Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_arimaforecasting.wasp
Title produced by softwareARIMA Forecasting
Date of computationMon, 12 Dec 2016 21:28:01 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/12/t1481574597gxd8dju12t1zyid.htm/, Retrieved Fri, 01 Nov 2024 03:30:32 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=298988, Retrieved Fri, 01 Nov 2024 03:30:32 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact104
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [ARIMA Forecasting] [F1 ARIMA 2] [2016-12-12 20:28:01] [d441656ca728cb07c490d5bfa1128042] [Current]
Feedback Forum

Post a new message
Dataseries X:
3455
3585
3675
3680
3735
3860
3765
3905
4110
4170
4110
4025
4145
4285
4370
4355
4385
4525
4375
4525
4610
4595
4500
4370
4390
4530
4590
4580
4595
4685
4490
4635
4710
4655
4665
4550
4590
4675
4645
4665
4635
4720
4565
4720
4830
4830
4765
4705
4675
4900
4945
4905
4955
5120
4860
5040
5140
5240
5145
5070
5085
5215
5255
5275
5315
5450
5205
5370
5500
5490
5440
5360
5380
5460
5450
5520
5475
5600
5250
5465
5515
5425
5325
5275
5160
5360
5435
5285
5415
5575
5265
5480
5565
5500
5280
5135
5050
5100
5070
5115
5140
5330
5080
5285
5405
5385
5255
5100
5040
5235
5310
5265
5380
5465
5225
5445




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time3 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298988&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]3 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=298988&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298988&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R ServerBig Analytics Cloud Computing Center







Univariate ARIMA Extrapolation Forecast
timeY[t]F[t]95% LB95% UBp-value(H0: Y[t] = F[t])P(F[t]>Y[t-1])P(F[t]>Y[t-s])P(F[t]>Y[116])
1045285-------
1055405-------
1065385-------
1075255-------
1085100-------
1095040-------
1105235-------
1115310-------
1125265-------
1135380-------
1145465-------
1155225-------
1165445-------
117NA5517.47765412.33225622.623NA0.91170.9820.9117
118NA5474.95395333.84335616.0644NANA0.89420.6613
119NA5321.61355143.50735499.7197NANA0.76820.0873
120NA5204.9884979.80535430.1708NANA0.81960.0184
121NA5117.61534851.97455383.2561NANA0.71660.0079
122NA5270.12984965.17285575.0868NANA0.58930.1305
123NA5313.46774969.34675657.5887NANA0.50790.2269
124NA5258.54974877.79635639.3032NANA0.48680.1686
125NA5356.46734940.56625772.3683NANA0.45580.3383
126NA5504.96215055.23715954.687NANA0.56910.6031
127NA5243.46684761.52355725.41NANA0.52990.2062
128NA5456.54344943.70165969.3852NANA0.51760.5176
129NA5552.87344998.01286107.7339NANANA0.6484
130NA5513.59994920.58436106.6155NANANA0.5897
131NA5342.55154711.73925973.3638NANANA0.3751
132NA5198.41124528.51295868.3095NANANA0.2353
133NA5124.43994417.1035831.7767NANANA0.1872
134NA5251.79324507.85815995.7284NANANA0.3054
135NA5277.68614497.81146057.5609NANANA0.3371
136NA5269.29884454.65546083.9422NANANA0.3362
137NA5343.81514495.36316192.2671NANANA0.4076
138NA5483.65324602.3066365.0003NANANA0.5343
139NA5236.05344322.77566149.3312NANANA0.3269
140NA5448.70144504.37236393.0304NANANA0.5031

\begin{tabular}{lllllllll}
\hline
Univariate ARIMA Extrapolation Forecast \tabularnewline
time & Y[t] & F[t] & 95% LB & 95% UB & p-value(H0: Y[t] = F[t]) & P(F[t]>Y[t-1]) & P(F[t]>Y[t-s]) & P(F[t]>Y[116]) \tabularnewline
104 & 5285 & - & - & - & - & - & - & - \tabularnewline
105 & 5405 & - & - & - & - & - & - & - \tabularnewline
106 & 5385 & - & - & - & - & - & - & - \tabularnewline
107 & 5255 & - & - & - & - & - & - & - \tabularnewline
108 & 5100 & - & - & - & - & - & - & - \tabularnewline
109 & 5040 & - & - & - & - & - & - & - \tabularnewline
110 & 5235 & - & - & - & - & - & - & - \tabularnewline
111 & 5310 & - & - & - & - & - & - & - \tabularnewline
112 & 5265 & - & - & - & - & - & - & - \tabularnewline
113 & 5380 & - & - & - & - & - & - & - \tabularnewline
114 & 5465 & - & - & - & - & - & - & - \tabularnewline
115 & 5225 & - & - & - & - & - & - & - \tabularnewline
116 & 5445 & - & - & - & - & - & - & - \tabularnewline
117 & NA & 5517.4776 & 5412.3322 & 5622.623 & NA & 0.9117 & 0.982 & 0.9117 \tabularnewline
118 & NA & 5474.9539 & 5333.8433 & 5616.0644 & NA & NA & 0.8942 & 0.6613 \tabularnewline
119 & NA & 5321.6135 & 5143.5073 & 5499.7197 & NA & NA & 0.7682 & 0.0873 \tabularnewline
120 & NA & 5204.988 & 4979.8053 & 5430.1708 & NA & NA & 0.8196 & 0.0184 \tabularnewline
121 & NA & 5117.6153 & 4851.9745 & 5383.2561 & NA & NA & 0.7166 & 0.0079 \tabularnewline
122 & NA & 5270.1298 & 4965.1728 & 5575.0868 & NA & NA & 0.5893 & 0.1305 \tabularnewline
123 & NA & 5313.4677 & 4969.3467 & 5657.5887 & NA & NA & 0.5079 & 0.2269 \tabularnewline
124 & NA & 5258.5497 & 4877.7963 & 5639.3032 & NA & NA & 0.4868 & 0.1686 \tabularnewline
125 & NA & 5356.4673 & 4940.5662 & 5772.3683 & NA & NA & 0.4558 & 0.3383 \tabularnewline
126 & NA & 5504.9621 & 5055.2371 & 5954.687 & NA & NA & 0.5691 & 0.6031 \tabularnewline
127 & NA & 5243.4668 & 4761.5235 & 5725.41 & NA & NA & 0.5299 & 0.2062 \tabularnewline
128 & NA & 5456.5434 & 4943.7016 & 5969.3852 & NA & NA & 0.5176 & 0.5176 \tabularnewline
129 & NA & 5552.8734 & 4998.0128 & 6107.7339 & NA & NA & NA & 0.6484 \tabularnewline
130 & NA & 5513.5999 & 4920.5843 & 6106.6155 & NA & NA & NA & 0.5897 \tabularnewline
131 & NA & 5342.5515 & 4711.7392 & 5973.3638 & NA & NA & NA & 0.3751 \tabularnewline
132 & NA & 5198.4112 & 4528.5129 & 5868.3095 & NA & NA & NA & 0.2353 \tabularnewline
133 & NA & 5124.4399 & 4417.103 & 5831.7767 & NA & NA & NA & 0.1872 \tabularnewline
134 & NA & 5251.7932 & 4507.8581 & 5995.7284 & NA & NA & NA & 0.3054 \tabularnewline
135 & NA & 5277.6861 & 4497.8114 & 6057.5609 & NA & NA & NA & 0.3371 \tabularnewline
136 & NA & 5269.2988 & 4454.6554 & 6083.9422 & NA & NA & NA & 0.3362 \tabularnewline
137 & NA & 5343.8151 & 4495.3631 & 6192.2671 & NA & NA & NA & 0.4076 \tabularnewline
138 & NA & 5483.6532 & 4602.306 & 6365.0003 & NA & NA & NA & 0.5343 \tabularnewline
139 & NA & 5236.0534 & 4322.7756 & 6149.3312 & NA & NA & NA & 0.3269 \tabularnewline
140 & NA & 5448.7014 & 4504.3723 & 6393.0304 & NA & NA & NA & 0.5031 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298988&T=1

[TABLE]
[ROW][C]Univariate ARIMA Extrapolation Forecast[/C][/ROW]
[ROW][C]time[/C][C]Y[t][/C][C]F[t][/C][C]95% LB[/C][C]95% UB[/C][C]p-value(H0: Y[t] = F[t])[/C][C]P(F[t]>Y[t-1])[/C][C]P(F[t]>Y[t-s])[/C][C]P(F[t]>Y[116])[/C][/ROW]
[ROW][C]104[/C][C]5285[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]105[/C][C]5405[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]106[/C][C]5385[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]107[/C][C]5255[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]108[/C][C]5100[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]109[/C][C]5040[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]110[/C][C]5235[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]111[/C][C]5310[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]112[/C][C]5265[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]113[/C][C]5380[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]114[/C][C]5465[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]115[/C][C]5225[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]116[/C][C]5445[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]117[/C][C]NA[/C][C]5517.4776[/C][C]5412.3322[/C][C]5622.623[/C][C]NA[/C][C]0.9117[/C][C]0.982[/C][C]0.9117[/C][/ROW]
[ROW][C]118[/C][C]NA[/C][C]5474.9539[/C][C]5333.8433[/C][C]5616.0644[/C][C]NA[/C][C]NA[/C][C]0.8942[/C][C]0.6613[/C][/ROW]
[ROW][C]119[/C][C]NA[/C][C]5321.6135[/C][C]5143.5073[/C][C]5499.7197[/C][C]NA[/C][C]NA[/C][C]0.7682[/C][C]0.0873[/C][/ROW]
[ROW][C]120[/C][C]NA[/C][C]5204.988[/C][C]4979.8053[/C][C]5430.1708[/C][C]NA[/C][C]NA[/C][C]0.8196[/C][C]0.0184[/C][/ROW]
[ROW][C]121[/C][C]NA[/C][C]5117.6153[/C][C]4851.9745[/C][C]5383.2561[/C][C]NA[/C][C]NA[/C][C]0.7166[/C][C]0.0079[/C][/ROW]
[ROW][C]122[/C][C]NA[/C][C]5270.1298[/C][C]4965.1728[/C][C]5575.0868[/C][C]NA[/C][C]NA[/C][C]0.5893[/C][C]0.1305[/C][/ROW]
[ROW][C]123[/C][C]NA[/C][C]5313.4677[/C][C]4969.3467[/C][C]5657.5887[/C][C]NA[/C][C]NA[/C][C]0.5079[/C][C]0.2269[/C][/ROW]
[ROW][C]124[/C][C]NA[/C][C]5258.5497[/C][C]4877.7963[/C][C]5639.3032[/C][C]NA[/C][C]NA[/C][C]0.4868[/C][C]0.1686[/C][/ROW]
[ROW][C]125[/C][C]NA[/C][C]5356.4673[/C][C]4940.5662[/C][C]5772.3683[/C][C]NA[/C][C]NA[/C][C]0.4558[/C][C]0.3383[/C][/ROW]
[ROW][C]126[/C][C]NA[/C][C]5504.9621[/C][C]5055.2371[/C][C]5954.687[/C][C]NA[/C][C]NA[/C][C]0.5691[/C][C]0.6031[/C][/ROW]
[ROW][C]127[/C][C]NA[/C][C]5243.4668[/C][C]4761.5235[/C][C]5725.41[/C][C]NA[/C][C]NA[/C][C]0.5299[/C][C]0.2062[/C][/ROW]
[ROW][C]128[/C][C]NA[/C][C]5456.5434[/C][C]4943.7016[/C][C]5969.3852[/C][C]NA[/C][C]NA[/C][C]0.5176[/C][C]0.5176[/C][/ROW]
[ROW][C]129[/C][C]NA[/C][C]5552.8734[/C][C]4998.0128[/C][C]6107.7339[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.6484[/C][/ROW]
[ROW][C]130[/C][C]NA[/C][C]5513.5999[/C][C]4920.5843[/C][C]6106.6155[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.5897[/C][/ROW]
[ROW][C]131[/C][C]NA[/C][C]5342.5515[/C][C]4711.7392[/C][C]5973.3638[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.3751[/C][/ROW]
[ROW][C]132[/C][C]NA[/C][C]5198.4112[/C][C]4528.5129[/C][C]5868.3095[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.2353[/C][/ROW]
[ROW][C]133[/C][C]NA[/C][C]5124.4399[/C][C]4417.103[/C][C]5831.7767[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.1872[/C][/ROW]
[ROW][C]134[/C][C]NA[/C][C]5251.7932[/C][C]4507.8581[/C][C]5995.7284[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.3054[/C][/ROW]
[ROW][C]135[/C][C]NA[/C][C]5277.6861[/C][C]4497.8114[/C][C]6057.5609[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.3371[/C][/ROW]
[ROW][C]136[/C][C]NA[/C][C]5269.2988[/C][C]4454.6554[/C][C]6083.9422[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.3362[/C][/ROW]
[ROW][C]137[/C][C]NA[/C][C]5343.8151[/C][C]4495.3631[/C][C]6192.2671[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.4076[/C][/ROW]
[ROW][C]138[/C][C]NA[/C][C]5483.6532[/C][C]4602.306[/C][C]6365.0003[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.5343[/C][/ROW]
[ROW][C]139[/C][C]NA[/C][C]5236.0534[/C][C]4322.7756[/C][C]6149.3312[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.3269[/C][/ROW]
[ROW][C]140[/C][C]NA[/C][C]5448.7014[/C][C]4504.3723[/C][C]6393.0304[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.5031[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298988&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298988&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Univariate ARIMA Extrapolation Forecast
timeY[t]F[t]95% LB95% UBp-value(H0: Y[t] = F[t])P(F[t]>Y[t-1])P(F[t]>Y[t-s])P(F[t]>Y[116])
1045285-------
1055405-------
1065385-------
1075255-------
1085100-------
1095040-------
1105235-------
1115310-------
1125265-------
1135380-------
1145465-------
1155225-------
1165445-------
117NA5517.47765412.33225622.623NA0.91170.9820.9117
118NA5474.95395333.84335616.0644NANA0.89420.6613
119NA5321.61355143.50735499.7197NANA0.76820.0873
120NA5204.9884979.80535430.1708NANA0.81960.0184
121NA5117.61534851.97455383.2561NANA0.71660.0079
122NA5270.12984965.17285575.0868NANA0.58930.1305
123NA5313.46774969.34675657.5887NANA0.50790.2269
124NA5258.54974877.79635639.3032NANA0.48680.1686
125NA5356.46734940.56625772.3683NANA0.45580.3383
126NA5504.96215055.23715954.687NANA0.56910.6031
127NA5243.46684761.52355725.41NANA0.52990.2062
128NA5456.54344943.70165969.3852NANA0.51760.5176
129NA5552.87344998.01286107.7339NANANA0.6484
130NA5513.59994920.58436106.6155NANANA0.5897
131NA5342.55154711.73925973.3638NANANA0.3751
132NA5198.41124528.51295868.3095NANANA0.2353
133NA5124.43994417.1035831.7767NANANA0.1872
134NA5251.79324507.85815995.7284NANANA0.3054
135NA5277.68614497.81146057.5609NANANA0.3371
136NA5269.29884454.65546083.9422NANANA0.3362
137NA5343.81514495.36316192.2671NANANA0.4076
138NA5483.65324602.3066365.0003NANANA0.5343
139NA5236.05344322.77566149.3312NANANA0.3269
140NA5448.70144504.37236393.0304NANANA0.5031







Univariate ARIMA Extrapolation Forecast Performance
time% S.E.PEMAPEsMAPESq.EMSERMSEScaledEMASE
1170.0097NANANANA00NANA
1180.0131NANANANANANANANA
1190.0171NANANANANANANANA
1200.0221NANANANANANANANA
1210.0265NANANANANANANANA
1220.0295NANANANANANANANA
1230.033NANANANANANANANA
1240.0369NANANANANANANANA
1250.0396NANANANANANANANA
1260.0417NANANANANANANANA
1270.0469NANANANANANANANA
1280.048NANANANANANANANA
1290.051NANANANANANANANA
1300.0549NANANANANANANANA
1310.0602NANANANANANANANA
1320.0657NANANANANANANANA
1330.0704NANANANANANANANA
1340.0723NANANANANANANANA
1350.0754NANANANANANANANA
1360.0789NANANANANANANANA
1370.081NANANANANANANANA
1380.082NANANANANANANANA
1390.089NANANANANANANANA
1400.0884NANANANANANANANA

\begin{tabular}{lllllllll}
\hline
Univariate ARIMA Extrapolation Forecast Performance \tabularnewline
time & % S.E. & PE & MAPE & sMAPE & Sq.E & MSE & RMSE & ScaledE & MASE \tabularnewline
117 & 0.0097 & NA & NA & NA & NA & 0 & 0 & NA & NA \tabularnewline
118 & 0.0131 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
119 & 0.0171 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
120 & 0.0221 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
121 & 0.0265 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
122 & 0.0295 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
123 & 0.033 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
124 & 0.0369 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
125 & 0.0396 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
126 & 0.0417 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
127 & 0.0469 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
128 & 0.048 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
129 & 0.051 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
130 & 0.0549 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
131 & 0.0602 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
132 & 0.0657 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
133 & 0.0704 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
134 & 0.0723 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
135 & 0.0754 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
136 & 0.0789 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
137 & 0.081 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
138 & 0.082 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
139 & 0.089 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
140 & 0.0884 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298988&T=2

[TABLE]
[ROW][C]Univariate ARIMA Extrapolation Forecast Performance[/C][/ROW]
[ROW][C]time[/C][C]% S.E.[/C][C]PE[/C][C]MAPE[/C][C]sMAPE[/C][C]Sq.E[/C][C]MSE[/C][C]RMSE[/C][C]ScaledE[/C][C]MASE[/C][/ROW]
[ROW][C]117[/C][C]0.0097[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0[/C][C]0[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]118[/C][C]0.0131[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]119[/C][C]0.0171[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]120[/C][C]0.0221[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]121[/C][C]0.0265[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]122[/C][C]0.0295[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]123[/C][C]0.033[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]124[/C][C]0.0369[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]125[/C][C]0.0396[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]126[/C][C]0.0417[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]127[/C][C]0.0469[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]128[/C][C]0.048[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]129[/C][C]0.051[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]130[/C][C]0.0549[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]131[/C][C]0.0602[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]132[/C][C]0.0657[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]133[/C][C]0.0704[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]134[/C][C]0.0723[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]135[/C][C]0.0754[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]136[/C][C]0.0789[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]137[/C][C]0.081[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]138[/C][C]0.082[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]139[/C][C]0.089[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]140[/C][C]0.0884[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298988&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298988&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Univariate ARIMA Extrapolation Forecast Performance
time% S.E.PEMAPEsMAPESq.EMSERMSEScaledEMASE
1170.0097NANANANA00NANA
1180.0131NANANANANANANANA
1190.0171NANANANANANANANA
1200.0221NANANANANANANANA
1210.0265NANANANANANANANA
1220.0295NANANANANANANANA
1230.033NANANANANANANANA
1240.0369NANANANANANANANA
1250.0396NANANANANANANANA
1260.0417NANANANANANANANA
1270.0469NANANANANANANANA
1280.048NANANANANANANANA
1290.051NANANANANANANANA
1300.0549NANANANANANANANA
1310.0602NANANANANANANANA
1320.0657NANANANANANANANA
1330.0704NANANANANANANANA
1340.0723NANANANANANANANA
1350.0754NANANANANANANANA
1360.0789NANANANANANANANA
1370.081NANANANANANANANA
1380.082NANANANANANANANA
1390.089NANANANANANANANA
1400.0884NANANANANANANANA



Parameters (Session):
par1 = 0 ; par2 = 1 ; par3 = 1 ; par4 = 1 ; par5 = 12 ; par6 = 3 ; par7 = 1 ; par8 = 2 ; par9 = 1 ; par10 = FALSE ;
Parameters (R input):
par1 = 0 ; par2 = 1 ; par3 = 1 ; par4 = 1 ; par5 = 12 ; par6 = 3 ; par7 = 1 ; par8 = 2 ; par9 = 1 ; par10 = FALSE ;
R code (references can be found in the software module):
par1 <- as.numeric(par1) #cut off periods
par2 <- as.numeric(par2) #lambda
par3 <- as.numeric(par3) #degree of non-seasonal differencing
par4 <- as.numeric(par4) #degree of seasonal differencing
par5 <- as.numeric(par5) #seasonal period
par6 <- as.numeric(par6) #p
par7 <- as.numeric(par7) #q
par8 <- as.numeric(par8) #P
par9 <- as.numeric(par9) #Q
if (par10 == 'TRUE') par10 <- TRUE
if (par10 == 'FALSE') par10 <- FALSE
if (par2 == 0) x <- log(x)
if (par2 != 0) x <- x^par2
lx <- length(x)
first <- lx - 2*par1
nx <- lx - par1
nx1 <- nx + 1
fx <- lx - nx
if (fx < 1) {
fx <- par5*2
nx1 <- lx + fx - 1
first <- lx - 2*fx
}
first <- 1
if (fx < 3) fx <- round(lx/10,0)
(arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML'))
(forecast <- predict(arima.out,fx))
(lb <- forecast$pred - 1.96 * forecast$se)
(ub <- forecast$pred + 1.96 * forecast$se)
if (par2 == 0) {
x <- exp(x)
forecast$pred <- exp(forecast$pred)
lb <- exp(lb)
ub <- exp(ub)
}
if (par2 != 0) {
x <- x^(1/par2)
forecast$pred <- forecast$pred^(1/par2)
lb <- lb^(1/par2)
ub <- ub^(1/par2)
}
if (par2 < 0) {
olb <- lb
lb <- ub
ub <- olb
}
(actandfor <- c(x[1:nx], forecast$pred))
(perc.se <- (ub-forecast$pred)/1.96/forecast$pred)
bitmap(file='test1.png')
opar <- par(mar=c(4,4,2,2),las=1)
ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub))
plot(x,ylim=ylim,type='n',xlim=c(first,lx))
usr <- par('usr')
rect(usr[1],usr[3],nx+1,usr[4],border=NA,col='lemonchiffon')
rect(nx1,usr[3],usr[2],usr[4],border=NA,col='lavender')
abline(h= (-3:3)*2 , col ='gray', lty =3)
polygon( c(nx1:lx,lx:nx1), c(lb,rev(ub)), col = 'orange', lty=2,border=NA)
lines(nx1:lx, lb , lty=2)
lines(nx1:lx, ub , lty=2)
lines(x, lwd=2)
lines(nx1:lx, forecast$pred , lwd=2 , col ='white')
box()
par(opar)
dev.off()
prob.dec <- array(NA, dim=fx)
prob.sdec <- array(NA, dim=fx)
prob.ldec <- array(NA, dim=fx)
prob.pval <- array(NA, dim=fx)
perf.pe <- array(0, dim=fx)
perf.spe <- array(0, dim=fx)
perf.scalederr <- array(0, dim=fx)
perf.mase <- array(0, dim=fx)
perf.mase1 <- array(0, dim=fx)
perf.mape <- array(0, dim=fx)
perf.smape <- array(0, dim=fx)
perf.mape1 <- array(0, dim=fx)
perf.smape1 <- array(0,dim=fx)
perf.se <- array(0, dim=fx)
perf.mse <- array(0, dim=fx)
perf.mse1 <- array(0, dim=fx)
perf.rmse <- array(0, dim=fx)
perf.scaleddenom <- 0
for (i in 2:fx) {
perf.scaleddenom = perf.scaleddenom + abs(x[nx+i] - x[nx+i-1])
}
perf.scaleddenom = perf.scaleddenom / (fx-1)
for (i in 1:fx) {
locSD <- (ub[i] - forecast$pred[i]) / 1.96
perf.scalederr[i] = (x[nx+i] - forecast$pred[i]) / perf.scaleddenom
perf.pe[i] = (x[nx+i] - forecast$pred[i]) / x[nx+i]
perf.spe[i] = 2*(x[nx+i] - forecast$pred[i]) / (x[nx+i] + forecast$pred[i])
perf.se[i] = (x[nx+i] - forecast$pred[i])^2
prob.dec[i] = pnorm((x[nx+i-1] - forecast$pred[i]) / locSD)
prob.sdec[i] = pnorm((x[nx+i-par5] - forecast$pred[i]) / locSD)
prob.ldec[i] = pnorm((x[nx] - forecast$pred[i]) / locSD)
prob.pval[i] = pnorm(abs(x[nx+i] - forecast$pred[i]) / locSD)
}
perf.mape[1] = abs(perf.pe[1])
perf.smape[1] = abs(perf.spe[1])
perf.mape1[1] = perf.mape[1]
perf.smape1[1] = perf.smape[1]
perf.mse[1] = perf.se[1]
perf.mase[1] = abs(perf.scalederr[1])
perf.mase1[1] = perf.mase[1]
for (i in 2:fx) {
perf.mape[i] = perf.mape[i-1] + abs(perf.pe[i])
perf.mape1[i] = perf.mape[i] / i
perf.smape[i] = perf.smape[i-1] + abs(perf.spe[i])
perf.smape1[i] = perf.smape[i] / i
perf.mse[i] = perf.mse[i-1] + perf.se[i]
perf.mse1[i] = perf.mse[i] / i
perf.mase[i] = perf.mase[i-1] + abs(perf.scalederr[i])
perf.mase1[i] = perf.mase[i] / i
}
perf.rmse = sqrt(perf.mse1)
bitmap(file='test2.png')
plot(forecast$pred, pch=19, type='b',main='ARIMA Extrapolation Forecast', ylab='Forecast and 95% CI', xlab='time',ylim=c(min(lb),max(ub)))
dum <- forecast$pred
dum[1:par1] <- x[(nx+1):lx]
lines(dum, lty=1)
lines(ub,lty=3)
lines(lb,lty=3)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Univariate ARIMA Extrapolation Forecast',9,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'time',1,header=TRUE)
a<-table.element(a,'Y[t]',1,header=TRUE)
a<-table.element(a,'F[t]',1,header=TRUE)
a<-table.element(a,'95% LB',1,header=TRUE)
a<-table.element(a,'95% UB',1,header=TRUE)
a<-table.element(a,'p-value
(H0: Y[t] = F[t])',1,header=TRUE)
a<-table.element(a,'P(F[t]>Y[t-1])',1,header=TRUE)
a<-table.element(a,'P(F[t]>Y[t-s])',1,header=TRUE)
mylab <- paste('P(F[t]>Y[',nx,sep='')
mylab <- paste(mylab,'])',sep='')
a<-table.element(a,mylab,1,header=TRUE)
a<-table.row.end(a)
for (i in (nx-par5):nx) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.row.end(a)
}
for (i in 1:fx) {
a<-table.row.start(a)
a<-table.element(a,nx+i,header=TRUE)
a<-table.element(a,round(x[nx+i],4))
a<-table.element(a,round(forecast$pred[i],4))
a<-table.element(a,round(lb[i],4))
a<-table.element(a,round(ub[i],4))
a<-table.element(a,round((1-prob.pval[i]),4))
a<-table.element(a,round((1-prob.dec[i]),4))
a<-table.element(a,round((1-prob.sdec[i]),4))
a<-table.element(a,round((1-prob.ldec[i]),4))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Univariate ARIMA Extrapolation Forecast Performance',10,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'time',1,header=TRUE)
a<-table.element(a,'% S.E.',1,header=TRUE)
a<-table.element(a,'PE',1,header=TRUE)
a<-table.element(a,'MAPE',1,header=TRUE)
a<-table.element(a,'sMAPE',1,header=TRUE)
a<-table.element(a,'Sq.E',1,header=TRUE)
a<-table.element(a,'MSE',1,header=TRUE)
a<-table.element(a,'RMSE',1,header=TRUE)
a<-table.element(a,'ScaledE',1,header=TRUE)
a<-table.element(a,'MASE',1,header=TRUE)
a<-table.row.end(a)
for (i in 1:fx) {
a<-table.row.start(a)
a<-table.element(a,nx+i,header=TRUE)
a<-table.element(a,round(perc.se[i],4))
a<-table.element(a,round(perf.pe[i],4))
a<-table.element(a,round(perf.mape1[i],4))
a<-table.element(a,round(perf.smape1[i],4))
a<-table.element(a,round(perf.se[i],4))
a<-table.element(a,round(perf.mse1[i],4))
a<-table.element(a,round(perf.rmse[i],4))
a<-table.element(a,round(perf.scalederr[i],4))
a<-table.element(a,round(perf.mase1[i],4))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')