROW][C]40[/C][C] 17[/C][C] 16.6[/C][C] 0.3991[/C][/ROW]
[ROW][C]41[/C][C] 17[/C][C] 16.28[/C][C] 0.7242[/C][/ROW]
[ROW][C]42[/C][C] 17[/C][C] 16.6[/C][C] 0.3991[/C][/ROW]
[ROW][C]43[/C][C] 16[/C][C] 16.56[/C][C]-0.5585[/C][/ROW]
[ROW][C]44[/C][C] 16[/C][C] 16.97[/C][C]-0.968[/C][/ROW]
[ROW][C]45[/C][C] 14[/C][C] 17.28[/C][C]-3.282[/C][/ROW]
[ROW][C]46[/C][C] 16[/C][C] 16.52[/C][C]-0.516[/C][/ROW]
[ROW][C]47[/C][C] 13[/C][C] 16.63[/C][C]-3.629[/C][/ROW]
[ROW][C]48[/C][C] 16[/C][C] 16.6[/C][C]-0.6009[/C][/ROW]
[ROW][C]49[/C][C] 14[/C][C] 16.56[/C][C]-2.558[/C][/ROW]
[ROW][C]50[/C][C] 19[/C][C] 17.56[/C][C] 1.436[/C][/ROW]
[ROW][C]51[/C][C] 18[/C][C] 16.52[/C][C] 1.484[/C][/ROW]
[ROW][C]52[/C][C] 14[/C][C] 16.79[/C][C]-2.785[/C][/ROW]
[ROW][C]53[/C][C] 18[/C][C] 17.28[/C][C] 0.7184[/C][/ROW]
[ROW][C]54[/C][C] 15[/C][C] 16.03[/C][C]-1.033[/C][/ROW]
[ROW][C]55[/C][C] 17[/C][C] 16.76[/C][C] 0.2432[/C][/ROW]
[ROW][C]56[/C][C] 13[/C][C] 17.31[/C][C]-4.311[/C][/ROW]
[ROW][C]57[/C][C] 19[/C][C] 17.39[/C][C] 1.605[/C][/ROW]
[ROW][C]58[/C][C] 18[/C][C] 17.44[/C][C] 0.5625[/C][/ROW]
[ROW][C]59[/C][C] 15[/C][C] 16.76[/C][C]-1.757[/C][/ROW]
[ROW][C]60[/C][C] 15[/C][C] 15.24[/C][C]-0.2396[/C][/ROW]
[ROW][C]61[/C][C] 20[/C][C] 16.96[/C][C] 3.044[/C][/ROW]
[ROW][C]62[/C][C] 19[/C][C] 16.96[/C][C] 2.044[/C][/ROW]
[ROW][C]63[/C][C] 18[/C][C] 16.71[/C][C] 1.286[/C][/ROW]
[ROW][C]64[/C][C] 15[/C][C] 16.59[/C][C]-1.588[/C][/ROW]
[ROW][C]65[/C][C] 20[/C][C] 17.44[/C][C] 2.563[/C][/ROW]
[ROW][C]66[/C][C] 17[/C][C] 16.6[/C][C] 0.3991[/C][/ROW]
[ROW][C]67[/C][C] 19[/C][C] 16.56[/C][C] 2.442[/C][/ROW]
[ROW][C]68[/C][C] 20[/C][C] 16.47[/C][C] 3.526[/C][/ROW]
[ROW][C]69[/C][C] 18[/C][C] 16.71[/C][C] 1.286[/C][/ROW]
[ROW][C]70[/C][C] 17[/C][C] 16.12[/C][C] 0.8819[/C][/ROW]
[ROW][C]71[/C][C] 18[/C][C] 16.71[/C][C] 1.286[/C][/ROW]
[ROW][C]72[/C][C] 17[/C][C] 16.6[/C][C] 0.3991[/C][/ROW]
[ROW][C]73[/C][C] 20[/C][C] 16.6[/C][C] 3.399[/C][/ROW]
[ROW][C]74[/C][C] 16[/C][C] 16.52[/C][C]-0.516[/C][/ROW]
[ROW][C]75[/C][C] 14[/C][C] 16.56[/C][C]-2.558[/C][/ROW]
[ROW][C]76[/C][C] 15[/C][C] 16.52[/C][C]-1.516[/C][/ROW]
[ROW][C]77[/C][C] 20[/C][C] 16.56[/C][C] 3.442[/C][/ROW]
[ROW][C]78[/C][C] 17[/C][C] 16.56[/C][C] 0.4415[/C][/ROW]
[ROW][C]79[/C][C] 17[/C][C] 16.6[/C][C] 0.3991[/C][/ROW]
[ROW][C]80[/C][C] 18[/C][C] 16.08[/C][C] 1.924[/C][/ROW]
[ROW][C]81[/C][C] 20[/C][C] 16.59[/C][C] 3.412[/C][/ROW]
[ROW][C]82[/C][C] 16[/C][C] 16.08[/C][C]-0.07562[/C][/ROW]
[ROW][C]83[/C][C] 18[/C][C] 17.55[/C][C] 0.4491[/C][/ROW]
[ROW][C]84[/C][C] 15[/C][C] 16.56[/C][C]-1.558[/C][/ROW]
[ROW][C]85[/C][C] 18[/C][C] 17.15[/C][C] 0.8452[/C][/ROW]
[ROW][C]86[/C][C] 20[/C][C] 16.96[/C][C] 3.044[/C][/ROW]
[ROW][C]87[/C][C] 14[/C][C] 16.52[/C][C]-2.516[/C][/ROW]
[ROW][C]88[/C][C] 15[/C][C] 15.84[/C][C]-0.8354[/C][/ROW]
[ROW][C]89[/C][C] 17[/C][C] 16.96[/C][C] 0.04356[/C][/ROW]
[ROW][C]90[/C][C] 18[/C][C] 16.63[/C][C] 1.371[/C][/ROW]
[ROW][C]91[/C][C] 20[/C][C] 17.15[/C][C] 2.845[/C][/ROW]
[ROW][C]92[/C][C] 17[/C][C] 16.84[/C][C] 0.1588[/C][/ROW]
[ROW][C]93[/C][C] 16[/C][C] 16.71[/C][C]-0.7144[/C][/ROW]
[ROW][C]94[/C][C] 11[/C][C] 16.6[/C][C]-5.601[/C][/ROW]
[ROW][C]95[/C][C] 15[/C][C] 16.56[/C][C]-1.558[/C][/ROW]
[ROW][C]96[/C][C] 18[/C][C] 15.79[/C][C] 2.207[/C][/ROW]
[ROW][C]97[/C][C] 16[/C][C] 17.28[/C][C]-1.282[/C][/ROW]
[ROW][C]98[/C][C] 18[/C][C] 17.44[/C][C] 0.5625[/C][/ROW]
[ROW][C]99[/C][C] 15[/C][C] 16.56[/C][C]-1.558[/C][/ROW]
[ROW][C]100[/C][C] 17[/C][C] 17[/C][C] 0.001105[/C][/ROW]
[ROW][C]101[/C][C] 19[/C][C] 16.67[/C][C] 2.328[/C][/ROW]
[ROW][C]102[/C][C] 16[/C][C] 16.71[/C][C]-0.7144[/C][/ROW]
[ROW][C]103[/C][C] 14[/C][C] 16.83[/C][C]-2.828[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299025&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299025&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 14 16.16-2.161
2 19 16.6 2.399
3 17 16.96 0.04356
4 20 17.56 2.436
5 15 17.28-2.282
6 19 17.28 1.718
7 16 16.56-0.5585
8 20 16.71 3.286
9 18 16.84 1.159
10 15 16.71-1.714
11 14 17.28-3.282
12 16 16.6-0.6009
13 19 16.6 2.399
14 18 16.71 1.286
15 17 16.56 0.4415
16 19 17.24 1.761
17 17 17.24-0.2391
18 14 15.84-1.835
19 19 17.52 1.478
20 20 16.76 3.243
21 19 17.12 1.876
22 16 17.28-1.282
23 16 16.95-0.9546
24 18 16.63 1.371
25 16 17.44-1.437
26 17 17.28-0.2816
27 15 16.16-1.161
28 19 17.24 1.761
29 17 16.56 0.4415
30 9 17.2-8.197
31 15 16.56-1.558
32 16 15.84 0.1646
33 18 17.28 0.7184
34 17 16.08 0.9244
35 19 16.52 2.484
36 16 16.47-0.4736
37 13 16.32-3.318
38 16 16.71-0.7144
39 12 17.28-5.282
40 17 16.6 0.3991
41 17 16.28 0.7242
42 17 16.6 0.3991
43 16 16.56-0.5585
44 16 16.97-0.968
45 14 17.28-3.282
46 16 16.52-0.516
47 13 16.63-3.629
48 16 16.6-0.6009
49 14 16.56-2.558
50 19 17.56 1.436
51 18 16.52 1.484
52 14 16.79-2.785
53 18 17.28 0.7184
54 15 16.03-1.033
55 17 16.76 0.2432
56 13 17.31-4.311
57 19 17.39 1.605
58 18 17.44 0.5625
59 15 16.76-1.757
60 15 15.24-0.2396
61 20 16.96 3.044
62 19 16.96 2.044
63 18 16.71 1.286
64 15 16.59-1.588
65 20 17.44 2.563
66 17 16.6 0.3991
67 19 16.56 2.442
68 20 16.47 3.526
69 18 16.71 1.286
70 17 16.12 0.8819
71 18 16.71 1.286
72 17 16.6 0.3991
73 20 16.6 3.399
74 16 16.52-0.516
75 14 16.56-2.558
76 15 16.52-1.516
77 20 16.56 3.442
78 17 16.56 0.4415
79 17 16.6 0.3991
80 18 16.08 1.924
81 20 16.59 3.412
82 16 16.08-0.07562
83 18 17.55 0.4491
84 15 16.56-1.558
85 18 17.15 0.8452
86 20 16.96 3.044
87 14 16.52-2.516
88 15 15.84-0.8354
89 17 16.96 0.04356
90 18 16.63 1.371
91 20 17.15 2.845
92 17 16.84 0.1588
93 16 16.71-0.7144
94 11 16.6-5.601
95 15 16.56-1.558
96 18 15.79 2.207
97 16 17.28-1.282
98 18 17.44 0.5625
99 15 16.56-1.558
100 17 17 0.001105
101 19 16.67 2.328
102 16 16.71-0.7144
103 14 16.83-2.828







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
8 0.6978 0.6044 0.3022
9 0.6145 0.7709 0.3855
10 0.7519 0.4961 0.2481
11 0.8633 0.2734 0.1367
12 0.7932 0.4136 0.2068
13 0.7898 0.4204 0.2102
14 0.7151 0.5698 0.2849
15 0.6372 0.7257 0.3628
16 0.5997 0.8006 0.4003
17 0.5137 0.9727 0.4863
18 0.446 0.8921 0.554
19 0.3767 0.7534 0.6233
20 0.3601 0.7201 0.6399
21 0.3081 0.6162 0.6919
22 0.2876 0.5751 0.7124
23 0.2812 0.5624 0.7188
24 0.2523 0.5045 0.7477
25 0.2863 0.5727 0.7137
26 0.2298 0.4595 0.7702
27 0.196 0.392 0.804
28 0.1788 0.3575 0.8212
29 0.139 0.278 0.861
30 0.7864 0.4272 0.2136
31 0.7521 0.4959 0.2479
32 0.7104 0.5792 0.2896
33 0.658 0.684 0.342
34 0.635 0.7301 0.365
35 0.6848 0.6304 0.3152
36 0.6353 0.7295 0.3647
37 0.6956 0.6089 0.3044
38 0.6529 0.6941 0.3471
39 0.8593 0.2814 0.1407
40 0.8245 0.351 0.1755
41 0.7992 0.4016 0.2008
42 0.7559 0.4881 0.2441
43 0.7096 0.5808 0.2904
44 0.6637 0.6727 0.3363
45 0.7293 0.5414 0.2707
46 0.6834 0.6332 0.3166
47 0.7737 0.4527 0.2263
48 0.7311 0.5377 0.2689
49 0.7526 0.4949 0.2474
50 0.7209 0.5582 0.2791
51 0.7022 0.5955 0.2978
52 0.7355 0.529 0.2645
53 0.6919 0.6162 0.3081
54 0.6614 0.6773 0.3386
55 0.61 0.78 0.39
56 0.7643 0.4714 0.2357
57 0.749 0.502 0.251
58 0.7041 0.5917 0.2959
59 0.6819 0.6361 0.3181
60 0.6366 0.7267 0.3634
61 0.6813 0.6374 0.3187
62 0.6645 0.6709 0.3355
63 0.629 0.742 0.371
64 0.6303 0.7394 0.3697
65 0.6603 0.6794 0.3397
66 0.6066 0.7867 0.3934
67 0.6242 0.7517 0.3758
68 0.6923 0.6153 0.3077
69 0.6509 0.6983 0.3491
70 0.6135 0.773 0.3865
71 0.5699 0.8603 0.4301
72 0.5134 0.9732 0.4866
73 0.6792 0.6416 0.3208
74 0.6239 0.7522 0.3761
75 0.6286 0.7428 0.3714
76 0.6144 0.7712 0.3856
77 0.7535 0.4931 0.2465
78 0.7052 0.5896 0.2948
79 0.7075 0.5851 0.2925
80 0.7434 0.5133 0.2566
81 0.8026 0.3948 0.1974
82 0.7514 0.4971 0.2486
83 0.6837 0.6326 0.3163
84 0.6151 0.7699 0.3849
85 0.5384 0.9232 0.4616
86 0.5174 0.9651 0.4826
87 0.5962 0.8076 0.4038
88 0.5068 0.9863 0.4932
89 0.5039 0.9922 0.4961
90 0.5105 0.9789 0.4895
91 0.7075 0.585 0.2925
92 0.6046 0.7908 0.3954
93 0.5525 0.8951 0.4475
94 0.5006 0.9988 0.4994
95 0.3758 0.7516 0.6242

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
8 &  0.6978 &  0.6044 &  0.3022 \tabularnewline
9 &  0.6145 &  0.7709 &  0.3855 \tabularnewline
10 &  0.7519 &  0.4961 &  0.2481 \tabularnewline
11 &  0.8633 &  0.2734 &  0.1367 \tabularnewline
12 &  0.7932 &  0.4136 &  0.2068 \tabularnewline
13 &  0.7898 &  0.4204 &  0.2102 \tabularnewline
14 &  0.7151 &  0.5698 &  0.2849 \tabularnewline
15 &  0.6372 &  0.7257 &  0.3628 \tabularnewline
16 &  0.5997 &  0.8006 &  0.4003 \tabularnewline
17 &  0.5137 &  0.9727 &  0.4863 \tabularnewline
18 &  0.446 &  0.8921 &  0.554 \tabularnewline
19 &  0.3767 &  0.7534 &  0.6233 \tabularnewline
20 &  0.3601 &  0.7201 &  0.6399 \tabularnewline
21 &  0.3081 &  0.6162 &  0.6919 \tabularnewline
22 &  0.2876 &  0.5751 &  0.7124 \tabularnewline
23 &  0.2812 &  0.5624 &  0.7188 \tabularnewline
24 &  0.2523 &  0.5045 &  0.7477 \tabularnewline
25 &  0.2863 &  0.5727 &  0.7137 \tabularnewline
26 &  0.2298 &  0.4595 &  0.7702 \tabularnewline
27 &  0.196 &  0.392 &  0.804 \tabularnewline
28 &  0.1788 &  0.3575 &  0.8212 \tabularnewline
29 &  0.139 &  0.278 &  0.861 \tabularnewline
30 &  0.7864 &  0.4272 &  0.2136 \tabularnewline
31 &  0.7521 &  0.4959 &  0.2479 \tabularnewline
32 &  0.7104 &  0.5792 &  0.2896 \tabularnewline
33 &  0.658 &  0.684 &  0.342 \tabularnewline
34 &  0.635 &  0.7301 &  0.365 \tabularnewline
35 &  0.6848 &  0.6304 &  0.3152 \tabularnewline
36 &  0.6353 &  0.7295 &  0.3647 \tabularnewline
37 &  0.6956 &  0.6089 &  0.3044 \tabularnewline
38 &  0.6529 &  0.6941 &  0.3471 \tabularnewline
39 &  0.8593 &  0.2814 &  0.1407 \tabularnewline
40 &  0.8245 &  0.351 &  0.1755 \tabularnewline
41 &  0.7992 &  0.4016 &  0.2008 \tabularnewline
42 &  0.7559 &  0.4881 &  0.2441 \tabularnewline
43 &  0.7096 &  0.5808 &  0.2904 \tabularnewline
44 &  0.6637 &  0.6727 &  0.3363 \tabularnewline
45 &  0.7293 &  0.5414 &  0.2707 \tabularnewline
46 &  0.6834 &  0.6332 &  0.3166 \tabularnewline
47 &  0.7737 &  0.4527 &  0.2263 \tabularnewline
48 &  0.7311 &  0.5377 &  0.2689 \tabularnewline
49 &  0.7526 &  0.4949 &  0.2474 \tabularnewline
50 &  0.7209 &  0.5582 &  0.2791 \tabularnewline
51 &  0.7022 &  0.5955 &  0.2978 \tabularnewline
52 &  0.7355 &  0.529 &  0.2645 \tabularnewline
53 &  0.6919 &  0.6162 &  0.3081 \tabularnewline
54 &  0.6614 &  0.6773 &  0.3386 \tabularnewline
55 &  0.61 &  0.78 &  0.39 \tabularnewline
56 &  0.7643 &  0.4714 &  0.2357 \tabularnewline
57 &  0.749 &  0.502 &  0.251 \tabularnewline
58 &  0.7041 &  0.5917 &  0.2959 \tabularnewline
59 &  0.6819 &  0.6361 &  0.3181 \tabularnewline
60 &  0.6366 &  0.7267 &  0.3634 \tabularnewline
61 &  0.6813 &  0.6374 &  0.3187 \tabularnewline
62 &  0.6645 &  0.6709 &  0.3355 \tabularnewline
63 &  0.629 &  0.742 &  0.371 \tabularnewline
64 &  0.6303 &  0.7394 &  0.3697 \tabularnewline
65 &  0.6603 &  0.6794 &  0.3397 \tabularnewline
66 &  0.6066 &  0.7867 &  0.3934 \tabularnewline
67 &  0.6242 &  0.7517 &  0.3758 \tabularnewline
68 &  0.6923 &  0.6153 &  0.3077 \tabularnewline
69 &  0.6509 &  0.6983 &  0.3491 \tabularnewline
70 &  0.6135 &  0.773 &  0.3865 \tabularnewline
71 &  0.5699 &  0.8603 &  0.4301 \tabularnewline
72 &  0.5134 &  0.9732 &  0.4866 \tabularnewline
73 &  0.6792 &  0.6416 &  0.3208 \tabularnewline
74 &  0.6239 &  0.7522 &  0.3761 \tabularnewline
75 &  0.6286 &  0.7428 &  0.3714 \tabularnewline
76 &  0.6144 &  0.7712 &  0.3856 \tabularnewline
77 &  0.7535 &  0.4931 &  0.2465 \tabularnewline
78 &  0.7052 &  0.5896 &  0.2948 \tabularnewline
79 &  0.7075 &  0.5851 &  0.2925 \tabularnewline
80 &  0.7434 &  0.5133 &  0.2566 \tabularnewline
81 &  0.8026 &  0.3948 &  0.1974 \tabularnewline
82 &  0.7514 &  0.4971 &  0.2486 \tabularnewline
83 &  0.6837 &  0.6326 &  0.3163 \tabularnewline
84 &  0.6151 &  0.7699 &  0.3849 \tabularnewline
85 &  0.5384 &  0.9232 &  0.4616 \tabularnewline
86 &  0.5174 &  0.9651 &  0.4826 \tabularnewline
87 &  0.5962 &  0.8076 &  0.4038 \tabularnewline
88 &  0.5068 &  0.9863 &  0.4932 \tabularnewline
89 &  0.5039 &  0.9922 &  0.4961 \tabularnewline
90 &  0.5105 &  0.9789 &  0.4895 \tabularnewline
91 &  0.7075 &  0.585 &  0.2925 \tabularnewline
92 &  0.6046 &  0.7908 &  0.3954 \tabularnewline
93 &  0.5525 &  0.8951 &  0.4475 \tabularnewline
94 &  0.5006 &  0.9988 &  0.4994 \tabularnewline
95 &  0.3758 &  0.7516 &  0.6242 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299025&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]8[/C][C] 0.6978[/C][C] 0.6044[/C][C] 0.3022[/C][/ROW]
[ROW][C]9[/C][C] 0.6145[/C][C] 0.7709[/C][C] 0.3855[/C][/ROW]
[ROW][C]10[/C][C] 0.7519[/C][C] 0.4961[/C][C] 0.2481[/C][/ROW]
[ROW][C]11[/C][C] 0.8633[/C][C] 0.2734[/C][C] 0.1367[/C][/ROW]
[ROW][C]12[/C][C] 0.7932[/C][C] 0.4136[/C][C] 0.2068[/C][/ROW]
[ROW][C]13[/C][C] 0.7898[/C][C] 0.4204[/C][C] 0.2102[/C][/ROW]
[ROW][C]14[/C][C] 0.7151[/C][C] 0.5698[/C][C] 0.2849[/C][/ROW]
[ROW][C]15[/C][C] 0.6372[/C][C] 0.7257[/C][C] 0.3628[/C][/ROW]
[ROW][C]16[/C][C] 0.5997[/C][C] 0.8006[/C][C] 0.4003[/C][/ROW]
[ROW][C]17[/C][C] 0.5137[/C][C] 0.9727[/C][C] 0.4863[/C][/ROW]
[ROW][C]18[/C][C] 0.446[/C][C] 0.8921[/C][C] 0.554[/C][/ROW]
[ROW][C]19[/C][C] 0.3767[/C][C] 0.7534[/C][C] 0.6233[/C][/ROW]
[ROW][C]20[/C][C] 0.3601[/C][C] 0.7201[/C][C] 0.6399[/C][/ROW]
[ROW][C]21[/C][C] 0.3081[/C][C] 0.6162[/C][C] 0.6919[/C][/ROW]
[ROW][C]22[/C][C] 0.2876[/C][C] 0.5751[/C][C] 0.7124[/C][/ROW]
[ROW][C]23[/C][C] 0.2812[/C][C] 0.5624[/C][C] 0.7188[/C][/ROW]
[ROW][C]24[/C][C] 0.2523[/C][C] 0.5045[/C][C] 0.7477[/C][/ROW]
[ROW][C]25[/C][C] 0.2863[/C][C] 0.5727[/C][C] 0.7137[/C][/ROW]
[ROW][C]26[/C][C] 0.2298[/C][C] 0.4595[/C][C] 0.7702[/C][/ROW]
[ROW][C]27[/C][C] 0.196[/C][C] 0.392[/C][C] 0.804[/C][/ROW]
[ROW][C]28[/C][C] 0.1788[/C][C] 0.3575[/C][C] 0.8212[/C][/ROW]
[ROW][C]29[/C][C] 0.139[/C][C] 0.278[/C][C] 0.861[/C][/ROW]
[ROW][C]30[/C][C] 0.7864[/C][C] 0.4272[/C][C] 0.2136[/C][/ROW]
[ROW][C]31[/C][C] 0.7521[/C][C] 0.4959[/C][C] 0.2479[/C][/ROW]
[ROW][C]32[/C][C] 0.7104[/C][C] 0.5792[/C][C] 0.2896[/C][/ROW]
[ROW][C]33[/C][C] 0.658[/C][C] 0.684[/C][C] 0.342[/C][/ROW]
[ROW][C]34[/C][C] 0.635[/C][C] 0.7301[/C][C] 0.365[/C][/ROW]
[ROW][C]35[/C][C] 0.6848[/C][C] 0.6304[/C][C] 0.3152[/C][/ROW]
[ROW][C]36[/C][C] 0.6353[/C][C] 0.7295[/C][C] 0.3647[/C][/ROW]
[ROW][C]37[/C][C] 0.6956[/C][C] 0.6089[/C][C] 0.3044[/C][/ROW]
[ROW][C]38[/C][C] 0.6529[/C][C] 0.6941[/C][C] 0.3471[/C][/ROW]
[ROW][C]39[/C][C] 0.8593[/C][C] 0.2814[/C][C] 0.1407[/C][/ROW]
[ROW][C]40[/C][C] 0.8245[/C][C] 0.351[/C][C] 0.1755[/C][/ROW]
[ROW][C]41[/C][C] 0.7992[/C][C] 0.4016[/C][C] 0.2008[/C][/ROW]
[ROW][C]42[/C][C] 0.7559[/C][C] 0.4881[/C][C] 0.2441[/C][/ROW]
[ROW][C]43[/C][C] 0.7096[/C][C] 0.5808[/C][C] 0.2904[/C][/ROW]
[ROW][C]44[/C][C] 0.6637[/C][C] 0.6727[/C][C] 0.3363[/C][/ROW]
[ROW][C]45[/C][C] 0.7293[/C][C] 0.5414[/C][C] 0.2707[/C][/ROW]
[ROW][C]46[/C][C] 0.6834[/C][C] 0.6332[/C][C] 0.3166[/C][/ROW]
[ROW][C]47[/C][C] 0.7737[/C][C] 0.4527[/C][C] 0.2263[/C][/ROW]
[ROW][C]48[/C][C] 0.7311[/C][C] 0.5377[/C][C] 0.2689[/C][/ROW]
[ROW][C]49[/C][C] 0.7526[/C][C] 0.4949[/C][C] 0.2474[/C][/ROW]
[ROW][C]50[/C][C] 0.7209[/C][C] 0.5582[/C][C] 0.2791[/C][/ROW]
[ROW][C]51[/C][C] 0.7022[/C][C] 0.5955[/C][C] 0.2978[/C][/ROW]
[ROW][C]52[/C][C] 0.7355[/C][C] 0.529[/C][C] 0.2645[/C][/ROW]
[ROW][C]53[/C][C] 0.6919[/C][C] 0.6162[/C][C] 0.3081[/C][/ROW]
[ROW][C]54[/C][C] 0.6614[/C][C] 0.6773[/C][C] 0.3386[/C][/ROW]
[ROW][C]55[/C][C] 0.61[/C][C] 0.78[/C][C] 0.39[/C][/ROW]
[ROW][C]56[/C][C] 0.7643[/C][C] 0.4714[/C][C] 0.2357[/C][/ROW]
[ROW][C]57[/C][C] 0.749[/C][C] 0.502[/C][C] 0.251[/C][/ROW]
[ROW][C]58[/C][C] 0.7041[/C][C] 0.5917[/C][C] 0.2959[/C][/ROW]
[ROW][C]59[/C][C] 0.6819[/C][C] 0.6361[/C][C] 0.3181[/C][/ROW]
[ROW][C]60[/C][C] 0.6366[/C][C] 0.7267[/C][C] 0.3634[/C][/ROW]
[ROW][C]61[/C][C] 0.6813[/C][C] 0.6374[/C][C] 0.3187[/C][/ROW]
[ROW][C]62[/C][C] 0.6645[/C][C] 0.6709[/C][C] 0.3355[/C][/ROW]
[ROW][C]63[/C][C] 0.629[/C][C] 0.742[/C][C] 0.371[/C][/ROW]
[ROW][C]64[/C][C] 0.6303[/C][C] 0.7394[/C][C] 0.3697[/C][/ROW]
[ROW][C]65[/C][C] 0.6603[/C][C] 0.6794[/C][C] 0.3397[/C][/ROW]
[ROW][C]66[/C][C] 0.6066[/C][C] 0.7867[/C][C] 0.3934[/C][/ROW]
[ROW][C]67[/C][C] 0.6242[/C][C] 0.7517[/C][C] 0.3758[/C][/ROW]
[ROW][C]68[/C][C] 0.6923[/C][C] 0.6153[/C][C] 0.3077[/C][/ROW]
[ROW][C]69[/C][C] 0.6509[/C][C] 0.6983[/C][C] 0.3491[/C][/ROW]
[ROW][C]70[/C][C] 0.6135[/C][C] 0.773[/C][C] 0.3865[/C][/ROW]
[ROW][C]71[/C][C] 0.5699[/C][C] 0.8603[/C][C] 0.4301[/C][/ROW]
[ROW][C]72[/C][C] 0.5134[/C][C] 0.9732[/C][C] 0.4866[/C][/ROW]
[ROW][C]73[/C][C] 0.6792[/C][C] 0.6416[/C][C] 0.3208[/C][/ROW]
[ROW][C]74[/C][C] 0.6239[/C][C] 0.7522[/C][C] 0.3761[/C][/ROW]
[ROW][C]75[/C][C] 0.6286[/C][C] 0.7428[/C][C] 0.3714[/C][/ROW]
[ROW][C]76[/C][C] 0.6144[/C][C] 0.7712[/C][C] 0.3856[/C][/ROW]
[ROW][C]77[/C][C] 0.7535[/C][C] 0.4931[/C][C] 0.2465[/C][/ROW]
[ROW][C]78[/C][C] 0.7052[/C][C] 0.5896[/C][C] 0.2948[/C][/ROW]
[ROW][C]79[/C][C] 0.7075[/C][C] 0.5851[/C][C] 0.2925[/C][/ROW]
[ROW][C]80[/C][C] 0.7434[/C][C] 0.5133[/C][C] 0.2566[/C][/ROW]
[ROW][C]81[/C][C] 0.8026[/C][C] 0.3948[/C][C] 0.1974[/C][/ROW]
[ROW][C]82[/C][C] 0.7514[/C][C] 0.4971[/C][C] 0.2486[/C][/ROW]
[ROW][C]83[/C][C] 0.6837[/C][C] 0.6326[/C][C] 0.3163[/C][/ROW]
[ROW][C]84[/C][C] 0.6151[/C][C] 0.7699[/C][C] 0.3849[/C][/ROW]
[ROW][C]85[/C][C] 0.5384[/C][C] 0.9232[/C][C] 0.4616[/C][/ROW]
[ROW][C]86[/C][C] 0.5174[/C][C] 0.9651[/C][C] 0.4826[/C][/ROW]
[ROW][C]87[/C][C] 0.5962[/C][C] 0.8076[/C][C] 0.4038[/C][/ROW]
[ROW][C]88[/C][C] 0.5068[/C][C] 0.9863[/C][C] 0.4932[/C][/ROW]
[ROW][C]89[/C][C] 0.5039[/C][C] 0.9922[/C][C] 0.4961[/C][/ROW]
[ROW][C]90[/C][C] 0.5105[/C][C] 0.9789[/C][C] 0.4895[/C][/ROW]
[ROW][C]91[/C][C] 0.7075[/C][C] 0.585[/C][C] 0.2925[/C][/ROW]
[ROW][C]92[/C][C] 0.6046[/C][C] 0.7908[/C][C] 0.3954[/C][/ROW]
[ROW][C]93[/C][C] 0.5525[/C][C] 0.8951[/C][C] 0.4475[/C][/ROW]
[ROW][C]94[/C][C] 0.5006[/C][C] 0.9988[/C][C] 0.4994[/C][/ROW]
[ROW][C]95[/C][C] 0.3758[/C][C] 0.7516[/C][C] 0.6242[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299025&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299025&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
8 0.6978 0.6044 0.3022
9 0.6145 0.7709 0.3855
10 0.7519 0.4961 0.2481
11 0.8633 0.2734 0.1367
12 0.7932 0.4136 0.2068
13 0.7898 0.4204 0.2102
14 0.7151 0.5698 0.2849
15 0.6372 0.7257 0.3628
16 0.5997 0.8006 0.4003
17 0.5137 0.9727 0.4863
18 0.446 0.8921 0.554
19 0.3767 0.7534 0.6233
20 0.3601 0.7201 0.6399
21 0.3081 0.6162 0.6919
22 0.2876 0.5751 0.7124
23 0.2812 0.5624 0.7188
24 0.2523 0.5045 0.7477
25 0.2863 0.5727 0.7137
26 0.2298 0.4595 0.7702
27 0.196 0.392 0.804
28 0.1788 0.3575 0.8212
29 0.139 0.278 0.861
30 0.7864 0.4272 0.2136
31 0.7521 0.4959 0.2479
32 0.7104 0.5792 0.2896
33 0.658 0.684 0.342
34 0.635 0.7301 0.365
35 0.6848 0.6304 0.3152
36 0.6353 0.7295 0.3647
37 0.6956 0.6089 0.3044
38 0.6529 0.6941 0.3471
39 0.8593 0.2814 0.1407
40 0.8245 0.351 0.1755
41 0.7992 0.4016 0.2008
42 0.7559 0.4881 0.2441
43 0.7096 0.5808 0.2904
44 0.6637 0.6727 0.3363
45 0.7293 0.5414 0.2707
46 0.6834 0.6332 0.3166
47 0.7737 0.4527 0.2263
48 0.7311 0.5377 0.2689
49 0.7526 0.4949 0.2474
50 0.7209 0.5582 0.2791
51 0.7022 0.5955 0.2978
52 0.7355 0.529 0.2645
53 0.6919 0.6162 0.3081
54 0.6614 0.6773 0.3386
55 0.61 0.78 0.39
56 0.7643 0.4714 0.2357
57 0.749 0.502 0.251
58 0.7041 0.5917 0.2959
59 0.6819 0.6361 0.3181
60 0.6366 0.7267 0.3634
61 0.6813 0.6374 0.3187
62 0.6645 0.6709 0.3355
63 0.629 0.742 0.371
64 0.6303 0.7394 0.3697
65 0.6603 0.6794 0.3397
66 0.6066 0.7867 0.3934
67 0.6242 0.7517 0.3758
68 0.6923 0.6153 0.3077
69 0.6509 0.6983 0.3491
70 0.6135 0.773 0.3865
71 0.5699 0.8603 0.4301
72 0.5134 0.9732 0.4866
73 0.6792 0.6416 0.3208
74 0.6239 0.7522 0.3761
75 0.6286 0.7428 0.3714
76 0.6144 0.7712 0.3856
77 0.7535 0.4931 0.2465
78 0.7052 0.5896 0.2948
79 0.7075 0.5851 0.2925
80 0.7434 0.5133 0.2566
81 0.8026 0.3948 0.1974
82 0.7514 0.4971 0.2486
83 0.6837 0.6326 0.3163
84 0.6151 0.7699 0.3849
85 0.5384 0.9232 0.4616
86 0.5174 0.9651 0.4826
87 0.5962 0.8076 0.4038
88 0.5068 0.9863 0.4932
89 0.5039 0.9922 0.4961
90 0.5105 0.9789 0.4895
91 0.7075 0.585 0.2925
92 0.6046 0.7908 0.3954
93 0.5525 0.8951 0.4475
94 0.5006 0.9988 0.4994
95 0.3758 0.7516 0.6242







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level0 0OK
5% type I error level00OK
10% type I error level00OK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 0 &  0 & OK \tabularnewline
5% type I error level & 0 & 0 & OK \tabularnewline
10% type I error level & 0 & 0 & OK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299025&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]0[/C][C] 0[/C][C]OK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]0[/C][C]0[/C][C]OK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]0[/C][C]0[/C][C]OK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299025&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299025&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level0 0OK
5% type I error level00OK
10% type I error level00OK







Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 0.13369, df1 = 2, df2 = 96, p-value = 0.875
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = 1.1305, df1 = 8, df2 = 90, p-value = 0.3508
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 0.71391, df1 = 2, df2 = 96, p-value = 0.4923

\begin{tabular}{lllllllll}
\hline
Ramsey RESET F-Test for powers (2 and 3) of fitted values \tabularnewline
> reset_test_fitted
	RESET test
data:  mylm
RESET = 0.13369, df1 = 2, df2 = 96, p-value = 0.875
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of regressors \tabularnewline
> reset_test_regressors
	RESET test
data:  mylm
RESET = 1.1305, df1 = 8, df2 = 90, p-value = 0.3508
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of principal components \tabularnewline
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 0.71391, df1 = 2, df2 = 96, p-value = 0.4923
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=299025&T=7

[TABLE]
[ROW][C]Ramsey RESET F-Test for powers (2 and 3) of fitted values[/C][/ROW]
[ROW][C]
> reset_test_fitted
	RESET test
data:  mylm
RESET = 0.13369, df1 = 2, df2 = 96, p-value = 0.875
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of regressors[/C][/ROW] [ROW][C]
> reset_test_regressors
	RESET test
data:  mylm
RESET = 1.1305, df1 = 8, df2 = 90, p-value = 0.3508
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of principal components[/C][/ROW] [ROW][C]
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 0.71391, df1 = 2, df2 = 96, p-value = 0.4923
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=299025&T=7

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299025&T=7

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 0.13369, df1 = 2, df2 = 96, p-value = 0.875
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = 1.1305, df1 = 8, df2 = 90, p-value = 0.3508
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 0.71391, df1 = 2, df2 = 96, p-value = 0.4923







Variance Inflation Factors (Multicollinearity)
> vif
   TVDC1    TVDC2    TVDC3    TVDC4 
1.352849 1.255450 1.439439 1.116175 

\begin{tabular}{lllllllll}
\hline
Variance Inflation Factors (Multicollinearity) \tabularnewline
> vif
   TVDC1    TVDC2    TVDC3    TVDC4 
1.352849 1.255450 1.439439 1.116175 
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=299025&T=8

[TABLE]
[ROW][C]Variance Inflation Factors (Multicollinearity)[/C][/ROW]
[ROW][C]
> vif
   TVDC1    TVDC2    TVDC3    TVDC4 
1.352849 1.255450 1.439439 1.116175 
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=299025&T=8

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299025&T=8

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Variance Inflation Factors (Multicollinearity)
> vif
   TVDC1    TVDC2    TVDC3    TVDC4 
1.352849 1.255450 1.439439 1.116175 



Parameters (Session):
par1 = 8 ; par2 = 0 ;
Parameters (R input):
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ; par4 = 0 ; par5 = 0 ;
R code (references can be found in the software module):
library(lattice)
library(lmtest)
library(car)
library(MASS)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
mywarning <- ''
par1 <- as.numeric(par1)
if(is.na(par1)) {
par1 <- 1
mywarning = 'Warning: you did not specify the column number of the endogenous series! The first column was selected by default.'
}
if (par4=='') par4 <- 0
par4 <- as.numeric(par4)
if (par5=='') par5 <- 0
par5 <- as.numeric(par5)
x <- na.omit(t(y))
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'Seasonal Differences (s=12)'){
(n <- n - 12)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+12,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'First and Seasonal Differences (s=12)'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
(n <- n - 12)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+12,j] - x[i,j]
}
}
x <- x2
}
if(par4 > 0) {
x2 <- array(0, dim=c(n-par4,par4), dimnames=list(1:(n-par4), paste(colnames(x)[par1],'(t-',1:par4,')',sep='')))
for (i in 1:(n-par4)) {
for (j in 1:par4) {
x2[i,j] <- x[i+par4-j,par1]
}
}
x <- cbind(x[(par4+1):n,], x2)
n <- n - par4
}
if(par5 > 0) {
x2 <- array(0, dim=c(n-par5*12,par5), dimnames=list(1:(n-par5*12), paste(colnames(x)[par1],'(t-',1:par5,'s)',sep='')))
for (i in 1:(n-par5*12)) {
for (j in 1:par5) {
x2[i,j] <- x[i+par5*12-j*12,par1]
}
}
x <- cbind(x[(par5*12+1):n,], x2)
n <- n - par5*12
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
(k <- length(x[n,]))
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
print(x)
(k <- length(x[n,]))
head(x)
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
sresid <- studres(mylm)
hist(sresid, freq=FALSE, main='Distribution of Studentized Residuals')
xfit<-seq(min(sresid),max(sresid),length=40)
yfit<-dnorm(xfit)
lines(xfit, yfit)
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqPlot(mylm, main='QQ Plot')
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
print(z)
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, signif(mysum$coefficients[i,1],6), sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, mywarning)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Multiple Linear Regression - Ordinary Least Squares', 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,formatC(signif(mysum$coefficients[i,1],5),format='g',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,2],5),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,3],4),format='e',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4],4),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4]/2,4),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a,formatC(signif(sqrt(mysum$r.squared),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$adj.r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a,formatC(signif(mysum$fstatistic[1],6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[2],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[3],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a,formatC(signif(1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a,formatC(signif(mysum$sigma,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a,formatC(signif(sum(myerror*myerror),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
myr <- as.numeric(mysum$resid)
myr
if(n < 200) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,formatC(signif(x[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(x[i]-mysum$resid[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$resid[i],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,1],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,2],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,3],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant1,6))
a<-table.element(a,formatC(signif(numsignificant1/numgqtests,6),format='g',flag=' '))
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant5,6))
a<-table.element(a,signif(numsignificant5/numgqtests,6))
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant10,6))
a<-table.element(a,signif(numsignificant10/numgqtests,6))
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}
}
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of fitted values',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_fitted <- resettest(mylm,power=2:3,type='fitted')
a<-table.element(a,paste('
',RC.texteval('reset_test_fitted'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of regressors',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_regressors <- resettest(mylm,power=2:3,type='regressor')
a<-table.element(a,paste('
',RC.texteval('reset_test_regressors'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of principal components',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_principal_components <- resettest(mylm,power=2:3,type='princomp')
a<-table.element(a,paste('
',RC.texteval('reset_test_principal_components'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable8.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Variance Inflation Factors (Multicollinearity)',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
vif <- vif(mylm)
a<-table.element(a,paste('
',RC.texteval('vif'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable9.tab')