Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_structuraltimeseries.wasp
Title produced by softwareStructural Time Series Models
Date of computationMon, 12 Dec 2016 13:57:04 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/12/t14815475424p0dwd6ptop8zx5.htm/, Retrieved Fri, 01 Nov 2024 03:39:10 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=298883, Retrieved Fri, 01 Nov 2024 03:39:10 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact139
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Structural Time Series Models] [] [2016-12-12 12:57:04] [1e2c9196efc58119c3757b6c78ac7c5f] [Current]
Feedback Forum

Post a new message
Dataseries X:
3647
1885
4791
3178
2849
4716
3085
2799
3573
2721
3355
5667
2856
1944
4188
2949
3567
4137
3494
2489
3244
2669
2529
3377
3366
2073
4133
4213
3710
5123
3141
3084
3804
3203
2757
2243
5229
2857
3395
4882
7140
8945
6866
4205
3217
3079
2263
4187
2665
2073
3540
3686
2384
4500
1679
868
1869
3710
6904
3415
938
3359
3551
2278
3033
2280
2901
4812
4882
7896
5048
3741
4418
3471
5055
7595
8124
2333
3008
2744
2833
2428
4269
3207
5170
7767
4544
3741
2193
3432
5282
6635
4222
7317
4132
5048
4383
3761
4081
6491
5859
7139
7682
8649
6146
7137
9948
15819
8370
13222
16711
19059
8303
20781
9638
13444
6072
13442
14457
17705
16463
19194
20688
14739
12702
15760




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time5 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time5 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298883&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]5 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=298883&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298883&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time5 seconds
R ServerBig Analytics Cloud Computing Center







Structural Time Series Model -- Interpolation
tObservedLevelSlopeSeasonalStand. Residuals
136473647000
218852908.30943350039-76.1069398372138-123.860714998647-0.735160970480118
347913655.12681091351-11.3779719882831106.7568327790380.838653057085768
431783477.18581567367-21.4133890128496-75.4392722202658-0.178817689935958
528493224.92642881456-32.7093091348674-51.8437929430105-0.255993300150803
647163786.11134811204-7.8190487171696173.31900788108320.671863312641419
730853528.2938759852-17.1815572287118-76.6551782374226-0.28633658164369
827993242.79394485711-26.4468770649833-46.1626209250142-0.309696252966095
935733355.99841634295-21.90175428596878.67486127560280.161970502846702
1027213113.63506684194-28.7655351877709-62.3513153923346-0.256488481094489
1133553193.13403380128-25.5093269150165-0.7907316895952730.126211186086126
1256674120.811846756952.36545875163155111.3211253695881.11270227871689
1328563819.5519538228832.5096505934402-403.409627831028-0.491644983436686
1419443088.201651440272.50299043515468-224.774531403284-0.757849732420272
1541883447.2497182423815.534779913476279.411964944240.376846973500131
1629493286.3318269770610.2197615379324-92.4793576894532-0.196907886255419
1735673411.4167300297713.1759451316631-9.438830351624580.131653427098448
1841373649.2916513407818.3464887028313159.2478209595480.260981404708795
1934943619.07148445217.310161651553-53.4311202793686-0.0567988221407362
2024893218.431142246818.82164843138988-109.874887760605-0.490606632834946
2132443197.078243734288.2280011586076591.7736011662355-0.0354917502655378
2226693019.642775602684.64922613583326-74.2507363504322-0.218620889707888
2325292851.820484871131.37625540887803-65.832523472222-0.20321157597425
2433772983.164920550123.6251690360535199.6076514902680.153330614722318
2533663123.86491186722-0.94025711294473218.78846754519620.186919000791599
2620732829.62115209701-8.46550645196232-367.684113815539-0.31770748100064
2741333198.334033744471.80363114386252428.5642327527680.41504046391624
2842133632.7138871921612.063852368908-24.45147946858820.491805317775325
2937103703.9495942367513.3037185230952-78.59244662799810.0684809697040988
3051234171.392723712922.026069204041294.4122024028770.530268797988605
3131413832.590733333615.4749358857032-166.319028494986-0.423215549141702
3230843594.4503849186711.0270534530815-140.101442575116-0.298159684106036
3338043622.0350903806111.3115590445891157.7464387586220.0194893137232989
3432033495.551545477348.97240666637481-90.8285513410017-0.162291725015357
3527573257.897707757154.85375909258002-139.610897330838-0.290573824003176
3622432818.90186461397-1.5346975807553576.6267744586368-0.523763872587916
3752293564.82185108298-10.0336459824709511.543142320930.956092427954123
3828573496.9003611848-11.2086887782005-560.50279779723-0.0650209661381182
3933953328.02472617635-14.8787204782703281.263224647463-0.176704851712489
4048823901.31084949196-2.3096920454874160.2155666854670.673454647296444
4171405154.9328418938822.1368878057222202.8556885191781.45737755653238
4289456463.5746806638345.5369919077204639.5398097141871.50303051409439
4368666746.6880611765649.6748229549768-222.3580335175970.278503281704376
4442055937.0150283739835.0903471464997-493.310499204704-1.00909994035742
4532174882.5815891581416.8697464563819-93.2552154749226-1.28047156023912
4630794209.594047527465.44522056810573-134.420233876481-0.811095003578547
4722633508.13274824284-5.99734493447164-223.660065874815-0.831348502207285
4841873728.66080970215-2.8667157445109129.9645093981580.266822002355951
4926653227.21340073337-2.74907329622217181.698528181672-0.616535438003153
5020732981.42108733486-7.13178917896539-570.416677851125-0.277889050531966
5135403110.2645666656-4.25375131448242243.6177159795610.154063853461406
5236863359.282756514680.870599229529936-25.73531473131750.291070617631654
5323843048.07553739673-5.03179172389186-224.024162992011-0.362404924108646
5445003336.300309926480.230971967048312747.2052162974520.342424800312023
5516792777.74202420051-9.4593001056317-302.241262035254-0.654251175120299
568682164.6978717461-19.7145105246583-434.783406311384-0.707638373981923
5718691995.25252836705-22.228426854181887.7564902209184-0.175656071222216
5837102577.34178037464-12.1837763555375268.4746311755910.70916103918318
5969044220.6803078653114.5814756100571314.4944354304441.9429759933752
6034153949.6816824457810.5585319570767-125.079475456738-0.335643593033115
619382861.145629232423.7172499996756-317.550446877111-1.33200429500057
6233593209.068913280419.61227611645123-331.5770299984650.39722759525353
6335513273.3757852059410.7005366177435202.3862981647640.0624265520497631
6422782910.99095711053.40945659769795-114.487586599003-0.42981534952623
6530333025.842031934085.48769213933271-149.3142459402290.129444945005731
6622802448.03899560699-4.96218878535757655.817616690906-0.680608649401764
6729012628.88884357173-1.722964201351798.870736865222340.217300268878534
6848123547.5893609186914.0558437960129-41.49963331630691.07755420749857
6948824098.9362635207823.170344386250820.18450468100830.629327141308352
7078965504.1839563177646.3608232520117428.6576057349691.61911733117126
7150485299.1706672184842.2631412112099106.038484782412-0.29447685592781
7237414746.3788794017433.5579046167562-158.444197015813-0.697961641419561
7344184777.635199217933.5344590392192-356.319301299391-0.00275422550241016
7434714450.0934677657327.4556055604845-472.816034795072-0.418775385229677
7550554561.0030015021829.0487663870398378.7610449035830.0957493769846047
7675955695.2989737815650.112141197091364.2395361882791.27569894313708
7781246644.2774025180966.7144828606313221.0200374055951.04424473165411
7823335003.1096438006936.1058935921448-266.686693406944-1.99166845545277
7930084318.574837410223.4682562472728-293.859613942723-0.841966888116302
8027443804.7496247013414.1771893761952-301.76638179256-0.628299200021039
8128333529.491399830449.22046703222412-287.388929178817-0.33858455623607
8224282948.51616131395-0.772511932294648313.93624673649-0.69045875928204
8342693296.218745553634.9696147465133479.9982176711870.407599623844073
8432073329.961766094385.40715518307249-163.6910800474770.0336930085045705
8551704070.1089197997514.729001411262751.07759930581360.872055880151585
8677675617.9978843205640.5045318621513-2.15618496332321.78293263181846
8745445307.2435984750933.9838558869236-276.798275460543-0.404544866529302
8837414689.3469785762121.7989760364859-42.5562972972515-0.753568524657905
8921933578.970709728711.05803666895235196.885076376425-1.31552708706102
9034323505.67880955118-0.27403950229301730.6970427765619-0.0866679268518496
9152824178.6483319403711.5825112539807156.1648677323950.786035074291848
9266355158.3445882183528.4315650282987113.195581049691.13110530441838
9342224961.4802612733924.5456548422426-422.032731140439-0.263292194206963
9473175725.9469459128937.1660336366223548.3294767565560.864652892119297
9541325076.9796561593725.738117698116321.9044525244183-0.801562185326803
9650485191.1174848800427.1279354494365-267.765286648930.103378052170141
9743835015.1553740493424.2248888698881-344.051634220999-0.239738975394105
9837614531.5905556508815.6470078203633-58.1640913350749-0.591360307892042
9940814381.7050401952312.6317281160085-70.9579404490743-0.191178758503781
10064915050.8317739645824.7175310366009527.5470223683160.75987286282968
10158595315.7640540837529.0853932384882207.7158320862910.279176002394969
10271396045.408958932641.6193315611315111.6929641522050.816400228104249
10376826700.1660740645852.4423532290248120.8626886608770.715494735323332
10486497404.8901339685963.8422713938618327.3755788985570.76160315980261
10561467232.5717866246359.7487532683856-754.553060305207-0.275777236288225
10671376985.0061149520754.4769943295645584.051190492407-0.358801953694852
10799488040.6013909318271.3128474686334500.2205737629621.16842735182361
1081581910936.7144589307116.925227588681910.0940379843173.30011458512865
109837010338.8111431704105.958556683632-959.070839858741-0.840728905922208
1101322211434.9414504874122.793402795611398.3897590976671.15397832086178
1111671113513.8437271547157.971800275483477.7323621596772.26387347937527
1121905915517.52402977191.547219205118974.2583672678612.13862868363225
113830313187.9681702532146.014602090661-1365.48659334419-2.93067604561244
1142078115867.6130464883191.2457691236971366.102309274452.95206829603739
115963813900.8394563665153.121868816018-1236.58298737574-2.5173615870999
1161344413612.6581468205145.390354795253450.640768558196-0.515014056242094
117607211288.3117628293102.438992979664-1749.68376930599-2.88232483907177
1181344211903.8009590906111.279082602719818.1493994227790.598590924398894
1191445712910.8397880782126.467768801983289.4161723050181.04471238088571
1201770514371.1959484201148.4538370121041461.768392130521.55715841651676
1211646315722.0110092864167.730459453566-952.3798291610641.41055313377742
1221919417156.4003704936189.400448101299262.0623836105431.4767160162806
1232068818541.4176588263210.716827333556482.3876368846791.38587371286813
1241473916906.8876083335177.46046369955400.101363742844-2.13998777377182
1251270216109.3887944715159.956693101236-2046.72840270788-1.13360502820871
1261576015376.2465615991144.0537831047571633.24012867292-1.04048903157738

\begin{tabular}{lllllllll}
\hline
Structural Time Series Model -- Interpolation \tabularnewline
t & Observed & Level & Slope & Seasonal & Stand. Residuals \tabularnewline
1 & 3647 & 3647 & 0 & 0 & 0 \tabularnewline
2 & 1885 & 2908.30943350039 & -76.1069398372138 & -123.860714998647 & -0.735160970480118 \tabularnewline
3 & 4791 & 3655.12681091351 & -11.3779719882831 & 106.756832779038 & 0.838653057085768 \tabularnewline
4 & 3178 & 3477.18581567367 & -21.4133890128496 & -75.4392722202658 & -0.178817689935958 \tabularnewline
5 & 2849 & 3224.92642881456 & -32.7093091348674 & -51.8437929430105 & -0.255993300150803 \tabularnewline
6 & 4716 & 3786.11134811204 & -7.81904871716961 & 73.3190078810832 & 0.671863312641419 \tabularnewline
7 & 3085 & 3528.2938759852 & -17.1815572287118 & -76.6551782374226 & -0.28633658164369 \tabularnewline
8 & 2799 & 3242.79394485711 & -26.4468770649833 & -46.1626209250142 & -0.309696252966095 \tabularnewline
9 & 3573 & 3355.99841634295 & -21.9017542859687 & 8.6748612756028 & 0.161970502846702 \tabularnewline
10 & 2721 & 3113.63506684194 & -28.7655351877709 & -62.3513153923346 & -0.256488481094489 \tabularnewline
11 & 3355 & 3193.13403380128 & -25.5093269150165 & -0.790731689595273 & 0.126211186086126 \tabularnewline
12 & 5667 & 4120.81184675695 & 2.36545875163155 & 111.321125369588 & 1.11270227871689 \tabularnewline
13 & 2856 & 3819.55195382288 & 32.5096505934402 & -403.409627831028 & -0.491644983436686 \tabularnewline
14 & 1944 & 3088.20165144027 & 2.50299043515468 & -224.774531403284 & -0.757849732420272 \tabularnewline
15 & 4188 & 3447.24971824238 & 15.534779913476 & 279.41196494424 & 0.376846973500131 \tabularnewline
16 & 2949 & 3286.33182697706 & 10.2197615379324 & -92.4793576894532 & -0.196907886255419 \tabularnewline
17 & 3567 & 3411.41673002977 & 13.1759451316631 & -9.43883035162458 & 0.131653427098448 \tabularnewline
18 & 4137 & 3649.29165134078 & 18.3464887028313 & 159.247820959548 & 0.260981404708795 \tabularnewline
19 & 3494 & 3619.071484452 & 17.310161651553 & -53.4311202793686 & -0.0567988221407362 \tabularnewline
20 & 2489 & 3218.43114224681 & 8.82164843138988 & -109.874887760605 & -0.490606632834946 \tabularnewline
21 & 3244 & 3197.07824373428 & 8.22800115860765 & 91.7736011662355 & -0.0354917502655378 \tabularnewline
22 & 2669 & 3019.64277560268 & 4.64922613583326 & -74.2507363504322 & -0.218620889707888 \tabularnewline
23 & 2529 & 2851.82048487113 & 1.37625540887803 & -65.832523472222 & -0.20321157597425 \tabularnewline
24 & 3377 & 2983.16492055012 & 3.6251690360535 & 199.607651490268 & 0.153330614722318 \tabularnewline
25 & 3366 & 3123.86491186722 & -0.940257112944732 & 18.7884675451962 & 0.186919000791599 \tabularnewline
26 & 2073 & 2829.62115209701 & -8.46550645196232 & -367.684113815539 & -0.31770748100064 \tabularnewline
27 & 4133 & 3198.33403374447 & 1.80363114386252 & 428.564232752768 & 0.41504046391624 \tabularnewline
28 & 4213 & 3632.71388719216 & 12.063852368908 & -24.4514794685882 & 0.491805317775325 \tabularnewline
29 & 3710 & 3703.94959423675 & 13.3037185230952 & -78.5924466279981 & 0.0684809697040988 \tabularnewline
30 & 5123 & 4171.3927237129 & 22.026069204041 & 294.412202402877 & 0.530268797988605 \tabularnewline
31 & 3141 & 3832.5907333336 & 15.4749358857032 & -166.319028494986 & -0.423215549141702 \tabularnewline
32 & 3084 & 3594.45038491867 & 11.0270534530815 & -140.101442575116 & -0.298159684106036 \tabularnewline
33 & 3804 & 3622.03509038061 & 11.3115590445891 & 157.746438758622 & 0.0194893137232989 \tabularnewline
34 & 3203 & 3495.55154547734 & 8.97240666637481 & -90.8285513410017 & -0.162291725015357 \tabularnewline
35 & 2757 & 3257.89770775715 & 4.85375909258002 & -139.610897330838 & -0.290573824003176 \tabularnewline
36 & 2243 & 2818.90186461397 & -1.53469758075535 & 76.6267744586368 & -0.523763872587916 \tabularnewline
37 & 5229 & 3564.82185108298 & -10.0336459824709 & 511.54314232093 & 0.956092427954123 \tabularnewline
38 & 2857 & 3496.9003611848 & -11.2086887782005 & -560.50279779723 & -0.0650209661381182 \tabularnewline
39 & 3395 & 3328.02472617635 & -14.8787204782703 & 281.263224647463 & -0.176704851712489 \tabularnewline
40 & 4882 & 3901.31084949196 & -2.3096920454874 & 160.215566685467 & 0.673454647296444 \tabularnewline
41 & 7140 & 5154.93284189388 & 22.1368878057222 & 202.855688519178 & 1.45737755653238 \tabularnewline
42 & 8945 & 6463.57468066383 & 45.5369919077204 & 639.539809714187 & 1.50303051409439 \tabularnewline
43 & 6866 & 6746.68806117656 & 49.6748229549768 & -222.358033517597 & 0.278503281704376 \tabularnewline
44 & 4205 & 5937.01502837398 & 35.0903471464997 & -493.310499204704 & -1.00909994035742 \tabularnewline
45 & 3217 & 4882.58158915814 & 16.8697464563819 & -93.2552154749226 & -1.28047156023912 \tabularnewline
46 & 3079 & 4209.59404752746 & 5.44522056810573 & -134.420233876481 & -0.811095003578547 \tabularnewline
47 & 2263 & 3508.13274824284 & -5.99734493447164 & -223.660065874815 & -0.831348502207285 \tabularnewline
48 & 4187 & 3728.66080970215 & -2.8667157445109 & 129.964509398158 & 0.266822002355951 \tabularnewline
49 & 2665 & 3227.21340073337 & -2.74907329622217 & 181.698528181672 & -0.616535438003153 \tabularnewline
50 & 2073 & 2981.42108733486 & -7.13178917896539 & -570.416677851125 & -0.277889050531966 \tabularnewline
51 & 3540 & 3110.2645666656 & -4.25375131448242 & 243.617715979561 & 0.154063853461406 \tabularnewline
52 & 3686 & 3359.28275651468 & 0.870599229529936 & -25.7353147313175 & 0.291070617631654 \tabularnewline
53 & 2384 & 3048.07553739673 & -5.03179172389186 & -224.024162992011 & -0.362404924108646 \tabularnewline
54 & 4500 & 3336.30030992648 & 0.230971967048312 & 747.205216297452 & 0.342424800312023 \tabularnewline
55 & 1679 & 2777.74202420051 & -9.4593001056317 & -302.241262035254 & -0.654251175120299 \tabularnewline
56 & 868 & 2164.6978717461 & -19.7145105246583 & -434.783406311384 & -0.707638373981923 \tabularnewline
57 & 1869 & 1995.25252836705 & -22.2284268541818 & 87.7564902209184 & -0.175656071222216 \tabularnewline
58 & 3710 & 2577.34178037464 & -12.1837763555375 & 268.474631175591 & 0.70916103918318 \tabularnewline
59 & 6904 & 4220.68030786531 & 14.5814756100571 & 314.494435430444 & 1.9429759933752 \tabularnewline
60 & 3415 & 3949.68168244578 & 10.5585319570767 & -125.079475456738 & -0.335643593033115 \tabularnewline
61 & 938 & 2861.14562923242 & 3.7172499996756 & -317.550446877111 & -1.33200429500057 \tabularnewline
62 & 3359 & 3209.06891328041 & 9.61227611645123 & -331.577029998465 & 0.39722759525353 \tabularnewline
63 & 3551 & 3273.37578520594 & 10.7005366177435 & 202.386298164764 & 0.0624265520497631 \tabularnewline
64 & 2278 & 2910.9909571105 & 3.40945659769795 & -114.487586599003 & -0.42981534952623 \tabularnewline
65 & 3033 & 3025.84203193408 & 5.48769213933271 & -149.314245940229 & 0.129444945005731 \tabularnewline
66 & 2280 & 2448.03899560699 & -4.96218878535757 & 655.817616690906 & -0.680608649401764 \tabularnewline
67 & 2901 & 2628.88884357173 & -1.72296420135179 & 8.87073686522234 & 0.217300268878534 \tabularnewline
68 & 4812 & 3547.58936091869 & 14.0558437960129 & -41.4996333163069 & 1.07755420749857 \tabularnewline
69 & 4882 & 4098.93626352078 & 23.1703443862508 & 20.1845046810083 & 0.629327141308352 \tabularnewline
70 & 7896 & 5504.18395631776 & 46.3608232520117 & 428.657605734969 & 1.61911733117126 \tabularnewline
71 & 5048 & 5299.17066721848 & 42.2631412112099 & 106.038484782412 & -0.29447685592781 \tabularnewline
72 & 3741 & 4746.37887940174 & 33.5579046167562 & -158.444197015813 & -0.697961641419561 \tabularnewline
73 & 4418 & 4777.6351992179 & 33.5344590392192 & -356.319301299391 & -0.00275422550241016 \tabularnewline
74 & 3471 & 4450.09346776573 & 27.4556055604845 & -472.816034795072 & -0.418775385229677 \tabularnewline
75 & 5055 & 4561.00300150218 & 29.0487663870398 & 378.761044903583 & 0.0957493769846047 \tabularnewline
76 & 7595 & 5695.29897378156 & 50.112141197091 & 364.239536188279 & 1.27569894313708 \tabularnewline
77 & 8124 & 6644.27740251809 & 66.7144828606313 & 221.020037405595 & 1.04424473165411 \tabularnewline
78 & 2333 & 5003.10964380069 & 36.1058935921448 & -266.686693406944 & -1.99166845545277 \tabularnewline
79 & 3008 & 4318.5748374102 & 23.4682562472728 & -293.859613942723 & -0.841966888116302 \tabularnewline
80 & 2744 & 3804.74962470134 & 14.1771893761952 & -301.76638179256 & -0.628299200021039 \tabularnewline
81 & 2833 & 3529.49139983044 & 9.22046703222412 & -287.388929178817 & -0.33858455623607 \tabularnewline
82 & 2428 & 2948.51616131395 & -0.772511932294648 & 313.93624673649 & -0.69045875928204 \tabularnewline
83 & 4269 & 3296.21874555363 & 4.9696147465133 & 479.998217671187 & 0.407599623844073 \tabularnewline
84 & 3207 & 3329.96176609438 & 5.40715518307249 & -163.691080047477 & 0.0336930085045705 \tabularnewline
85 & 5170 & 4070.10891979975 & 14.7290014112627 & 51.0775993058136 & 0.872055880151585 \tabularnewline
86 & 7767 & 5617.99788432056 & 40.5045318621513 & -2.1561849633232 & 1.78293263181846 \tabularnewline
87 & 4544 & 5307.24359847509 & 33.9838558869236 & -276.798275460543 & -0.404544866529302 \tabularnewline
88 & 3741 & 4689.34697857621 & 21.7989760364859 & -42.5562972972515 & -0.753568524657905 \tabularnewline
89 & 2193 & 3578.97070972871 & 1.05803666895235 & 196.885076376425 & -1.31552708706102 \tabularnewline
90 & 3432 & 3505.67880955118 & -0.274039502293017 & 30.6970427765619 & -0.0866679268518496 \tabularnewline
91 & 5282 & 4178.64833194037 & 11.5825112539807 & 156.164867732395 & 0.786035074291848 \tabularnewline
92 & 6635 & 5158.34458821835 & 28.4315650282987 & 113.19558104969 & 1.13110530441838 \tabularnewline
93 & 4222 & 4961.48026127339 & 24.5456548422426 & -422.032731140439 & -0.263292194206963 \tabularnewline
94 & 7317 & 5725.94694591289 & 37.1660336366223 & 548.329476756556 & 0.864652892119297 \tabularnewline
95 & 4132 & 5076.97965615937 & 25.7381176981163 & 21.9044525244183 & -0.801562185326803 \tabularnewline
96 & 5048 & 5191.11748488004 & 27.1279354494365 & -267.76528664893 & 0.103378052170141 \tabularnewline
97 & 4383 & 5015.15537404934 & 24.2248888698881 & -344.051634220999 & -0.239738975394105 \tabularnewline
98 & 3761 & 4531.59055565088 & 15.6470078203633 & -58.1640913350749 & -0.591360307892042 \tabularnewline
99 & 4081 & 4381.70504019523 & 12.6317281160085 & -70.9579404490743 & -0.191178758503781 \tabularnewline
100 & 6491 & 5050.83177396458 & 24.7175310366009 & 527.547022368316 & 0.75987286282968 \tabularnewline
101 & 5859 & 5315.76405408375 & 29.0853932384882 & 207.715832086291 & 0.279176002394969 \tabularnewline
102 & 7139 & 6045.4089589326 & 41.6193315611315 & 111.692964152205 & 0.816400228104249 \tabularnewline
103 & 7682 & 6700.16607406458 & 52.4423532290248 & 120.862688660877 & 0.715494735323332 \tabularnewline
104 & 8649 & 7404.89013396859 & 63.8422713938618 & 327.375578898557 & 0.76160315980261 \tabularnewline
105 & 6146 & 7232.57178662463 & 59.7487532683856 & -754.553060305207 & -0.275777236288225 \tabularnewline
106 & 7137 & 6985.00611495207 & 54.4769943295645 & 584.051190492407 & -0.358801953694852 \tabularnewline
107 & 9948 & 8040.60139093182 & 71.3128474686334 & 500.220573762962 & 1.16842735182361 \tabularnewline
108 & 15819 & 10936.7144589307 & 116.925227588681 & 910.094037984317 & 3.30011458512865 \tabularnewline
109 & 8370 & 10338.8111431704 & 105.958556683632 & -959.070839858741 & -0.840728905922208 \tabularnewline
110 & 13222 & 11434.9414504874 & 122.793402795611 & 398.389759097667 & 1.15397832086178 \tabularnewline
111 & 16711 & 13513.8437271547 & 157.971800275483 & 477.732362159677 & 2.26387347937527 \tabularnewline
112 & 19059 & 15517.52402977 & 191.547219205118 & 974.258367267861 & 2.13862868363225 \tabularnewline
113 & 8303 & 13187.9681702532 & 146.014602090661 & -1365.48659334419 & -2.93067604561244 \tabularnewline
114 & 20781 & 15867.6130464883 & 191.245769123697 & 1366.10230927445 & 2.95206829603739 \tabularnewline
115 & 9638 & 13900.8394563665 & 153.121868816018 & -1236.58298737574 & -2.5173615870999 \tabularnewline
116 & 13444 & 13612.6581468205 & 145.390354795253 & 450.640768558196 & -0.515014056242094 \tabularnewline
117 & 6072 & 11288.3117628293 & 102.438992979664 & -1749.68376930599 & -2.88232483907177 \tabularnewline
118 & 13442 & 11903.8009590906 & 111.279082602719 & 818.149399422779 & 0.598590924398894 \tabularnewline
119 & 14457 & 12910.8397880782 & 126.467768801983 & 289.416172305018 & 1.04471238088571 \tabularnewline
120 & 17705 & 14371.1959484201 & 148.453837012104 & 1461.76839213052 & 1.55715841651676 \tabularnewline
121 & 16463 & 15722.0110092864 & 167.730459453566 & -952.379829161064 & 1.41055313377742 \tabularnewline
122 & 19194 & 17156.4003704936 & 189.400448101299 & 262.062383610543 & 1.4767160162806 \tabularnewline
123 & 20688 & 18541.4176588263 & 210.716827333556 & 482.387636884679 & 1.38587371286813 \tabularnewline
124 & 14739 & 16906.8876083335 & 177.46046369955 & 400.101363742844 & -2.13998777377182 \tabularnewline
125 & 12702 & 16109.3887944715 & 159.956693101236 & -2046.72840270788 & -1.13360502820871 \tabularnewline
126 & 15760 & 15376.2465615991 & 144.053783104757 & 1633.24012867292 & -1.04048903157738 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298883&T=1

[TABLE]
[ROW][C]Structural Time Series Model -- Interpolation[/C][/ROW]
[ROW][C]t[/C][C]Observed[/C][C]Level[/C][C]Slope[/C][C]Seasonal[/C][C]Stand. Residuals[/C][/ROW]
[ROW][C]1[/C][C]3647[/C][C]3647[/C][C]0[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]2[/C][C]1885[/C][C]2908.30943350039[/C][C]-76.1069398372138[/C][C]-123.860714998647[/C][C]-0.735160970480118[/C][/ROW]
[ROW][C]3[/C][C]4791[/C][C]3655.12681091351[/C][C]-11.3779719882831[/C][C]106.756832779038[/C][C]0.838653057085768[/C][/ROW]
[ROW][C]4[/C][C]3178[/C][C]3477.18581567367[/C][C]-21.4133890128496[/C][C]-75.4392722202658[/C][C]-0.178817689935958[/C][/ROW]
[ROW][C]5[/C][C]2849[/C][C]3224.92642881456[/C][C]-32.7093091348674[/C][C]-51.8437929430105[/C][C]-0.255993300150803[/C][/ROW]
[ROW][C]6[/C][C]4716[/C][C]3786.11134811204[/C][C]-7.81904871716961[/C][C]73.3190078810832[/C][C]0.671863312641419[/C][/ROW]
[ROW][C]7[/C][C]3085[/C][C]3528.2938759852[/C][C]-17.1815572287118[/C][C]-76.6551782374226[/C][C]-0.28633658164369[/C][/ROW]
[ROW][C]8[/C][C]2799[/C][C]3242.79394485711[/C][C]-26.4468770649833[/C][C]-46.1626209250142[/C][C]-0.309696252966095[/C][/ROW]
[ROW][C]9[/C][C]3573[/C][C]3355.99841634295[/C][C]-21.9017542859687[/C][C]8.6748612756028[/C][C]0.161970502846702[/C][/ROW]
[ROW][C]10[/C][C]2721[/C][C]3113.63506684194[/C][C]-28.7655351877709[/C][C]-62.3513153923346[/C][C]-0.256488481094489[/C][/ROW]
[ROW][C]11[/C][C]3355[/C][C]3193.13403380128[/C][C]-25.5093269150165[/C][C]-0.790731689595273[/C][C]0.126211186086126[/C][/ROW]
[ROW][C]12[/C][C]5667[/C][C]4120.81184675695[/C][C]2.36545875163155[/C][C]111.321125369588[/C][C]1.11270227871689[/C][/ROW]
[ROW][C]13[/C][C]2856[/C][C]3819.55195382288[/C][C]32.5096505934402[/C][C]-403.409627831028[/C][C]-0.491644983436686[/C][/ROW]
[ROW][C]14[/C][C]1944[/C][C]3088.20165144027[/C][C]2.50299043515468[/C][C]-224.774531403284[/C][C]-0.757849732420272[/C][/ROW]
[ROW][C]15[/C][C]4188[/C][C]3447.24971824238[/C][C]15.534779913476[/C][C]279.41196494424[/C][C]0.376846973500131[/C][/ROW]
[ROW][C]16[/C][C]2949[/C][C]3286.33182697706[/C][C]10.2197615379324[/C][C]-92.4793576894532[/C][C]-0.196907886255419[/C][/ROW]
[ROW][C]17[/C][C]3567[/C][C]3411.41673002977[/C][C]13.1759451316631[/C][C]-9.43883035162458[/C][C]0.131653427098448[/C][/ROW]
[ROW][C]18[/C][C]4137[/C][C]3649.29165134078[/C][C]18.3464887028313[/C][C]159.247820959548[/C][C]0.260981404708795[/C][/ROW]
[ROW][C]19[/C][C]3494[/C][C]3619.071484452[/C][C]17.310161651553[/C][C]-53.4311202793686[/C][C]-0.0567988221407362[/C][/ROW]
[ROW][C]20[/C][C]2489[/C][C]3218.43114224681[/C][C]8.82164843138988[/C][C]-109.874887760605[/C][C]-0.490606632834946[/C][/ROW]
[ROW][C]21[/C][C]3244[/C][C]3197.07824373428[/C][C]8.22800115860765[/C][C]91.7736011662355[/C][C]-0.0354917502655378[/C][/ROW]
[ROW][C]22[/C][C]2669[/C][C]3019.64277560268[/C][C]4.64922613583326[/C][C]-74.2507363504322[/C][C]-0.218620889707888[/C][/ROW]
[ROW][C]23[/C][C]2529[/C][C]2851.82048487113[/C][C]1.37625540887803[/C][C]-65.832523472222[/C][C]-0.20321157597425[/C][/ROW]
[ROW][C]24[/C][C]3377[/C][C]2983.16492055012[/C][C]3.6251690360535[/C][C]199.607651490268[/C][C]0.153330614722318[/C][/ROW]
[ROW][C]25[/C][C]3366[/C][C]3123.86491186722[/C][C]-0.940257112944732[/C][C]18.7884675451962[/C][C]0.186919000791599[/C][/ROW]
[ROW][C]26[/C][C]2073[/C][C]2829.62115209701[/C][C]-8.46550645196232[/C][C]-367.684113815539[/C][C]-0.31770748100064[/C][/ROW]
[ROW][C]27[/C][C]4133[/C][C]3198.33403374447[/C][C]1.80363114386252[/C][C]428.564232752768[/C][C]0.41504046391624[/C][/ROW]
[ROW][C]28[/C][C]4213[/C][C]3632.71388719216[/C][C]12.063852368908[/C][C]-24.4514794685882[/C][C]0.491805317775325[/C][/ROW]
[ROW][C]29[/C][C]3710[/C][C]3703.94959423675[/C][C]13.3037185230952[/C][C]-78.5924466279981[/C][C]0.0684809697040988[/C][/ROW]
[ROW][C]30[/C][C]5123[/C][C]4171.3927237129[/C][C]22.026069204041[/C][C]294.412202402877[/C][C]0.530268797988605[/C][/ROW]
[ROW][C]31[/C][C]3141[/C][C]3832.5907333336[/C][C]15.4749358857032[/C][C]-166.319028494986[/C][C]-0.423215549141702[/C][/ROW]
[ROW][C]32[/C][C]3084[/C][C]3594.45038491867[/C][C]11.0270534530815[/C][C]-140.101442575116[/C][C]-0.298159684106036[/C][/ROW]
[ROW][C]33[/C][C]3804[/C][C]3622.03509038061[/C][C]11.3115590445891[/C][C]157.746438758622[/C][C]0.0194893137232989[/C][/ROW]
[ROW][C]34[/C][C]3203[/C][C]3495.55154547734[/C][C]8.97240666637481[/C][C]-90.8285513410017[/C][C]-0.162291725015357[/C][/ROW]
[ROW][C]35[/C][C]2757[/C][C]3257.89770775715[/C][C]4.85375909258002[/C][C]-139.610897330838[/C][C]-0.290573824003176[/C][/ROW]
[ROW][C]36[/C][C]2243[/C][C]2818.90186461397[/C][C]-1.53469758075535[/C][C]76.6267744586368[/C][C]-0.523763872587916[/C][/ROW]
[ROW][C]37[/C][C]5229[/C][C]3564.82185108298[/C][C]-10.0336459824709[/C][C]511.54314232093[/C][C]0.956092427954123[/C][/ROW]
[ROW][C]38[/C][C]2857[/C][C]3496.9003611848[/C][C]-11.2086887782005[/C][C]-560.50279779723[/C][C]-0.0650209661381182[/C][/ROW]
[ROW][C]39[/C][C]3395[/C][C]3328.02472617635[/C][C]-14.8787204782703[/C][C]281.263224647463[/C][C]-0.176704851712489[/C][/ROW]
[ROW][C]40[/C][C]4882[/C][C]3901.31084949196[/C][C]-2.3096920454874[/C][C]160.215566685467[/C][C]0.673454647296444[/C][/ROW]
[ROW][C]41[/C][C]7140[/C][C]5154.93284189388[/C][C]22.1368878057222[/C][C]202.855688519178[/C][C]1.45737755653238[/C][/ROW]
[ROW][C]42[/C][C]8945[/C][C]6463.57468066383[/C][C]45.5369919077204[/C][C]639.539809714187[/C][C]1.50303051409439[/C][/ROW]
[ROW][C]43[/C][C]6866[/C][C]6746.68806117656[/C][C]49.6748229549768[/C][C]-222.358033517597[/C][C]0.278503281704376[/C][/ROW]
[ROW][C]44[/C][C]4205[/C][C]5937.01502837398[/C][C]35.0903471464997[/C][C]-493.310499204704[/C][C]-1.00909994035742[/C][/ROW]
[ROW][C]45[/C][C]3217[/C][C]4882.58158915814[/C][C]16.8697464563819[/C][C]-93.2552154749226[/C][C]-1.28047156023912[/C][/ROW]
[ROW][C]46[/C][C]3079[/C][C]4209.59404752746[/C][C]5.44522056810573[/C][C]-134.420233876481[/C][C]-0.811095003578547[/C][/ROW]
[ROW][C]47[/C][C]2263[/C][C]3508.13274824284[/C][C]-5.99734493447164[/C][C]-223.660065874815[/C][C]-0.831348502207285[/C][/ROW]
[ROW][C]48[/C][C]4187[/C][C]3728.66080970215[/C][C]-2.8667157445109[/C][C]129.964509398158[/C][C]0.266822002355951[/C][/ROW]
[ROW][C]49[/C][C]2665[/C][C]3227.21340073337[/C][C]-2.74907329622217[/C][C]181.698528181672[/C][C]-0.616535438003153[/C][/ROW]
[ROW][C]50[/C][C]2073[/C][C]2981.42108733486[/C][C]-7.13178917896539[/C][C]-570.416677851125[/C][C]-0.277889050531966[/C][/ROW]
[ROW][C]51[/C][C]3540[/C][C]3110.2645666656[/C][C]-4.25375131448242[/C][C]243.617715979561[/C][C]0.154063853461406[/C][/ROW]
[ROW][C]52[/C][C]3686[/C][C]3359.28275651468[/C][C]0.870599229529936[/C][C]-25.7353147313175[/C][C]0.291070617631654[/C][/ROW]
[ROW][C]53[/C][C]2384[/C][C]3048.07553739673[/C][C]-5.03179172389186[/C][C]-224.024162992011[/C][C]-0.362404924108646[/C][/ROW]
[ROW][C]54[/C][C]4500[/C][C]3336.30030992648[/C][C]0.230971967048312[/C][C]747.205216297452[/C][C]0.342424800312023[/C][/ROW]
[ROW][C]55[/C][C]1679[/C][C]2777.74202420051[/C][C]-9.4593001056317[/C][C]-302.241262035254[/C][C]-0.654251175120299[/C][/ROW]
[ROW][C]56[/C][C]868[/C][C]2164.6978717461[/C][C]-19.7145105246583[/C][C]-434.783406311384[/C][C]-0.707638373981923[/C][/ROW]
[ROW][C]57[/C][C]1869[/C][C]1995.25252836705[/C][C]-22.2284268541818[/C][C]87.7564902209184[/C][C]-0.175656071222216[/C][/ROW]
[ROW][C]58[/C][C]3710[/C][C]2577.34178037464[/C][C]-12.1837763555375[/C][C]268.474631175591[/C][C]0.70916103918318[/C][/ROW]
[ROW][C]59[/C][C]6904[/C][C]4220.68030786531[/C][C]14.5814756100571[/C][C]314.494435430444[/C][C]1.9429759933752[/C][/ROW]
[ROW][C]60[/C][C]3415[/C][C]3949.68168244578[/C][C]10.5585319570767[/C][C]-125.079475456738[/C][C]-0.335643593033115[/C][/ROW]
[ROW][C]61[/C][C]938[/C][C]2861.14562923242[/C][C]3.7172499996756[/C][C]-317.550446877111[/C][C]-1.33200429500057[/C][/ROW]
[ROW][C]62[/C][C]3359[/C][C]3209.06891328041[/C][C]9.61227611645123[/C][C]-331.577029998465[/C][C]0.39722759525353[/C][/ROW]
[ROW][C]63[/C][C]3551[/C][C]3273.37578520594[/C][C]10.7005366177435[/C][C]202.386298164764[/C][C]0.0624265520497631[/C][/ROW]
[ROW][C]64[/C][C]2278[/C][C]2910.9909571105[/C][C]3.40945659769795[/C][C]-114.487586599003[/C][C]-0.42981534952623[/C][/ROW]
[ROW][C]65[/C][C]3033[/C][C]3025.84203193408[/C][C]5.48769213933271[/C][C]-149.314245940229[/C][C]0.129444945005731[/C][/ROW]
[ROW][C]66[/C][C]2280[/C][C]2448.03899560699[/C][C]-4.96218878535757[/C][C]655.817616690906[/C][C]-0.680608649401764[/C][/ROW]
[ROW][C]67[/C][C]2901[/C][C]2628.88884357173[/C][C]-1.72296420135179[/C][C]8.87073686522234[/C][C]0.217300268878534[/C][/ROW]
[ROW][C]68[/C][C]4812[/C][C]3547.58936091869[/C][C]14.0558437960129[/C][C]-41.4996333163069[/C][C]1.07755420749857[/C][/ROW]
[ROW][C]69[/C][C]4882[/C][C]4098.93626352078[/C][C]23.1703443862508[/C][C]20.1845046810083[/C][C]0.629327141308352[/C][/ROW]
[ROW][C]70[/C][C]7896[/C][C]5504.18395631776[/C][C]46.3608232520117[/C][C]428.657605734969[/C][C]1.61911733117126[/C][/ROW]
[ROW][C]71[/C][C]5048[/C][C]5299.17066721848[/C][C]42.2631412112099[/C][C]106.038484782412[/C][C]-0.29447685592781[/C][/ROW]
[ROW][C]72[/C][C]3741[/C][C]4746.37887940174[/C][C]33.5579046167562[/C][C]-158.444197015813[/C][C]-0.697961641419561[/C][/ROW]
[ROW][C]73[/C][C]4418[/C][C]4777.6351992179[/C][C]33.5344590392192[/C][C]-356.319301299391[/C][C]-0.00275422550241016[/C][/ROW]
[ROW][C]74[/C][C]3471[/C][C]4450.09346776573[/C][C]27.4556055604845[/C][C]-472.816034795072[/C][C]-0.418775385229677[/C][/ROW]
[ROW][C]75[/C][C]5055[/C][C]4561.00300150218[/C][C]29.0487663870398[/C][C]378.761044903583[/C][C]0.0957493769846047[/C][/ROW]
[ROW][C]76[/C][C]7595[/C][C]5695.29897378156[/C][C]50.112141197091[/C][C]364.239536188279[/C][C]1.27569894313708[/C][/ROW]
[ROW][C]77[/C][C]8124[/C][C]6644.27740251809[/C][C]66.7144828606313[/C][C]221.020037405595[/C][C]1.04424473165411[/C][/ROW]
[ROW][C]78[/C][C]2333[/C][C]5003.10964380069[/C][C]36.1058935921448[/C][C]-266.686693406944[/C][C]-1.99166845545277[/C][/ROW]
[ROW][C]79[/C][C]3008[/C][C]4318.5748374102[/C][C]23.4682562472728[/C][C]-293.859613942723[/C][C]-0.841966888116302[/C][/ROW]
[ROW][C]80[/C][C]2744[/C][C]3804.74962470134[/C][C]14.1771893761952[/C][C]-301.76638179256[/C][C]-0.628299200021039[/C][/ROW]
[ROW][C]81[/C][C]2833[/C][C]3529.49139983044[/C][C]9.22046703222412[/C][C]-287.388929178817[/C][C]-0.33858455623607[/C][/ROW]
[ROW][C]82[/C][C]2428[/C][C]2948.51616131395[/C][C]-0.772511932294648[/C][C]313.93624673649[/C][C]-0.69045875928204[/C][/ROW]
[ROW][C]83[/C][C]4269[/C][C]3296.21874555363[/C][C]4.9696147465133[/C][C]479.998217671187[/C][C]0.407599623844073[/C][/ROW]
[ROW][C]84[/C][C]3207[/C][C]3329.96176609438[/C][C]5.40715518307249[/C][C]-163.691080047477[/C][C]0.0336930085045705[/C][/ROW]
[ROW][C]85[/C][C]5170[/C][C]4070.10891979975[/C][C]14.7290014112627[/C][C]51.0775993058136[/C][C]0.872055880151585[/C][/ROW]
[ROW][C]86[/C][C]7767[/C][C]5617.99788432056[/C][C]40.5045318621513[/C][C]-2.1561849633232[/C][C]1.78293263181846[/C][/ROW]
[ROW][C]87[/C][C]4544[/C][C]5307.24359847509[/C][C]33.9838558869236[/C][C]-276.798275460543[/C][C]-0.404544866529302[/C][/ROW]
[ROW][C]88[/C][C]3741[/C][C]4689.34697857621[/C][C]21.7989760364859[/C][C]-42.5562972972515[/C][C]-0.753568524657905[/C][/ROW]
[ROW][C]89[/C][C]2193[/C][C]3578.97070972871[/C][C]1.05803666895235[/C][C]196.885076376425[/C][C]-1.31552708706102[/C][/ROW]
[ROW][C]90[/C][C]3432[/C][C]3505.67880955118[/C][C]-0.274039502293017[/C][C]30.6970427765619[/C][C]-0.0866679268518496[/C][/ROW]
[ROW][C]91[/C][C]5282[/C][C]4178.64833194037[/C][C]11.5825112539807[/C][C]156.164867732395[/C][C]0.786035074291848[/C][/ROW]
[ROW][C]92[/C][C]6635[/C][C]5158.34458821835[/C][C]28.4315650282987[/C][C]113.19558104969[/C][C]1.13110530441838[/C][/ROW]
[ROW][C]93[/C][C]4222[/C][C]4961.48026127339[/C][C]24.5456548422426[/C][C]-422.032731140439[/C][C]-0.263292194206963[/C][/ROW]
[ROW][C]94[/C][C]7317[/C][C]5725.94694591289[/C][C]37.1660336366223[/C][C]548.329476756556[/C][C]0.864652892119297[/C][/ROW]
[ROW][C]95[/C][C]4132[/C][C]5076.97965615937[/C][C]25.7381176981163[/C][C]21.9044525244183[/C][C]-0.801562185326803[/C][/ROW]
[ROW][C]96[/C][C]5048[/C][C]5191.11748488004[/C][C]27.1279354494365[/C][C]-267.76528664893[/C][C]0.103378052170141[/C][/ROW]
[ROW][C]97[/C][C]4383[/C][C]5015.15537404934[/C][C]24.2248888698881[/C][C]-344.051634220999[/C][C]-0.239738975394105[/C][/ROW]
[ROW][C]98[/C][C]3761[/C][C]4531.59055565088[/C][C]15.6470078203633[/C][C]-58.1640913350749[/C][C]-0.591360307892042[/C][/ROW]
[ROW][C]99[/C][C]4081[/C][C]4381.70504019523[/C][C]12.6317281160085[/C][C]-70.9579404490743[/C][C]-0.191178758503781[/C][/ROW]
[ROW][C]100[/C][C]6491[/C][C]5050.83177396458[/C][C]24.7175310366009[/C][C]527.547022368316[/C][C]0.75987286282968[/C][/ROW]
[ROW][C]101[/C][C]5859[/C][C]5315.76405408375[/C][C]29.0853932384882[/C][C]207.715832086291[/C][C]0.279176002394969[/C][/ROW]
[ROW][C]102[/C][C]7139[/C][C]6045.4089589326[/C][C]41.6193315611315[/C][C]111.692964152205[/C][C]0.816400228104249[/C][/ROW]
[ROW][C]103[/C][C]7682[/C][C]6700.16607406458[/C][C]52.4423532290248[/C][C]120.862688660877[/C][C]0.715494735323332[/C][/ROW]
[ROW][C]104[/C][C]8649[/C][C]7404.89013396859[/C][C]63.8422713938618[/C][C]327.375578898557[/C][C]0.76160315980261[/C][/ROW]
[ROW][C]105[/C][C]6146[/C][C]7232.57178662463[/C][C]59.7487532683856[/C][C]-754.553060305207[/C][C]-0.275777236288225[/C][/ROW]
[ROW][C]106[/C][C]7137[/C][C]6985.00611495207[/C][C]54.4769943295645[/C][C]584.051190492407[/C][C]-0.358801953694852[/C][/ROW]
[ROW][C]107[/C][C]9948[/C][C]8040.60139093182[/C][C]71.3128474686334[/C][C]500.220573762962[/C][C]1.16842735182361[/C][/ROW]
[ROW][C]108[/C][C]15819[/C][C]10936.7144589307[/C][C]116.925227588681[/C][C]910.094037984317[/C][C]3.30011458512865[/C][/ROW]
[ROW][C]109[/C][C]8370[/C][C]10338.8111431704[/C][C]105.958556683632[/C][C]-959.070839858741[/C][C]-0.840728905922208[/C][/ROW]
[ROW][C]110[/C][C]13222[/C][C]11434.9414504874[/C][C]122.793402795611[/C][C]398.389759097667[/C][C]1.15397832086178[/C][/ROW]
[ROW][C]111[/C][C]16711[/C][C]13513.8437271547[/C][C]157.971800275483[/C][C]477.732362159677[/C][C]2.26387347937527[/C][/ROW]
[ROW][C]112[/C][C]19059[/C][C]15517.52402977[/C][C]191.547219205118[/C][C]974.258367267861[/C][C]2.13862868363225[/C][/ROW]
[ROW][C]113[/C][C]8303[/C][C]13187.9681702532[/C][C]146.014602090661[/C][C]-1365.48659334419[/C][C]-2.93067604561244[/C][/ROW]
[ROW][C]114[/C][C]20781[/C][C]15867.6130464883[/C][C]191.245769123697[/C][C]1366.10230927445[/C][C]2.95206829603739[/C][/ROW]
[ROW][C]115[/C][C]9638[/C][C]13900.8394563665[/C][C]153.121868816018[/C][C]-1236.58298737574[/C][C]-2.5173615870999[/C][/ROW]
[ROW][C]116[/C][C]13444[/C][C]13612.6581468205[/C][C]145.390354795253[/C][C]450.640768558196[/C][C]-0.515014056242094[/C][/ROW]
[ROW][C]117[/C][C]6072[/C][C]11288.3117628293[/C][C]102.438992979664[/C][C]-1749.68376930599[/C][C]-2.88232483907177[/C][/ROW]
[ROW][C]118[/C][C]13442[/C][C]11903.8009590906[/C][C]111.279082602719[/C][C]818.149399422779[/C][C]0.598590924398894[/C][/ROW]
[ROW][C]119[/C][C]14457[/C][C]12910.8397880782[/C][C]126.467768801983[/C][C]289.416172305018[/C][C]1.04471238088571[/C][/ROW]
[ROW][C]120[/C][C]17705[/C][C]14371.1959484201[/C][C]148.453837012104[/C][C]1461.76839213052[/C][C]1.55715841651676[/C][/ROW]
[ROW][C]121[/C][C]16463[/C][C]15722.0110092864[/C][C]167.730459453566[/C][C]-952.379829161064[/C][C]1.41055313377742[/C][/ROW]
[ROW][C]122[/C][C]19194[/C][C]17156.4003704936[/C][C]189.400448101299[/C][C]262.062383610543[/C][C]1.4767160162806[/C][/ROW]
[ROW][C]123[/C][C]20688[/C][C]18541.4176588263[/C][C]210.716827333556[/C][C]482.387636884679[/C][C]1.38587371286813[/C][/ROW]
[ROW][C]124[/C][C]14739[/C][C]16906.8876083335[/C][C]177.46046369955[/C][C]400.101363742844[/C][C]-2.13998777377182[/C][/ROW]
[ROW][C]125[/C][C]12702[/C][C]16109.3887944715[/C][C]159.956693101236[/C][C]-2046.72840270788[/C][C]-1.13360502820871[/C][/ROW]
[ROW][C]126[/C][C]15760[/C][C]15376.2465615991[/C][C]144.053783104757[/C][C]1633.24012867292[/C][C]-1.04048903157738[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298883&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298883&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Structural Time Series Model -- Interpolation
tObservedLevelSlopeSeasonalStand. Residuals
136473647000
218852908.30943350039-76.1069398372138-123.860714998647-0.735160970480118
347913655.12681091351-11.3779719882831106.7568327790380.838653057085768
431783477.18581567367-21.4133890128496-75.4392722202658-0.178817689935958
528493224.92642881456-32.7093091348674-51.8437929430105-0.255993300150803
647163786.11134811204-7.8190487171696173.31900788108320.671863312641419
730853528.2938759852-17.1815572287118-76.6551782374226-0.28633658164369
827993242.79394485711-26.4468770649833-46.1626209250142-0.309696252966095
935733355.99841634295-21.90175428596878.67486127560280.161970502846702
1027213113.63506684194-28.7655351877709-62.3513153923346-0.256488481094489
1133553193.13403380128-25.5093269150165-0.7907316895952730.126211186086126
1256674120.811846756952.36545875163155111.3211253695881.11270227871689
1328563819.5519538228832.5096505934402-403.409627831028-0.491644983436686
1419443088.201651440272.50299043515468-224.774531403284-0.757849732420272
1541883447.2497182423815.534779913476279.411964944240.376846973500131
1629493286.3318269770610.2197615379324-92.4793576894532-0.196907886255419
1735673411.4167300297713.1759451316631-9.438830351624580.131653427098448
1841373649.2916513407818.3464887028313159.2478209595480.260981404708795
1934943619.07148445217.310161651553-53.4311202793686-0.0567988221407362
2024893218.431142246818.82164843138988-109.874887760605-0.490606632834946
2132443197.078243734288.2280011586076591.7736011662355-0.0354917502655378
2226693019.642775602684.64922613583326-74.2507363504322-0.218620889707888
2325292851.820484871131.37625540887803-65.832523472222-0.20321157597425
2433772983.164920550123.6251690360535199.6076514902680.153330614722318
2533663123.86491186722-0.94025711294473218.78846754519620.186919000791599
2620732829.62115209701-8.46550645196232-367.684113815539-0.31770748100064
2741333198.334033744471.80363114386252428.5642327527680.41504046391624
2842133632.7138871921612.063852368908-24.45147946858820.491805317775325
2937103703.9495942367513.3037185230952-78.59244662799810.0684809697040988
3051234171.392723712922.026069204041294.4122024028770.530268797988605
3131413832.590733333615.4749358857032-166.319028494986-0.423215549141702
3230843594.4503849186711.0270534530815-140.101442575116-0.298159684106036
3338043622.0350903806111.3115590445891157.7464387586220.0194893137232989
3432033495.551545477348.97240666637481-90.8285513410017-0.162291725015357
3527573257.897707757154.85375909258002-139.610897330838-0.290573824003176
3622432818.90186461397-1.5346975807553576.6267744586368-0.523763872587916
3752293564.82185108298-10.0336459824709511.543142320930.956092427954123
3828573496.9003611848-11.2086887782005-560.50279779723-0.0650209661381182
3933953328.02472617635-14.8787204782703281.263224647463-0.176704851712489
4048823901.31084949196-2.3096920454874160.2155666854670.673454647296444
4171405154.9328418938822.1368878057222202.8556885191781.45737755653238
4289456463.5746806638345.5369919077204639.5398097141871.50303051409439
4368666746.6880611765649.6748229549768-222.3580335175970.278503281704376
4442055937.0150283739835.0903471464997-493.310499204704-1.00909994035742
4532174882.5815891581416.8697464563819-93.2552154749226-1.28047156023912
4630794209.594047527465.44522056810573-134.420233876481-0.811095003578547
4722633508.13274824284-5.99734493447164-223.660065874815-0.831348502207285
4841873728.66080970215-2.8667157445109129.9645093981580.266822002355951
4926653227.21340073337-2.74907329622217181.698528181672-0.616535438003153
5020732981.42108733486-7.13178917896539-570.416677851125-0.277889050531966
5135403110.2645666656-4.25375131448242243.6177159795610.154063853461406
5236863359.282756514680.870599229529936-25.73531473131750.291070617631654
5323843048.07553739673-5.03179172389186-224.024162992011-0.362404924108646
5445003336.300309926480.230971967048312747.2052162974520.342424800312023
5516792777.74202420051-9.4593001056317-302.241262035254-0.654251175120299
568682164.6978717461-19.7145105246583-434.783406311384-0.707638373981923
5718691995.25252836705-22.228426854181887.7564902209184-0.175656071222216
5837102577.34178037464-12.1837763555375268.4746311755910.70916103918318
5969044220.6803078653114.5814756100571314.4944354304441.9429759933752
6034153949.6816824457810.5585319570767-125.079475456738-0.335643593033115
619382861.145629232423.7172499996756-317.550446877111-1.33200429500057
6233593209.068913280419.61227611645123-331.5770299984650.39722759525353
6335513273.3757852059410.7005366177435202.3862981647640.0624265520497631
6422782910.99095711053.40945659769795-114.487586599003-0.42981534952623
6530333025.842031934085.48769213933271-149.3142459402290.129444945005731
6622802448.03899560699-4.96218878535757655.817616690906-0.680608649401764
6729012628.88884357173-1.722964201351798.870736865222340.217300268878534
6848123547.5893609186914.0558437960129-41.49963331630691.07755420749857
6948824098.9362635207823.170344386250820.18450468100830.629327141308352
7078965504.1839563177646.3608232520117428.6576057349691.61911733117126
7150485299.1706672184842.2631412112099106.038484782412-0.29447685592781
7237414746.3788794017433.5579046167562-158.444197015813-0.697961641419561
7344184777.635199217933.5344590392192-356.319301299391-0.00275422550241016
7434714450.0934677657327.4556055604845-472.816034795072-0.418775385229677
7550554561.0030015021829.0487663870398378.7610449035830.0957493769846047
7675955695.2989737815650.112141197091364.2395361882791.27569894313708
7781246644.2774025180966.7144828606313221.0200374055951.04424473165411
7823335003.1096438006936.1058935921448-266.686693406944-1.99166845545277
7930084318.574837410223.4682562472728-293.859613942723-0.841966888116302
8027443804.7496247013414.1771893761952-301.76638179256-0.628299200021039
8128333529.491399830449.22046703222412-287.388929178817-0.33858455623607
8224282948.51616131395-0.772511932294648313.93624673649-0.69045875928204
8342693296.218745553634.9696147465133479.9982176711870.407599623844073
8432073329.961766094385.40715518307249-163.6910800474770.0336930085045705
8551704070.1089197997514.729001411262751.07759930581360.872055880151585
8677675617.9978843205640.5045318621513-2.15618496332321.78293263181846
8745445307.2435984750933.9838558869236-276.798275460543-0.404544866529302
8837414689.3469785762121.7989760364859-42.5562972972515-0.753568524657905
8921933578.970709728711.05803666895235196.885076376425-1.31552708706102
9034323505.67880955118-0.27403950229301730.6970427765619-0.0866679268518496
9152824178.6483319403711.5825112539807156.1648677323950.786035074291848
9266355158.3445882183528.4315650282987113.195581049691.13110530441838
9342224961.4802612733924.5456548422426-422.032731140439-0.263292194206963
9473175725.9469459128937.1660336366223548.3294767565560.864652892119297
9541325076.9796561593725.738117698116321.9044525244183-0.801562185326803
9650485191.1174848800427.1279354494365-267.765286648930.103378052170141
9743835015.1553740493424.2248888698881-344.051634220999-0.239738975394105
9837614531.5905556508815.6470078203633-58.1640913350749-0.591360307892042
9940814381.7050401952312.6317281160085-70.9579404490743-0.191178758503781
10064915050.8317739645824.7175310366009527.5470223683160.75987286282968
10158595315.7640540837529.0853932384882207.7158320862910.279176002394969
10271396045.408958932641.6193315611315111.6929641522050.816400228104249
10376826700.1660740645852.4423532290248120.8626886608770.715494735323332
10486497404.8901339685963.8422713938618327.3755788985570.76160315980261
10561467232.5717866246359.7487532683856-754.553060305207-0.275777236288225
10671376985.0061149520754.4769943295645584.051190492407-0.358801953694852
10799488040.6013909318271.3128474686334500.2205737629621.16842735182361
1081581910936.7144589307116.925227588681910.0940379843173.30011458512865
109837010338.8111431704105.958556683632-959.070839858741-0.840728905922208
1101322211434.9414504874122.793402795611398.3897590976671.15397832086178
1111671113513.8437271547157.971800275483477.7323621596772.26387347937527
1121905915517.52402977191.547219205118974.2583672678612.13862868363225
113830313187.9681702532146.014602090661-1365.48659334419-2.93067604561244
1142078115867.6130464883191.2457691236971366.102309274452.95206829603739
115963813900.8394563665153.121868816018-1236.58298737574-2.5173615870999
1161344413612.6581468205145.390354795253450.640768558196-0.515014056242094
117607211288.3117628293102.438992979664-1749.68376930599-2.88232483907177
1181344211903.8009590906111.279082602719818.1493994227790.598590924398894
1191445712910.8397880782126.467768801983289.4161723050181.04471238088571
1201770514371.1959484201148.4538370121041461.768392130521.55715841651676
1211646315722.0110092864167.730459453566-952.3798291610641.41055313377742
1221919417156.4003704936189.400448101299262.0623836105431.4767160162806
1232068818541.4176588263210.716827333556482.3876368846791.38587371286813
1241473916906.8876083335177.46046369955400.101363742844-2.13998777377182
1251270216109.3887944715159.956693101236-2046.72840270788-1.13360502820871
1261576015376.2465615991144.0537831047571633.24012867292-1.04048903157738







Structural Time Series Model -- Extrapolation
tObservedLevelSeasonal
114841.288995005115649.3694893157-808.080494310689
215876.904987459415824.807737628452.0972498310848
314084.117649811516000.245985941-1916.12833612944
416182.434904117316175.68423425366.75066986373483
516203.458014523916351.1224825662-147.66446804231
617495.893970345416526.5607308789969.333239466494
715986.295274478416701.9989791915-715.703704713109
817022.854897533716877.4372275041145.417670029586
918141.494858566517052.87547581671088.61938274979
1018147.279705750217228.3137241294918.965981620851
1116362.8691445917403.751972442-1040.88282785199
1219026.465858240617579.19022075461447.275637486
1316946.547974756517754.6284690672-808.080494310689
1417982.163967210917930.066717379952.0972498310848
1516189.37662956318105.5049656925-1916.12833612944
1618287.693883868818280.94321400516.75066986373497
1718308.716994275418456.3814623177-147.66446804231
1819601.152950096818631.8197106304969.333239466494

\begin{tabular}{lllllllll}
\hline
Structural Time Series Model -- Extrapolation \tabularnewline
t & Observed & Level & Seasonal \tabularnewline
1 & 14841.2889950051 & 15649.3694893157 & -808.080494310689 \tabularnewline
2 & 15876.9049874594 & 15824.8077376284 & 52.0972498310848 \tabularnewline
3 & 14084.1176498115 & 16000.245985941 & -1916.12833612944 \tabularnewline
4 & 16182.4349041173 & 16175.6842342536 & 6.75066986373483 \tabularnewline
5 & 16203.4580145239 & 16351.1224825662 & -147.66446804231 \tabularnewline
6 & 17495.8939703454 & 16526.5607308789 & 969.333239466494 \tabularnewline
7 & 15986.2952744784 & 16701.9989791915 & -715.703704713109 \tabularnewline
8 & 17022.8548975337 & 16877.4372275041 & 145.417670029586 \tabularnewline
9 & 18141.4948585665 & 17052.8754758167 & 1088.61938274979 \tabularnewline
10 & 18147.2797057502 & 17228.3137241294 & 918.965981620851 \tabularnewline
11 & 16362.86914459 & 17403.751972442 & -1040.88282785199 \tabularnewline
12 & 19026.4658582406 & 17579.1902207546 & 1447.275637486 \tabularnewline
13 & 16946.5479747565 & 17754.6284690672 & -808.080494310689 \tabularnewline
14 & 17982.1639672109 & 17930.0667173799 & 52.0972498310848 \tabularnewline
15 & 16189.376629563 & 18105.5049656925 & -1916.12833612944 \tabularnewline
16 & 18287.6938838688 & 18280.9432140051 & 6.75066986373497 \tabularnewline
17 & 18308.7169942754 & 18456.3814623177 & -147.66446804231 \tabularnewline
18 & 19601.1529500968 & 18631.8197106304 & 969.333239466494 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298883&T=2

[TABLE]
[ROW][C]Structural Time Series Model -- Extrapolation[/C][/ROW]
[ROW][C]t[/C][C]Observed[/C][C]Level[/C][C]Seasonal[/C][/ROW]
[ROW][C]1[/C][C]14841.2889950051[/C][C]15649.3694893157[/C][C]-808.080494310689[/C][/ROW]
[ROW][C]2[/C][C]15876.9049874594[/C][C]15824.8077376284[/C][C]52.0972498310848[/C][/ROW]
[ROW][C]3[/C][C]14084.1176498115[/C][C]16000.245985941[/C][C]-1916.12833612944[/C][/ROW]
[ROW][C]4[/C][C]16182.4349041173[/C][C]16175.6842342536[/C][C]6.75066986373483[/C][/ROW]
[ROW][C]5[/C][C]16203.4580145239[/C][C]16351.1224825662[/C][C]-147.66446804231[/C][/ROW]
[ROW][C]6[/C][C]17495.8939703454[/C][C]16526.5607308789[/C][C]969.333239466494[/C][/ROW]
[ROW][C]7[/C][C]15986.2952744784[/C][C]16701.9989791915[/C][C]-715.703704713109[/C][/ROW]
[ROW][C]8[/C][C]17022.8548975337[/C][C]16877.4372275041[/C][C]145.417670029586[/C][/ROW]
[ROW][C]9[/C][C]18141.4948585665[/C][C]17052.8754758167[/C][C]1088.61938274979[/C][/ROW]
[ROW][C]10[/C][C]18147.2797057502[/C][C]17228.3137241294[/C][C]918.965981620851[/C][/ROW]
[ROW][C]11[/C][C]16362.86914459[/C][C]17403.751972442[/C][C]-1040.88282785199[/C][/ROW]
[ROW][C]12[/C][C]19026.4658582406[/C][C]17579.1902207546[/C][C]1447.275637486[/C][/ROW]
[ROW][C]13[/C][C]16946.5479747565[/C][C]17754.6284690672[/C][C]-808.080494310689[/C][/ROW]
[ROW][C]14[/C][C]17982.1639672109[/C][C]17930.0667173799[/C][C]52.0972498310848[/C][/ROW]
[ROW][C]15[/C][C]16189.376629563[/C][C]18105.5049656925[/C][C]-1916.12833612944[/C][/ROW]
[ROW][C]16[/C][C]18287.6938838688[/C][C]18280.9432140051[/C][C]6.75066986373497[/C][/ROW]
[ROW][C]17[/C][C]18308.7169942754[/C][C]18456.3814623177[/C][C]-147.66446804231[/C][/ROW]
[ROW][C]18[/C][C]19601.1529500968[/C][C]18631.8197106304[/C][C]969.333239466494[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298883&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298883&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Structural Time Series Model -- Extrapolation
tObservedLevelSeasonal
114841.288995005115649.3694893157-808.080494310689
215876.904987459415824.807737628452.0972498310848
314084.117649811516000.245985941-1916.12833612944
416182.434904117316175.68423425366.75066986373483
516203.458014523916351.1224825662-147.66446804231
617495.893970345416526.5607308789969.333239466494
715986.295274478416701.9989791915-715.703704713109
817022.854897533716877.4372275041145.417670029586
918141.494858566517052.87547581671088.61938274979
1018147.279705750217228.3137241294918.965981620851
1116362.8691445917403.751972442-1040.88282785199
1219026.465858240617579.19022075461447.275637486
1316946.547974756517754.6284690672-808.080494310689
1417982.163967210917930.066717379952.0972498310848
1516189.37662956318105.5049656925-1916.12833612944
1618287.693883868818280.94321400516.75066986373497
1718308.716994275418456.3814623177-147.66446804231
1819601.152950096818631.8197106304969.333239466494



Parameters (Session):
Parameters (R input):
par1 = 12 ; par2 = 18 ; par3 = BFGS ;
R code (references can be found in the software module):
par3 <- 'BFGS'
par2 <- '12'
par1 <- '12'
require('stsm')
require('stsm.class')
require('KFKSDS')
par1 <- as.numeric(par1)
par2 <- as.numeric(par2)
nx <- length(x)
x <- ts(x,frequency=par1)
m <- StructTS(x,type='BSM')
print(m$coef)
print(m$fitted)
print(m$resid)
mylevel <- as.numeric(m$fitted[,'level'])
myslope <- as.numeric(m$fitted[,'slope'])
myseas <- as.numeric(m$fitted[,'sea'])
myresid <- as.numeric(m$resid)
myfit <- mylevel+myseas
mm <- stsm.model(model = 'BSM', y = x, transPars = 'StructTS')
fit2 <- stsmFit(mm, stsm.method = 'maxlik.td.optim', method = par3, KF.args = list(P0cov = TRUE))
(fit2.comps <- tsSmooth(fit2, P0cov = FALSE)$states)
m2 <- set.pars(mm, pmax(fit2$par, .Machine$double.eps))
(ss <- char2numeric(m2))
(pred <- predict(ss, x, n.ahead = par2))
mylagmax <- nx/2
bitmap(file='test2.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(x),lag.max = mylagmax,main='Observed')
acf(mylevel,na.action=na.pass,lag.max = mylagmax,main='Level')
acf(myseas,na.action=na.pass,lag.max = mylagmax,main='Seasonal')
acf(myresid,na.action=na.pass,lag.max = mylagmax,main='Standardized Residals')
par(op)
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
spectrum(as.numeric(x),main='Observed')
spectrum(mylevel,main='Level')
spectrum(myseas,main='Seasonal')
spectrum(myresid,main='Standardized Residals')
par(op)
dev.off()
bitmap(file='test4.png')
op <- par(mfrow = c(2,2))
cpgram(as.numeric(x),main='Observed')
cpgram(mylevel,main='Level')
cpgram(myseas,main='Seasonal')
cpgram(myresid,main='Standardized Residals')
par(op)
dev.off()
bitmap(file='test1.png')
plot(as.numeric(m$resid),main='Standardized Residuals',ylab='Residuals',xlab='time',type='b')
grid()
dev.off()
bitmap(file='test5.png')
op <- par(mfrow = c(2,2))
hist(m$resid,main='Residual Histogram')
plot(density(m$resid),main='Residual Kernel Density')
qqnorm(m$resid,main='Residual Normal QQ Plot')
qqline(m$resid)
plot(m$resid^2, myfit^2,main='Sq.Resid vs. Sq.Fit',xlab='Squared residuals',ylab='Squared Fit')
par(op)
dev.off()
bitmap(file='test6.png')
par(mfrow = c(3,1), mar = c(3,3,3,3))
plot(cbind(x, pred$pred), type = 'n', plot.type = 'single', ylab = '')
lines(x)
polygon(c(time(pred$pred), rev(time(pred$pred))), c(pred$pred + 2 * pred$se, rev(pred$pred)), col = 'gray85', border = NA)
polygon(c(time(pred$pred), rev(time(pred$pred))), c(pred$pred - 2 * pred$se, rev(pred$pred)), col = ' gray85', border = NA)
lines(pred$pred, col = 'blue', lwd = 1.5)
mtext(text = 'forecasts of the observed series', side = 3, adj = 0)
plot(cbind(x, pred$a[,1]), type = 'n', plot.type = 'single', ylab = '')
lines(x)
polygon(c(time(pred$a[,1]), rev(time(pred$a[,1]))), c(pred$a[,1] + 2 * sqrt(pred$P[,1]), rev(pred$a[,1])), col = 'gray85', border = NA)
polygon(c(time(pred$a[,1]), rev(time(pred$a[,1]))), c(pred$a[,1] - 2 * sqrt(pred$P[,1]), rev(pred$a[,1])), col = ' gray85', border = NA)
lines(pred$a[,1], col = 'blue', lwd = 1.5)
mtext(text = 'forecasts of the level component', side = 3, adj = 0)
plot(cbind(fit2.comps[,3], pred$a[,3]), type = 'n', plot.type = 'single', ylab = '')
lines(fit2.comps[,3])
polygon(c(time(pred$a[,3]), rev(time(pred$a[,3]))), c(pred$a[,3] + 2 * sqrt(pred$P[,3]), rev(pred$a[,3])), col = 'gray85', border = NA)
polygon(c(time(pred$a[,3]), rev(time(pred$a[,3]))), c(pred$a[,3] - 2 * sqrt(pred$P[,3]), rev(pred$a[,3])), col = ' gray85', border = NA)
lines(pred$a[,3], col = 'blue', lwd = 1.5)
mtext(text = 'forecasts of the seasonal component', side = 3, adj = 0)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Structural Time Series Model -- Interpolation',6,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observed',header=TRUE)
a<-table.element(a,'Level',header=TRUE)
a<-table.element(a,'Slope',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,'Stand. Residuals',header=TRUE)
a<-table.row.end(a)
for (i in 1:nx) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
a<-table.element(a,mylevel[i])
a<-table.element(a,myslope[i])
a<-table.element(a,myseas[i])
a<-table.element(a,myresid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Structural Time Series Model -- Extrapolation',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observed',header=TRUE)
a<-table.element(a,'Level',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.row.end(a)
for (i in 1:par2) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,pred$pred[i])
a<-table.element(a,pred$a[i,1])
a<-table.element(a,pred$a[i,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')