Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_decompose.wasp
Title produced by softwareClassical Decomposition
Date of computationMon, 12 Dec 2016 19:40:47 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/12/t148156806156fbep19mc99oi6.htm/, Retrieved Fri, 01 Nov 2024 03:29:36 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=298960, Retrieved Fri, 01 Nov 2024 03:29:36 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact92
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Classical Decomposition] [classical decompo...] [2016-12-12 18:40:47] [130d73899007e5ff8a4f636b9bcfb397] [Current]
Feedback Forum

Post a new message
Dataseries X:
5483.5
5386.2
5781.8
5137.4
5001.7
5123.8
5340
5696.4
5544.7
5747.6
5487.4
5590.1
5571.9
5363.1
6014.1
5480.4
5907.5
5772.2
5620
6614.7
6294.7
5938.3
5722.6
5595.6
5569.5
5753.7
5838.8
5401.1
6013.9
5461.1
5176.3
5916.5
5519.5
5873.9
5663.8
5339
5671.2
5741
5881.3
5531.2
5811.2
5391.4
5461.2
6091.3
5951
6511.7
6371.4
5601.2
6001.2
5920.7
5455.2
5703.8
5863
5762.9
5997.8
6542.7
6594.5
6915.1
6584.6
6412.2
5930.1
6022.3
6268.6
6179.9
6608.6
6424
6230.8
6628.2
6576.2
6947
6672.8
6249.9
5964.2
5840.1
6115.2
5800.5
6566.6
6377.3
6355.2
6999.3
6603.7
6998.3
6966.2
6383.3
5960
5682.1
5640.2
5694.1
6392.4
5835.3
6075.6
7387.1
6632.6
7048.1
6792.1
6094
6408.3
6492.1
6596.8
6078.2
6297.3
5960.8
6125.1
7253.4
6505.8
7419.5
7308.2
6373.1
6667.4
6518.6
6324.8
6764.1
6985
6091.5
6526
7116.9
6770.3
7221.9
7344.5
6565.6
6577.3
6597.8
6560.6
6729.2
6703.2
6716.1




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time3 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298960&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]3 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=298960&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298960&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R ServerBig Analytics Cloud Computing Center







Classical Decomposition by Moving Averages
tObservationsFitTrendSeasonalRandom
15483.5NANA-160.499NA
25386.2NANA-218.133NA
35781.8NANA-141.35NA
45137.4NANA-320.705NA
55001.7NANA87.4497NA
65123.8NANA-299.998NA
753405207.35447.07-239.769132.702
85696.45934.265449.79484.475-237.863
95544.75609.345458.5150.832-64.6363
105747.65986.275482.48503.795-238.67
115487.45853.85534.51319.293-366.401
125590.15433.885599.27-165.392156.225
135571.95477.455637.95-160.49994.4489
145363.15469.755687.88-218.133-106.646
156014.15616.045757.39-141.35398.058
165480.45475.885796.59-320.7054.51744
175907.55901.785814.3387.44975.71698
185772.25524.365824.36-299.998247.835
1956205584.725824.49-239.76935.2771
206614.76325.145840.67484.475289.558
216294.76000.475849.64150.832294.23
225938.36342.825839.03503.795-404.524
235722.66159.455840.16319.293-436.851
245595.65666.245831.63-165.392-70.6375
255569.55639.685800.18-160.499-70.1802
265753.75534.475752.6-218.133219.233
275838.85549.865691.21-141.35288.942
285401.15335.525656.22-320.70565.5799
296013.95738.545651.0987.4497275.359
305461.15337.955637.95-299.998123.148
315176.35391.735631.5-239.769-215.427
325916.56119.685635.2484.475-203.18
335519.55787.285636.45150.832-267.778
345873.96147.435643.64503.795-273.532
355663.85959.915640.61319.293-296.105
3653395463.875629.26-165.392-124.871
375671.25477.735638.23-160.499193.47
3857415439.255657.38-218.133301.749
395881.35541.35682.65-141.35340.004
405531.25406.55727.2-320.705124.705
415811.25870.715783.2687.4497-59.508
425391.45523.675823.67-299.998-132.269
435461.25608.575848.34-239.769-147.373
446091.36354.055869.58484.475-262.755
4559516010.145859.31150.832-59.1446
466511.76352.545848.75503.795159.155
476371.46177.395858.1319.293194.007
485601.25710.355875.74-165.392-109.146
496001.25753.085913.58-160.499248.124
505920.75736.615954.74-218.133184.091
515455.25859.016000.36-141.35-403.813
525703.85723.286043.98-320.705-19.4784
5358636157.126069.6887.4497-294.125
545762.95812.356112.35-299.998-49.4525
555997.85903.416143.18-239.76994.3896
566542.76628.936144.45484.475-86.2254
576594.56333.416182.58150.832261.093
586915.16740.16236.3503.795175.001
596584.66606.56287.21319.293-21.9008
606412.26180.436345.82-165.392231.771
615930.16222.586383.08-160.499-292.476
626022.36178.216396.35-218.133-155.913
636268.66257.86399.15-141.3510.804
646179.96079.016399.71-320.705100.892
656608.66492.176404.7287.4497116.434
6664246101.636401.63-299.998322.368
676230.86156.526396.29-239.76974.2812
686628.26874.596390.12484.475-246.392
696576.26526.976376.13150.83249.2346
7069476857.736353.93503.79589.2721
716672.86655.676336.37319.29317.1325
726249.96167.296332.68-165.39282.6125
735964.26175.426335.92-160.499-211.218
745840.16138.436356.56-218.133-298.33
756115.26231.826373.17-141.35-116.621
765800.56055.756376.45-320.705-255.249
776566.66478.276390.8287.449788.3336
786377.36108.66408.6-299.998268.698
796355.26174.216413.98-239.769180.985
806999.36891.76407.22484.475107.6
816603.76531.686380.85150.83272.0179
826998.36860.426356.62503.795137.88
836966.26664.236344.93319.293301.974
846383.36149.76315.09-165.392233.6
8559606120.366280.86-160.499-160.359
865682.16067.236285.37-218.133-385.134
875640.26161.386302.73-141.35-521.179
885694.15985.36306.01-320.705-291.203
896392.46388.286300.8387.44974.12114
905835.35981.526281.52-299.998-146.223
916075.66048.386288.15-239.76927.2229
927387.16825.056340.57484.475562.05
936632.66565.026414.18150.83267.5846
947048.16973.846470.05503.79574.2596
956792.16801.386482.09319.293-9.28002
9660946317.966483.35-165.392-223.963
976408.36330.156490.65-160.49978.1531
986492.162696487.14-218.133223.095
996596.86334.936476.28-141.35261.867
1006078.26165.776486.48-320.705-87.5701
1016297.36610.96523.4587.4497-313.604
1025960.86256.596556.59-299.998-295.79
1036125.16339.246579.01-239.769-214.144
1047253.47075.396590.91484.475178.012
1056505.86731.526580.68150.832-225.715
1067419.57101.726597.93503.795317.776
1077308.26974.466655.16319.293333.745
1086373.16523.876689.26-165.392-150.771
1096667.46550.916711.41-160.499116.486
1106518.66504.36722.43-218.13314.3035
1116324.86586.416727.76-141.35-261.613
1126764.16409.856730.55-320.705354.255
11369856811.286723.8387.4497173.721
1146091.56433.366733.36-299.998-341.865
11565266497.866737.63-239.76928.1396
1167116.97221.656737.17484.475-104.75
1176770.36901.136750.3150.832-130.832
1187221.97262.476758.67503.795-40.5654
1197344.57064.776745.48319.293279.732
1206565.66594.376759.76-165.392-28.7667
1216577.3NANA-160.499NA
1226597.8NANA-218.133NA
1236560.6NANA-141.35NA
1246729.2NANA-320.705NA
1256703.2NANA87.4497NA
1266716.1NANA-299.998NA

\begin{tabular}{lllllllll}
\hline
Classical Decomposition by Moving Averages \tabularnewline
t & Observations & Fit & Trend & Seasonal & Random \tabularnewline
1 & 5483.5 & NA & NA & -160.499 & NA \tabularnewline
2 & 5386.2 & NA & NA & -218.133 & NA \tabularnewline
3 & 5781.8 & NA & NA & -141.35 & NA \tabularnewline
4 & 5137.4 & NA & NA & -320.705 & NA \tabularnewline
5 & 5001.7 & NA & NA & 87.4497 & NA \tabularnewline
6 & 5123.8 & NA & NA & -299.998 & NA \tabularnewline
7 & 5340 & 5207.3 & 5447.07 & -239.769 & 132.702 \tabularnewline
8 & 5696.4 & 5934.26 & 5449.79 & 484.475 & -237.863 \tabularnewline
9 & 5544.7 & 5609.34 & 5458.5 & 150.832 & -64.6363 \tabularnewline
10 & 5747.6 & 5986.27 & 5482.48 & 503.795 & -238.67 \tabularnewline
11 & 5487.4 & 5853.8 & 5534.51 & 319.293 & -366.401 \tabularnewline
12 & 5590.1 & 5433.88 & 5599.27 & -165.392 & 156.225 \tabularnewline
13 & 5571.9 & 5477.45 & 5637.95 & -160.499 & 94.4489 \tabularnewline
14 & 5363.1 & 5469.75 & 5687.88 & -218.133 & -106.646 \tabularnewline
15 & 6014.1 & 5616.04 & 5757.39 & -141.35 & 398.058 \tabularnewline
16 & 5480.4 & 5475.88 & 5796.59 & -320.705 & 4.51744 \tabularnewline
17 & 5907.5 & 5901.78 & 5814.33 & 87.4497 & 5.71698 \tabularnewline
18 & 5772.2 & 5524.36 & 5824.36 & -299.998 & 247.835 \tabularnewline
19 & 5620 & 5584.72 & 5824.49 & -239.769 & 35.2771 \tabularnewline
20 & 6614.7 & 6325.14 & 5840.67 & 484.475 & 289.558 \tabularnewline
21 & 6294.7 & 6000.47 & 5849.64 & 150.832 & 294.23 \tabularnewline
22 & 5938.3 & 6342.82 & 5839.03 & 503.795 & -404.524 \tabularnewline
23 & 5722.6 & 6159.45 & 5840.16 & 319.293 & -436.851 \tabularnewline
24 & 5595.6 & 5666.24 & 5831.63 & -165.392 & -70.6375 \tabularnewline
25 & 5569.5 & 5639.68 & 5800.18 & -160.499 & -70.1802 \tabularnewline
26 & 5753.7 & 5534.47 & 5752.6 & -218.133 & 219.233 \tabularnewline
27 & 5838.8 & 5549.86 & 5691.21 & -141.35 & 288.942 \tabularnewline
28 & 5401.1 & 5335.52 & 5656.22 & -320.705 & 65.5799 \tabularnewline
29 & 6013.9 & 5738.54 & 5651.09 & 87.4497 & 275.359 \tabularnewline
30 & 5461.1 & 5337.95 & 5637.95 & -299.998 & 123.148 \tabularnewline
31 & 5176.3 & 5391.73 & 5631.5 & -239.769 & -215.427 \tabularnewline
32 & 5916.5 & 6119.68 & 5635.2 & 484.475 & -203.18 \tabularnewline
33 & 5519.5 & 5787.28 & 5636.45 & 150.832 & -267.778 \tabularnewline
34 & 5873.9 & 6147.43 & 5643.64 & 503.795 & -273.532 \tabularnewline
35 & 5663.8 & 5959.91 & 5640.61 & 319.293 & -296.105 \tabularnewline
36 & 5339 & 5463.87 & 5629.26 & -165.392 & -124.871 \tabularnewline
37 & 5671.2 & 5477.73 & 5638.23 & -160.499 & 193.47 \tabularnewline
38 & 5741 & 5439.25 & 5657.38 & -218.133 & 301.749 \tabularnewline
39 & 5881.3 & 5541.3 & 5682.65 & -141.35 & 340.004 \tabularnewline
40 & 5531.2 & 5406.5 & 5727.2 & -320.705 & 124.705 \tabularnewline
41 & 5811.2 & 5870.71 & 5783.26 & 87.4497 & -59.508 \tabularnewline
42 & 5391.4 & 5523.67 & 5823.67 & -299.998 & -132.269 \tabularnewline
43 & 5461.2 & 5608.57 & 5848.34 & -239.769 & -147.373 \tabularnewline
44 & 6091.3 & 6354.05 & 5869.58 & 484.475 & -262.755 \tabularnewline
45 & 5951 & 6010.14 & 5859.31 & 150.832 & -59.1446 \tabularnewline
46 & 6511.7 & 6352.54 & 5848.75 & 503.795 & 159.155 \tabularnewline
47 & 6371.4 & 6177.39 & 5858.1 & 319.293 & 194.007 \tabularnewline
48 & 5601.2 & 5710.35 & 5875.74 & -165.392 & -109.146 \tabularnewline
49 & 6001.2 & 5753.08 & 5913.58 & -160.499 & 248.124 \tabularnewline
50 & 5920.7 & 5736.61 & 5954.74 & -218.133 & 184.091 \tabularnewline
51 & 5455.2 & 5859.01 & 6000.36 & -141.35 & -403.813 \tabularnewline
52 & 5703.8 & 5723.28 & 6043.98 & -320.705 & -19.4784 \tabularnewline
53 & 5863 & 6157.12 & 6069.68 & 87.4497 & -294.125 \tabularnewline
54 & 5762.9 & 5812.35 & 6112.35 & -299.998 & -49.4525 \tabularnewline
55 & 5997.8 & 5903.41 & 6143.18 & -239.769 & 94.3896 \tabularnewline
56 & 6542.7 & 6628.93 & 6144.45 & 484.475 & -86.2254 \tabularnewline
57 & 6594.5 & 6333.41 & 6182.58 & 150.832 & 261.093 \tabularnewline
58 & 6915.1 & 6740.1 & 6236.3 & 503.795 & 175.001 \tabularnewline
59 & 6584.6 & 6606.5 & 6287.21 & 319.293 & -21.9008 \tabularnewline
60 & 6412.2 & 6180.43 & 6345.82 & -165.392 & 231.771 \tabularnewline
61 & 5930.1 & 6222.58 & 6383.08 & -160.499 & -292.476 \tabularnewline
62 & 6022.3 & 6178.21 & 6396.35 & -218.133 & -155.913 \tabularnewline
63 & 6268.6 & 6257.8 & 6399.15 & -141.35 & 10.804 \tabularnewline
64 & 6179.9 & 6079.01 & 6399.71 & -320.705 & 100.892 \tabularnewline
65 & 6608.6 & 6492.17 & 6404.72 & 87.4497 & 116.434 \tabularnewline
66 & 6424 & 6101.63 & 6401.63 & -299.998 & 322.368 \tabularnewline
67 & 6230.8 & 6156.52 & 6396.29 & -239.769 & 74.2812 \tabularnewline
68 & 6628.2 & 6874.59 & 6390.12 & 484.475 & -246.392 \tabularnewline
69 & 6576.2 & 6526.97 & 6376.13 & 150.832 & 49.2346 \tabularnewline
70 & 6947 & 6857.73 & 6353.93 & 503.795 & 89.2721 \tabularnewline
71 & 6672.8 & 6655.67 & 6336.37 & 319.293 & 17.1325 \tabularnewline
72 & 6249.9 & 6167.29 & 6332.68 & -165.392 & 82.6125 \tabularnewline
73 & 5964.2 & 6175.42 & 6335.92 & -160.499 & -211.218 \tabularnewline
74 & 5840.1 & 6138.43 & 6356.56 & -218.133 & -298.33 \tabularnewline
75 & 6115.2 & 6231.82 & 6373.17 & -141.35 & -116.621 \tabularnewline
76 & 5800.5 & 6055.75 & 6376.45 & -320.705 & -255.249 \tabularnewline
77 & 6566.6 & 6478.27 & 6390.82 & 87.4497 & 88.3336 \tabularnewline
78 & 6377.3 & 6108.6 & 6408.6 & -299.998 & 268.698 \tabularnewline
79 & 6355.2 & 6174.21 & 6413.98 & -239.769 & 180.985 \tabularnewline
80 & 6999.3 & 6891.7 & 6407.22 & 484.475 & 107.6 \tabularnewline
81 & 6603.7 & 6531.68 & 6380.85 & 150.832 & 72.0179 \tabularnewline
82 & 6998.3 & 6860.42 & 6356.62 & 503.795 & 137.88 \tabularnewline
83 & 6966.2 & 6664.23 & 6344.93 & 319.293 & 301.974 \tabularnewline
84 & 6383.3 & 6149.7 & 6315.09 & -165.392 & 233.6 \tabularnewline
85 & 5960 & 6120.36 & 6280.86 & -160.499 & -160.359 \tabularnewline
86 & 5682.1 & 6067.23 & 6285.37 & -218.133 & -385.134 \tabularnewline
87 & 5640.2 & 6161.38 & 6302.73 & -141.35 & -521.179 \tabularnewline
88 & 5694.1 & 5985.3 & 6306.01 & -320.705 & -291.203 \tabularnewline
89 & 6392.4 & 6388.28 & 6300.83 & 87.4497 & 4.12114 \tabularnewline
90 & 5835.3 & 5981.52 & 6281.52 & -299.998 & -146.223 \tabularnewline
91 & 6075.6 & 6048.38 & 6288.15 & -239.769 & 27.2229 \tabularnewline
92 & 7387.1 & 6825.05 & 6340.57 & 484.475 & 562.05 \tabularnewline
93 & 6632.6 & 6565.02 & 6414.18 & 150.832 & 67.5846 \tabularnewline
94 & 7048.1 & 6973.84 & 6470.05 & 503.795 & 74.2596 \tabularnewline
95 & 6792.1 & 6801.38 & 6482.09 & 319.293 & -9.28002 \tabularnewline
96 & 6094 & 6317.96 & 6483.35 & -165.392 & -223.963 \tabularnewline
97 & 6408.3 & 6330.15 & 6490.65 & -160.499 & 78.1531 \tabularnewline
98 & 6492.1 & 6269 & 6487.14 & -218.133 & 223.095 \tabularnewline
99 & 6596.8 & 6334.93 & 6476.28 & -141.35 & 261.867 \tabularnewline
100 & 6078.2 & 6165.77 & 6486.48 & -320.705 & -87.5701 \tabularnewline
101 & 6297.3 & 6610.9 & 6523.45 & 87.4497 & -313.604 \tabularnewline
102 & 5960.8 & 6256.59 & 6556.59 & -299.998 & -295.79 \tabularnewline
103 & 6125.1 & 6339.24 & 6579.01 & -239.769 & -214.144 \tabularnewline
104 & 7253.4 & 7075.39 & 6590.91 & 484.475 & 178.012 \tabularnewline
105 & 6505.8 & 6731.52 & 6580.68 & 150.832 & -225.715 \tabularnewline
106 & 7419.5 & 7101.72 & 6597.93 & 503.795 & 317.776 \tabularnewline
107 & 7308.2 & 6974.46 & 6655.16 & 319.293 & 333.745 \tabularnewline
108 & 6373.1 & 6523.87 & 6689.26 & -165.392 & -150.771 \tabularnewline
109 & 6667.4 & 6550.91 & 6711.41 & -160.499 & 116.486 \tabularnewline
110 & 6518.6 & 6504.3 & 6722.43 & -218.133 & 14.3035 \tabularnewline
111 & 6324.8 & 6586.41 & 6727.76 & -141.35 & -261.613 \tabularnewline
112 & 6764.1 & 6409.85 & 6730.55 & -320.705 & 354.255 \tabularnewline
113 & 6985 & 6811.28 & 6723.83 & 87.4497 & 173.721 \tabularnewline
114 & 6091.5 & 6433.36 & 6733.36 & -299.998 & -341.865 \tabularnewline
115 & 6526 & 6497.86 & 6737.63 & -239.769 & 28.1396 \tabularnewline
116 & 7116.9 & 7221.65 & 6737.17 & 484.475 & -104.75 \tabularnewline
117 & 6770.3 & 6901.13 & 6750.3 & 150.832 & -130.832 \tabularnewline
118 & 7221.9 & 7262.47 & 6758.67 & 503.795 & -40.5654 \tabularnewline
119 & 7344.5 & 7064.77 & 6745.48 & 319.293 & 279.732 \tabularnewline
120 & 6565.6 & 6594.37 & 6759.76 & -165.392 & -28.7667 \tabularnewline
121 & 6577.3 & NA & NA & -160.499 & NA \tabularnewline
122 & 6597.8 & NA & NA & -218.133 & NA \tabularnewline
123 & 6560.6 & NA & NA & -141.35 & NA \tabularnewline
124 & 6729.2 & NA & NA & -320.705 & NA \tabularnewline
125 & 6703.2 & NA & NA & 87.4497 & NA \tabularnewline
126 & 6716.1 & NA & NA & -299.998 & NA \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298960&T=1

[TABLE]
[ROW][C]Classical Decomposition by Moving Averages[/C][/ROW]
[ROW][C]t[/C][C]Observations[/C][C]Fit[/C][C]Trend[/C][C]Seasonal[/C][C]Random[/C][/ROW]
[ROW][C]1[/C][C]5483.5[/C][C]NA[/C][C]NA[/C][C]-160.499[/C][C]NA[/C][/ROW]
[ROW][C]2[/C][C]5386.2[/C][C]NA[/C][C]NA[/C][C]-218.133[/C][C]NA[/C][/ROW]
[ROW][C]3[/C][C]5781.8[/C][C]NA[/C][C]NA[/C][C]-141.35[/C][C]NA[/C][/ROW]
[ROW][C]4[/C][C]5137.4[/C][C]NA[/C][C]NA[/C][C]-320.705[/C][C]NA[/C][/ROW]
[ROW][C]5[/C][C]5001.7[/C][C]NA[/C][C]NA[/C][C]87.4497[/C][C]NA[/C][/ROW]
[ROW][C]6[/C][C]5123.8[/C][C]NA[/C][C]NA[/C][C]-299.998[/C][C]NA[/C][/ROW]
[ROW][C]7[/C][C]5340[/C][C]5207.3[/C][C]5447.07[/C][C]-239.769[/C][C]132.702[/C][/ROW]
[ROW][C]8[/C][C]5696.4[/C][C]5934.26[/C][C]5449.79[/C][C]484.475[/C][C]-237.863[/C][/ROW]
[ROW][C]9[/C][C]5544.7[/C][C]5609.34[/C][C]5458.5[/C][C]150.832[/C][C]-64.6363[/C][/ROW]
[ROW][C]10[/C][C]5747.6[/C][C]5986.27[/C][C]5482.48[/C][C]503.795[/C][C]-238.67[/C][/ROW]
[ROW][C]11[/C][C]5487.4[/C][C]5853.8[/C][C]5534.51[/C][C]319.293[/C][C]-366.401[/C][/ROW]
[ROW][C]12[/C][C]5590.1[/C][C]5433.88[/C][C]5599.27[/C][C]-165.392[/C][C]156.225[/C][/ROW]
[ROW][C]13[/C][C]5571.9[/C][C]5477.45[/C][C]5637.95[/C][C]-160.499[/C][C]94.4489[/C][/ROW]
[ROW][C]14[/C][C]5363.1[/C][C]5469.75[/C][C]5687.88[/C][C]-218.133[/C][C]-106.646[/C][/ROW]
[ROW][C]15[/C][C]6014.1[/C][C]5616.04[/C][C]5757.39[/C][C]-141.35[/C][C]398.058[/C][/ROW]
[ROW][C]16[/C][C]5480.4[/C][C]5475.88[/C][C]5796.59[/C][C]-320.705[/C][C]4.51744[/C][/ROW]
[ROW][C]17[/C][C]5907.5[/C][C]5901.78[/C][C]5814.33[/C][C]87.4497[/C][C]5.71698[/C][/ROW]
[ROW][C]18[/C][C]5772.2[/C][C]5524.36[/C][C]5824.36[/C][C]-299.998[/C][C]247.835[/C][/ROW]
[ROW][C]19[/C][C]5620[/C][C]5584.72[/C][C]5824.49[/C][C]-239.769[/C][C]35.2771[/C][/ROW]
[ROW][C]20[/C][C]6614.7[/C][C]6325.14[/C][C]5840.67[/C][C]484.475[/C][C]289.558[/C][/ROW]
[ROW][C]21[/C][C]6294.7[/C][C]6000.47[/C][C]5849.64[/C][C]150.832[/C][C]294.23[/C][/ROW]
[ROW][C]22[/C][C]5938.3[/C][C]6342.82[/C][C]5839.03[/C][C]503.795[/C][C]-404.524[/C][/ROW]
[ROW][C]23[/C][C]5722.6[/C][C]6159.45[/C][C]5840.16[/C][C]319.293[/C][C]-436.851[/C][/ROW]
[ROW][C]24[/C][C]5595.6[/C][C]5666.24[/C][C]5831.63[/C][C]-165.392[/C][C]-70.6375[/C][/ROW]
[ROW][C]25[/C][C]5569.5[/C][C]5639.68[/C][C]5800.18[/C][C]-160.499[/C][C]-70.1802[/C][/ROW]
[ROW][C]26[/C][C]5753.7[/C][C]5534.47[/C][C]5752.6[/C][C]-218.133[/C][C]219.233[/C][/ROW]
[ROW][C]27[/C][C]5838.8[/C][C]5549.86[/C][C]5691.21[/C][C]-141.35[/C][C]288.942[/C][/ROW]
[ROW][C]28[/C][C]5401.1[/C][C]5335.52[/C][C]5656.22[/C][C]-320.705[/C][C]65.5799[/C][/ROW]
[ROW][C]29[/C][C]6013.9[/C][C]5738.54[/C][C]5651.09[/C][C]87.4497[/C][C]275.359[/C][/ROW]
[ROW][C]30[/C][C]5461.1[/C][C]5337.95[/C][C]5637.95[/C][C]-299.998[/C][C]123.148[/C][/ROW]
[ROW][C]31[/C][C]5176.3[/C][C]5391.73[/C][C]5631.5[/C][C]-239.769[/C][C]-215.427[/C][/ROW]
[ROW][C]32[/C][C]5916.5[/C][C]6119.68[/C][C]5635.2[/C][C]484.475[/C][C]-203.18[/C][/ROW]
[ROW][C]33[/C][C]5519.5[/C][C]5787.28[/C][C]5636.45[/C][C]150.832[/C][C]-267.778[/C][/ROW]
[ROW][C]34[/C][C]5873.9[/C][C]6147.43[/C][C]5643.64[/C][C]503.795[/C][C]-273.532[/C][/ROW]
[ROW][C]35[/C][C]5663.8[/C][C]5959.91[/C][C]5640.61[/C][C]319.293[/C][C]-296.105[/C][/ROW]
[ROW][C]36[/C][C]5339[/C][C]5463.87[/C][C]5629.26[/C][C]-165.392[/C][C]-124.871[/C][/ROW]
[ROW][C]37[/C][C]5671.2[/C][C]5477.73[/C][C]5638.23[/C][C]-160.499[/C][C]193.47[/C][/ROW]
[ROW][C]38[/C][C]5741[/C][C]5439.25[/C][C]5657.38[/C][C]-218.133[/C][C]301.749[/C][/ROW]
[ROW][C]39[/C][C]5881.3[/C][C]5541.3[/C][C]5682.65[/C][C]-141.35[/C][C]340.004[/C][/ROW]
[ROW][C]40[/C][C]5531.2[/C][C]5406.5[/C][C]5727.2[/C][C]-320.705[/C][C]124.705[/C][/ROW]
[ROW][C]41[/C][C]5811.2[/C][C]5870.71[/C][C]5783.26[/C][C]87.4497[/C][C]-59.508[/C][/ROW]
[ROW][C]42[/C][C]5391.4[/C][C]5523.67[/C][C]5823.67[/C][C]-299.998[/C][C]-132.269[/C][/ROW]
[ROW][C]43[/C][C]5461.2[/C][C]5608.57[/C][C]5848.34[/C][C]-239.769[/C][C]-147.373[/C][/ROW]
[ROW][C]44[/C][C]6091.3[/C][C]6354.05[/C][C]5869.58[/C][C]484.475[/C][C]-262.755[/C][/ROW]
[ROW][C]45[/C][C]5951[/C][C]6010.14[/C][C]5859.31[/C][C]150.832[/C][C]-59.1446[/C][/ROW]
[ROW][C]46[/C][C]6511.7[/C][C]6352.54[/C][C]5848.75[/C][C]503.795[/C][C]159.155[/C][/ROW]
[ROW][C]47[/C][C]6371.4[/C][C]6177.39[/C][C]5858.1[/C][C]319.293[/C][C]194.007[/C][/ROW]
[ROW][C]48[/C][C]5601.2[/C][C]5710.35[/C][C]5875.74[/C][C]-165.392[/C][C]-109.146[/C][/ROW]
[ROW][C]49[/C][C]6001.2[/C][C]5753.08[/C][C]5913.58[/C][C]-160.499[/C][C]248.124[/C][/ROW]
[ROW][C]50[/C][C]5920.7[/C][C]5736.61[/C][C]5954.74[/C][C]-218.133[/C][C]184.091[/C][/ROW]
[ROW][C]51[/C][C]5455.2[/C][C]5859.01[/C][C]6000.36[/C][C]-141.35[/C][C]-403.813[/C][/ROW]
[ROW][C]52[/C][C]5703.8[/C][C]5723.28[/C][C]6043.98[/C][C]-320.705[/C][C]-19.4784[/C][/ROW]
[ROW][C]53[/C][C]5863[/C][C]6157.12[/C][C]6069.68[/C][C]87.4497[/C][C]-294.125[/C][/ROW]
[ROW][C]54[/C][C]5762.9[/C][C]5812.35[/C][C]6112.35[/C][C]-299.998[/C][C]-49.4525[/C][/ROW]
[ROW][C]55[/C][C]5997.8[/C][C]5903.41[/C][C]6143.18[/C][C]-239.769[/C][C]94.3896[/C][/ROW]
[ROW][C]56[/C][C]6542.7[/C][C]6628.93[/C][C]6144.45[/C][C]484.475[/C][C]-86.2254[/C][/ROW]
[ROW][C]57[/C][C]6594.5[/C][C]6333.41[/C][C]6182.58[/C][C]150.832[/C][C]261.093[/C][/ROW]
[ROW][C]58[/C][C]6915.1[/C][C]6740.1[/C][C]6236.3[/C][C]503.795[/C][C]175.001[/C][/ROW]
[ROW][C]59[/C][C]6584.6[/C][C]6606.5[/C][C]6287.21[/C][C]319.293[/C][C]-21.9008[/C][/ROW]
[ROW][C]60[/C][C]6412.2[/C][C]6180.43[/C][C]6345.82[/C][C]-165.392[/C][C]231.771[/C][/ROW]
[ROW][C]61[/C][C]5930.1[/C][C]6222.58[/C][C]6383.08[/C][C]-160.499[/C][C]-292.476[/C][/ROW]
[ROW][C]62[/C][C]6022.3[/C][C]6178.21[/C][C]6396.35[/C][C]-218.133[/C][C]-155.913[/C][/ROW]
[ROW][C]63[/C][C]6268.6[/C][C]6257.8[/C][C]6399.15[/C][C]-141.35[/C][C]10.804[/C][/ROW]
[ROW][C]64[/C][C]6179.9[/C][C]6079.01[/C][C]6399.71[/C][C]-320.705[/C][C]100.892[/C][/ROW]
[ROW][C]65[/C][C]6608.6[/C][C]6492.17[/C][C]6404.72[/C][C]87.4497[/C][C]116.434[/C][/ROW]
[ROW][C]66[/C][C]6424[/C][C]6101.63[/C][C]6401.63[/C][C]-299.998[/C][C]322.368[/C][/ROW]
[ROW][C]67[/C][C]6230.8[/C][C]6156.52[/C][C]6396.29[/C][C]-239.769[/C][C]74.2812[/C][/ROW]
[ROW][C]68[/C][C]6628.2[/C][C]6874.59[/C][C]6390.12[/C][C]484.475[/C][C]-246.392[/C][/ROW]
[ROW][C]69[/C][C]6576.2[/C][C]6526.97[/C][C]6376.13[/C][C]150.832[/C][C]49.2346[/C][/ROW]
[ROW][C]70[/C][C]6947[/C][C]6857.73[/C][C]6353.93[/C][C]503.795[/C][C]89.2721[/C][/ROW]
[ROW][C]71[/C][C]6672.8[/C][C]6655.67[/C][C]6336.37[/C][C]319.293[/C][C]17.1325[/C][/ROW]
[ROW][C]72[/C][C]6249.9[/C][C]6167.29[/C][C]6332.68[/C][C]-165.392[/C][C]82.6125[/C][/ROW]
[ROW][C]73[/C][C]5964.2[/C][C]6175.42[/C][C]6335.92[/C][C]-160.499[/C][C]-211.218[/C][/ROW]
[ROW][C]74[/C][C]5840.1[/C][C]6138.43[/C][C]6356.56[/C][C]-218.133[/C][C]-298.33[/C][/ROW]
[ROW][C]75[/C][C]6115.2[/C][C]6231.82[/C][C]6373.17[/C][C]-141.35[/C][C]-116.621[/C][/ROW]
[ROW][C]76[/C][C]5800.5[/C][C]6055.75[/C][C]6376.45[/C][C]-320.705[/C][C]-255.249[/C][/ROW]
[ROW][C]77[/C][C]6566.6[/C][C]6478.27[/C][C]6390.82[/C][C]87.4497[/C][C]88.3336[/C][/ROW]
[ROW][C]78[/C][C]6377.3[/C][C]6108.6[/C][C]6408.6[/C][C]-299.998[/C][C]268.698[/C][/ROW]
[ROW][C]79[/C][C]6355.2[/C][C]6174.21[/C][C]6413.98[/C][C]-239.769[/C][C]180.985[/C][/ROW]
[ROW][C]80[/C][C]6999.3[/C][C]6891.7[/C][C]6407.22[/C][C]484.475[/C][C]107.6[/C][/ROW]
[ROW][C]81[/C][C]6603.7[/C][C]6531.68[/C][C]6380.85[/C][C]150.832[/C][C]72.0179[/C][/ROW]
[ROW][C]82[/C][C]6998.3[/C][C]6860.42[/C][C]6356.62[/C][C]503.795[/C][C]137.88[/C][/ROW]
[ROW][C]83[/C][C]6966.2[/C][C]6664.23[/C][C]6344.93[/C][C]319.293[/C][C]301.974[/C][/ROW]
[ROW][C]84[/C][C]6383.3[/C][C]6149.7[/C][C]6315.09[/C][C]-165.392[/C][C]233.6[/C][/ROW]
[ROW][C]85[/C][C]5960[/C][C]6120.36[/C][C]6280.86[/C][C]-160.499[/C][C]-160.359[/C][/ROW]
[ROW][C]86[/C][C]5682.1[/C][C]6067.23[/C][C]6285.37[/C][C]-218.133[/C][C]-385.134[/C][/ROW]
[ROW][C]87[/C][C]5640.2[/C][C]6161.38[/C][C]6302.73[/C][C]-141.35[/C][C]-521.179[/C][/ROW]
[ROW][C]88[/C][C]5694.1[/C][C]5985.3[/C][C]6306.01[/C][C]-320.705[/C][C]-291.203[/C][/ROW]
[ROW][C]89[/C][C]6392.4[/C][C]6388.28[/C][C]6300.83[/C][C]87.4497[/C][C]4.12114[/C][/ROW]
[ROW][C]90[/C][C]5835.3[/C][C]5981.52[/C][C]6281.52[/C][C]-299.998[/C][C]-146.223[/C][/ROW]
[ROW][C]91[/C][C]6075.6[/C][C]6048.38[/C][C]6288.15[/C][C]-239.769[/C][C]27.2229[/C][/ROW]
[ROW][C]92[/C][C]7387.1[/C][C]6825.05[/C][C]6340.57[/C][C]484.475[/C][C]562.05[/C][/ROW]
[ROW][C]93[/C][C]6632.6[/C][C]6565.02[/C][C]6414.18[/C][C]150.832[/C][C]67.5846[/C][/ROW]
[ROW][C]94[/C][C]7048.1[/C][C]6973.84[/C][C]6470.05[/C][C]503.795[/C][C]74.2596[/C][/ROW]
[ROW][C]95[/C][C]6792.1[/C][C]6801.38[/C][C]6482.09[/C][C]319.293[/C][C]-9.28002[/C][/ROW]
[ROW][C]96[/C][C]6094[/C][C]6317.96[/C][C]6483.35[/C][C]-165.392[/C][C]-223.963[/C][/ROW]
[ROW][C]97[/C][C]6408.3[/C][C]6330.15[/C][C]6490.65[/C][C]-160.499[/C][C]78.1531[/C][/ROW]
[ROW][C]98[/C][C]6492.1[/C][C]6269[/C][C]6487.14[/C][C]-218.133[/C][C]223.095[/C][/ROW]
[ROW][C]99[/C][C]6596.8[/C][C]6334.93[/C][C]6476.28[/C][C]-141.35[/C][C]261.867[/C][/ROW]
[ROW][C]100[/C][C]6078.2[/C][C]6165.77[/C][C]6486.48[/C][C]-320.705[/C][C]-87.5701[/C][/ROW]
[ROW][C]101[/C][C]6297.3[/C][C]6610.9[/C][C]6523.45[/C][C]87.4497[/C][C]-313.604[/C][/ROW]
[ROW][C]102[/C][C]5960.8[/C][C]6256.59[/C][C]6556.59[/C][C]-299.998[/C][C]-295.79[/C][/ROW]
[ROW][C]103[/C][C]6125.1[/C][C]6339.24[/C][C]6579.01[/C][C]-239.769[/C][C]-214.144[/C][/ROW]
[ROW][C]104[/C][C]7253.4[/C][C]7075.39[/C][C]6590.91[/C][C]484.475[/C][C]178.012[/C][/ROW]
[ROW][C]105[/C][C]6505.8[/C][C]6731.52[/C][C]6580.68[/C][C]150.832[/C][C]-225.715[/C][/ROW]
[ROW][C]106[/C][C]7419.5[/C][C]7101.72[/C][C]6597.93[/C][C]503.795[/C][C]317.776[/C][/ROW]
[ROW][C]107[/C][C]7308.2[/C][C]6974.46[/C][C]6655.16[/C][C]319.293[/C][C]333.745[/C][/ROW]
[ROW][C]108[/C][C]6373.1[/C][C]6523.87[/C][C]6689.26[/C][C]-165.392[/C][C]-150.771[/C][/ROW]
[ROW][C]109[/C][C]6667.4[/C][C]6550.91[/C][C]6711.41[/C][C]-160.499[/C][C]116.486[/C][/ROW]
[ROW][C]110[/C][C]6518.6[/C][C]6504.3[/C][C]6722.43[/C][C]-218.133[/C][C]14.3035[/C][/ROW]
[ROW][C]111[/C][C]6324.8[/C][C]6586.41[/C][C]6727.76[/C][C]-141.35[/C][C]-261.613[/C][/ROW]
[ROW][C]112[/C][C]6764.1[/C][C]6409.85[/C][C]6730.55[/C][C]-320.705[/C][C]354.255[/C][/ROW]
[ROW][C]113[/C][C]6985[/C][C]6811.28[/C][C]6723.83[/C][C]87.4497[/C][C]173.721[/C][/ROW]
[ROW][C]114[/C][C]6091.5[/C][C]6433.36[/C][C]6733.36[/C][C]-299.998[/C][C]-341.865[/C][/ROW]
[ROW][C]115[/C][C]6526[/C][C]6497.86[/C][C]6737.63[/C][C]-239.769[/C][C]28.1396[/C][/ROW]
[ROW][C]116[/C][C]7116.9[/C][C]7221.65[/C][C]6737.17[/C][C]484.475[/C][C]-104.75[/C][/ROW]
[ROW][C]117[/C][C]6770.3[/C][C]6901.13[/C][C]6750.3[/C][C]150.832[/C][C]-130.832[/C][/ROW]
[ROW][C]118[/C][C]7221.9[/C][C]7262.47[/C][C]6758.67[/C][C]503.795[/C][C]-40.5654[/C][/ROW]
[ROW][C]119[/C][C]7344.5[/C][C]7064.77[/C][C]6745.48[/C][C]319.293[/C][C]279.732[/C][/ROW]
[ROW][C]120[/C][C]6565.6[/C][C]6594.37[/C][C]6759.76[/C][C]-165.392[/C][C]-28.7667[/C][/ROW]
[ROW][C]121[/C][C]6577.3[/C][C]NA[/C][C]NA[/C][C]-160.499[/C][C]NA[/C][/ROW]
[ROW][C]122[/C][C]6597.8[/C][C]NA[/C][C]NA[/C][C]-218.133[/C][C]NA[/C][/ROW]
[ROW][C]123[/C][C]6560.6[/C][C]NA[/C][C]NA[/C][C]-141.35[/C][C]NA[/C][/ROW]
[ROW][C]124[/C][C]6729.2[/C][C]NA[/C][C]NA[/C][C]-320.705[/C][C]NA[/C][/ROW]
[ROW][C]125[/C][C]6703.2[/C][C]NA[/C][C]NA[/C][C]87.4497[/C][C]NA[/C][/ROW]
[ROW][C]126[/C][C]6716.1[/C][C]NA[/C][C]NA[/C][C]-299.998[/C][C]NA[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298960&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298960&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Classical Decomposition by Moving Averages
tObservationsFitTrendSeasonalRandom
15483.5NANA-160.499NA
25386.2NANA-218.133NA
35781.8NANA-141.35NA
45137.4NANA-320.705NA
55001.7NANA87.4497NA
65123.8NANA-299.998NA
753405207.35447.07-239.769132.702
85696.45934.265449.79484.475-237.863
95544.75609.345458.5150.832-64.6363
105747.65986.275482.48503.795-238.67
115487.45853.85534.51319.293-366.401
125590.15433.885599.27-165.392156.225
135571.95477.455637.95-160.49994.4489
145363.15469.755687.88-218.133-106.646
156014.15616.045757.39-141.35398.058
165480.45475.885796.59-320.7054.51744
175907.55901.785814.3387.44975.71698
185772.25524.365824.36-299.998247.835
1956205584.725824.49-239.76935.2771
206614.76325.145840.67484.475289.558
216294.76000.475849.64150.832294.23
225938.36342.825839.03503.795-404.524
235722.66159.455840.16319.293-436.851
245595.65666.245831.63-165.392-70.6375
255569.55639.685800.18-160.499-70.1802
265753.75534.475752.6-218.133219.233
275838.85549.865691.21-141.35288.942
285401.15335.525656.22-320.70565.5799
296013.95738.545651.0987.4497275.359
305461.15337.955637.95-299.998123.148
315176.35391.735631.5-239.769-215.427
325916.56119.685635.2484.475-203.18
335519.55787.285636.45150.832-267.778
345873.96147.435643.64503.795-273.532
355663.85959.915640.61319.293-296.105
3653395463.875629.26-165.392-124.871
375671.25477.735638.23-160.499193.47
3857415439.255657.38-218.133301.749
395881.35541.35682.65-141.35340.004
405531.25406.55727.2-320.705124.705
415811.25870.715783.2687.4497-59.508
425391.45523.675823.67-299.998-132.269
435461.25608.575848.34-239.769-147.373
446091.36354.055869.58484.475-262.755
4559516010.145859.31150.832-59.1446
466511.76352.545848.75503.795159.155
476371.46177.395858.1319.293194.007
485601.25710.355875.74-165.392-109.146
496001.25753.085913.58-160.499248.124
505920.75736.615954.74-218.133184.091
515455.25859.016000.36-141.35-403.813
525703.85723.286043.98-320.705-19.4784
5358636157.126069.6887.4497-294.125
545762.95812.356112.35-299.998-49.4525
555997.85903.416143.18-239.76994.3896
566542.76628.936144.45484.475-86.2254
576594.56333.416182.58150.832261.093
586915.16740.16236.3503.795175.001
596584.66606.56287.21319.293-21.9008
606412.26180.436345.82-165.392231.771
615930.16222.586383.08-160.499-292.476
626022.36178.216396.35-218.133-155.913
636268.66257.86399.15-141.3510.804
646179.96079.016399.71-320.705100.892
656608.66492.176404.7287.4497116.434
6664246101.636401.63-299.998322.368
676230.86156.526396.29-239.76974.2812
686628.26874.596390.12484.475-246.392
696576.26526.976376.13150.83249.2346
7069476857.736353.93503.79589.2721
716672.86655.676336.37319.29317.1325
726249.96167.296332.68-165.39282.6125
735964.26175.426335.92-160.499-211.218
745840.16138.436356.56-218.133-298.33
756115.26231.826373.17-141.35-116.621
765800.56055.756376.45-320.705-255.249
776566.66478.276390.8287.449788.3336
786377.36108.66408.6-299.998268.698
796355.26174.216413.98-239.769180.985
806999.36891.76407.22484.475107.6
816603.76531.686380.85150.83272.0179
826998.36860.426356.62503.795137.88
836966.26664.236344.93319.293301.974
846383.36149.76315.09-165.392233.6
8559606120.366280.86-160.499-160.359
865682.16067.236285.37-218.133-385.134
875640.26161.386302.73-141.35-521.179
885694.15985.36306.01-320.705-291.203
896392.46388.286300.8387.44974.12114
905835.35981.526281.52-299.998-146.223
916075.66048.386288.15-239.76927.2229
927387.16825.056340.57484.475562.05
936632.66565.026414.18150.83267.5846
947048.16973.846470.05503.79574.2596
956792.16801.386482.09319.293-9.28002
9660946317.966483.35-165.392-223.963
976408.36330.156490.65-160.49978.1531
986492.162696487.14-218.133223.095
996596.86334.936476.28-141.35261.867
1006078.26165.776486.48-320.705-87.5701
1016297.36610.96523.4587.4497-313.604
1025960.86256.596556.59-299.998-295.79
1036125.16339.246579.01-239.769-214.144
1047253.47075.396590.91484.475178.012
1056505.86731.526580.68150.832-225.715
1067419.57101.726597.93503.795317.776
1077308.26974.466655.16319.293333.745
1086373.16523.876689.26-165.392-150.771
1096667.46550.916711.41-160.499116.486
1106518.66504.36722.43-218.13314.3035
1116324.86586.416727.76-141.35-261.613
1126764.16409.856730.55-320.705354.255
11369856811.286723.8387.4497173.721
1146091.56433.366733.36-299.998-341.865
11565266497.866737.63-239.76928.1396
1167116.97221.656737.17484.475-104.75
1176770.36901.136750.3150.832-130.832
1187221.97262.476758.67503.795-40.5654
1197344.57064.776745.48319.293279.732
1206565.66594.376759.76-165.392-28.7667
1216577.3NANA-160.499NA
1226597.8NANA-218.133NA
1236560.6NANA-141.35NA
1246729.2NANA-320.705NA
1256703.2NANA87.4497NA
1266716.1NANA-299.998NA



Parameters (Session):
par1 = additive ; par2 = 12 ;
Parameters (R input):
par1 = additive ; par2 = 12 ;
R code (references can be found in the software module):
par2 <- as.numeric(par2)
x <- ts(x,freq=par2)
m <- decompose(x,type=par1)
m$figure
bitmap(file='test1.png')
plot(m)
dev.off()
mylagmax <- length(x)/2
bitmap(file='test2.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(x),lag.max = mylagmax,main='Observed')
acf(as.numeric(m$trend),na.action=na.pass,lag.max = mylagmax,main='Trend')
acf(as.numeric(m$seasonal),na.action=na.pass,lag.max = mylagmax,main='Seasonal')
acf(as.numeric(m$random),na.action=na.pass,lag.max = mylagmax,main='Random')
par(op)
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
spectrum(as.numeric(x),main='Observed')
spectrum(as.numeric(m$trend[!is.na(m$trend)]),main='Trend')
spectrum(as.numeric(m$seasonal[!is.na(m$seasonal)]),main='Seasonal')
spectrum(as.numeric(m$random[!is.na(m$random)]),main='Random')
par(op)
dev.off()
bitmap(file='test4.png')
op <- par(mfrow = c(2,2))
cpgram(as.numeric(x),main='Observed')
cpgram(as.numeric(m$trend[!is.na(m$trend)]),main='Trend')
cpgram(as.numeric(m$seasonal[!is.na(m$seasonal)]),main='Seasonal')
cpgram(as.numeric(m$random[!is.na(m$random)]),main='Random')
par(op)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Classical Decomposition by Moving Averages',6,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observations',header=TRUE)
a<-table.element(a,'Fit',header=TRUE)
a<-table.element(a,'Trend',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,'Random',header=TRUE)
a<-table.row.end(a)
for (i in 1:length(m$trend)) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
if (par1 == 'additive') a<-table.element(a,signif(m$trend[i]+m$seasonal[i],6)) else a<-table.element(a,signif(m$trend[i]*m$seasonal[i],6))
a<-table.element(a,signif(m$trend[i],6))
a<-table.element(a,signif(m$seasonal[i],6))
a<-table.element(a,signif(m$random[i],6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')