Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_pairs.wasp
Title produced by softwareKendall tau Correlation Matrix
Date of computationMon, 12 Dec 2016 22:53:38 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/12/t1481579661kszg6fnoyhgeybw.htm/, Retrieved Fri, 01 Nov 2024 03:45:12 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=299003, Retrieved Fri, 01 Nov 2024 03:45:12 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact126
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Kendall tau Correlation Matrix] [Correlation matri...] [2016-12-12 21:53:38] [e6dc02234f5305f92311fb16bc25f73e] [Current]
Feedback Forum

Post a new message
Dataseries X:
5	4	4	4
5	5	4	4
4	3	3	2
4	3	3	3
5	4	4	3
5	3	4	3
5	4	2	3
5	4	2	4
5	2	2	4
5	1	2	4
4	4	3	2
5	4	3	2
5	4	5	4
5	5	4	5
4	4	3	4
5	1	4	4
3	4	4	2
5	2	2	2
5	3	4	5
5	3	3	4
2	2	3	1
3	1	3	5
4	3	2	3
4	2	2	4
4	4	3	4
5	4	3	2
4	4	3	4
5	2	4	2
4	3	4	3
5	4	3	4
4	4	4	4
4	4	3	4
4	3	4	4
5	4	3	4
5	4	3	4
5	4	3	5
5	4	3	4
2	3	2	4
4	3	5	3
4	4	3	4
4	2	1	4
5	3	2	3
5	4	2	2
5	4	3	5
4	3	2	4
4	2	3	3
5	3	5	4
5	3	4	4
5	4	5	4
4	3	2	3
4	3	4	4
5	3	3	4
5	3	3	4
5	3	2	4
4	5	3	5
5	4	2	4
5	5	4	2
4	3	3	4
4	4	3	5
5	4	1	2
5	1	1	3
4	4	3	4
4	3	3	3
5	3	2	4
3	4	3	4
3	2	4	4
5	4	3	5
4	5	4	3
4	4	4	4
5	4	3	4
5	4	4	4
4	4	4	4
5	4	3	4
4	2	3	4
4	4	5	4
4	2	2	4
5	5	4	4
4	5	3	3
4	2	3	3
4	4	3	2
4	3	4	2
4	3	4	2
2	3	3	3
4	4	5	4
4	4	3	4
5	3	4	4
4	3	3	4
5	4	5	4
4	4	4	4
4	2	4	4
3	3	4	2
4	3	4	3
2	3	2	2
4	4	3	3
5	4	4	4
3	4	3	5
4	4	3	4
5	5	5	5
2	4	3	3
5	3	1	5
5	4	3	4
5	4	4	5
4	2	2	2
4	3	3	3
5	3	4	4
5	3	4	5
4	4	4	4
4	4	4	5
5	4	4	5
5	4	4	5
5	3	3	4
4	3	3	4
5	3	3	4
4	2	2	4
5	3	4	4
4	2	2	4
5	4	5	5
5	5	2	5
4	3	2	5
4	3	2	4
4	3	3	4
5	2	3	4
5	3	4	5
4	3	3	4
4	3	4	4
5	4	3	4
5	4	4	4
4	3	4	2
4	4	3	4
4	1	3	2
4	5	5	4
5	4	4	3
5	3	3	5
4	5	3	2
4	4	3	4
4	3	3	3
3	4	3	3
4	4	2	4
5	3	4	5
4	2	4	3
4	4	4	2
5	3	5	5
3	3	2	4
4	4	2	4
1	2	3	2
5	3	3	5
4	4	2	3
5	4	4	3
3	3	2	3
4	4	3	4
4	4	4	4
4	3	3	4
4	2	3	4
5	4	4	4
5	2	2	4
5	3	5	5
5	4	4	3
4	3	3	3
5	2	5	4
5	4	2	4
4	1	4	5
3	5	4	3
4	4	4	4
4	3	3	2
5	4	5	5
4	4	3	4
4	3	3	3




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center
R Framework error message
The field 'Names of X columns' contains a hard return which cannot be interpreted.
Please, resubmit your request without hard returns in the 'Names of X columns'.

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time1 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
R Framework error message & 
The field 'Names of X columns' contains a hard return which cannot be interpreted.
Please, resubmit your request without hard returns in the 'Names of X columns'.
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=299003&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]1 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [ROW]R Framework error message[/C][C]
The field 'Names of X columns' contains a hard return which cannot be interpreted.
Please, resubmit your request without hard returns in the 'Names of X columns'.
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=299003&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299003&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center
R Framework error message
The field 'Names of X columns' contains a hard return which cannot be interpreted.
Please, resubmit your request without hard returns in the 'Names of X columns'.







Correlations for all pairs of data series (method=kendall)
KVDD1KVDD2KVDD3KVDD4
KVDD110.1250.1350.283
KVDD20.12510.1960.1
KVDD30.1350.19610.123
KVDD4 0.2830.10.1231

\begin{tabular}{lllllllll}
\hline
Correlations for all pairs of data series (method=kendall) \tabularnewline
  & KVDD1 & KVDD2 & KVDD3 & KVDD4
 \tabularnewline
KVDD1 & 1 & 0.125 & 0.135 & 0.283 \tabularnewline
KVDD2 & 0.125 & 1 & 0.196 & 0.1 \tabularnewline
KVDD3 & 0.135 & 0.196 & 1 & 0.123 \tabularnewline
KVDD4
 & 0.283 & 0.1 & 0.123 & 1 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299003&T=1

[TABLE]
[ROW][C]Correlations for all pairs of data series (method=kendall)[/C][/ROW]
[ROW][C] [/C][C]KVDD1[/C][C]KVDD2[/C][C]KVDD3[/C][C]KVDD4
[/C][/ROW]
[ROW][C]KVDD1[/C][C]1[/C][C]0.125[/C][C]0.135[/C][C]0.283[/C][/ROW]
[ROW][C]KVDD2[/C][C]0.125[/C][C]1[/C][C]0.196[/C][C]0.1[/C][/ROW]
[ROW][C]KVDD3[/C][C]0.135[/C][C]0.196[/C][C]1[/C][C]0.123[/C][/ROW]
[ROW][C]KVDD4
[/C][C]0.283[/C][C]0.1[/C][C]0.123[/C][C]1[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299003&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299003&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Correlations for all pairs of data series (method=kendall)
KVDD1KVDD2KVDD3KVDD4
KVDD110.1250.1350.283
KVDD20.12510.1960.1
KVDD30.1350.19610.123
KVDD4 0.2830.10.1231







Correlations for all pairs of data series with p-values
pairPearson rSpearman rhoKendall tau
KVDD1;KVDD20.14560.13890.1245
p-value(0.0604)(0.0735)(0.0727)
KVDD1;KVDD30.14530.15060.1349
p-value(0.061)(0.0521)(0.0506)
KVDD1;KVDD4 0.3310.31060.283
p-value(0)(0)(0)
KVDD2;KVDD30.2420.22580.1959
p-value(0.0016)(0.0034)(0.0033)
KVDD2;KVDD4 0.10650.11470.1004
p-value(0.1707)(0.1398)(0.134)
KVDD3;KVDD4 0.14730.1440.1227
p-value(0.0575)(0.0633)(0.0655)

\begin{tabular}{lllllllll}
\hline
Correlations for all pairs of data series with p-values \tabularnewline
pair & Pearson r & Spearman rho & Kendall tau \tabularnewline
KVDD1;KVDD2 & 0.1456 & 0.1389 & 0.1245 \tabularnewline
p-value & (0.0604) & (0.0735) & (0.0727) \tabularnewline
KVDD1;KVDD3 & 0.1453 & 0.1506 & 0.1349 \tabularnewline
p-value & (0.061) & (0.0521) & (0.0506) \tabularnewline
KVDD1;KVDD4
 & 0.331 & 0.3106 & 0.283 \tabularnewline
p-value & (0) & (0) & (0) \tabularnewline
KVDD2;KVDD3 & 0.242 & 0.2258 & 0.1959 \tabularnewline
p-value & (0.0016) & (0.0034) & (0.0033) \tabularnewline
KVDD2;KVDD4
 & 0.1065 & 0.1147 & 0.1004 \tabularnewline
p-value & (0.1707) & (0.1398) & (0.134) \tabularnewline
KVDD3;KVDD4
 & 0.1473 & 0.144 & 0.1227 \tabularnewline
p-value & (0.0575) & (0.0633) & (0.0655) \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299003&T=2

[TABLE]
[ROW][C]Correlations for all pairs of data series with p-values[/C][/ROW]
[ROW][C]pair[/C][C]Pearson r[/C][C]Spearman rho[/C][C]Kendall tau[/C][/ROW]
[ROW][C]KVDD1;KVDD2[/C][C]0.1456[/C][C]0.1389[/C][C]0.1245[/C][/ROW]
[ROW][C]p-value[/C][C](0.0604)[/C][C](0.0735)[/C][C](0.0727)[/C][/ROW]
[ROW][C]KVDD1;KVDD3[/C][C]0.1453[/C][C]0.1506[/C][C]0.1349[/C][/ROW]
[ROW][C]p-value[/C][C](0.061)[/C][C](0.0521)[/C][C](0.0506)[/C][/ROW]
[ROW][C]KVDD1;KVDD4
[/C][C]0.331[/C][C]0.3106[/C][C]0.283[/C][/ROW]
[ROW][C]p-value[/C][C](0)[/C][C](0)[/C][C](0)[/C][/ROW]
[ROW][C]KVDD2;KVDD3[/C][C]0.242[/C][C]0.2258[/C][C]0.1959[/C][/ROW]
[ROW][C]p-value[/C][C](0.0016)[/C][C](0.0034)[/C][C](0.0033)[/C][/ROW]
[ROW][C]KVDD2;KVDD4
[/C][C]0.1065[/C][C]0.1147[/C][C]0.1004[/C][/ROW]
[ROW][C]p-value[/C][C](0.1707)[/C][C](0.1398)[/C][C](0.134)[/C][/ROW]
[ROW][C]KVDD3;KVDD4
[/C][C]0.1473[/C][C]0.144[/C][C]0.1227[/C][/ROW]
[ROW][C]p-value[/C][C](0.0575)[/C][C](0.0633)[/C][C](0.0655)[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299003&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299003&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Correlations for all pairs of data series with p-values
pairPearson rSpearman rhoKendall tau
KVDD1;KVDD20.14560.13890.1245
p-value(0.0604)(0.0735)(0.0727)
KVDD1;KVDD30.14530.15060.1349
p-value(0.061)(0.0521)(0.0506)
KVDD1;KVDD4 0.3310.31060.283
p-value(0)(0)(0)
KVDD2;KVDD30.2420.22580.1959
p-value(0.0016)(0.0034)(0.0033)
KVDD2;KVDD4 0.10650.11470.1004
p-value(0.1707)(0.1398)(0.134)
KVDD3;KVDD4 0.14730.1440.1227
p-value(0.0575)(0.0633)(0.0655)







Meta Analysis of Correlation Tests
Number of significant by total number of Correlations
Type I errorPearson rSpearman rhoKendall tau
0.010.330.330.33
0.020.330.330.33
0.030.330.330.33
0.040.330.330.33
0.050.330.330.33
0.060.50.50.5
0.070.830.670.67
0.080.830.830.83
0.090.830.830.83
0.10.830.830.83

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Correlation Tests \tabularnewline
Number of significant by total number of Correlations \tabularnewline
Type I error & Pearson r & Spearman rho & Kendall tau \tabularnewline
0.01 & 0.33 & 0.33 & 0.33 \tabularnewline
0.02 & 0.33 & 0.33 & 0.33 \tabularnewline
0.03 & 0.33 & 0.33 & 0.33 \tabularnewline
0.04 & 0.33 & 0.33 & 0.33 \tabularnewline
0.05 & 0.33 & 0.33 & 0.33 \tabularnewline
0.06 & 0.5 & 0.5 & 0.5 \tabularnewline
0.07 & 0.83 & 0.67 & 0.67 \tabularnewline
0.08 & 0.83 & 0.83 & 0.83 \tabularnewline
0.09 & 0.83 & 0.83 & 0.83 \tabularnewline
0.1 & 0.83 & 0.83 & 0.83 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299003&T=3

[TABLE]
[ROW][C]Meta Analysis of Correlation Tests[/C][/ROW]
[ROW][C]Number of significant by total number of Correlations[/C][/ROW]
[ROW][C]Type I error[/C][C]Pearson r[/C][C]Spearman rho[/C][C]Kendall tau[/C][/ROW]
[ROW][C]0.01[/C][C]0.33[/C][C]0.33[/C][C]0.33[/C][/ROW]
[ROW][C]0.02[/C][C]0.33[/C][C]0.33[/C][C]0.33[/C][/ROW]
[ROW][C]0.03[/C][C]0.33[/C][C]0.33[/C][C]0.33[/C][/ROW]
[ROW][C]0.04[/C][C]0.33[/C][C]0.33[/C][C]0.33[/C][/ROW]
[ROW][C]0.05[/C][C]0.33[/C][C]0.33[/C][C]0.33[/C][/ROW]
[ROW][C]0.06[/C][C]0.5[/C][C]0.5[/C][C]0.5[/C][/ROW]
[ROW][C]0.07[/C][C]0.83[/C][C]0.67[/C][C]0.67[/C][/ROW]
[ROW][C]0.08[/C][C]0.83[/C][C]0.83[/C][C]0.83[/C][/ROW]
[ROW][C]0.09[/C][C]0.83[/C][C]0.83[/C][C]0.83[/C][/ROW]
[ROW][C]0.1[/C][C]0.83[/C][C]0.83[/C][C]0.83[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299003&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299003&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Correlation Tests
Number of significant by total number of Correlations
Type I errorPearson rSpearman rhoKendall tau
0.010.330.330.33
0.020.330.330.33
0.030.330.330.33
0.040.330.330.33
0.050.330.330.33
0.060.50.50.5
0.070.830.670.67
0.080.830.830.83
0.090.830.830.83
0.10.830.830.83



Parameters (Session):
par1 = kendall ;
Parameters (R input):
par1 = kendall ;
R code (references can be found in the software module):
par1 <- 'pearson'
panel.tau <- function(x, y, digits=2, prefix='', cex.cor)
{
usr <- par('usr'); on.exit(par(usr))
par(usr = c(0, 1, 0, 1))
rr <- cor.test(x, y, method=par1)
r <- round(rr$p.value,2)
txt <- format(c(r, 0.123456789), digits=digits)[1]
txt <- paste(prefix, txt, sep='')
if(missing(cex.cor)) cex <- 0.5/strwidth(txt)
text(0.5, 0.5, txt, cex = cex)
}
panel.hist <- function(x, ...)
{
usr <- par('usr'); on.exit(par(usr))
par(usr = c(usr[1:2], 0, 1.5) )
h <- hist(x, plot = FALSE)
breaks <- h$breaks; nB <- length(breaks)
y <- h$counts; y <- y/max(y)
rect(breaks[-nB], 0, breaks[-1], y, col='grey', ...)
}
x <- na.omit(x)
y <- t(na.omit(t(y)))
bitmap(file='test1.png')
pairs(t(y),diag.panel=panel.hist, upper.panel=panel.smooth, lower.panel=panel.tau, main=main)
dev.off()
load(file='createtable')
n <- length(y[,1])
print(n)
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,paste('Correlations for all pairs of data series (method=',par1,')',sep=''),n+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,' ',header=TRUE)
for (i in 1:n) {
a<-table.element(a,dimnames(t(x))[[2]][i],header=TRUE)
}
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,dimnames(t(x))[[2]][i],header=TRUE)
for (j in 1:n) {
r <- cor.test(y[i,],y[j,],method=par1)
a<-table.element(a,round(r$estimate,3))
}
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
ncorrs <- (n*n -n)/2
mycorrs <- array(0, dim=c(10,3))
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Correlations for all pairs of data series with p-values',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'pair',1,TRUE)
a<-table.element(a,'Pearson r',1,TRUE)
a<-table.element(a,'Spearman rho',1,TRUE)
a<-table.element(a,'Kendall tau',1,TRUE)
a<-table.row.end(a)
cor.test(y[1,],y[2,],method=par1)
for (i in 1:(n-1))
{
for (j in (i+1):n)
{
a<-table.row.start(a)
dum <- paste(dimnames(t(x))[[2]][i],';',dimnames(t(x))[[2]][j],sep='')
a<-table.element(a,dum,header=TRUE)
rp <- cor.test(y[i,],y[j,],method='pearson')
a<-table.element(a,round(rp$estimate,4))
rs <- cor.test(y[i,],y[j,],method='spearman')
a<-table.element(a,round(rs$estimate,4))
rk <- cor.test(y[i,],y[j,],method='kendall')
a<-table.element(a,round(rk$estimate,4))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value',header=T)
a<-table.element(a,paste('(',round(rp$p.value,4),')',sep=''))
a<-table.element(a,paste('(',round(rs$p.value,4),')',sep=''))
a<-table.element(a,paste('(',round(rk$p.value,4),')',sep=''))
a<-table.row.end(a)
for (iii in 1:10) {
iiid100 <- iii / 100
if (rp$p.value < iiid100) mycorrs[iii, 1] = mycorrs[iii, 1] + 1
if (rs$p.value < iiid100) mycorrs[iii, 2] = mycorrs[iii, 2] + 1
if (rk$p.value < iiid100) mycorrs[iii, 3] = mycorrs[iii, 3] + 1
}
}
}
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Correlation Tests',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Number of significant by total number of Correlations',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Type I error',1,TRUE)
a<-table.element(a,'Pearson r',1,TRUE)
a<-table.element(a,'Spearman rho',1,TRUE)
a<-table.element(a,'Kendall tau',1,TRUE)
a<-table.row.end(a)
for (iii in 1:10) {
iiid100 <- iii / 100
a<-table.row.start(a)
a<-table.element(a,round(iiid100,2),header=T)
a<-table.element(a,round(mycorrs[iii,1]/ncorrs,2))
a<-table.element(a,round(mycorrs[iii,2]/ncorrs,2))
a<-table.element(a,round(mycorrs[iii,3]/ncorrs,2))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')