Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_structuraltimeseries.wasp
Title produced by softwareStructural Time Series Models
Date of computationMon, 12 Dec 2016 21:59:46 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/12/t1481576866tebcxsvg7se3zx6.htm/, Retrieved Fri, 01 Nov 2024 03:29:43 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=298992, Retrieved Fri, 01 Nov 2024 03:29:43 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact113
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Structural Time Series Models] [structural time s...] [2016-12-12 20:59:46] [130d73899007e5ff8a4f636b9bcfb397] [Current]
Feedback Forum

Post a new message
Dataseries X:
5483.5
5386.2
5781.8
5137.4
5001.7
5123.8
5340
5696.4
5544.7
5747.6
5487.4
5590.1
5571.9
5363.1
6014.1
5480.4
5907.5
5772.2
5620
6614.7
6294.7
5938.3
5722.6
5595.6
5569.5
5753.7
5838.8
5401.1
6013.9
5461.1
5176.3
5916.5
5519.5
5873.9
5663.8
5339
5671.2
5741
5881.3
5531.2
5811.2
5391.4
5461.2
6091.3
5951
6511.7
6371.4
5601.2
6001.2
5920.7
5455.2
5703.8
5863
5762.9
5997.8
6542.7
6594.5
6915.1
6584.6
6412.2
5930.1
6022.3
6268.6
6179.9
6608.6
6424
6230.8
6628.2
6576.2
6947
6672.8
6249.9
5964.2
5840.1
6115.2
5800.5
6566.6
6377.3
6355.2
6999.3
6603.7
6998.3
6966.2
6383.3
5960
5682.1
5640.2
5694.1
6392.4
5835.3
6075.6
7387.1
6632.6
7048.1
6792.1
6094
6408.3
6492.1
6596.8
6078.2
6297.3
5960.8
6125.1
7253.4
6505.8
7419.5
7308.2
6373.1
6667.4
6518.6
6324.8
6764.1
6985
6091.5
6526
7116.9
6770.3
7221.9
7344.5
6565.6
6577.3
6597.8
6560.6
6729.2
6703.2
6716.1




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time4 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298992&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]4 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=298992&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298992&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R ServerBig Analytics Cloud Computing Center







Structural Time Series Model -- Interpolation
tObservedLevelSlopeSeasonalStand. Residuals
15483.55483.5000
25386.25405.62919465817-3.97125551191005-16.57562935917-0.279659934908486
35781.85646.877542366196.2668690354072121.448253134351.19462467612697
45137.45346.174779018390.332047588776368-188.427733960698-1.66510422325749
55001.75089.33620151637-2.17294695587215-70.1923857173846-1.40704324968677
65123.85080.30437781093-2.2270101206700943.9614942196044-0.0375115913749187
753405246.24903823917-0.86324147250872482.33741027552170.919231997431227
85696.45555.245449750681.73877434023656120.1369792035561.69325530724594
95544.75586.195955974341.9859247975116-43.47704551420580.159619781810071
105747.65692.508838655382.8633197855986848.01579955703310.570065477483767
115487.45573.325493656121.84626128237578-77.648047698989-0.666890226960376
125590.15568.502912694281.7911841801426122.0493970163255-0.0364398455613522
135571.95575.866376404411.58029956804877-4.350628155158850.034205544222462
145363.15510.18086436780.947192712978969-143.012803616974-0.35016071345266
156014.15673.896987695814.5366189931679330.9993434048280.82487578593245
165480.45630.142377516983.71894745635124-146.808384788423-0.258348409782091
175907.55825.367889605645.6330583010385570.10288937387981.0441780724151
185772.25822.455252159225.57798421579845-49.7147910386508-0.0467065081168321
1956205711.583387110094.9389907725558-84.213717097304-0.636310340420683
206614.76175.364507121937.50923059491948410.3112734947792.50630889562279
216294.76343.811558144528.47025924110312-59.28694243567920.879004062562281
225938.36073.469736600836.76686056480512-117.541408591687-1.52307376082725
235722.65879.778648917145.78899238945895-144.496146162058-1.09455658187813
245595.65672.017880664435.82928698300218-62.8796960066357-1.16691470181424
255569.55590.864336305336.69369745054312-15.7472420060919-0.489405371904228
265753.75802.353797006687.44146974007388-61.32444919091491.10222141036132
275838.85640.505262806345.18876526693724208.272718411397-0.88505712477929
285401.15607.385016195114.6678246007725-203.981514728752-0.204464349193213
296013.95792.713582998516.47130991573566210.0444280329930.981253524488364
305461.15643.344901079925.4032553892505-172.538041500745-0.850884431636947
315176.35519.596751900724.71121075511934-335.232708379575-0.70571328628277
325916.55530.97877877244.74472571574524385.1045897785990.0364493489402426
335519.55495.224094008554.5398573688330826.8050031149615-0.22127047583728
345873.95732.399271250525.61373082144593126.9720702294041.27060271031488
355663.85752.874934837955.65501624867034-90.00344008113380.0811049692009676
3653395542.056629667195.80373530747242-189.501003584983-1.18379968964953
375671.25644.61290499175.5210998125149820.49058206007160.53292629050544
3857415709.978758150315.7015155639614527.32594320896470.323491589252076
395881.35698.029155705235.54021382858497184.331575143704-0.0937497104352906
405531.25753.679801087366.08100262464094-225.5021710718120.268118910452264
415811.25629.376127498814.8764829523127189.814104796715-0.706528939033226
425391.45551.153165670194.29240656591411-154.610043096229-0.453150959109395
435461.25688.246310873055.02543771911598-235.2962718087750.725520041880865
446091.35715.573532357485.13246599119786374.3395153796650.121879781197066
4559515893.385309090995.8836017827655846.87336049240650.943508492082755
466511.76194.05950794686.91956873513495299.3037849699741.60960462486615
476371.46342.579419322767.1853694455355920.01108510057640.77266405051984
485601.26066.283736726367.20511437392696-447.419529308081-1.54898725636594
496001.26012.36181680467.22468738178047-7.3500860221252-0.334258704575335
505920.75938.503616308816.97684485124638-12.8083634242165-0.438727533559538
515455.25535.394648089484.09714108859109-55.3301653246695-2.19559877740914
525703.85692.123977121655.43817476578372.429636081004050.819288009655487
5358635675.673463480995.25640996317069188.665291413842-0.11851097800875
545762.95842.179741762996.36456542089036-89.22592882511690.878377403392338
555997.86102.541577947157.77230858835721-120.4762654931611.38709976528637
566542.76225.984130365938.30553460242462309.5384381849020.632079268725785
576594.56506.770357497689.3517371057879170.81460374507881.48856095724959
586915.16623.349352725949.6585467622141285.0945828700790.585336211836914
596584.66543.133826913889.5169198860142847.0455315911486-0.490369932497134
606412.26708.614767731869.59938485742508-306.1034393467410.851371963661357
615930.16235.589421963649.18594347977328-275.547137111462-2.63127149057934
626022.35991.026145427998.3966031801619146.8869448199953-1.37389809232702
636268.66197.448687660599.5517722311213259.08978333058651.06500160792244
646179.96204.043457462299.52992995851759-23.9636864997092-0.015916333604487
656608.66377.9599945942810.7483691615598220.5876066296420.89005876751679
6664246537.3795452949911.7169692355438-122.5328588565860.809255154531622
676230.86488.526292191711.3895868325154-253.981079020378-0.330610205420505
686628.26458.3190066731811.2060963572839172.458064416979-0.227235486032137
696576.26511.4814161618611.352788925084762.11772286624820.229142014345655
7069476594.6693285783611.5337354577973347.8777204465290.392054544656534
716672.86629.5562306294111.569590892663941.79614642396830.127398945438501
726249.96472.3463939246211.4044844442452-211.984039816176-0.920604523038144
735964.26280.2013388776511.1067273754111-303.408360161987-1.10826315490061
745840.16025.4981485227910.2800542534063-169.052843397527-1.44012029974527
756115.26032.0638699849210.261159126593583.3629598974453-0.020032377716032
765800.55955.249559682639.70506034189544-149.441885277192-0.469721965597753
776566.66208.1097689368911.3171922963297343.6138310413151.31711190897141
786377.36388.2622044940712.3425521346134-21.3467101133140.918592868129537
796355.26532.204522364713.0224758409603-185.130841065570.717931896882496
806999.36738.5901735145413.8357484194054248.7452158784671.05586706520438
816603.76666.2223283334613.5539998737849-57.1846692501949-0.470643725639255
826998.36652.5295580289213.4897264571311347.457615290412-0.148674219211461
836966.26765.3345751692413.6486350487173194.7161499885460.541684377646557
846383.36619.2880719338213.4402124165619-226.104286139519-0.870562052461129
8559606340.4425491103712.9129985330872-362.390073029585-1.59041543562383
865682.16027.1935355682511.9113371924686-325.042163364162-1.76819487609165
875640.25719.3512823362810.449917264155-59.5912348310317-1.72786858285582
885694.15831.3588450645611.023058263486-143.4613332365670.548790318620442
896392.46016.6898009901412.0626681396454365.0385348548790.94472423846835
905835.35981.3567272097511.796448393975-143.142982179486-0.257805490987477
916075.66185.6633888181612.7361862211005-121.9394768463641.04972228662609
927387.16748.9836413617514.9399740992303604.0829069019743.00516980557008
936632.66770.5109489404714.9604767005879-138.3184440003460.0359529349417203
947048.16750.8574293331914.8809713864233299.384035067107-0.188834445509987
956792.16611.9808329271814.619580935483189.630300053099-0.838439131148741
9660946347.5480478663714.1884717964168-236.297130919403-1.52062574254992
976408.36486.4979714965814.4388574976382-85.89544668281790.678681831453365
986492.16632.0636391897114.8337959009322-148.0243586099630.711276734020366
996596.86694.3168918157215.0322408087852-100.4211263664290.256610357616198
1006078.26463.5548745447413.7859732003394-370.321101150532-1.33002057965445
1016297.36142.5166313139211.9774018281929175.297071062148-1.81577436747434
1025960.86173.0688608536812.0736648400679-213.4105673365530.101025846606904
1036125.16347.3646998224712.8175441431995-232.2653774341520.884214905183715
1047253.46540.8845207484713.5055745839926701.3548966410130.985893394195964
1056505.86602.5505202952213.6499946926408-99.72736866570820.262772083014682
1067419.56866.6504918676714.2217189155101537.3665091518951.36602625040489
1077308.26989.7509219097314.4181119550264311.7193442101580.59359088631095
1086373.16820.2548818714314.1012677236387-435.795316262299-1.0019215873572
1096667.46801.5434048899114.0313190144506-132.120337145108-0.178480301932643
1106518.66717.6251918028813.7430051602856-193.003705824426-0.531589223811391
1116324.86466.3196541852312.7143413675819-125.271771988497-1.43589746529552
1126764.16767.3976125908514.0447659058359-20.95561309695511.56207625873531
11369856836.4116826945314.3155225348079145.2182216435830.298268391258128
1146091.56581.392632624413.0267279068593-473.3381857058-1.46485509787123
11565266713.7439470541613.539717777019-195.096514794640.650191682165255
1167116.96582.9794574217113.0167374385239542.827230247611-0.787023289340973
1176770.36805.1048162914513.6250158989463-47.72148005199841.1406073613462
1187221.96771.7522952781413.5175090116566453.050059557113-0.256176952492131
1197344.56881.1736663962513.6994786338652457.4023928734240.522755775411064
1206565.66949.8173497545413.8014094703147-387.6087734760050.299268075660166
1216577.36784.9807790267613.4068800281403-196.671842191004-0.971685730023082
1226597.86736.7700728441713.2299282370611-135.181698067072-0.334565075293914
1236560.66772.8837819726113.313046390029-213.6876189103640.124081755230277
1246729.26764.084983201813.2192838660285-33.5296892826118-0.119886988890024
1256703.26591.3757212988512.3786587178608123.230360999104-1.00937233832462
1266716.16951.386474796213.9184961958628-256.6552482246151.89078488845357

\begin{tabular}{lllllllll}
\hline
Structural Time Series Model -- Interpolation \tabularnewline
t & Observed & Level & Slope & Seasonal & Stand. Residuals \tabularnewline
1 & 5483.5 & 5483.5 & 0 & 0 & 0 \tabularnewline
2 & 5386.2 & 5405.62919465817 & -3.97125551191005 & -16.57562935917 & -0.279659934908486 \tabularnewline
3 & 5781.8 & 5646.87754236619 & 6.2668690354072 & 121.44825313435 & 1.19462467612697 \tabularnewline
4 & 5137.4 & 5346.17477901839 & 0.332047588776368 & -188.427733960698 & -1.66510422325749 \tabularnewline
5 & 5001.7 & 5089.33620151637 & -2.17294695587215 & -70.1923857173846 & -1.40704324968677 \tabularnewline
6 & 5123.8 & 5080.30437781093 & -2.22701012067009 & 43.9614942196044 & -0.0375115913749187 \tabularnewline
7 & 5340 & 5246.24903823917 & -0.863241472508724 & 82.3374102755217 & 0.919231997431227 \tabularnewline
8 & 5696.4 & 5555.24544975068 & 1.73877434023656 & 120.136979203556 & 1.69325530724594 \tabularnewline
9 & 5544.7 & 5586.19595597434 & 1.9859247975116 & -43.4770455142058 & 0.159619781810071 \tabularnewline
10 & 5747.6 & 5692.50883865538 & 2.86331978559868 & 48.0157995570331 & 0.570065477483767 \tabularnewline
11 & 5487.4 & 5573.32549365612 & 1.84626128237578 & -77.648047698989 & -0.666890226960376 \tabularnewline
12 & 5590.1 & 5568.50291269428 & 1.79118418014261 & 22.0493970163255 & -0.0364398455613522 \tabularnewline
13 & 5571.9 & 5575.86637640441 & 1.58029956804877 & -4.35062815515885 & 0.034205544222462 \tabularnewline
14 & 5363.1 & 5510.1808643678 & 0.947192712978969 & -143.012803616974 & -0.35016071345266 \tabularnewline
15 & 6014.1 & 5673.89698769581 & 4.5366189931679 & 330.999343404828 & 0.82487578593245 \tabularnewline
16 & 5480.4 & 5630.14237751698 & 3.71894745635124 & -146.808384788423 & -0.258348409782091 \tabularnewline
17 & 5907.5 & 5825.36788960564 & 5.63305830103855 & 70.1028893738798 & 1.0441780724151 \tabularnewline
18 & 5772.2 & 5822.45525215922 & 5.57798421579845 & -49.7147910386508 & -0.0467065081168321 \tabularnewline
19 & 5620 & 5711.58338711009 & 4.9389907725558 & -84.213717097304 & -0.636310340420683 \tabularnewline
20 & 6614.7 & 6175.36450712193 & 7.50923059491948 & 410.311273494779 & 2.50630889562279 \tabularnewline
21 & 6294.7 & 6343.81155814452 & 8.47025924110312 & -59.2869424356792 & 0.879004062562281 \tabularnewline
22 & 5938.3 & 6073.46973660083 & 6.76686056480512 & -117.541408591687 & -1.52307376082725 \tabularnewline
23 & 5722.6 & 5879.77864891714 & 5.78899238945895 & -144.496146162058 & -1.09455658187813 \tabularnewline
24 & 5595.6 & 5672.01788066443 & 5.82928698300218 & -62.8796960066357 & -1.16691470181424 \tabularnewline
25 & 5569.5 & 5590.86433630533 & 6.69369745054312 & -15.7472420060919 & -0.489405371904228 \tabularnewline
26 & 5753.7 & 5802.35379700668 & 7.44146974007388 & -61.3244491909149 & 1.10222141036132 \tabularnewline
27 & 5838.8 & 5640.50526280634 & 5.18876526693724 & 208.272718411397 & -0.88505712477929 \tabularnewline
28 & 5401.1 & 5607.38501619511 & 4.6678246007725 & -203.981514728752 & -0.204464349193213 \tabularnewline
29 & 6013.9 & 5792.71358299851 & 6.47130991573566 & 210.044428032993 & 0.981253524488364 \tabularnewline
30 & 5461.1 & 5643.34490107992 & 5.4032553892505 & -172.538041500745 & -0.850884431636947 \tabularnewline
31 & 5176.3 & 5519.59675190072 & 4.71121075511934 & -335.232708379575 & -0.70571328628277 \tabularnewline
32 & 5916.5 & 5530.9787787724 & 4.74472571574524 & 385.104589778599 & 0.0364493489402426 \tabularnewline
33 & 5519.5 & 5495.22409400855 & 4.53985736883308 & 26.8050031149615 & -0.22127047583728 \tabularnewline
34 & 5873.9 & 5732.39927125052 & 5.61373082144593 & 126.972070229404 & 1.27060271031488 \tabularnewline
35 & 5663.8 & 5752.87493483795 & 5.65501624867034 & -90.0034400811338 & 0.0811049692009676 \tabularnewline
36 & 5339 & 5542.05662966719 & 5.80373530747242 & -189.501003584983 & -1.18379968964953 \tabularnewline
37 & 5671.2 & 5644.6129049917 & 5.52109981251498 & 20.4905820600716 & 0.53292629050544 \tabularnewline
38 & 5741 & 5709.97875815031 & 5.70151556396145 & 27.3259432089647 & 0.323491589252076 \tabularnewline
39 & 5881.3 & 5698.02915570523 & 5.54021382858497 & 184.331575143704 & -0.0937497104352906 \tabularnewline
40 & 5531.2 & 5753.67980108736 & 6.08100262464094 & -225.502171071812 & 0.268118910452264 \tabularnewline
41 & 5811.2 & 5629.37612749881 & 4.8764829523127 & 189.814104796715 & -0.706528939033226 \tabularnewline
42 & 5391.4 & 5551.15316567019 & 4.29240656591411 & -154.610043096229 & -0.453150959109395 \tabularnewline
43 & 5461.2 & 5688.24631087305 & 5.02543771911598 & -235.296271808775 & 0.725520041880865 \tabularnewline
44 & 6091.3 & 5715.57353235748 & 5.13246599119786 & 374.339515379665 & 0.121879781197066 \tabularnewline
45 & 5951 & 5893.38530909099 & 5.88360178276558 & 46.8733604924065 & 0.943508492082755 \tabularnewline
46 & 6511.7 & 6194.0595079468 & 6.91956873513495 & 299.303784969974 & 1.60960462486615 \tabularnewline
47 & 6371.4 & 6342.57941932276 & 7.18536944553559 & 20.0110851005764 & 0.77266405051984 \tabularnewline
48 & 5601.2 & 6066.28373672636 & 7.20511437392696 & -447.419529308081 & -1.54898725636594 \tabularnewline
49 & 6001.2 & 6012.3618168046 & 7.22468738178047 & -7.3500860221252 & -0.334258704575335 \tabularnewline
50 & 5920.7 & 5938.50361630881 & 6.97684485124638 & -12.8083634242165 & -0.438727533559538 \tabularnewline
51 & 5455.2 & 5535.39464808948 & 4.09714108859109 & -55.3301653246695 & -2.19559877740914 \tabularnewline
52 & 5703.8 & 5692.12397712165 & 5.4381747657837 & 2.42963608100405 & 0.819288009655487 \tabularnewline
53 & 5863 & 5675.67346348099 & 5.25640996317069 & 188.665291413842 & -0.11851097800875 \tabularnewline
54 & 5762.9 & 5842.17974176299 & 6.36456542089036 & -89.2259288251169 & 0.878377403392338 \tabularnewline
55 & 5997.8 & 6102.54157794715 & 7.77230858835721 & -120.476265493161 & 1.38709976528637 \tabularnewline
56 & 6542.7 & 6225.98413036593 & 8.30553460242462 & 309.538438184902 & 0.632079268725785 \tabularnewline
57 & 6594.5 & 6506.77035749768 & 9.35173710578791 & 70.8146037450788 & 1.48856095724959 \tabularnewline
58 & 6915.1 & 6623.34935272594 & 9.6585467622141 & 285.094582870079 & 0.585336211836914 \tabularnewline
59 & 6584.6 & 6543.13382691388 & 9.51691988601428 & 47.0455315911486 & -0.490369932497134 \tabularnewline
60 & 6412.2 & 6708.61476773186 & 9.59938485742508 & -306.103439346741 & 0.851371963661357 \tabularnewline
61 & 5930.1 & 6235.58942196364 & 9.18594347977328 & -275.547137111462 & -2.63127149057934 \tabularnewline
62 & 6022.3 & 5991.02614542799 & 8.39660318016191 & 46.8869448199953 & -1.37389809232702 \tabularnewline
63 & 6268.6 & 6197.44868766059 & 9.55177223112132 & 59.0897833305865 & 1.06500160792244 \tabularnewline
64 & 6179.9 & 6204.04345746229 & 9.52992995851759 & -23.9636864997092 & -0.015916333604487 \tabularnewline
65 & 6608.6 & 6377.95999459428 & 10.7483691615598 & 220.587606629642 & 0.89005876751679 \tabularnewline
66 & 6424 & 6537.37954529499 & 11.7169692355438 & -122.532858856586 & 0.809255154531622 \tabularnewline
67 & 6230.8 & 6488.5262921917 & 11.3895868325154 & -253.981079020378 & -0.330610205420505 \tabularnewline
68 & 6628.2 & 6458.31900667318 & 11.2060963572839 & 172.458064416979 & -0.227235486032137 \tabularnewline
69 & 6576.2 & 6511.48141616186 & 11.3527889250847 & 62.1177228662482 & 0.229142014345655 \tabularnewline
70 & 6947 & 6594.66932857836 & 11.5337354577973 & 347.877720446529 & 0.392054544656534 \tabularnewline
71 & 6672.8 & 6629.55623062941 & 11.5695908926639 & 41.7961464239683 & 0.127398945438501 \tabularnewline
72 & 6249.9 & 6472.34639392462 & 11.4044844442452 & -211.984039816176 & -0.920604523038144 \tabularnewline
73 & 5964.2 & 6280.20133887765 & 11.1067273754111 & -303.408360161987 & -1.10826315490061 \tabularnewline
74 & 5840.1 & 6025.49814852279 & 10.2800542534063 & -169.052843397527 & -1.44012029974527 \tabularnewline
75 & 6115.2 & 6032.06386998492 & 10.2611591265935 & 83.3629598974453 & -0.020032377716032 \tabularnewline
76 & 5800.5 & 5955.24955968263 & 9.70506034189544 & -149.441885277192 & -0.469721965597753 \tabularnewline
77 & 6566.6 & 6208.10976893689 & 11.3171922963297 & 343.613831041315 & 1.31711190897141 \tabularnewline
78 & 6377.3 & 6388.26220449407 & 12.3425521346134 & -21.346710113314 & 0.918592868129537 \tabularnewline
79 & 6355.2 & 6532.2045223647 & 13.0224758409603 & -185.13084106557 & 0.717931896882496 \tabularnewline
80 & 6999.3 & 6738.59017351454 & 13.8357484194054 & 248.745215878467 & 1.05586706520438 \tabularnewline
81 & 6603.7 & 6666.22232833346 & 13.5539998737849 & -57.1846692501949 & -0.470643725639255 \tabularnewline
82 & 6998.3 & 6652.52955802892 & 13.4897264571311 & 347.457615290412 & -0.148674219211461 \tabularnewline
83 & 6966.2 & 6765.33457516924 & 13.6486350487173 & 194.716149988546 & 0.541684377646557 \tabularnewline
84 & 6383.3 & 6619.28807193382 & 13.4402124165619 & -226.104286139519 & -0.870562052461129 \tabularnewline
85 & 5960 & 6340.44254911037 & 12.9129985330872 & -362.390073029585 & -1.59041543562383 \tabularnewline
86 & 5682.1 & 6027.19353556825 & 11.9113371924686 & -325.042163364162 & -1.76819487609165 \tabularnewline
87 & 5640.2 & 5719.35128233628 & 10.449917264155 & -59.5912348310317 & -1.72786858285582 \tabularnewline
88 & 5694.1 & 5831.35884506456 & 11.023058263486 & -143.461333236567 & 0.548790318620442 \tabularnewline
89 & 6392.4 & 6016.68980099014 & 12.0626681396454 & 365.038534854879 & 0.94472423846835 \tabularnewline
90 & 5835.3 & 5981.35672720975 & 11.796448393975 & -143.142982179486 & -0.257805490987477 \tabularnewline
91 & 6075.6 & 6185.66338881816 & 12.7361862211005 & -121.939476846364 & 1.04972228662609 \tabularnewline
92 & 7387.1 & 6748.98364136175 & 14.9399740992303 & 604.082906901974 & 3.00516980557008 \tabularnewline
93 & 6632.6 & 6770.51094894047 & 14.9604767005879 & -138.318444000346 & 0.0359529349417203 \tabularnewline
94 & 7048.1 & 6750.85742933319 & 14.8809713864233 & 299.384035067107 & -0.188834445509987 \tabularnewline
95 & 6792.1 & 6611.98083292718 & 14.619580935483 & 189.630300053099 & -0.838439131148741 \tabularnewline
96 & 6094 & 6347.54804786637 & 14.1884717964168 & -236.297130919403 & -1.52062574254992 \tabularnewline
97 & 6408.3 & 6486.49797149658 & 14.4388574976382 & -85.8954466828179 & 0.678681831453365 \tabularnewline
98 & 6492.1 & 6632.06363918971 & 14.8337959009322 & -148.024358609963 & 0.711276734020366 \tabularnewline
99 & 6596.8 & 6694.31689181572 & 15.0322408087852 & -100.421126366429 & 0.256610357616198 \tabularnewline
100 & 6078.2 & 6463.55487454474 & 13.7859732003394 & -370.321101150532 & -1.33002057965445 \tabularnewline
101 & 6297.3 & 6142.51663131392 & 11.9774018281929 & 175.297071062148 & -1.81577436747434 \tabularnewline
102 & 5960.8 & 6173.06886085368 & 12.0736648400679 & -213.410567336553 & 0.101025846606904 \tabularnewline
103 & 6125.1 & 6347.36469982247 & 12.8175441431995 & -232.265377434152 & 0.884214905183715 \tabularnewline
104 & 7253.4 & 6540.88452074847 & 13.5055745839926 & 701.354896641013 & 0.985893394195964 \tabularnewline
105 & 6505.8 & 6602.55052029522 & 13.6499946926408 & -99.7273686657082 & 0.262772083014682 \tabularnewline
106 & 7419.5 & 6866.65049186767 & 14.2217189155101 & 537.366509151895 & 1.36602625040489 \tabularnewline
107 & 7308.2 & 6989.75092190973 & 14.4181119550264 & 311.719344210158 & 0.59359088631095 \tabularnewline
108 & 6373.1 & 6820.25488187143 & 14.1012677236387 & -435.795316262299 & -1.0019215873572 \tabularnewline
109 & 6667.4 & 6801.54340488991 & 14.0313190144506 & -132.120337145108 & -0.178480301932643 \tabularnewline
110 & 6518.6 & 6717.62519180288 & 13.7430051602856 & -193.003705824426 & -0.531589223811391 \tabularnewline
111 & 6324.8 & 6466.31965418523 & 12.7143413675819 & -125.271771988497 & -1.43589746529552 \tabularnewline
112 & 6764.1 & 6767.39761259085 & 14.0447659058359 & -20.9556130969551 & 1.56207625873531 \tabularnewline
113 & 6985 & 6836.41168269453 & 14.3155225348079 & 145.218221643583 & 0.298268391258128 \tabularnewline
114 & 6091.5 & 6581.3926326244 & 13.0267279068593 & -473.3381857058 & -1.46485509787123 \tabularnewline
115 & 6526 & 6713.74394705416 & 13.539717777019 & -195.09651479464 & 0.650191682165255 \tabularnewline
116 & 7116.9 & 6582.97945742171 & 13.0167374385239 & 542.827230247611 & -0.787023289340973 \tabularnewline
117 & 6770.3 & 6805.10481629145 & 13.6250158989463 & -47.7214800519984 & 1.1406073613462 \tabularnewline
118 & 7221.9 & 6771.75229527814 & 13.5175090116566 & 453.050059557113 & -0.256176952492131 \tabularnewline
119 & 7344.5 & 6881.17366639625 & 13.6994786338652 & 457.402392873424 & 0.522755775411064 \tabularnewline
120 & 6565.6 & 6949.81734975454 & 13.8014094703147 & -387.608773476005 & 0.299268075660166 \tabularnewline
121 & 6577.3 & 6784.98077902676 & 13.4068800281403 & -196.671842191004 & -0.971685730023082 \tabularnewline
122 & 6597.8 & 6736.77007284417 & 13.2299282370611 & -135.181698067072 & -0.334565075293914 \tabularnewline
123 & 6560.6 & 6772.88378197261 & 13.313046390029 & -213.687618910364 & 0.124081755230277 \tabularnewline
124 & 6729.2 & 6764.0849832018 & 13.2192838660285 & -33.5296892826118 & -0.119886988890024 \tabularnewline
125 & 6703.2 & 6591.37572129885 & 12.3786587178608 & 123.230360999104 & -1.00937233832462 \tabularnewline
126 & 6716.1 & 6951.3864747962 & 13.9184961958628 & -256.655248224615 & 1.89078488845357 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298992&T=1

[TABLE]
[ROW][C]Structural Time Series Model -- Interpolation[/C][/ROW]
[ROW][C]t[/C][C]Observed[/C][C]Level[/C][C]Slope[/C][C]Seasonal[/C][C]Stand. Residuals[/C][/ROW]
[ROW][C]1[/C][C]5483.5[/C][C]5483.5[/C][C]0[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]2[/C][C]5386.2[/C][C]5405.62919465817[/C][C]-3.97125551191005[/C][C]-16.57562935917[/C][C]-0.279659934908486[/C][/ROW]
[ROW][C]3[/C][C]5781.8[/C][C]5646.87754236619[/C][C]6.2668690354072[/C][C]121.44825313435[/C][C]1.19462467612697[/C][/ROW]
[ROW][C]4[/C][C]5137.4[/C][C]5346.17477901839[/C][C]0.332047588776368[/C][C]-188.427733960698[/C][C]-1.66510422325749[/C][/ROW]
[ROW][C]5[/C][C]5001.7[/C][C]5089.33620151637[/C][C]-2.17294695587215[/C][C]-70.1923857173846[/C][C]-1.40704324968677[/C][/ROW]
[ROW][C]6[/C][C]5123.8[/C][C]5080.30437781093[/C][C]-2.22701012067009[/C][C]43.9614942196044[/C][C]-0.0375115913749187[/C][/ROW]
[ROW][C]7[/C][C]5340[/C][C]5246.24903823917[/C][C]-0.863241472508724[/C][C]82.3374102755217[/C][C]0.919231997431227[/C][/ROW]
[ROW][C]8[/C][C]5696.4[/C][C]5555.24544975068[/C][C]1.73877434023656[/C][C]120.136979203556[/C][C]1.69325530724594[/C][/ROW]
[ROW][C]9[/C][C]5544.7[/C][C]5586.19595597434[/C][C]1.9859247975116[/C][C]-43.4770455142058[/C][C]0.159619781810071[/C][/ROW]
[ROW][C]10[/C][C]5747.6[/C][C]5692.50883865538[/C][C]2.86331978559868[/C][C]48.0157995570331[/C][C]0.570065477483767[/C][/ROW]
[ROW][C]11[/C][C]5487.4[/C][C]5573.32549365612[/C][C]1.84626128237578[/C][C]-77.648047698989[/C][C]-0.666890226960376[/C][/ROW]
[ROW][C]12[/C][C]5590.1[/C][C]5568.50291269428[/C][C]1.79118418014261[/C][C]22.0493970163255[/C][C]-0.0364398455613522[/C][/ROW]
[ROW][C]13[/C][C]5571.9[/C][C]5575.86637640441[/C][C]1.58029956804877[/C][C]-4.35062815515885[/C][C]0.034205544222462[/C][/ROW]
[ROW][C]14[/C][C]5363.1[/C][C]5510.1808643678[/C][C]0.947192712978969[/C][C]-143.012803616974[/C][C]-0.35016071345266[/C][/ROW]
[ROW][C]15[/C][C]6014.1[/C][C]5673.89698769581[/C][C]4.5366189931679[/C][C]330.999343404828[/C][C]0.82487578593245[/C][/ROW]
[ROW][C]16[/C][C]5480.4[/C][C]5630.14237751698[/C][C]3.71894745635124[/C][C]-146.808384788423[/C][C]-0.258348409782091[/C][/ROW]
[ROW][C]17[/C][C]5907.5[/C][C]5825.36788960564[/C][C]5.63305830103855[/C][C]70.1028893738798[/C][C]1.0441780724151[/C][/ROW]
[ROW][C]18[/C][C]5772.2[/C][C]5822.45525215922[/C][C]5.57798421579845[/C][C]-49.7147910386508[/C][C]-0.0467065081168321[/C][/ROW]
[ROW][C]19[/C][C]5620[/C][C]5711.58338711009[/C][C]4.9389907725558[/C][C]-84.213717097304[/C][C]-0.636310340420683[/C][/ROW]
[ROW][C]20[/C][C]6614.7[/C][C]6175.36450712193[/C][C]7.50923059491948[/C][C]410.311273494779[/C][C]2.50630889562279[/C][/ROW]
[ROW][C]21[/C][C]6294.7[/C][C]6343.81155814452[/C][C]8.47025924110312[/C][C]-59.2869424356792[/C][C]0.879004062562281[/C][/ROW]
[ROW][C]22[/C][C]5938.3[/C][C]6073.46973660083[/C][C]6.76686056480512[/C][C]-117.541408591687[/C][C]-1.52307376082725[/C][/ROW]
[ROW][C]23[/C][C]5722.6[/C][C]5879.77864891714[/C][C]5.78899238945895[/C][C]-144.496146162058[/C][C]-1.09455658187813[/C][/ROW]
[ROW][C]24[/C][C]5595.6[/C][C]5672.01788066443[/C][C]5.82928698300218[/C][C]-62.8796960066357[/C][C]-1.16691470181424[/C][/ROW]
[ROW][C]25[/C][C]5569.5[/C][C]5590.86433630533[/C][C]6.69369745054312[/C][C]-15.7472420060919[/C][C]-0.489405371904228[/C][/ROW]
[ROW][C]26[/C][C]5753.7[/C][C]5802.35379700668[/C][C]7.44146974007388[/C][C]-61.3244491909149[/C][C]1.10222141036132[/C][/ROW]
[ROW][C]27[/C][C]5838.8[/C][C]5640.50526280634[/C][C]5.18876526693724[/C][C]208.272718411397[/C][C]-0.88505712477929[/C][/ROW]
[ROW][C]28[/C][C]5401.1[/C][C]5607.38501619511[/C][C]4.6678246007725[/C][C]-203.981514728752[/C][C]-0.204464349193213[/C][/ROW]
[ROW][C]29[/C][C]6013.9[/C][C]5792.71358299851[/C][C]6.47130991573566[/C][C]210.044428032993[/C][C]0.981253524488364[/C][/ROW]
[ROW][C]30[/C][C]5461.1[/C][C]5643.34490107992[/C][C]5.4032553892505[/C][C]-172.538041500745[/C][C]-0.850884431636947[/C][/ROW]
[ROW][C]31[/C][C]5176.3[/C][C]5519.59675190072[/C][C]4.71121075511934[/C][C]-335.232708379575[/C][C]-0.70571328628277[/C][/ROW]
[ROW][C]32[/C][C]5916.5[/C][C]5530.9787787724[/C][C]4.74472571574524[/C][C]385.104589778599[/C][C]0.0364493489402426[/C][/ROW]
[ROW][C]33[/C][C]5519.5[/C][C]5495.22409400855[/C][C]4.53985736883308[/C][C]26.8050031149615[/C][C]-0.22127047583728[/C][/ROW]
[ROW][C]34[/C][C]5873.9[/C][C]5732.39927125052[/C][C]5.61373082144593[/C][C]126.972070229404[/C][C]1.27060271031488[/C][/ROW]
[ROW][C]35[/C][C]5663.8[/C][C]5752.87493483795[/C][C]5.65501624867034[/C][C]-90.0034400811338[/C][C]0.0811049692009676[/C][/ROW]
[ROW][C]36[/C][C]5339[/C][C]5542.05662966719[/C][C]5.80373530747242[/C][C]-189.501003584983[/C][C]-1.18379968964953[/C][/ROW]
[ROW][C]37[/C][C]5671.2[/C][C]5644.6129049917[/C][C]5.52109981251498[/C][C]20.4905820600716[/C][C]0.53292629050544[/C][/ROW]
[ROW][C]38[/C][C]5741[/C][C]5709.97875815031[/C][C]5.70151556396145[/C][C]27.3259432089647[/C][C]0.323491589252076[/C][/ROW]
[ROW][C]39[/C][C]5881.3[/C][C]5698.02915570523[/C][C]5.54021382858497[/C][C]184.331575143704[/C][C]-0.0937497104352906[/C][/ROW]
[ROW][C]40[/C][C]5531.2[/C][C]5753.67980108736[/C][C]6.08100262464094[/C][C]-225.502171071812[/C][C]0.268118910452264[/C][/ROW]
[ROW][C]41[/C][C]5811.2[/C][C]5629.37612749881[/C][C]4.8764829523127[/C][C]189.814104796715[/C][C]-0.706528939033226[/C][/ROW]
[ROW][C]42[/C][C]5391.4[/C][C]5551.15316567019[/C][C]4.29240656591411[/C][C]-154.610043096229[/C][C]-0.453150959109395[/C][/ROW]
[ROW][C]43[/C][C]5461.2[/C][C]5688.24631087305[/C][C]5.02543771911598[/C][C]-235.296271808775[/C][C]0.725520041880865[/C][/ROW]
[ROW][C]44[/C][C]6091.3[/C][C]5715.57353235748[/C][C]5.13246599119786[/C][C]374.339515379665[/C][C]0.121879781197066[/C][/ROW]
[ROW][C]45[/C][C]5951[/C][C]5893.38530909099[/C][C]5.88360178276558[/C][C]46.8733604924065[/C][C]0.943508492082755[/C][/ROW]
[ROW][C]46[/C][C]6511.7[/C][C]6194.0595079468[/C][C]6.91956873513495[/C][C]299.303784969974[/C][C]1.60960462486615[/C][/ROW]
[ROW][C]47[/C][C]6371.4[/C][C]6342.57941932276[/C][C]7.18536944553559[/C][C]20.0110851005764[/C][C]0.77266405051984[/C][/ROW]
[ROW][C]48[/C][C]5601.2[/C][C]6066.28373672636[/C][C]7.20511437392696[/C][C]-447.419529308081[/C][C]-1.54898725636594[/C][/ROW]
[ROW][C]49[/C][C]6001.2[/C][C]6012.3618168046[/C][C]7.22468738178047[/C][C]-7.3500860221252[/C][C]-0.334258704575335[/C][/ROW]
[ROW][C]50[/C][C]5920.7[/C][C]5938.50361630881[/C][C]6.97684485124638[/C][C]-12.8083634242165[/C][C]-0.438727533559538[/C][/ROW]
[ROW][C]51[/C][C]5455.2[/C][C]5535.39464808948[/C][C]4.09714108859109[/C][C]-55.3301653246695[/C][C]-2.19559877740914[/C][/ROW]
[ROW][C]52[/C][C]5703.8[/C][C]5692.12397712165[/C][C]5.4381747657837[/C][C]2.42963608100405[/C][C]0.819288009655487[/C][/ROW]
[ROW][C]53[/C][C]5863[/C][C]5675.67346348099[/C][C]5.25640996317069[/C][C]188.665291413842[/C][C]-0.11851097800875[/C][/ROW]
[ROW][C]54[/C][C]5762.9[/C][C]5842.17974176299[/C][C]6.36456542089036[/C][C]-89.2259288251169[/C][C]0.878377403392338[/C][/ROW]
[ROW][C]55[/C][C]5997.8[/C][C]6102.54157794715[/C][C]7.77230858835721[/C][C]-120.476265493161[/C][C]1.38709976528637[/C][/ROW]
[ROW][C]56[/C][C]6542.7[/C][C]6225.98413036593[/C][C]8.30553460242462[/C][C]309.538438184902[/C][C]0.632079268725785[/C][/ROW]
[ROW][C]57[/C][C]6594.5[/C][C]6506.77035749768[/C][C]9.35173710578791[/C][C]70.8146037450788[/C][C]1.48856095724959[/C][/ROW]
[ROW][C]58[/C][C]6915.1[/C][C]6623.34935272594[/C][C]9.6585467622141[/C][C]285.094582870079[/C][C]0.585336211836914[/C][/ROW]
[ROW][C]59[/C][C]6584.6[/C][C]6543.13382691388[/C][C]9.51691988601428[/C][C]47.0455315911486[/C][C]-0.490369932497134[/C][/ROW]
[ROW][C]60[/C][C]6412.2[/C][C]6708.61476773186[/C][C]9.59938485742508[/C][C]-306.103439346741[/C][C]0.851371963661357[/C][/ROW]
[ROW][C]61[/C][C]5930.1[/C][C]6235.58942196364[/C][C]9.18594347977328[/C][C]-275.547137111462[/C][C]-2.63127149057934[/C][/ROW]
[ROW][C]62[/C][C]6022.3[/C][C]5991.02614542799[/C][C]8.39660318016191[/C][C]46.8869448199953[/C][C]-1.37389809232702[/C][/ROW]
[ROW][C]63[/C][C]6268.6[/C][C]6197.44868766059[/C][C]9.55177223112132[/C][C]59.0897833305865[/C][C]1.06500160792244[/C][/ROW]
[ROW][C]64[/C][C]6179.9[/C][C]6204.04345746229[/C][C]9.52992995851759[/C][C]-23.9636864997092[/C][C]-0.015916333604487[/C][/ROW]
[ROW][C]65[/C][C]6608.6[/C][C]6377.95999459428[/C][C]10.7483691615598[/C][C]220.587606629642[/C][C]0.89005876751679[/C][/ROW]
[ROW][C]66[/C][C]6424[/C][C]6537.37954529499[/C][C]11.7169692355438[/C][C]-122.532858856586[/C][C]0.809255154531622[/C][/ROW]
[ROW][C]67[/C][C]6230.8[/C][C]6488.5262921917[/C][C]11.3895868325154[/C][C]-253.981079020378[/C][C]-0.330610205420505[/C][/ROW]
[ROW][C]68[/C][C]6628.2[/C][C]6458.31900667318[/C][C]11.2060963572839[/C][C]172.458064416979[/C][C]-0.227235486032137[/C][/ROW]
[ROW][C]69[/C][C]6576.2[/C][C]6511.48141616186[/C][C]11.3527889250847[/C][C]62.1177228662482[/C][C]0.229142014345655[/C][/ROW]
[ROW][C]70[/C][C]6947[/C][C]6594.66932857836[/C][C]11.5337354577973[/C][C]347.877720446529[/C][C]0.392054544656534[/C][/ROW]
[ROW][C]71[/C][C]6672.8[/C][C]6629.55623062941[/C][C]11.5695908926639[/C][C]41.7961464239683[/C][C]0.127398945438501[/C][/ROW]
[ROW][C]72[/C][C]6249.9[/C][C]6472.34639392462[/C][C]11.4044844442452[/C][C]-211.984039816176[/C][C]-0.920604523038144[/C][/ROW]
[ROW][C]73[/C][C]5964.2[/C][C]6280.20133887765[/C][C]11.1067273754111[/C][C]-303.408360161987[/C][C]-1.10826315490061[/C][/ROW]
[ROW][C]74[/C][C]5840.1[/C][C]6025.49814852279[/C][C]10.2800542534063[/C][C]-169.052843397527[/C][C]-1.44012029974527[/C][/ROW]
[ROW][C]75[/C][C]6115.2[/C][C]6032.06386998492[/C][C]10.2611591265935[/C][C]83.3629598974453[/C][C]-0.020032377716032[/C][/ROW]
[ROW][C]76[/C][C]5800.5[/C][C]5955.24955968263[/C][C]9.70506034189544[/C][C]-149.441885277192[/C][C]-0.469721965597753[/C][/ROW]
[ROW][C]77[/C][C]6566.6[/C][C]6208.10976893689[/C][C]11.3171922963297[/C][C]343.613831041315[/C][C]1.31711190897141[/C][/ROW]
[ROW][C]78[/C][C]6377.3[/C][C]6388.26220449407[/C][C]12.3425521346134[/C][C]-21.346710113314[/C][C]0.918592868129537[/C][/ROW]
[ROW][C]79[/C][C]6355.2[/C][C]6532.2045223647[/C][C]13.0224758409603[/C][C]-185.13084106557[/C][C]0.717931896882496[/C][/ROW]
[ROW][C]80[/C][C]6999.3[/C][C]6738.59017351454[/C][C]13.8357484194054[/C][C]248.745215878467[/C][C]1.05586706520438[/C][/ROW]
[ROW][C]81[/C][C]6603.7[/C][C]6666.22232833346[/C][C]13.5539998737849[/C][C]-57.1846692501949[/C][C]-0.470643725639255[/C][/ROW]
[ROW][C]82[/C][C]6998.3[/C][C]6652.52955802892[/C][C]13.4897264571311[/C][C]347.457615290412[/C][C]-0.148674219211461[/C][/ROW]
[ROW][C]83[/C][C]6966.2[/C][C]6765.33457516924[/C][C]13.6486350487173[/C][C]194.716149988546[/C][C]0.541684377646557[/C][/ROW]
[ROW][C]84[/C][C]6383.3[/C][C]6619.28807193382[/C][C]13.4402124165619[/C][C]-226.104286139519[/C][C]-0.870562052461129[/C][/ROW]
[ROW][C]85[/C][C]5960[/C][C]6340.44254911037[/C][C]12.9129985330872[/C][C]-362.390073029585[/C][C]-1.59041543562383[/C][/ROW]
[ROW][C]86[/C][C]5682.1[/C][C]6027.19353556825[/C][C]11.9113371924686[/C][C]-325.042163364162[/C][C]-1.76819487609165[/C][/ROW]
[ROW][C]87[/C][C]5640.2[/C][C]5719.35128233628[/C][C]10.449917264155[/C][C]-59.5912348310317[/C][C]-1.72786858285582[/C][/ROW]
[ROW][C]88[/C][C]5694.1[/C][C]5831.35884506456[/C][C]11.023058263486[/C][C]-143.461333236567[/C][C]0.548790318620442[/C][/ROW]
[ROW][C]89[/C][C]6392.4[/C][C]6016.68980099014[/C][C]12.0626681396454[/C][C]365.038534854879[/C][C]0.94472423846835[/C][/ROW]
[ROW][C]90[/C][C]5835.3[/C][C]5981.35672720975[/C][C]11.796448393975[/C][C]-143.142982179486[/C][C]-0.257805490987477[/C][/ROW]
[ROW][C]91[/C][C]6075.6[/C][C]6185.66338881816[/C][C]12.7361862211005[/C][C]-121.939476846364[/C][C]1.04972228662609[/C][/ROW]
[ROW][C]92[/C][C]7387.1[/C][C]6748.98364136175[/C][C]14.9399740992303[/C][C]604.082906901974[/C][C]3.00516980557008[/C][/ROW]
[ROW][C]93[/C][C]6632.6[/C][C]6770.51094894047[/C][C]14.9604767005879[/C][C]-138.318444000346[/C][C]0.0359529349417203[/C][/ROW]
[ROW][C]94[/C][C]7048.1[/C][C]6750.85742933319[/C][C]14.8809713864233[/C][C]299.384035067107[/C][C]-0.188834445509987[/C][/ROW]
[ROW][C]95[/C][C]6792.1[/C][C]6611.98083292718[/C][C]14.619580935483[/C][C]189.630300053099[/C][C]-0.838439131148741[/C][/ROW]
[ROW][C]96[/C][C]6094[/C][C]6347.54804786637[/C][C]14.1884717964168[/C][C]-236.297130919403[/C][C]-1.52062574254992[/C][/ROW]
[ROW][C]97[/C][C]6408.3[/C][C]6486.49797149658[/C][C]14.4388574976382[/C][C]-85.8954466828179[/C][C]0.678681831453365[/C][/ROW]
[ROW][C]98[/C][C]6492.1[/C][C]6632.06363918971[/C][C]14.8337959009322[/C][C]-148.024358609963[/C][C]0.711276734020366[/C][/ROW]
[ROW][C]99[/C][C]6596.8[/C][C]6694.31689181572[/C][C]15.0322408087852[/C][C]-100.421126366429[/C][C]0.256610357616198[/C][/ROW]
[ROW][C]100[/C][C]6078.2[/C][C]6463.55487454474[/C][C]13.7859732003394[/C][C]-370.321101150532[/C][C]-1.33002057965445[/C][/ROW]
[ROW][C]101[/C][C]6297.3[/C][C]6142.51663131392[/C][C]11.9774018281929[/C][C]175.297071062148[/C][C]-1.81577436747434[/C][/ROW]
[ROW][C]102[/C][C]5960.8[/C][C]6173.06886085368[/C][C]12.0736648400679[/C][C]-213.410567336553[/C][C]0.101025846606904[/C][/ROW]
[ROW][C]103[/C][C]6125.1[/C][C]6347.36469982247[/C][C]12.8175441431995[/C][C]-232.265377434152[/C][C]0.884214905183715[/C][/ROW]
[ROW][C]104[/C][C]7253.4[/C][C]6540.88452074847[/C][C]13.5055745839926[/C][C]701.354896641013[/C][C]0.985893394195964[/C][/ROW]
[ROW][C]105[/C][C]6505.8[/C][C]6602.55052029522[/C][C]13.6499946926408[/C][C]-99.7273686657082[/C][C]0.262772083014682[/C][/ROW]
[ROW][C]106[/C][C]7419.5[/C][C]6866.65049186767[/C][C]14.2217189155101[/C][C]537.366509151895[/C][C]1.36602625040489[/C][/ROW]
[ROW][C]107[/C][C]7308.2[/C][C]6989.75092190973[/C][C]14.4181119550264[/C][C]311.719344210158[/C][C]0.59359088631095[/C][/ROW]
[ROW][C]108[/C][C]6373.1[/C][C]6820.25488187143[/C][C]14.1012677236387[/C][C]-435.795316262299[/C][C]-1.0019215873572[/C][/ROW]
[ROW][C]109[/C][C]6667.4[/C][C]6801.54340488991[/C][C]14.0313190144506[/C][C]-132.120337145108[/C][C]-0.178480301932643[/C][/ROW]
[ROW][C]110[/C][C]6518.6[/C][C]6717.62519180288[/C][C]13.7430051602856[/C][C]-193.003705824426[/C][C]-0.531589223811391[/C][/ROW]
[ROW][C]111[/C][C]6324.8[/C][C]6466.31965418523[/C][C]12.7143413675819[/C][C]-125.271771988497[/C][C]-1.43589746529552[/C][/ROW]
[ROW][C]112[/C][C]6764.1[/C][C]6767.39761259085[/C][C]14.0447659058359[/C][C]-20.9556130969551[/C][C]1.56207625873531[/C][/ROW]
[ROW][C]113[/C][C]6985[/C][C]6836.41168269453[/C][C]14.3155225348079[/C][C]145.218221643583[/C][C]0.298268391258128[/C][/ROW]
[ROW][C]114[/C][C]6091.5[/C][C]6581.3926326244[/C][C]13.0267279068593[/C][C]-473.3381857058[/C][C]-1.46485509787123[/C][/ROW]
[ROW][C]115[/C][C]6526[/C][C]6713.74394705416[/C][C]13.539717777019[/C][C]-195.09651479464[/C][C]0.650191682165255[/C][/ROW]
[ROW][C]116[/C][C]7116.9[/C][C]6582.97945742171[/C][C]13.0167374385239[/C][C]542.827230247611[/C][C]-0.787023289340973[/C][/ROW]
[ROW][C]117[/C][C]6770.3[/C][C]6805.10481629145[/C][C]13.6250158989463[/C][C]-47.7214800519984[/C][C]1.1406073613462[/C][/ROW]
[ROW][C]118[/C][C]7221.9[/C][C]6771.75229527814[/C][C]13.5175090116566[/C][C]453.050059557113[/C][C]-0.256176952492131[/C][/ROW]
[ROW][C]119[/C][C]7344.5[/C][C]6881.17366639625[/C][C]13.6994786338652[/C][C]457.402392873424[/C][C]0.522755775411064[/C][/ROW]
[ROW][C]120[/C][C]6565.6[/C][C]6949.81734975454[/C][C]13.8014094703147[/C][C]-387.608773476005[/C][C]0.299268075660166[/C][/ROW]
[ROW][C]121[/C][C]6577.3[/C][C]6784.98077902676[/C][C]13.4068800281403[/C][C]-196.671842191004[/C][C]-0.971685730023082[/C][/ROW]
[ROW][C]122[/C][C]6597.8[/C][C]6736.77007284417[/C][C]13.2299282370611[/C][C]-135.181698067072[/C][C]-0.334565075293914[/C][/ROW]
[ROW][C]123[/C][C]6560.6[/C][C]6772.88378197261[/C][C]13.313046390029[/C][C]-213.687618910364[/C][C]0.124081755230277[/C][/ROW]
[ROW][C]124[/C][C]6729.2[/C][C]6764.0849832018[/C][C]13.2192838660285[/C][C]-33.5296892826118[/C][C]-0.119886988890024[/C][/ROW]
[ROW][C]125[/C][C]6703.2[/C][C]6591.37572129885[/C][C]12.3786587178608[/C][C]123.230360999104[/C][C]-1.00937233832462[/C][/ROW]
[ROW][C]126[/C][C]6716.1[/C][C]6951.3864747962[/C][C]13.9184961958628[/C][C]-256.655248224615[/C][C]1.89078488845357[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298992&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298992&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Structural Time Series Model -- Interpolation
tObservedLevelSlopeSeasonalStand. Residuals
15483.55483.5000
25386.25405.62919465817-3.97125551191005-16.57562935917-0.279659934908486
35781.85646.877542366196.2668690354072121.448253134351.19462467612697
45137.45346.174779018390.332047588776368-188.427733960698-1.66510422325749
55001.75089.33620151637-2.17294695587215-70.1923857173846-1.40704324968677
65123.85080.30437781093-2.2270101206700943.9614942196044-0.0375115913749187
753405246.24903823917-0.86324147250872482.33741027552170.919231997431227
85696.45555.245449750681.73877434023656120.1369792035561.69325530724594
95544.75586.195955974341.9859247975116-43.47704551420580.159619781810071
105747.65692.508838655382.8633197855986848.01579955703310.570065477483767
115487.45573.325493656121.84626128237578-77.648047698989-0.666890226960376
125590.15568.502912694281.7911841801426122.0493970163255-0.0364398455613522
135571.95575.866376404411.58029956804877-4.350628155158850.034205544222462
145363.15510.18086436780.947192712978969-143.012803616974-0.35016071345266
156014.15673.896987695814.5366189931679330.9993434048280.82487578593245
165480.45630.142377516983.71894745635124-146.808384788423-0.258348409782091
175907.55825.367889605645.6330583010385570.10288937387981.0441780724151
185772.25822.455252159225.57798421579845-49.7147910386508-0.0467065081168321
1956205711.583387110094.9389907725558-84.213717097304-0.636310340420683
206614.76175.364507121937.50923059491948410.3112734947792.50630889562279
216294.76343.811558144528.47025924110312-59.28694243567920.879004062562281
225938.36073.469736600836.76686056480512-117.541408591687-1.52307376082725
235722.65879.778648917145.78899238945895-144.496146162058-1.09455658187813
245595.65672.017880664435.82928698300218-62.8796960066357-1.16691470181424
255569.55590.864336305336.69369745054312-15.7472420060919-0.489405371904228
265753.75802.353797006687.44146974007388-61.32444919091491.10222141036132
275838.85640.505262806345.18876526693724208.272718411397-0.88505712477929
285401.15607.385016195114.6678246007725-203.981514728752-0.204464349193213
296013.95792.713582998516.47130991573566210.0444280329930.981253524488364
305461.15643.344901079925.4032553892505-172.538041500745-0.850884431636947
315176.35519.596751900724.71121075511934-335.232708379575-0.70571328628277
325916.55530.97877877244.74472571574524385.1045897785990.0364493489402426
335519.55495.224094008554.5398573688330826.8050031149615-0.22127047583728
345873.95732.399271250525.61373082144593126.9720702294041.27060271031488
355663.85752.874934837955.65501624867034-90.00344008113380.0811049692009676
3653395542.056629667195.80373530747242-189.501003584983-1.18379968964953
375671.25644.61290499175.5210998125149820.49058206007160.53292629050544
3857415709.978758150315.7015155639614527.32594320896470.323491589252076
395881.35698.029155705235.54021382858497184.331575143704-0.0937497104352906
405531.25753.679801087366.08100262464094-225.5021710718120.268118910452264
415811.25629.376127498814.8764829523127189.814104796715-0.706528939033226
425391.45551.153165670194.29240656591411-154.610043096229-0.453150959109395
435461.25688.246310873055.02543771911598-235.2962718087750.725520041880865
446091.35715.573532357485.13246599119786374.3395153796650.121879781197066
4559515893.385309090995.8836017827655846.87336049240650.943508492082755
466511.76194.05950794686.91956873513495299.3037849699741.60960462486615
476371.46342.579419322767.1853694455355920.01108510057640.77266405051984
485601.26066.283736726367.20511437392696-447.419529308081-1.54898725636594
496001.26012.36181680467.22468738178047-7.3500860221252-0.334258704575335
505920.75938.503616308816.97684485124638-12.8083634242165-0.438727533559538
515455.25535.394648089484.09714108859109-55.3301653246695-2.19559877740914
525703.85692.123977121655.43817476578372.429636081004050.819288009655487
5358635675.673463480995.25640996317069188.665291413842-0.11851097800875
545762.95842.179741762996.36456542089036-89.22592882511690.878377403392338
555997.86102.541577947157.77230858835721-120.4762654931611.38709976528637
566542.76225.984130365938.30553460242462309.5384381849020.632079268725785
576594.56506.770357497689.3517371057879170.81460374507881.48856095724959
586915.16623.349352725949.6585467622141285.0945828700790.585336211836914
596584.66543.133826913889.5169198860142847.0455315911486-0.490369932497134
606412.26708.614767731869.59938485742508-306.1034393467410.851371963661357
615930.16235.589421963649.18594347977328-275.547137111462-2.63127149057934
626022.35991.026145427998.3966031801619146.8869448199953-1.37389809232702
636268.66197.448687660599.5517722311213259.08978333058651.06500160792244
646179.96204.043457462299.52992995851759-23.9636864997092-0.015916333604487
656608.66377.9599945942810.7483691615598220.5876066296420.89005876751679
6664246537.3795452949911.7169692355438-122.5328588565860.809255154531622
676230.86488.526292191711.3895868325154-253.981079020378-0.330610205420505
686628.26458.3190066731811.2060963572839172.458064416979-0.227235486032137
696576.26511.4814161618611.352788925084762.11772286624820.229142014345655
7069476594.6693285783611.5337354577973347.8777204465290.392054544656534
716672.86629.5562306294111.569590892663941.79614642396830.127398945438501
726249.96472.3463939246211.4044844442452-211.984039816176-0.920604523038144
735964.26280.2013388776511.1067273754111-303.408360161987-1.10826315490061
745840.16025.4981485227910.2800542534063-169.052843397527-1.44012029974527
756115.26032.0638699849210.261159126593583.3629598974453-0.020032377716032
765800.55955.249559682639.70506034189544-149.441885277192-0.469721965597753
776566.66208.1097689368911.3171922963297343.6138310413151.31711190897141
786377.36388.2622044940712.3425521346134-21.3467101133140.918592868129537
796355.26532.204522364713.0224758409603-185.130841065570.717931896882496
806999.36738.5901735145413.8357484194054248.7452158784671.05586706520438
816603.76666.2223283334613.5539998737849-57.1846692501949-0.470643725639255
826998.36652.5295580289213.4897264571311347.457615290412-0.148674219211461
836966.26765.3345751692413.6486350487173194.7161499885460.541684377646557
846383.36619.2880719338213.4402124165619-226.104286139519-0.870562052461129
8559606340.4425491103712.9129985330872-362.390073029585-1.59041543562383
865682.16027.1935355682511.9113371924686-325.042163364162-1.76819487609165
875640.25719.3512823362810.449917264155-59.5912348310317-1.72786858285582
885694.15831.3588450645611.023058263486-143.4613332365670.548790318620442
896392.46016.6898009901412.0626681396454365.0385348548790.94472423846835
905835.35981.3567272097511.796448393975-143.142982179486-0.257805490987477
916075.66185.6633888181612.7361862211005-121.9394768463641.04972228662609
927387.16748.9836413617514.9399740992303604.0829069019743.00516980557008
936632.66770.5109489404714.9604767005879-138.3184440003460.0359529349417203
947048.16750.8574293331914.8809713864233299.384035067107-0.188834445509987
956792.16611.9808329271814.619580935483189.630300053099-0.838439131148741
9660946347.5480478663714.1884717964168-236.297130919403-1.52062574254992
976408.36486.4979714965814.4388574976382-85.89544668281790.678681831453365
986492.16632.0636391897114.8337959009322-148.0243586099630.711276734020366
996596.86694.3168918157215.0322408087852-100.4211263664290.256610357616198
1006078.26463.5548745447413.7859732003394-370.321101150532-1.33002057965445
1016297.36142.5166313139211.9774018281929175.297071062148-1.81577436747434
1025960.86173.0688608536812.0736648400679-213.4105673365530.101025846606904
1036125.16347.3646998224712.8175441431995-232.2653774341520.884214905183715
1047253.46540.8845207484713.5055745839926701.3548966410130.985893394195964
1056505.86602.5505202952213.6499946926408-99.72736866570820.262772083014682
1067419.56866.6504918676714.2217189155101537.3665091518951.36602625040489
1077308.26989.7509219097314.4181119550264311.7193442101580.59359088631095
1086373.16820.2548818714314.1012677236387-435.795316262299-1.0019215873572
1096667.46801.5434048899114.0313190144506-132.120337145108-0.178480301932643
1106518.66717.6251918028813.7430051602856-193.003705824426-0.531589223811391
1116324.86466.3196541852312.7143413675819-125.271771988497-1.43589746529552
1126764.16767.3976125908514.0447659058359-20.95561309695511.56207625873531
11369856836.4116826945314.3155225348079145.2182216435830.298268391258128
1146091.56581.392632624413.0267279068593-473.3381857058-1.46485509787123
11565266713.7439470541613.539717777019-195.096514794640.650191682165255
1167116.96582.9794574217113.0167374385239542.827230247611-0.787023289340973
1176770.36805.1048162914513.6250158989463-47.72148005199841.1406073613462
1187221.96771.7522952781413.5175090116566453.050059557113-0.256176952492131
1197344.56881.1736663962513.6994786338652457.4023928734240.522755775411064
1206565.66949.8173497545413.8014094703147-387.6087734760050.299268075660166
1216577.36784.9807790267613.4068800281403-196.671842191004-0.971685730023082
1226597.86736.7700728441713.2299282370611-135.181698067072-0.334565075293914
1236560.66772.8837819726113.313046390029-213.6876189103640.124081755230277
1246729.26764.084983201813.2192838660285-33.5296892826118-0.119886988890024
1256703.26591.3757212988512.3786587178608123.230360999104-1.00937233832462
1266716.16951.386474796213.9184961958628-256.6552482246151.89078488845357







Structural Time Series Model -- Extrapolation
tObservedLevelSeasonal
16708.10766679886951.95588797103-243.848221172226
27489.946991086656963.02821409747526.91877698918
37064.64401170396974.1005402239190.5434714799907
47535.885024287876985.17286635035550.71215793752
57574.174823869416996.24519247679577.929631392617
66754.146180136957007.31751860323-253.171338466286
76814.643688511617018.38984472967-203.746156218062
86808.888614142327029.46217085611-220.573556713789
96740.944327106647040.53449698255-299.590169875912
106936.517725994487051.60682310899-115.089097114515
116938.488372129437062.67914923543-124.190777106004
126787.856754229367073.75147536187-285.894721132513

\begin{tabular}{lllllllll}
\hline
Structural Time Series Model -- Extrapolation \tabularnewline
t & Observed & Level & Seasonal \tabularnewline
1 & 6708.1076667988 & 6951.95588797103 & -243.848221172226 \tabularnewline
2 & 7489.94699108665 & 6963.02821409747 & 526.91877698918 \tabularnewline
3 & 7064.6440117039 & 6974.10054022391 & 90.5434714799907 \tabularnewline
4 & 7535.88502428787 & 6985.17286635035 & 550.71215793752 \tabularnewline
5 & 7574.17482386941 & 6996.24519247679 & 577.929631392617 \tabularnewline
6 & 6754.14618013695 & 7007.31751860323 & -253.171338466286 \tabularnewline
7 & 6814.64368851161 & 7018.38984472967 & -203.746156218062 \tabularnewline
8 & 6808.88861414232 & 7029.46217085611 & -220.573556713789 \tabularnewline
9 & 6740.94432710664 & 7040.53449698255 & -299.590169875912 \tabularnewline
10 & 6936.51772599448 & 7051.60682310899 & -115.089097114515 \tabularnewline
11 & 6938.48837212943 & 7062.67914923543 & -124.190777106004 \tabularnewline
12 & 6787.85675422936 & 7073.75147536187 & -285.894721132513 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298992&T=2

[TABLE]
[ROW][C]Structural Time Series Model -- Extrapolation[/C][/ROW]
[ROW][C]t[/C][C]Observed[/C][C]Level[/C][C]Seasonal[/C][/ROW]
[ROW][C]1[/C][C]6708.1076667988[/C][C]6951.95588797103[/C][C]-243.848221172226[/C][/ROW]
[ROW][C]2[/C][C]7489.94699108665[/C][C]6963.02821409747[/C][C]526.91877698918[/C][/ROW]
[ROW][C]3[/C][C]7064.6440117039[/C][C]6974.10054022391[/C][C]90.5434714799907[/C][/ROW]
[ROW][C]4[/C][C]7535.88502428787[/C][C]6985.17286635035[/C][C]550.71215793752[/C][/ROW]
[ROW][C]5[/C][C]7574.17482386941[/C][C]6996.24519247679[/C][C]577.929631392617[/C][/ROW]
[ROW][C]6[/C][C]6754.14618013695[/C][C]7007.31751860323[/C][C]-253.171338466286[/C][/ROW]
[ROW][C]7[/C][C]6814.64368851161[/C][C]7018.38984472967[/C][C]-203.746156218062[/C][/ROW]
[ROW][C]8[/C][C]6808.88861414232[/C][C]7029.46217085611[/C][C]-220.573556713789[/C][/ROW]
[ROW][C]9[/C][C]6740.94432710664[/C][C]7040.53449698255[/C][C]-299.590169875912[/C][/ROW]
[ROW][C]10[/C][C]6936.51772599448[/C][C]7051.60682310899[/C][C]-115.089097114515[/C][/ROW]
[ROW][C]11[/C][C]6938.48837212943[/C][C]7062.67914923543[/C][C]-124.190777106004[/C][/ROW]
[ROW][C]12[/C][C]6787.85675422936[/C][C]7073.75147536187[/C][C]-285.894721132513[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298992&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298992&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Structural Time Series Model -- Extrapolation
tObservedLevelSeasonal
16708.10766679886951.95588797103-243.848221172226
27489.946991086656963.02821409747526.91877698918
37064.64401170396974.1005402239190.5434714799907
47535.885024287876985.17286635035550.71215793752
57574.174823869416996.24519247679577.929631392617
66754.146180136957007.31751860323-253.171338466286
76814.643688511617018.38984472967-203.746156218062
86808.888614142327029.46217085611-220.573556713789
96740.944327106647040.53449698255-299.590169875912
106936.517725994487051.60682310899-115.089097114515
116938.488372129437062.67914923543-124.190777106004
126787.856754229367073.75147536187-285.894721132513



Parameters (Session):
par1 = 12 ; par2 = 12 ; par3 = BFGS ;
Parameters (R input):
par1 = 12 ; par2 = 12 ; par3 = BFGS ;
R code (references can be found in the software module):
require('stsm')
require('stsm.class')
require('KFKSDS')
par1 <- as.numeric(par1)
par2 <- as.numeric(par2)
nx <- length(x)
x <- ts(x,frequency=par1)
m <- StructTS(x,type='BSM')
print(m$coef)
print(m$fitted)
print(m$resid)
mylevel <- as.numeric(m$fitted[,'level'])
myslope <- as.numeric(m$fitted[,'slope'])
myseas <- as.numeric(m$fitted[,'sea'])
myresid <- as.numeric(m$resid)
myfit <- mylevel+myseas
mm <- stsm.model(model = 'BSM', y = x, transPars = 'StructTS')
fit2 <- stsmFit(mm, stsm.method = 'maxlik.td.optim', method = par3, KF.args = list(P0cov = TRUE))
(fit2.comps <- tsSmooth(fit2, P0cov = FALSE)$states)
m2 <- set.pars(mm, pmax(fit2$par, .Machine$double.eps))
(ss <- char2numeric(m2))
(pred <- predict(ss, x, n.ahead = par2))
mylagmax <- nx/2
bitmap(file='test2.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(x),lag.max = mylagmax,main='Observed')
acf(mylevel,na.action=na.pass,lag.max = mylagmax,main='Level')
acf(myseas,na.action=na.pass,lag.max = mylagmax,main='Seasonal')
acf(myresid,na.action=na.pass,lag.max = mylagmax,main='Standardized Residals')
par(op)
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
spectrum(as.numeric(x),main='Observed')
spectrum(mylevel,main='Level')
spectrum(myseas,main='Seasonal')
spectrum(myresid,main='Standardized Residals')
par(op)
dev.off()
bitmap(file='test4.png')
op <- par(mfrow = c(2,2))
cpgram(as.numeric(x),main='Observed')
cpgram(mylevel,main='Level')
cpgram(myseas,main='Seasonal')
cpgram(myresid,main='Standardized Residals')
par(op)
dev.off()
bitmap(file='test1.png')
plot(as.numeric(m$resid),main='Standardized Residuals',ylab='Residuals',xlab='time',type='b')
grid()
dev.off()
bitmap(file='test5.png')
op <- par(mfrow = c(2,2))
hist(m$resid,main='Residual Histogram')
plot(density(m$resid),main='Residual Kernel Density')
qqnorm(m$resid,main='Residual Normal QQ Plot')
qqline(m$resid)
plot(m$resid^2, myfit^2,main='Sq.Resid vs. Sq.Fit',xlab='Squared residuals',ylab='Squared Fit')
par(op)
dev.off()
bitmap(file='test6.png')
par(mfrow = c(3,1), mar = c(3,3,3,3))
plot(cbind(x, pred$pred), type = 'n', plot.type = 'single', ylab = '')
lines(x)
polygon(c(time(pred$pred), rev(time(pred$pred))), c(pred$pred + 2 * pred$se, rev(pred$pred)), col = 'gray85', border = NA)
polygon(c(time(pred$pred), rev(time(pred$pred))), c(pred$pred - 2 * pred$se, rev(pred$pred)), col = ' gray85', border = NA)
lines(pred$pred, col = 'blue', lwd = 1.5)
mtext(text = 'forecasts of the observed series', side = 3, adj = 0)
plot(cbind(x, pred$a[,1]), type = 'n', plot.type = 'single', ylab = '')
lines(x)
polygon(c(time(pred$a[,1]), rev(time(pred$a[,1]))), c(pred$a[,1] + 2 * sqrt(pred$P[,1]), rev(pred$a[,1])), col = 'gray85', border = NA)
polygon(c(time(pred$a[,1]), rev(time(pred$a[,1]))), c(pred$a[,1] - 2 * sqrt(pred$P[,1]), rev(pred$a[,1])), col = ' gray85', border = NA)
lines(pred$a[,1], col = 'blue', lwd = 1.5)
mtext(text = 'forecasts of the level component', side = 3, adj = 0)
plot(cbind(fit2.comps[,3], pred$a[,3]), type = 'n', plot.type = 'single', ylab = '')
lines(fit2.comps[,3])
polygon(c(time(pred$a[,3]), rev(time(pred$a[,3]))), c(pred$a[,3] + 2 * sqrt(pred$P[,3]), rev(pred$a[,3])), col = 'gray85', border = NA)
polygon(c(time(pred$a[,3]), rev(time(pred$a[,3]))), c(pred$a[,3] - 2 * sqrt(pred$P[,3]), rev(pred$a[,3])), col = ' gray85', border = NA)
lines(pred$a[,3], col = 'blue', lwd = 1.5)
mtext(text = 'forecasts of the seasonal component', side = 3, adj = 0)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Structural Time Series Model -- Interpolation',6,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observed',header=TRUE)
a<-table.element(a,'Level',header=TRUE)
a<-table.element(a,'Slope',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,'Stand. Residuals',header=TRUE)
a<-table.row.end(a)
for (i in 1:nx) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
a<-table.element(a,mylevel[i])
a<-table.element(a,myslope[i])
a<-table.element(a,myseas[i])
a<-table.element(a,myresid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Structural Time Series Model -- Extrapolation',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observed',header=TRUE)
a<-table.element(a,'Level',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.row.end(a)
for (i in 1:par2) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,pred$pred[i])
a<-table.element(a,pred$a[i,1])
a<-table.element(a,pred$a[i,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')