Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_autocorrelation.wasp
Title produced by software(Partial) Autocorrelation Function
Date of computationMon, 12 Dec 2016 15:37:53 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/12/t148155429446wmwklx0lhdh68.htm/, Retrieved Fri, 01 Nov 2024 03:31:01 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=298918, Retrieved Fri, 01 Nov 2024 03:31:01 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact122
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [(Partial) Autocorrelation Function] [(Partial) Autocor...] [2016-12-12 14:37:53] [2a4be59ea15844c348dc523b08af79fc] [Current]
Feedback Forum

Post a new message
Dataseries X:
6151.2
5847.6
5662.8
5807.7
5907
6036.3
5668.2
5578.5
5760.6
5918.1
6030
6242.4
6425.1
6610.8
6943.5
5316.3
4356.6
4073.1
4239.9
4401.3
4590.6
4671
4772.1
4875.3
4601.7
4482.3
4455.6
4487.7
4606.8
4727.7
4617.9
4507.8
4398.6
4334.7
4272.9
4209.6
3963.3
3717
3469.5
3587.1
3703.5
3819.6
3777
3732.9
3687.6
3756.3
3824.7
3893.7
4039.2
4184.7
4329.9
4867.8
5405.7
5943.6
6440.7
6938.4
7435.8
6696.3
5957.1
5217.9
4781.7
4345.2
3909
3944.7
3980.1
4015.5
3983.7
3951.6
3919.8
3992.1
4064.4
4136.7
3950.1
3763.2
3577.2
3690.3
3804
3917.7
3900.9
3884.1
3867
3915
3962.4
4009.5
3820.2
3631.2
3441.9
3557.7
3674.1
3789.9
3886.2
3981.9
4078.2
4181.4
4284.9
4388.4
4190.1
3991.8
3793.5
3734.7
3675.9
3617.4
3557.7
3498
3438.6
3478.5
3518.7
3558.9
3401.1
3230.7
3060.3
3043.5
3026.4
3009.6
3159
3308.1
3457.5
3327.6
3198
3068.1
3108
3147.6
3187.5




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time1 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298918&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]1 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=298918&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298918&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center







Autocorrelation Function
Time lag kACF(k)T-STATP-value
10.5459255.72570
20.160651.68490.047421
3-0.070008-0.73420.232181
4-0.011349-0.1190.452733
50.0094380.0990.460664
6-0.027686-0.29040.38604
7-0.067355-0.70640.24071
8-0.059116-0.620.268265
9-0.031434-0.32970.371135
10-0.177701-1.86370.032512
11-0.335076-3.51430.000321
12-0.506731-5.31460
13-0.292911-3.07210.00134
14-0.089092-0.93440.17607
150.0106290.11150.45572
16-0.004754-0.04990.480164
170.0004220.00440.49824
180.0102350.10730.457355
190.0395760.41510.339446
200.0739450.77550.21984

\begin{tabular}{lllllllll}
\hline
Autocorrelation Function \tabularnewline
Time lag k & ACF(k) & T-STAT & P-value \tabularnewline
1 & 0.545925 & 5.7257 & 0 \tabularnewline
2 & 0.16065 & 1.6849 & 0.047421 \tabularnewline
3 & -0.070008 & -0.7342 & 0.232181 \tabularnewline
4 & -0.011349 & -0.119 & 0.452733 \tabularnewline
5 & 0.009438 & 0.099 & 0.460664 \tabularnewline
6 & -0.027686 & -0.2904 & 0.38604 \tabularnewline
7 & -0.067355 & -0.7064 & 0.24071 \tabularnewline
8 & -0.059116 & -0.62 & 0.268265 \tabularnewline
9 & -0.031434 & -0.3297 & 0.371135 \tabularnewline
10 & -0.177701 & -1.8637 & 0.032512 \tabularnewline
11 & -0.335076 & -3.5143 & 0.000321 \tabularnewline
12 & -0.506731 & -5.3146 & 0 \tabularnewline
13 & -0.292911 & -3.0721 & 0.00134 \tabularnewline
14 & -0.089092 & -0.9344 & 0.17607 \tabularnewline
15 & 0.010629 & 0.1115 & 0.45572 \tabularnewline
16 & -0.004754 & -0.0499 & 0.480164 \tabularnewline
17 & 0.000422 & 0.0044 & 0.49824 \tabularnewline
18 & 0.010235 & 0.1073 & 0.457355 \tabularnewline
19 & 0.039576 & 0.4151 & 0.339446 \tabularnewline
20 & 0.073945 & 0.7755 & 0.21984 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298918&T=1

[TABLE]
[ROW][C]Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]ACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]0.545925[/C][C]5.7257[/C][C]0[/C][/ROW]
[ROW][C]2[/C][C]0.16065[/C][C]1.6849[/C][C]0.047421[/C][/ROW]
[ROW][C]3[/C][C]-0.070008[/C][C]-0.7342[/C][C]0.232181[/C][/ROW]
[ROW][C]4[/C][C]-0.011349[/C][C]-0.119[/C][C]0.452733[/C][/ROW]
[ROW][C]5[/C][C]0.009438[/C][C]0.099[/C][C]0.460664[/C][/ROW]
[ROW][C]6[/C][C]-0.027686[/C][C]-0.2904[/C][C]0.38604[/C][/ROW]
[ROW][C]7[/C][C]-0.067355[/C][C]-0.7064[/C][C]0.24071[/C][/ROW]
[ROW][C]8[/C][C]-0.059116[/C][C]-0.62[/C][C]0.268265[/C][/ROW]
[ROW][C]9[/C][C]-0.031434[/C][C]-0.3297[/C][C]0.371135[/C][/ROW]
[ROW][C]10[/C][C]-0.177701[/C][C]-1.8637[/C][C]0.032512[/C][/ROW]
[ROW][C]11[/C][C]-0.335076[/C][C]-3.5143[/C][C]0.000321[/C][/ROW]
[ROW][C]12[/C][C]-0.506731[/C][C]-5.3146[/C][C]0[/C][/ROW]
[ROW][C]13[/C][C]-0.292911[/C][C]-3.0721[/C][C]0.00134[/C][/ROW]
[ROW][C]14[/C][C]-0.089092[/C][C]-0.9344[/C][C]0.17607[/C][/ROW]
[ROW][C]15[/C][C]0.010629[/C][C]0.1115[/C][C]0.45572[/C][/ROW]
[ROW][C]16[/C][C]-0.004754[/C][C]-0.0499[/C][C]0.480164[/C][/ROW]
[ROW][C]17[/C][C]0.000422[/C][C]0.0044[/C][C]0.49824[/C][/ROW]
[ROW][C]18[/C][C]0.010235[/C][C]0.1073[/C][C]0.457355[/C][/ROW]
[ROW][C]19[/C][C]0.039576[/C][C]0.4151[/C][C]0.339446[/C][/ROW]
[ROW][C]20[/C][C]0.073945[/C][C]0.7755[/C][C]0.21984[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298918&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298918&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Autocorrelation Function
Time lag kACF(k)T-STATP-value
10.5459255.72570
20.160651.68490.047421
3-0.070008-0.73420.232181
4-0.011349-0.1190.452733
50.0094380.0990.460664
6-0.027686-0.29040.38604
7-0.067355-0.70640.24071
8-0.059116-0.620.268265
9-0.031434-0.32970.371135
10-0.177701-1.86370.032512
11-0.335076-3.51430.000321
12-0.506731-5.31460
13-0.292911-3.07210.00134
14-0.089092-0.93440.17607
150.0106290.11150.45572
16-0.004754-0.04990.480164
170.0004220.00440.49824
180.0102350.10730.457355
190.0395760.41510.339446
200.0739450.77550.21984







Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
10.5459255.72570
2-0.195714-2.05270.021239
3-0.100773-1.05690.146432
40.1629051.70860.045176
5-0.072227-0.75750.225177
6-0.068658-0.72010.236497
70.0080170.08410.466572
8-0.012038-0.12630.449882
9-0.015266-0.16010.436544
10-0.255218-2.67670.004286
11-0.185747-1.94810.026974
12-0.32209-3.37810.000505
130.1364571.43120.077608
14-0.050975-0.53460.296992
15-0.09944-1.04290.149634
160.0419520.440.330403
17-0.019236-0.20170.420243
18-0.080841-0.84790.199177
190.0206310.21640.414546
200.0320040.33570.368881

\begin{tabular}{lllllllll}
\hline
Partial Autocorrelation Function \tabularnewline
Time lag k & PACF(k) & T-STAT & P-value \tabularnewline
1 & 0.545925 & 5.7257 & 0 \tabularnewline
2 & -0.195714 & -2.0527 & 0.021239 \tabularnewline
3 & -0.100773 & -1.0569 & 0.146432 \tabularnewline
4 & 0.162905 & 1.7086 & 0.045176 \tabularnewline
5 & -0.072227 & -0.7575 & 0.225177 \tabularnewline
6 & -0.068658 & -0.7201 & 0.236497 \tabularnewline
7 & 0.008017 & 0.0841 & 0.466572 \tabularnewline
8 & -0.012038 & -0.1263 & 0.449882 \tabularnewline
9 & -0.015266 & -0.1601 & 0.436544 \tabularnewline
10 & -0.255218 & -2.6767 & 0.004286 \tabularnewline
11 & -0.185747 & -1.9481 & 0.026974 \tabularnewline
12 & -0.32209 & -3.3781 & 0.000505 \tabularnewline
13 & 0.136457 & 1.4312 & 0.077608 \tabularnewline
14 & -0.050975 & -0.5346 & 0.296992 \tabularnewline
15 & -0.09944 & -1.0429 & 0.149634 \tabularnewline
16 & 0.041952 & 0.44 & 0.330403 \tabularnewline
17 & -0.019236 & -0.2017 & 0.420243 \tabularnewline
18 & -0.080841 & -0.8479 & 0.199177 \tabularnewline
19 & 0.020631 & 0.2164 & 0.414546 \tabularnewline
20 & 0.032004 & 0.3357 & 0.368881 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298918&T=2

[TABLE]
[ROW][C]Partial Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]PACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]0.545925[/C][C]5.7257[/C][C]0[/C][/ROW]
[ROW][C]2[/C][C]-0.195714[/C][C]-2.0527[/C][C]0.021239[/C][/ROW]
[ROW][C]3[/C][C]-0.100773[/C][C]-1.0569[/C][C]0.146432[/C][/ROW]
[ROW][C]4[/C][C]0.162905[/C][C]1.7086[/C][C]0.045176[/C][/ROW]
[ROW][C]5[/C][C]-0.072227[/C][C]-0.7575[/C][C]0.225177[/C][/ROW]
[ROW][C]6[/C][C]-0.068658[/C][C]-0.7201[/C][C]0.236497[/C][/ROW]
[ROW][C]7[/C][C]0.008017[/C][C]0.0841[/C][C]0.466572[/C][/ROW]
[ROW][C]8[/C][C]-0.012038[/C][C]-0.1263[/C][C]0.449882[/C][/ROW]
[ROW][C]9[/C][C]-0.015266[/C][C]-0.1601[/C][C]0.436544[/C][/ROW]
[ROW][C]10[/C][C]-0.255218[/C][C]-2.6767[/C][C]0.004286[/C][/ROW]
[ROW][C]11[/C][C]-0.185747[/C][C]-1.9481[/C][C]0.026974[/C][/ROW]
[ROW][C]12[/C][C]-0.32209[/C][C]-3.3781[/C][C]0.000505[/C][/ROW]
[ROW][C]13[/C][C]0.136457[/C][C]1.4312[/C][C]0.077608[/C][/ROW]
[ROW][C]14[/C][C]-0.050975[/C][C]-0.5346[/C][C]0.296992[/C][/ROW]
[ROW][C]15[/C][C]-0.09944[/C][C]-1.0429[/C][C]0.149634[/C][/ROW]
[ROW][C]16[/C][C]0.041952[/C][C]0.44[/C][C]0.330403[/C][/ROW]
[ROW][C]17[/C][C]-0.019236[/C][C]-0.2017[/C][C]0.420243[/C][/ROW]
[ROW][C]18[/C][C]-0.080841[/C][C]-0.8479[/C][C]0.199177[/C][/ROW]
[ROW][C]19[/C][C]0.020631[/C][C]0.2164[/C][C]0.414546[/C][/ROW]
[ROW][C]20[/C][C]0.032004[/C][C]0.3357[/C][C]0.368881[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298918&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298918&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
10.5459255.72570
2-0.195714-2.05270.021239
3-0.100773-1.05690.146432
40.1629051.70860.045176
5-0.072227-0.75750.225177
6-0.068658-0.72010.236497
70.0080170.08410.466572
8-0.012038-0.12630.449882
9-0.015266-0.16010.436544
10-0.255218-2.67670.004286
11-0.185747-1.94810.026974
12-0.32209-3.37810.000505
130.1364571.43120.077608
14-0.050975-0.53460.296992
15-0.09944-1.04290.149634
160.0419520.440.330403
17-0.019236-0.20170.420243
18-0.080841-0.84790.199177
190.0206310.21640.414546
200.0320040.33570.368881



Parameters (Session):
par1 = Default ; par2 = 1 ; par3 = 1 ; par4 = 1 ; par5 = 12 ; par6 = White Noise ; par7 = 0.95 ;
Parameters (R input):
par1 = Default ; par2 = 1 ; par3 = 1 ; par4 = 1 ; par5 = 12 ; par6 = White Noise ; par7 = 0.95 ; par8 = ;
R code (references can be found in the software module):
par8 <- ''
par7 <- '0.95'
par6 <- 'White Noise'
par5 <- '12'
par4 <- '0'
par3 <- '1'
par2 <- '1'
par1 <- 'Default'
if (par1 == 'Default') {
par1 = 10*log10(length(x))
} else {
par1 <- as.numeric(par1)
}
par2 <- as.numeric(par2)
par3 <- as.numeric(par3)
par4 <- as.numeric(par4)
par5 <- as.numeric(par5)
if (par6 == 'White Noise') par6 <- 'white' else par6 <- 'ma'
par7 <- as.numeric(par7)
if (par8 != '') par8 <- as.numeric(par8)
x <- na.omit(x)
ox <- x
if (par8 == '') {
if (par2 == 0) {
x <- log(x)
} else {
x <- (x ^ par2 - 1) / par2
}
} else {
x <- log(x,base=par8)
}
if (par3 > 0) x <- diff(x,lag=1,difference=par3)
if (par4 > 0) x <- diff(x,lag=par5,difference=par4)
bitmap(file='picts.png')
op <- par(mfrow=c(2,1))
plot(ox,type='l',main='Original Time Series',xlab='time',ylab='value')
if (par8=='') {
mytitle <- paste('Working Time Series (lambda=',par2,', d=',par3,', D=',par4,')',sep='')
mysub <- paste('(lambda=',par2,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='')
} else {
mytitle <- paste('Working Time Series (base=',par8,', d=',par3,', D=',par4,')',sep='')
mysub <- paste('(base=',par8,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='')
}
plot(x,type='l', main=mytitle,xlab='time',ylab='value')
par(op)
dev.off()
bitmap(file='pic1.png')
racf <- acf(x, par1, main='Autocorrelation', xlab='time lag', ylab='ACF', ci.type=par6, ci=par7, sub=mysub)
dev.off()
bitmap(file='pic2.png')
rpacf <- pacf(x,par1,main='Partial Autocorrelation',xlab='lags',ylab='PACF',sub=mysub)
dev.off()
(myacf <- c(racf$acf))
(mypacf <- c(rpacf$acf))
lengthx <- length(x)
sqrtn <- sqrt(lengthx)
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,'ACF(k)',header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 2:(par1+1)) {
a<-table.row.start(a)
a<-table.element(a,i-1,header=TRUE)
a<-table.element(a,round(myacf[i],6))
mytstat <- myacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Partial Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,'PACF(k)',header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:par1) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,round(mypacf[i],6))
mytstat <- mypacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')