Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_structuraltimeseries.wasp
Title produced by softwareStructural Time Series Models
Date of computationMon, 12 Dec 2016 13:07:55 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/12/t1481544915n33k5dtoip7pp9q.htm/, Retrieved Fri, 01 Nov 2024 03:46:12 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=298872, Retrieved Fri, 01 Nov 2024 03:46:12 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact153
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Structural Time Series Models] [Structural time s...] [2016-12-12 12:07:55] [532823e65ff0a5fb51127419eb0f7462] [Current]
- RMP     [Exponential Smoothing] [ES F1] [2016-12-18 15:49:54] [48565d122ad1a5ad6c25b7f5730e03d6]
- RMP     [Exponential Smoothing] [ES F1 2] [2016-12-18 16:05:28] [48565d122ad1a5ad6c25b7f5730e03d6]
- RMP     [Variance Reduction Matrix] [VRM F1] [2016-12-18 16:13:58] [48565d122ad1a5ad6c25b7f5730e03d6]
Feedback Forum

Post a new message
Dataseries X:
3567.2
3968.25
4285.35
4130.95
4219.4
4626.2
3860.75
4174.15
4668.65
4630.05
4553.7
4603.85
4310.7
4831.3
5145.3
4886.65
4934.05
5304.7
4419.45
4804.85
5105
5132.6
4982.5
4906.7
4506.4
5010.85
5392.25
5049.7
5143.9
5449.9
4520.4
4936.95
5358.55
5289.5
5123.55
4985.65
4682.65
5175.55
5374.7
5289
5176.15
5604.25
4608.8
4898.15
5448.65
5373.05
5078.6
5233.4
4629.2
5387.8
5736.65
5357.9
5337.95
5795.5
4804.05
5120.5
5850.45
5734.75
5539
5582.85
4983.1
5672
6185.8
5835.6
5930.4
6444.65
5171.05
5739.1
6413.9
6230.2
6015.45
6174.25
5579.25
6133.45
6478.7
6184.4
6185.65
6556
5123.25
6028.9
6499.95
6190.05
6027.95
6034
5128.75
6087.7
6628.15
6075.3
6352.1
6824
5412.35
6171.25
6521.35
6457.6
5930.95
5842.7
5120.1
5719.95
5946.7
5921.1
6072
6489.4
5291.15
5986.45
6538.15
6442.8
6169.55
5793
5254.85
6050.75
6606.15
6221.15
6293.4
6908.4
5498.95
6145.35




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time4 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298872&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]4 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=298872&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298872&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R ServerBig Analytics Cloud Computing Center







Structural Time Series Model -- Interpolation
tObservedLevelSlopeSeasonalStand. Residuals
13567.23567.2000
23968.253784.2108058991610.2070457326035130.5062136730372.486513447588
34285.354078.8026089325428.8697024229072149.381818243223.03142580833615
44130.954142.7579572820530.6524448421101-20.80915575448550.447914877415807
54219.44186.0051412038631.096578399392529.78762595181220.172847821672345
64626.24384.2532931622935.5729501916405192.525582789612.33675732873259
73860.754192.2333229935630.1848866133188-263.706313380256-3.19203926703
84174.154145.3548248748328.397467525861751.7491398707761-1.08018937301596
94668.654362.9143206368832.8721273266276249.4842744089142.64763890686431
104630.054519.8736550582735.889589414302473.34555690730681.7342565521071
114553.74563.2981891066336.0775333255435-11.83085826244170.105170596110079
124603.854587.8045216632235.782547642110619.4689739418903-0.161317054319937
134310.74626.3412131136935.713496519561-316.4877926816010.0429746025753475
144831.34752.6694569102637.134213296625653.40175327276171.25463545703017
155145.34909.0549755015741.4523233827313207.0079634227241.50876422673784
164886.654961.5206818801941.8841885294867-77.61315138701490.14266194772049
174934.054983.0394668187541.1613404455843-43.6668189350131-0.274045211922683
185304.75005.2440945086940.5713344040121304.550879256911-0.260015777492683
194419.454884.0859935606435.9923062885746-420.705290979537-2.23214032528882
204804.854863.6122023252734.4611500206424-43.3810585185298-0.780222840508198
2151054891.648943570334.2885376783661215.10106809785-0.0887293004632847
225132.64977.1786829004735.6579477392916141.4736252594130.706959888811971
234982.55010.739293575335.6041715259062-27.6687672140116-0.0288908296021169
244906.74987.9629240793134.3058604247361-65.3606274888528-0.804697521279913
254506.44961.7132219524133.3853067030132-438.560375393677-0.853511328269584
265010.854996.0560532925333.407494506844714.53544472184260.013157990792286
275392.255095.6529967920235.5000284074965279.5862295494430.875636689230843
285049.75131.9564054717135.5282502377514-82.46053485263080.0105956446325367
295143.95159.7778141379635.2586101518417-13.8873838849087-0.103248988066347
305449.95135.2510694557333.2623539581764330.355283475282-0.811613821547077
314520.45054.7542016201329.6477037699487-504.188560680772-1.55397283549399
324936.955025.8418356378827.8536128738317-73.3082179496605-0.801367866477991
335358.555089.6610845367428.9279804158116259.3112136417840.492044776168138
345289.55129.3020413283629.2399227122287157.3467052227110.146382096134529
355123.555139.9310063319828.7184440700837-11.43178362672-0.253989881648513
364985.655105.9361160905427.0523979381024-103.59261168481-0.857097438668579
374682.655123.4923243254826.8082328534071-438.304089927826-0.130446299798473
385175.555166.8139483724627.27482991122534.361094977784940.224857086443144
395374.75152.9634221684525.9742723647326232.41525608371-0.5509997075466
4052895243.5681805373528.151808643342528.81049412635870.861570879950104
415176.155225.060760983226.5558874043454-36.8534497698037-0.625800335394571
425604.255226.2262643988125.6990396572624384.645922910301-0.343266983446581
434608.85182.0603732269423.3974282726274-554.91743913313-0.94908522096392
444898.155106.9804220248420.2319358528147-182.901247343939-1.33971762549716
455448.655136.6301501267520.5279501583861309.5393112200350.128053370941674
465373.055172.8813012621221.0114708131336196.0308382017650.213519988502313
475078.65139.0364739871819.3614814799065-46.0096651593853-0.744487987759007
485233.45221.5385611839421.2281126841939-4.757430823911620.8579844198216
494629.25182.1263447686119.4317185329167-536.943849350656-0.82527872106759
505387.85262.1551897773221.2915224888261109.736900789560.821447383679909
515736.655393.6769381618924.8333871983926314.2987353345441.48297238450873
525357.95384.4606861332623.7029578606783-17.7556493006355-0.456447020493485
535337.955376.4945565003322.6378790751657-30.3454650467918-0.425554115941521
545795.55377.1032151547221.8989869655941424.128200983549-0.297388128566282
554804.055359.0103818153620.5728196011502-544.510934195967-0.541648832523196
565120.55344.0950495453219.4131889151706-214.304538341027-0.481108534601641
575850.455430.6415443393921.573935797308402.2345935976170.909511000939382
585734.755489.6716343051422.7624667041117235.281899916890.506915657992123
5955395558.929483280424.2205822815005-32.08474633624080.629091929760455
605582.855586.837900532924.3355455068997-4.952668071510320.0499452783149404
614983.15595.506483144123.845042204286-608.304948694428-0.212334366287398
6256725613.5263352530223.659731150814559.9957498783971-0.0787943931946636
636185.85721.8127480910226.4076216718486441.9747398409941.14029051392906
645835.65794.2133128834227.925715583194529.46450669526960.618340029501279
655930.45877.4766998111129.767132811630938.57691539954670.744696054096892
666444.655952.5345998852131.2744614576027480.3427750702770.611107179430819
675171.055879.3649881482727.8170597914234-681.094594018314-1.41222537641453
685739.15929.0228289908828.534119602044-195.6217669287030.295484979977338
696413.95994.5178690650729.7366443327455409.7401487643670.499740993208057
706230.26027.1702328276129.8307171683803202.2697200033060.0393914468598645
716015.456053.2619028664829.7108248965538-36.8375092255-0.0505101308034141
726174.256120.8773376819230.923406512700243.48940534239680.512410382933469
735579.256179.802091764931.8217600916193-607.8568476740670.378710097848114
746133.456182.9758678834930.8955370477226-42.0594340756007-0.387067516059804
756478.76151.6448693136928.8640418119941343.234578143787-0.839009815645856
766184.46173.5975307482128.636545685744512.5959035074061-0.0930606307498488
776185.656180.5286216486527.918799449427310.7530233018967-0.292377910497327
7865566130.9170440905425.353489037686445.227630822582-1.04594063454539
795123.256008.1629856803420.4653563848997-846.368954679806-2.00068515906459
806028.96095.8843332004122.6752450509108-84.49961994176930.908814030182761
816499.956118.9187608786322.6869869508715380.9377221681690.00485123119939441
826190.056081.340208631220.7260745833892124.391474998742-0.81350391519915
836027.956087.0882673408120.2403165690449-55.2415476016982-0.202176851433042
8460346059.0710718876818.6768744940632-12.5113060971519-0.651716823831069
855128.755918.6136076633513.5129158743089-748.430815024556-2.14982704550497
866087.75974.2078354747814.8837220962896102.5406746970590.568205583929241
876628.156110.5973982237418.8607003452819485.9719196946851.6387495663306
886075.36105.2826105433418.0661259850707-23.7064560203527-0.325787085027542
896352.16182.3381448014320.0097491675778154.4500747692570.795068344192888
9068246256.8284621235121.8057104341452553.0188957081570.734939914544495
915412.356290.9048559785422.2097268784133-881.7454919055150.165662588519077
926171.256285.0243843784221.2870021138963-106.467323505998-0.379307921417517
936521.356216.7681051249218.3537763895387327.869675258532-1.20870859121814
946457.66250.786512997218.8656044687186202.7412251937530.211368600868119
955930.956134.1298491934414.4452500910732-167.953048706271-1.82862646426915
965842.75980.594852749428.96900307324064-94.2192149030463-2.26735423551427
975120.15934.457005142397.17095824460835-800.025013810893-0.743998711010963
985719.955827.254571650783.43191953875712-77.5650073427647-1.54375395066368
995946.75663.39144221227-2.05025966704481326.777851578277-2.25658766082137
1005921.15770.953726475661.5492870381445121.6844981505061.47779151535427
10160725860.152866189434.43140024004539189.0910124847361.18176808181122
1026489.45904.674643645195.75008373262706574.3122531694430.540805231447318
1035291.156009.526219467329.00791493963924-744.1314489566281.33748792119776
1045986.456039.925347891699.71027308825155-59.03599653137620.288729973976873
1056538.156104.8740217518811.5212915331973418.9190191264860.745412707128981
1066442.86128.9189609856211.931323775743310.6269511504170.168956274553281
1076169.556177.803865553313.1400824866482-17.85491085420790.498535186775535
10857936046.314741336628.41051116166779-215.731316334229-1.95160446629767
1095254.855998.984589975136.58692177514453-729.646960066408-0.752285238733726
1106050.756024.324580947.2010412233780121.5517329690520.253061543508853
1116606.156169.560789222311.7268277300835400.7299898200541.86200356094449
1126221.156193.5935546525312.130741107722624.3608688243940.165948756626943
1136293.46183.7001037605911.407348322989115.418561656757-0.297008456779136
1146908.46273.8292753600813.9934910423859614.1251627724921.06191940626449
1155498.956290.4875601378314.0810094219004-792.2298901936620.0359572071852341
1166145.356276.0186937161713.1439439159764-123.250207435996-0.385259925697308

\begin{tabular}{lllllllll}
\hline
Structural Time Series Model -- Interpolation \tabularnewline
t & Observed & Level & Slope & Seasonal & Stand. Residuals \tabularnewline
1 & 3567.2 & 3567.2 & 0 & 0 & 0 \tabularnewline
2 & 3968.25 & 3784.21080589916 & 10.2070457326035 & 130.506213673037 & 2.486513447588 \tabularnewline
3 & 4285.35 & 4078.80260893254 & 28.8697024229072 & 149.38181824322 & 3.03142580833615 \tabularnewline
4 & 4130.95 & 4142.75795728205 & 30.6524448421101 & -20.8091557544855 & 0.447914877415807 \tabularnewline
5 & 4219.4 & 4186.00514120386 & 31.0965783993925 & 29.7876259518122 & 0.172847821672345 \tabularnewline
6 & 4626.2 & 4384.25329316229 & 35.5729501916405 & 192.52558278961 & 2.33675732873259 \tabularnewline
7 & 3860.75 & 4192.23332299356 & 30.1848866133188 & -263.706313380256 & -3.19203926703 \tabularnewline
8 & 4174.15 & 4145.35482487483 & 28.3974675258617 & 51.7491398707761 & -1.08018937301596 \tabularnewline
9 & 4668.65 & 4362.91432063688 & 32.8721273266276 & 249.484274408914 & 2.64763890686431 \tabularnewline
10 & 4630.05 & 4519.87365505827 & 35.8895894143024 & 73.3455569073068 & 1.7342565521071 \tabularnewline
11 & 4553.7 & 4563.29818910663 & 36.0775333255435 & -11.8308582624417 & 0.105170596110079 \tabularnewline
12 & 4603.85 & 4587.80452166322 & 35.7825476421106 & 19.4689739418903 & -0.161317054319937 \tabularnewline
13 & 4310.7 & 4626.34121311369 & 35.713496519561 & -316.487792681601 & 0.0429746025753475 \tabularnewline
14 & 4831.3 & 4752.66945691026 & 37.1342132966256 & 53.4017532727617 & 1.25463545703017 \tabularnewline
15 & 5145.3 & 4909.05497550157 & 41.4523233827313 & 207.007963422724 & 1.50876422673784 \tabularnewline
16 & 4886.65 & 4961.52068188019 & 41.8841885294867 & -77.6131513870149 & 0.14266194772049 \tabularnewline
17 & 4934.05 & 4983.03946681875 & 41.1613404455843 & -43.6668189350131 & -0.274045211922683 \tabularnewline
18 & 5304.7 & 5005.24409450869 & 40.5713344040121 & 304.550879256911 & -0.260015777492683 \tabularnewline
19 & 4419.45 & 4884.08599356064 & 35.9923062885746 & -420.705290979537 & -2.23214032528882 \tabularnewline
20 & 4804.85 & 4863.61220232527 & 34.4611500206424 & -43.3810585185298 & -0.780222840508198 \tabularnewline
21 & 5105 & 4891.6489435703 & 34.2885376783661 & 215.10106809785 & -0.0887293004632847 \tabularnewline
22 & 5132.6 & 4977.17868290047 & 35.6579477392916 & 141.473625259413 & 0.706959888811971 \tabularnewline
23 & 4982.5 & 5010.7392935753 & 35.6041715259062 & -27.6687672140116 & -0.0288908296021169 \tabularnewline
24 & 4906.7 & 4987.96292407931 & 34.3058604247361 & -65.3606274888528 & -0.804697521279913 \tabularnewline
25 & 4506.4 & 4961.71322195241 & 33.3853067030132 & -438.560375393677 & -0.853511328269584 \tabularnewline
26 & 5010.85 & 4996.05605329253 & 33.4074945068447 & 14.5354447218426 & 0.013157990792286 \tabularnewline
27 & 5392.25 & 5095.65299679202 & 35.5000284074965 & 279.586229549443 & 0.875636689230843 \tabularnewline
28 & 5049.7 & 5131.95640547171 & 35.5282502377514 & -82.4605348526308 & 0.0105956446325367 \tabularnewline
29 & 5143.9 & 5159.77781413796 & 35.2586101518417 & -13.8873838849087 & -0.103248988066347 \tabularnewline
30 & 5449.9 & 5135.25106945573 & 33.2623539581764 & 330.355283475282 & -0.811613821547077 \tabularnewline
31 & 4520.4 & 5054.75420162013 & 29.6477037699487 & -504.188560680772 & -1.55397283549399 \tabularnewline
32 & 4936.95 & 5025.84183563788 & 27.8536128738317 & -73.3082179496605 & -0.801367866477991 \tabularnewline
33 & 5358.55 & 5089.66108453674 & 28.9279804158116 & 259.311213641784 & 0.492044776168138 \tabularnewline
34 & 5289.5 & 5129.30204132836 & 29.2399227122287 & 157.346705222711 & 0.146382096134529 \tabularnewline
35 & 5123.55 & 5139.93100633198 & 28.7184440700837 & -11.43178362672 & -0.253989881648513 \tabularnewline
36 & 4985.65 & 5105.93611609054 & 27.0523979381024 & -103.59261168481 & -0.857097438668579 \tabularnewline
37 & 4682.65 & 5123.49232432548 & 26.8082328534071 & -438.304089927826 & -0.130446299798473 \tabularnewline
38 & 5175.55 & 5166.81394837246 & 27.2748299112253 & 4.36109497778494 & 0.224857086443144 \tabularnewline
39 & 5374.7 & 5152.96342216845 & 25.9742723647326 & 232.41525608371 & -0.5509997075466 \tabularnewline
40 & 5289 & 5243.56818053735 & 28.1518086433425 & 28.8104941263587 & 0.861570879950104 \tabularnewline
41 & 5176.15 & 5225.0607609832 & 26.5558874043454 & -36.8534497698037 & -0.625800335394571 \tabularnewline
42 & 5604.25 & 5226.22626439881 & 25.6990396572624 & 384.645922910301 & -0.343266983446581 \tabularnewline
43 & 4608.8 & 5182.06037322694 & 23.3974282726274 & -554.91743913313 & -0.94908522096392 \tabularnewline
44 & 4898.15 & 5106.98042202484 & 20.2319358528147 & -182.901247343939 & -1.33971762549716 \tabularnewline
45 & 5448.65 & 5136.63015012675 & 20.5279501583861 & 309.539311220035 & 0.128053370941674 \tabularnewline
46 & 5373.05 & 5172.88130126212 & 21.0114708131336 & 196.030838201765 & 0.213519988502313 \tabularnewline
47 & 5078.6 & 5139.03647398718 & 19.3614814799065 & -46.0096651593853 & -0.744487987759007 \tabularnewline
48 & 5233.4 & 5221.53856118394 & 21.2281126841939 & -4.75743082391162 & 0.8579844198216 \tabularnewline
49 & 4629.2 & 5182.12634476861 & 19.4317185329167 & -536.943849350656 & -0.82527872106759 \tabularnewline
50 & 5387.8 & 5262.15518977732 & 21.2915224888261 & 109.73690078956 & 0.821447383679909 \tabularnewline
51 & 5736.65 & 5393.67693816189 & 24.8333871983926 & 314.298735334544 & 1.48297238450873 \tabularnewline
52 & 5357.9 & 5384.46068613326 & 23.7029578606783 & -17.7556493006355 & -0.456447020493485 \tabularnewline
53 & 5337.95 & 5376.49455650033 & 22.6378790751657 & -30.3454650467918 & -0.425554115941521 \tabularnewline
54 & 5795.5 & 5377.10321515472 & 21.8989869655941 & 424.128200983549 & -0.297388128566282 \tabularnewline
55 & 4804.05 & 5359.01038181536 & 20.5728196011502 & -544.510934195967 & -0.541648832523196 \tabularnewline
56 & 5120.5 & 5344.09504954532 & 19.4131889151706 & -214.304538341027 & -0.481108534601641 \tabularnewline
57 & 5850.45 & 5430.64154433939 & 21.573935797308 & 402.234593597617 & 0.909511000939382 \tabularnewline
58 & 5734.75 & 5489.67163430514 & 22.7624667041117 & 235.28189991689 & 0.506915657992123 \tabularnewline
59 & 5539 & 5558.9294832804 & 24.2205822815005 & -32.0847463362408 & 0.629091929760455 \tabularnewline
60 & 5582.85 & 5586.8379005329 & 24.3355455068997 & -4.95266807151032 & 0.0499452783149404 \tabularnewline
61 & 4983.1 & 5595.5064831441 & 23.845042204286 & -608.304948694428 & -0.212334366287398 \tabularnewline
62 & 5672 & 5613.52633525302 & 23.6597311508145 & 59.9957498783971 & -0.0787943931946636 \tabularnewline
63 & 6185.8 & 5721.81274809102 & 26.4076216718486 & 441.974739840994 & 1.14029051392906 \tabularnewline
64 & 5835.6 & 5794.21331288342 & 27.9257155831945 & 29.4645066952696 & 0.618340029501279 \tabularnewline
65 & 5930.4 & 5877.47669981111 & 29.7671328116309 & 38.5769153995467 & 0.744696054096892 \tabularnewline
66 & 6444.65 & 5952.53459988521 & 31.2744614576027 & 480.342775070277 & 0.611107179430819 \tabularnewline
67 & 5171.05 & 5879.36498814827 & 27.8170597914234 & -681.094594018314 & -1.41222537641453 \tabularnewline
68 & 5739.1 & 5929.02282899088 & 28.534119602044 & -195.621766928703 & 0.295484979977338 \tabularnewline
69 & 6413.9 & 5994.51786906507 & 29.7366443327455 & 409.740148764367 & 0.499740993208057 \tabularnewline
70 & 6230.2 & 6027.17023282761 & 29.8307171683803 & 202.269720003306 & 0.0393914468598645 \tabularnewline
71 & 6015.45 & 6053.26190286648 & 29.7108248965538 & -36.8375092255 & -0.0505101308034141 \tabularnewline
72 & 6174.25 & 6120.87733768192 & 30.9234065127002 & 43.4894053423968 & 0.512410382933469 \tabularnewline
73 & 5579.25 & 6179.8020917649 & 31.8217600916193 & -607.856847674067 & 0.378710097848114 \tabularnewline
74 & 6133.45 & 6182.97586788349 & 30.8955370477226 & -42.0594340756007 & -0.387067516059804 \tabularnewline
75 & 6478.7 & 6151.64486931369 & 28.8640418119941 & 343.234578143787 & -0.839009815645856 \tabularnewline
76 & 6184.4 & 6173.59753074821 & 28.6365456857445 & 12.5959035074061 & -0.0930606307498488 \tabularnewline
77 & 6185.65 & 6180.52862164865 & 27.9187994494273 & 10.7530233018967 & -0.292377910497327 \tabularnewline
78 & 6556 & 6130.91704409054 & 25.353489037686 & 445.227630822582 & -1.04594063454539 \tabularnewline
79 & 5123.25 & 6008.16298568034 & 20.4653563848997 & -846.368954679806 & -2.00068515906459 \tabularnewline
80 & 6028.9 & 6095.88433320041 & 22.6752450509108 & -84.4996199417693 & 0.908814030182761 \tabularnewline
81 & 6499.95 & 6118.91876087863 & 22.6869869508715 & 380.937722168169 & 0.00485123119939441 \tabularnewline
82 & 6190.05 & 6081.3402086312 & 20.7260745833892 & 124.391474998742 & -0.81350391519915 \tabularnewline
83 & 6027.95 & 6087.08826734081 & 20.2403165690449 & -55.2415476016982 & -0.202176851433042 \tabularnewline
84 & 6034 & 6059.07107188768 & 18.6768744940632 & -12.5113060971519 & -0.651716823831069 \tabularnewline
85 & 5128.75 & 5918.61360766335 & 13.5129158743089 & -748.430815024556 & -2.14982704550497 \tabularnewline
86 & 6087.7 & 5974.20783547478 & 14.8837220962896 & 102.540674697059 & 0.568205583929241 \tabularnewline
87 & 6628.15 & 6110.59739822374 & 18.8607003452819 & 485.971919694685 & 1.6387495663306 \tabularnewline
88 & 6075.3 & 6105.28261054334 & 18.0661259850707 & -23.7064560203527 & -0.325787085027542 \tabularnewline
89 & 6352.1 & 6182.33814480143 & 20.0097491675778 & 154.450074769257 & 0.795068344192888 \tabularnewline
90 & 6824 & 6256.82846212351 & 21.8057104341452 & 553.018895708157 & 0.734939914544495 \tabularnewline
91 & 5412.35 & 6290.90485597854 & 22.2097268784133 & -881.745491905515 & 0.165662588519077 \tabularnewline
92 & 6171.25 & 6285.02438437842 & 21.2870021138963 & -106.467323505998 & -0.379307921417517 \tabularnewline
93 & 6521.35 & 6216.76810512492 & 18.3537763895387 & 327.869675258532 & -1.20870859121814 \tabularnewline
94 & 6457.6 & 6250.7865129972 & 18.8656044687186 & 202.741225193753 & 0.211368600868119 \tabularnewline
95 & 5930.95 & 6134.12984919344 & 14.4452500910732 & -167.953048706271 & -1.82862646426915 \tabularnewline
96 & 5842.7 & 5980.59485274942 & 8.96900307324064 & -94.2192149030463 & -2.26735423551427 \tabularnewline
97 & 5120.1 & 5934.45700514239 & 7.17095824460835 & -800.025013810893 & -0.743998711010963 \tabularnewline
98 & 5719.95 & 5827.25457165078 & 3.43191953875712 & -77.5650073427647 & -1.54375395066368 \tabularnewline
99 & 5946.7 & 5663.39144221227 & -2.05025966704481 & 326.777851578277 & -2.25658766082137 \tabularnewline
100 & 5921.1 & 5770.95372647566 & 1.5492870381445 & 121.684498150506 & 1.47779151535427 \tabularnewline
101 & 6072 & 5860.15286618943 & 4.43140024004539 & 189.091012484736 & 1.18176808181122 \tabularnewline
102 & 6489.4 & 5904.67464364519 & 5.75008373262706 & 574.312253169443 & 0.540805231447318 \tabularnewline
103 & 5291.15 & 6009.52621946732 & 9.00791493963924 & -744.131448956628 & 1.33748792119776 \tabularnewline
104 & 5986.45 & 6039.92534789169 & 9.71027308825155 & -59.0359965313762 & 0.288729973976873 \tabularnewline
105 & 6538.15 & 6104.87402175188 & 11.5212915331973 & 418.919019126486 & 0.745412707128981 \tabularnewline
106 & 6442.8 & 6128.91896098562 & 11.931323775743 & 310.626951150417 & 0.168956274553281 \tabularnewline
107 & 6169.55 & 6177.8038655533 & 13.1400824866482 & -17.8549108542079 & 0.498535186775535 \tabularnewline
108 & 5793 & 6046.31474133662 & 8.41051116166779 & -215.731316334229 & -1.95160446629767 \tabularnewline
109 & 5254.85 & 5998.98458997513 & 6.58692177514453 & -729.646960066408 & -0.752285238733726 \tabularnewline
110 & 6050.75 & 6024.32458094 & 7.20104122337801 & 21.551732969052 & 0.253061543508853 \tabularnewline
111 & 6606.15 & 6169.5607892223 & 11.7268277300835 & 400.729989820054 & 1.86200356094449 \tabularnewline
112 & 6221.15 & 6193.59355465253 & 12.1307411077226 & 24.360868824394 & 0.165948756626943 \tabularnewline
113 & 6293.4 & 6183.70010376059 & 11.407348322989 & 115.418561656757 & -0.297008456779136 \tabularnewline
114 & 6908.4 & 6273.82927536008 & 13.9934910423859 & 614.125162772492 & 1.06191940626449 \tabularnewline
115 & 5498.95 & 6290.48756013783 & 14.0810094219004 & -792.229890193662 & 0.0359572071852341 \tabularnewline
116 & 6145.35 & 6276.01869371617 & 13.1439439159764 & -123.250207435996 & -0.385259925697308 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298872&T=1

[TABLE]
[ROW][C]Structural Time Series Model -- Interpolation[/C][/ROW]
[ROW][C]t[/C][C]Observed[/C][C]Level[/C][C]Slope[/C][C]Seasonal[/C][C]Stand. Residuals[/C][/ROW]
[ROW][C]1[/C][C]3567.2[/C][C]3567.2[/C][C]0[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]2[/C][C]3968.25[/C][C]3784.21080589916[/C][C]10.2070457326035[/C][C]130.506213673037[/C][C]2.486513447588[/C][/ROW]
[ROW][C]3[/C][C]4285.35[/C][C]4078.80260893254[/C][C]28.8697024229072[/C][C]149.38181824322[/C][C]3.03142580833615[/C][/ROW]
[ROW][C]4[/C][C]4130.95[/C][C]4142.75795728205[/C][C]30.6524448421101[/C][C]-20.8091557544855[/C][C]0.447914877415807[/C][/ROW]
[ROW][C]5[/C][C]4219.4[/C][C]4186.00514120386[/C][C]31.0965783993925[/C][C]29.7876259518122[/C][C]0.172847821672345[/C][/ROW]
[ROW][C]6[/C][C]4626.2[/C][C]4384.25329316229[/C][C]35.5729501916405[/C][C]192.52558278961[/C][C]2.33675732873259[/C][/ROW]
[ROW][C]7[/C][C]3860.75[/C][C]4192.23332299356[/C][C]30.1848866133188[/C][C]-263.706313380256[/C][C]-3.19203926703[/C][/ROW]
[ROW][C]8[/C][C]4174.15[/C][C]4145.35482487483[/C][C]28.3974675258617[/C][C]51.7491398707761[/C][C]-1.08018937301596[/C][/ROW]
[ROW][C]9[/C][C]4668.65[/C][C]4362.91432063688[/C][C]32.8721273266276[/C][C]249.484274408914[/C][C]2.64763890686431[/C][/ROW]
[ROW][C]10[/C][C]4630.05[/C][C]4519.87365505827[/C][C]35.8895894143024[/C][C]73.3455569073068[/C][C]1.7342565521071[/C][/ROW]
[ROW][C]11[/C][C]4553.7[/C][C]4563.29818910663[/C][C]36.0775333255435[/C][C]-11.8308582624417[/C][C]0.105170596110079[/C][/ROW]
[ROW][C]12[/C][C]4603.85[/C][C]4587.80452166322[/C][C]35.7825476421106[/C][C]19.4689739418903[/C][C]-0.161317054319937[/C][/ROW]
[ROW][C]13[/C][C]4310.7[/C][C]4626.34121311369[/C][C]35.713496519561[/C][C]-316.487792681601[/C][C]0.0429746025753475[/C][/ROW]
[ROW][C]14[/C][C]4831.3[/C][C]4752.66945691026[/C][C]37.1342132966256[/C][C]53.4017532727617[/C][C]1.25463545703017[/C][/ROW]
[ROW][C]15[/C][C]5145.3[/C][C]4909.05497550157[/C][C]41.4523233827313[/C][C]207.007963422724[/C][C]1.50876422673784[/C][/ROW]
[ROW][C]16[/C][C]4886.65[/C][C]4961.52068188019[/C][C]41.8841885294867[/C][C]-77.6131513870149[/C][C]0.14266194772049[/C][/ROW]
[ROW][C]17[/C][C]4934.05[/C][C]4983.03946681875[/C][C]41.1613404455843[/C][C]-43.6668189350131[/C][C]-0.274045211922683[/C][/ROW]
[ROW][C]18[/C][C]5304.7[/C][C]5005.24409450869[/C][C]40.5713344040121[/C][C]304.550879256911[/C][C]-0.260015777492683[/C][/ROW]
[ROW][C]19[/C][C]4419.45[/C][C]4884.08599356064[/C][C]35.9923062885746[/C][C]-420.705290979537[/C][C]-2.23214032528882[/C][/ROW]
[ROW][C]20[/C][C]4804.85[/C][C]4863.61220232527[/C][C]34.4611500206424[/C][C]-43.3810585185298[/C][C]-0.780222840508198[/C][/ROW]
[ROW][C]21[/C][C]5105[/C][C]4891.6489435703[/C][C]34.2885376783661[/C][C]215.10106809785[/C][C]-0.0887293004632847[/C][/ROW]
[ROW][C]22[/C][C]5132.6[/C][C]4977.17868290047[/C][C]35.6579477392916[/C][C]141.473625259413[/C][C]0.706959888811971[/C][/ROW]
[ROW][C]23[/C][C]4982.5[/C][C]5010.7392935753[/C][C]35.6041715259062[/C][C]-27.6687672140116[/C][C]-0.0288908296021169[/C][/ROW]
[ROW][C]24[/C][C]4906.7[/C][C]4987.96292407931[/C][C]34.3058604247361[/C][C]-65.3606274888528[/C][C]-0.804697521279913[/C][/ROW]
[ROW][C]25[/C][C]4506.4[/C][C]4961.71322195241[/C][C]33.3853067030132[/C][C]-438.560375393677[/C][C]-0.853511328269584[/C][/ROW]
[ROW][C]26[/C][C]5010.85[/C][C]4996.05605329253[/C][C]33.4074945068447[/C][C]14.5354447218426[/C][C]0.013157990792286[/C][/ROW]
[ROW][C]27[/C][C]5392.25[/C][C]5095.65299679202[/C][C]35.5000284074965[/C][C]279.586229549443[/C][C]0.875636689230843[/C][/ROW]
[ROW][C]28[/C][C]5049.7[/C][C]5131.95640547171[/C][C]35.5282502377514[/C][C]-82.4605348526308[/C][C]0.0105956446325367[/C][/ROW]
[ROW][C]29[/C][C]5143.9[/C][C]5159.77781413796[/C][C]35.2586101518417[/C][C]-13.8873838849087[/C][C]-0.103248988066347[/C][/ROW]
[ROW][C]30[/C][C]5449.9[/C][C]5135.25106945573[/C][C]33.2623539581764[/C][C]330.355283475282[/C][C]-0.811613821547077[/C][/ROW]
[ROW][C]31[/C][C]4520.4[/C][C]5054.75420162013[/C][C]29.6477037699487[/C][C]-504.188560680772[/C][C]-1.55397283549399[/C][/ROW]
[ROW][C]32[/C][C]4936.95[/C][C]5025.84183563788[/C][C]27.8536128738317[/C][C]-73.3082179496605[/C][C]-0.801367866477991[/C][/ROW]
[ROW][C]33[/C][C]5358.55[/C][C]5089.66108453674[/C][C]28.9279804158116[/C][C]259.311213641784[/C][C]0.492044776168138[/C][/ROW]
[ROW][C]34[/C][C]5289.5[/C][C]5129.30204132836[/C][C]29.2399227122287[/C][C]157.346705222711[/C][C]0.146382096134529[/C][/ROW]
[ROW][C]35[/C][C]5123.55[/C][C]5139.93100633198[/C][C]28.7184440700837[/C][C]-11.43178362672[/C][C]-0.253989881648513[/C][/ROW]
[ROW][C]36[/C][C]4985.65[/C][C]5105.93611609054[/C][C]27.0523979381024[/C][C]-103.59261168481[/C][C]-0.857097438668579[/C][/ROW]
[ROW][C]37[/C][C]4682.65[/C][C]5123.49232432548[/C][C]26.8082328534071[/C][C]-438.304089927826[/C][C]-0.130446299798473[/C][/ROW]
[ROW][C]38[/C][C]5175.55[/C][C]5166.81394837246[/C][C]27.2748299112253[/C][C]4.36109497778494[/C][C]0.224857086443144[/C][/ROW]
[ROW][C]39[/C][C]5374.7[/C][C]5152.96342216845[/C][C]25.9742723647326[/C][C]232.41525608371[/C][C]-0.5509997075466[/C][/ROW]
[ROW][C]40[/C][C]5289[/C][C]5243.56818053735[/C][C]28.1518086433425[/C][C]28.8104941263587[/C][C]0.861570879950104[/C][/ROW]
[ROW][C]41[/C][C]5176.15[/C][C]5225.0607609832[/C][C]26.5558874043454[/C][C]-36.8534497698037[/C][C]-0.625800335394571[/C][/ROW]
[ROW][C]42[/C][C]5604.25[/C][C]5226.22626439881[/C][C]25.6990396572624[/C][C]384.645922910301[/C][C]-0.343266983446581[/C][/ROW]
[ROW][C]43[/C][C]4608.8[/C][C]5182.06037322694[/C][C]23.3974282726274[/C][C]-554.91743913313[/C][C]-0.94908522096392[/C][/ROW]
[ROW][C]44[/C][C]4898.15[/C][C]5106.98042202484[/C][C]20.2319358528147[/C][C]-182.901247343939[/C][C]-1.33971762549716[/C][/ROW]
[ROW][C]45[/C][C]5448.65[/C][C]5136.63015012675[/C][C]20.5279501583861[/C][C]309.539311220035[/C][C]0.128053370941674[/C][/ROW]
[ROW][C]46[/C][C]5373.05[/C][C]5172.88130126212[/C][C]21.0114708131336[/C][C]196.030838201765[/C][C]0.213519988502313[/C][/ROW]
[ROW][C]47[/C][C]5078.6[/C][C]5139.03647398718[/C][C]19.3614814799065[/C][C]-46.0096651593853[/C][C]-0.744487987759007[/C][/ROW]
[ROW][C]48[/C][C]5233.4[/C][C]5221.53856118394[/C][C]21.2281126841939[/C][C]-4.75743082391162[/C][C]0.8579844198216[/C][/ROW]
[ROW][C]49[/C][C]4629.2[/C][C]5182.12634476861[/C][C]19.4317185329167[/C][C]-536.943849350656[/C][C]-0.82527872106759[/C][/ROW]
[ROW][C]50[/C][C]5387.8[/C][C]5262.15518977732[/C][C]21.2915224888261[/C][C]109.73690078956[/C][C]0.821447383679909[/C][/ROW]
[ROW][C]51[/C][C]5736.65[/C][C]5393.67693816189[/C][C]24.8333871983926[/C][C]314.298735334544[/C][C]1.48297238450873[/C][/ROW]
[ROW][C]52[/C][C]5357.9[/C][C]5384.46068613326[/C][C]23.7029578606783[/C][C]-17.7556493006355[/C][C]-0.456447020493485[/C][/ROW]
[ROW][C]53[/C][C]5337.95[/C][C]5376.49455650033[/C][C]22.6378790751657[/C][C]-30.3454650467918[/C][C]-0.425554115941521[/C][/ROW]
[ROW][C]54[/C][C]5795.5[/C][C]5377.10321515472[/C][C]21.8989869655941[/C][C]424.128200983549[/C][C]-0.297388128566282[/C][/ROW]
[ROW][C]55[/C][C]4804.05[/C][C]5359.01038181536[/C][C]20.5728196011502[/C][C]-544.510934195967[/C][C]-0.541648832523196[/C][/ROW]
[ROW][C]56[/C][C]5120.5[/C][C]5344.09504954532[/C][C]19.4131889151706[/C][C]-214.304538341027[/C][C]-0.481108534601641[/C][/ROW]
[ROW][C]57[/C][C]5850.45[/C][C]5430.64154433939[/C][C]21.573935797308[/C][C]402.234593597617[/C][C]0.909511000939382[/C][/ROW]
[ROW][C]58[/C][C]5734.75[/C][C]5489.67163430514[/C][C]22.7624667041117[/C][C]235.28189991689[/C][C]0.506915657992123[/C][/ROW]
[ROW][C]59[/C][C]5539[/C][C]5558.9294832804[/C][C]24.2205822815005[/C][C]-32.0847463362408[/C][C]0.629091929760455[/C][/ROW]
[ROW][C]60[/C][C]5582.85[/C][C]5586.8379005329[/C][C]24.3355455068997[/C][C]-4.95266807151032[/C][C]0.0499452783149404[/C][/ROW]
[ROW][C]61[/C][C]4983.1[/C][C]5595.5064831441[/C][C]23.845042204286[/C][C]-608.304948694428[/C][C]-0.212334366287398[/C][/ROW]
[ROW][C]62[/C][C]5672[/C][C]5613.52633525302[/C][C]23.6597311508145[/C][C]59.9957498783971[/C][C]-0.0787943931946636[/C][/ROW]
[ROW][C]63[/C][C]6185.8[/C][C]5721.81274809102[/C][C]26.4076216718486[/C][C]441.974739840994[/C][C]1.14029051392906[/C][/ROW]
[ROW][C]64[/C][C]5835.6[/C][C]5794.21331288342[/C][C]27.9257155831945[/C][C]29.4645066952696[/C][C]0.618340029501279[/C][/ROW]
[ROW][C]65[/C][C]5930.4[/C][C]5877.47669981111[/C][C]29.7671328116309[/C][C]38.5769153995467[/C][C]0.744696054096892[/C][/ROW]
[ROW][C]66[/C][C]6444.65[/C][C]5952.53459988521[/C][C]31.2744614576027[/C][C]480.342775070277[/C][C]0.611107179430819[/C][/ROW]
[ROW][C]67[/C][C]5171.05[/C][C]5879.36498814827[/C][C]27.8170597914234[/C][C]-681.094594018314[/C][C]-1.41222537641453[/C][/ROW]
[ROW][C]68[/C][C]5739.1[/C][C]5929.02282899088[/C][C]28.534119602044[/C][C]-195.621766928703[/C][C]0.295484979977338[/C][/ROW]
[ROW][C]69[/C][C]6413.9[/C][C]5994.51786906507[/C][C]29.7366443327455[/C][C]409.740148764367[/C][C]0.499740993208057[/C][/ROW]
[ROW][C]70[/C][C]6230.2[/C][C]6027.17023282761[/C][C]29.8307171683803[/C][C]202.269720003306[/C][C]0.0393914468598645[/C][/ROW]
[ROW][C]71[/C][C]6015.45[/C][C]6053.26190286648[/C][C]29.7108248965538[/C][C]-36.8375092255[/C][C]-0.0505101308034141[/C][/ROW]
[ROW][C]72[/C][C]6174.25[/C][C]6120.87733768192[/C][C]30.9234065127002[/C][C]43.4894053423968[/C][C]0.512410382933469[/C][/ROW]
[ROW][C]73[/C][C]5579.25[/C][C]6179.8020917649[/C][C]31.8217600916193[/C][C]-607.856847674067[/C][C]0.378710097848114[/C][/ROW]
[ROW][C]74[/C][C]6133.45[/C][C]6182.97586788349[/C][C]30.8955370477226[/C][C]-42.0594340756007[/C][C]-0.387067516059804[/C][/ROW]
[ROW][C]75[/C][C]6478.7[/C][C]6151.64486931369[/C][C]28.8640418119941[/C][C]343.234578143787[/C][C]-0.839009815645856[/C][/ROW]
[ROW][C]76[/C][C]6184.4[/C][C]6173.59753074821[/C][C]28.6365456857445[/C][C]12.5959035074061[/C][C]-0.0930606307498488[/C][/ROW]
[ROW][C]77[/C][C]6185.65[/C][C]6180.52862164865[/C][C]27.9187994494273[/C][C]10.7530233018967[/C][C]-0.292377910497327[/C][/ROW]
[ROW][C]78[/C][C]6556[/C][C]6130.91704409054[/C][C]25.353489037686[/C][C]445.227630822582[/C][C]-1.04594063454539[/C][/ROW]
[ROW][C]79[/C][C]5123.25[/C][C]6008.16298568034[/C][C]20.4653563848997[/C][C]-846.368954679806[/C][C]-2.00068515906459[/C][/ROW]
[ROW][C]80[/C][C]6028.9[/C][C]6095.88433320041[/C][C]22.6752450509108[/C][C]-84.4996199417693[/C][C]0.908814030182761[/C][/ROW]
[ROW][C]81[/C][C]6499.95[/C][C]6118.91876087863[/C][C]22.6869869508715[/C][C]380.937722168169[/C][C]0.00485123119939441[/C][/ROW]
[ROW][C]82[/C][C]6190.05[/C][C]6081.3402086312[/C][C]20.7260745833892[/C][C]124.391474998742[/C][C]-0.81350391519915[/C][/ROW]
[ROW][C]83[/C][C]6027.95[/C][C]6087.08826734081[/C][C]20.2403165690449[/C][C]-55.2415476016982[/C][C]-0.202176851433042[/C][/ROW]
[ROW][C]84[/C][C]6034[/C][C]6059.07107188768[/C][C]18.6768744940632[/C][C]-12.5113060971519[/C][C]-0.651716823831069[/C][/ROW]
[ROW][C]85[/C][C]5128.75[/C][C]5918.61360766335[/C][C]13.5129158743089[/C][C]-748.430815024556[/C][C]-2.14982704550497[/C][/ROW]
[ROW][C]86[/C][C]6087.7[/C][C]5974.20783547478[/C][C]14.8837220962896[/C][C]102.540674697059[/C][C]0.568205583929241[/C][/ROW]
[ROW][C]87[/C][C]6628.15[/C][C]6110.59739822374[/C][C]18.8607003452819[/C][C]485.971919694685[/C][C]1.6387495663306[/C][/ROW]
[ROW][C]88[/C][C]6075.3[/C][C]6105.28261054334[/C][C]18.0661259850707[/C][C]-23.7064560203527[/C][C]-0.325787085027542[/C][/ROW]
[ROW][C]89[/C][C]6352.1[/C][C]6182.33814480143[/C][C]20.0097491675778[/C][C]154.450074769257[/C][C]0.795068344192888[/C][/ROW]
[ROW][C]90[/C][C]6824[/C][C]6256.82846212351[/C][C]21.8057104341452[/C][C]553.018895708157[/C][C]0.734939914544495[/C][/ROW]
[ROW][C]91[/C][C]5412.35[/C][C]6290.90485597854[/C][C]22.2097268784133[/C][C]-881.745491905515[/C][C]0.165662588519077[/C][/ROW]
[ROW][C]92[/C][C]6171.25[/C][C]6285.02438437842[/C][C]21.2870021138963[/C][C]-106.467323505998[/C][C]-0.379307921417517[/C][/ROW]
[ROW][C]93[/C][C]6521.35[/C][C]6216.76810512492[/C][C]18.3537763895387[/C][C]327.869675258532[/C][C]-1.20870859121814[/C][/ROW]
[ROW][C]94[/C][C]6457.6[/C][C]6250.7865129972[/C][C]18.8656044687186[/C][C]202.741225193753[/C][C]0.211368600868119[/C][/ROW]
[ROW][C]95[/C][C]5930.95[/C][C]6134.12984919344[/C][C]14.4452500910732[/C][C]-167.953048706271[/C][C]-1.82862646426915[/C][/ROW]
[ROW][C]96[/C][C]5842.7[/C][C]5980.59485274942[/C][C]8.96900307324064[/C][C]-94.2192149030463[/C][C]-2.26735423551427[/C][/ROW]
[ROW][C]97[/C][C]5120.1[/C][C]5934.45700514239[/C][C]7.17095824460835[/C][C]-800.025013810893[/C][C]-0.743998711010963[/C][/ROW]
[ROW][C]98[/C][C]5719.95[/C][C]5827.25457165078[/C][C]3.43191953875712[/C][C]-77.5650073427647[/C][C]-1.54375395066368[/C][/ROW]
[ROW][C]99[/C][C]5946.7[/C][C]5663.39144221227[/C][C]-2.05025966704481[/C][C]326.777851578277[/C][C]-2.25658766082137[/C][/ROW]
[ROW][C]100[/C][C]5921.1[/C][C]5770.95372647566[/C][C]1.5492870381445[/C][C]121.684498150506[/C][C]1.47779151535427[/C][/ROW]
[ROW][C]101[/C][C]6072[/C][C]5860.15286618943[/C][C]4.43140024004539[/C][C]189.091012484736[/C][C]1.18176808181122[/C][/ROW]
[ROW][C]102[/C][C]6489.4[/C][C]5904.67464364519[/C][C]5.75008373262706[/C][C]574.312253169443[/C][C]0.540805231447318[/C][/ROW]
[ROW][C]103[/C][C]5291.15[/C][C]6009.52621946732[/C][C]9.00791493963924[/C][C]-744.131448956628[/C][C]1.33748792119776[/C][/ROW]
[ROW][C]104[/C][C]5986.45[/C][C]6039.92534789169[/C][C]9.71027308825155[/C][C]-59.0359965313762[/C][C]0.288729973976873[/C][/ROW]
[ROW][C]105[/C][C]6538.15[/C][C]6104.87402175188[/C][C]11.5212915331973[/C][C]418.919019126486[/C][C]0.745412707128981[/C][/ROW]
[ROW][C]106[/C][C]6442.8[/C][C]6128.91896098562[/C][C]11.931323775743[/C][C]310.626951150417[/C][C]0.168956274553281[/C][/ROW]
[ROW][C]107[/C][C]6169.55[/C][C]6177.8038655533[/C][C]13.1400824866482[/C][C]-17.8549108542079[/C][C]0.498535186775535[/C][/ROW]
[ROW][C]108[/C][C]5793[/C][C]6046.31474133662[/C][C]8.41051116166779[/C][C]-215.731316334229[/C][C]-1.95160446629767[/C][/ROW]
[ROW][C]109[/C][C]5254.85[/C][C]5998.98458997513[/C][C]6.58692177514453[/C][C]-729.646960066408[/C][C]-0.752285238733726[/C][/ROW]
[ROW][C]110[/C][C]6050.75[/C][C]6024.32458094[/C][C]7.20104122337801[/C][C]21.551732969052[/C][C]0.253061543508853[/C][/ROW]
[ROW][C]111[/C][C]6606.15[/C][C]6169.5607892223[/C][C]11.7268277300835[/C][C]400.729989820054[/C][C]1.86200356094449[/C][/ROW]
[ROW][C]112[/C][C]6221.15[/C][C]6193.59355465253[/C][C]12.1307411077226[/C][C]24.360868824394[/C][C]0.165948756626943[/C][/ROW]
[ROW][C]113[/C][C]6293.4[/C][C]6183.70010376059[/C][C]11.407348322989[/C][C]115.418561656757[/C][C]-0.297008456779136[/C][/ROW]
[ROW][C]114[/C][C]6908.4[/C][C]6273.82927536008[/C][C]13.9934910423859[/C][C]614.125162772492[/C][C]1.06191940626449[/C][/ROW]
[ROW][C]115[/C][C]5498.95[/C][C]6290.48756013783[/C][C]14.0810094219004[/C][C]-792.229890193662[/C][C]0.0359572071852341[/C][/ROW]
[ROW][C]116[/C][C]6145.35[/C][C]6276.01869371617[/C][C]13.1439439159764[/C][C]-123.250207435996[/C][C]-0.385259925697308[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298872&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298872&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Structural Time Series Model -- Interpolation
tObservedLevelSlopeSeasonalStand. Residuals
13567.23567.2000
23968.253784.2108058991610.2070457326035130.5062136730372.486513447588
34285.354078.8026089325428.8697024229072149.381818243223.03142580833615
44130.954142.7579572820530.6524448421101-20.80915575448550.447914877415807
54219.44186.0051412038631.096578399392529.78762595181220.172847821672345
64626.24384.2532931622935.5729501916405192.525582789612.33675732873259
73860.754192.2333229935630.1848866133188-263.706313380256-3.19203926703
84174.154145.3548248748328.397467525861751.7491398707761-1.08018937301596
94668.654362.9143206368832.8721273266276249.4842744089142.64763890686431
104630.054519.8736550582735.889589414302473.34555690730681.7342565521071
114553.74563.2981891066336.0775333255435-11.83085826244170.105170596110079
124603.854587.8045216632235.782547642110619.4689739418903-0.161317054319937
134310.74626.3412131136935.713496519561-316.4877926816010.0429746025753475
144831.34752.6694569102637.134213296625653.40175327276171.25463545703017
155145.34909.0549755015741.4523233827313207.0079634227241.50876422673784
164886.654961.5206818801941.8841885294867-77.61315138701490.14266194772049
174934.054983.0394668187541.1613404455843-43.6668189350131-0.274045211922683
185304.75005.2440945086940.5713344040121304.550879256911-0.260015777492683
194419.454884.0859935606435.9923062885746-420.705290979537-2.23214032528882
204804.854863.6122023252734.4611500206424-43.3810585185298-0.780222840508198
2151054891.648943570334.2885376783661215.10106809785-0.0887293004632847
225132.64977.1786829004735.6579477392916141.4736252594130.706959888811971
234982.55010.739293575335.6041715259062-27.6687672140116-0.0288908296021169
244906.74987.9629240793134.3058604247361-65.3606274888528-0.804697521279913
254506.44961.7132219524133.3853067030132-438.560375393677-0.853511328269584
265010.854996.0560532925333.407494506844714.53544472184260.013157990792286
275392.255095.6529967920235.5000284074965279.5862295494430.875636689230843
285049.75131.9564054717135.5282502377514-82.46053485263080.0105956446325367
295143.95159.7778141379635.2586101518417-13.8873838849087-0.103248988066347
305449.95135.2510694557333.2623539581764330.355283475282-0.811613821547077
314520.45054.7542016201329.6477037699487-504.188560680772-1.55397283549399
324936.955025.8418356378827.8536128738317-73.3082179496605-0.801367866477991
335358.555089.6610845367428.9279804158116259.3112136417840.492044776168138
345289.55129.3020413283629.2399227122287157.3467052227110.146382096134529
355123.555139.9310063319828.7184440700837-11.43178362672-0.253989881648513
364985.655105.9361160905427.0523979381024-103.59261168481-0.857097438668579
374682.655123.4923243254826.8082328534071-438.304089927826-0.130446299798473
385175.555166.8139483724627.27482991122534.361094977784940.224857086443144
395374.75152.9634221684525.9742723647326232.41525608371-0.5509997075466
4052895243.5681805373528.151808643342528.81049412635870.861570879950104
415176.155225.060760983226.5558874043454-36.8534497698037-0.625800335394571
425604.255226.2262643988125.6990396572624384.645922910301-0.343266983446581
434608.85182.0603732269423.3974282726274-554.91743913313-0.94908522096392
444898.155106.9804220248420.2319358528147-182.901247343939-1.33971762549716
455448.655136.6301501267520.5279501583861309.5393112200350.128053370941674
465373.055172.8813012621221.0114708131336196.0308382017650.213519988502313
475078.65139.0364739871819.3614814799065-46.0096651593853-0.744487987759007
485233.45221.5385611839421.2281126841939-4.757430823911620.8579844198216
494629.25182.1263447686119.4317185329167-536.943849350656-0.82527872106759
505387.85262.1551897773221.2915224888261109.736900789560.821447383679909
515736.655393.6769381618924.8333871983926314.2987353345441.48297238450873
525357.95384.4606861332623.7029578606783-17.7556493006355-0.456447020493485
535337.955376.4945565003322.6378790751657-30.3454650467918-0.425554115941521
545795.55377.1032151547221.8989869655941424.128200983549-0.297388128566282
554804.055359.0103818153620.5728196011502-544.510934195967-0.541648832523196
565120.55344.0950495453219.4131889151706-214.304538341027-0.481108534601641
575850.455430.6415443393921.573935797308402.2345935976170.909511000939382
585734.755489.6716343051422.7624667041117235.281899916890.506915657992123
5955395558.929483280424.2205822815005-32.08474633624080.629091929760455
605582.855586.837900532924.3355455068997-4.952668071510320.0499452783149404
614983.15595.506483144123.845042204286-608.304948694428-0.212334366287398
6256725613.5263352530223.659731150814559.9957498783971-0.0787943931946636
636185.85721.8127480910226.4076216718486441.9747398409941.14029051392906
645835.65794.2133128834227.925715583194529.46450669526960.618340029501279
655930.45877.4766998111129.767132811630938.57691539954670.744696054096892
666444.655952.5345998852131.2744614576027480.3427750702770.611107179430819
675171.055879.3649881482727.8170597914234-681.094594018314-1.41222537641453
685739.15929.0228289908828.534119602044-195.6217669287030.295484979977338
696413.95994.5178690650729.7366443327455409.7401487643670.499740993208057
706230.26027.1702328276129.8307171683803202.2697200033060.0393914468598645
716015.456053.2619028664829.7108248965538-36.8375092255-0.0505101308034141
726174.256120.8773376819230.923406512700243.48940534239680.512410382933469
735579.256179.802091764931.8217600916193-607.8568476740670.378710097848114
746133.456182.9758678834930.8955370477226-42.0594340756007-0.387067516059804
756478.76151.6448693136928.8640418119941343.234578143787-0.839009815645856
766184.46173.5975307482128.636545685744512.5959035074061-0.0930606307498488
776185.656180.5286216486527.918799449427310.7530233018967-0.292377910497327
7865566130.9170440905425.353489037686445.227630822582-1.04594063454539
795123.256008.1629856803420.4653563848997-846.368954679806-2.00068515906459
806028.96095.8843332004122.6752450509108-84.49961994176930.908814030182761
816499.956118.9187608786322.6869869508715380.9377221681690.00485123119939441
826190.056081.340208631220.7260745833892124.391474998742-0.81350391519915
836027.956087.0882673408120.2403165690449-55.2415476016982-0.202176851433042
8460346059.0710718876818.6768744940632-12.5113060971519-0.651716823831069
855128.755918.6136076633513.5129158743089-748.430815024556-2.14982704550497
866087.75974.2078354747814.8837220962896102.5406746970590.568205583929241
876628.156110.5973982237418.8607003452819485.9719196946851.6387495663306
886075.36105.2826105433418.0661259850707-23.7064560203527-0.325787085027542
896352.16182.3381448014320.0097491675778154.4500747692570.795068344192888
9068246256.8284621235121.8057104341452553.0188957081570.734939914544495
915412.356290.9048559785422.2097268784133-881.7454919055150.165662588519077
926171.256285.0243843784221.2870021138963-106.467323505998-0.379307921417517
936521.356216.7681051249218.3537763895387327.869675258532-1.20870859121814
946457.66250.786512997218.8656044687186202.7412251937530.211368600868119
955930.956134.1298491934414.4452500910732-167.953048706271-1.82862646426915
965842.75980.594852749428.96900307324064-94.2192149030463-2.26735423551427
975120.15934.457005142397.17095824460835-800.025013810893-0.743998711010963
985719.955827.254571650783.43191953875712-77.5650073427647-1.54375395066368
995946.75663.39144221227-2.05025966704481326.777851578277-2.25658766082137
1005921.15770.953726475661.5492870381445121.6844981505061.47779151535427
10160725860.152866189434.43140024004539189.0910124847361.18176808181122
1026489.45904.674643645195.75008373262706574.3122531694430.540805231447318
1035291.156009.526219467329.00791493963924-744.1314489566281.33748792119776
1045986.456039.925347891699.71027308825155-59.03599653137620.288729973976873
1056538.156104.8740217518811.5212915331973418.9190191264860.745412707128981
1066442.86128.9189609856211.931323775743310.6269511504170.168956274553281
1076169.556177.803865553313.1400824866482-17.85491085420790.498535186775535
10857936046.314741336628.41051116166779-215.731316334229-1.95160446629767
1095254.855998.984589975136.58692177514453-729.646960066408-0.752285238733726
1106050.756024.324580947.2010412233780121.5517329690520.253061543508853
1116606.156169.560789222311.7268277300835400.7299898200541.86200356094449
1126221.156193.5935546525312.130741107722624.3608688243940.165948756626943
1136293.46183.7001037605911.407348322989115.418561656757-0.297008456779136
1146908.46273.8292753600813.9934910423859614.1251627724921.06191940626449
1155498.956290.4875601378314.0810094219004-792.2298901936620.0359572071852341
1166145.356276.0186937161713.1439439159764-123.250207435996-0.385259925697308







Structural Time Series Model -- Extrapolation
tObservedLevelSeasonal
16715.336524840486298.27345708844417.06306775204
26628.987137673256314.35693601119314.630201662065
36403.154610889766330.4404149339372.7141959558313
46127.711034801146346.52389385667-218.812859055537
55596.511536797576362.60737277942-766.095835981853
66330.971284456176378.69085170216-47.7195672459937
76812.15513539126394.77433062491417.38080476629
86436.559840890626410.8578095476525.7020313429673
96500.493315950216426.941288470473.5520274798164
107073.996805328476443.02476739314630.972037935329
115676.562119870636459.10824631589-782.54612644526
126338.351747072946475.19172523863-136.839978165695
136908.338271913426491.27520416138417.06306775204
146821.988884746196507.35868308412314.630201662065
156596.15635796276523.4421620068772.7141959558312
166320.712781874076539.52564092961-218.812859055537
175789.51328387056555.60911985236-766.095835981853
186523.973031529116571.6925987751-47.7195672459937

\begin{tabular}{lllllllll}
\hline
Structural Time Series Model -- Extrapolation \tabularnewline
t & Observed & Level & Seasonal \tabularnewline
1 & 6715.33652484048 & 6298.27345708844 & 417.06306775204 \tabularnewline
2 & 6628.98713767325 & 6314.35693601119 & 314.630201662065 \tabularnewline
3 & 6403.15461088976 & 6330.44041493393 & 72.7141959558313 \tabularnewline
4 & 6127.71103480114 & 6346.52389385667 & -218.812859055537 \tabularnewline
5 & 5596.51153679757 & 6362.60737277942 & -766.095835981853 \tabularnewline
6 & 6330.97128445617 & 6378.69085170216 & -47.7195672459937 \tabularnewline
7 & 6812.1551353912 & 6394.77433062491 & 417.38080476629 \tabularnewline
8 & 6436.55984089062 & 6410.85780954765 & 25.7020313429673 \tabularnewline
9 & 6500.49331595021 & 6426.9412884704 & 73.5520274798164 \tabularnewline
10 & 7073.99680532847 & 6443.02476739314 & 630.972037935329 \tabularnewline
11 & 5676.56211987063 & 6459.10824631589 & -782.54612644526 \tabularnewline
12 & 6338.35174707294 & 6475.19172523863 & -136.839978165695 \tabularnewline
13 & 6908.33827191342 & 6491.27520416138 & 417.06306775204 \tabularnewline
14 & 6821.98888474619 & 6507.35868308412 & 314.630201662065 \tabularnewline
15 & 6596.1563579627 & 6523.44216200687 & 72.7141959558312 \tabularnewline
16 & 6320.71278187407 & 6539.52564092961 & -218.812859055537 \tabularnewline
17 & 5789.5132838705 & 6555.60911985236 & -766.095835981853 \tabularnewline
18 & 6523.97303152911 & 6571.6925987751 & -47.7195672459937 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298872&T=2

[TABLE]
[ROW][C]Structural Time Series Model -- Extrapolation[/C][/ROW]
[ROW][C]t[/C][C]Observed[/C][C]Level[/C][C]Seasonal[/C][/ROW]
[ROW][C]1[/C][C]6715.33652484048[/C][C]6298.27345708844[/C][C]417.06306775204[/C][/ROW]
[ROW][C]2[/C][C]6628.98713767325[/C][C]6314.35693601119[/C][C]314.630201662065[/C][/ROW]
[ROW][C]3[/C][C]6403.15461088976[/C][C]6330.44041493393[/C][C]72.7141959558313[/C][/ROW]
[ROW][C]4[/C][C]6127.71103480114[/C][C]6346.52389385667[/C][C]-218.812859055537[/C][/ROW]
[ROW][C]5[/C][C]5596.51153679757[/C][C]6362.60737277942[/C][C]-766.095835981853[/C][/ROW]
[ROW][C]6[/C][C]6330.97128445617[/C][C]6378.69085170216[/C][C]-47.7195672459937[/C][/ROW]
[ROW][C]7[/C][C]6812.1551353912[/C][C]6394.77433062491[/C][C]417.38080476629[/C][/ROW]
[ROW][C]8[/C][C]6436.55984089062[/C][C]6410.85780954765[/C][C]25.7020313429673[/C][/ROW]
[ROW][C]9[/C][C]6500.49331595021[/C][C]6426.9412884704[/C][C]73.5520274798164[/C][/ROW]
[ROW][C]10[/C][C]7073.99680532847[/C][C]6443.02476739314[/C][C]630.972037935329[/C][/ROW]
[ROW][C]11[/C][C]5676.56211987063[/C][C]6459.10824631589[/C][C]-782.54612644526[/C][/ROW]
[ROW][C]12[/C][C]6338.35174707294[/C][C]6475.19172523863[/C][C]-136.839978165695[/C][/ROW]
[ROW][C]13[/C][C]6908.33827191342[/C][C]6491.27520416138[/C][C]417.06306775204[/C][/ROW]
[ROW][C]14[/C][C]6821.98888474619[/C][C]6507.35868308412[/C][C]314.630201662065[/C][/ROW]
[ROW][C]15[/C][C]6596.1563579627[/C][C]6523.44216200687[/C][C]72.7141959558312[/C][/ROW]
[ROW][C]16[/C][C]6320.71278187407[/C][C]6539.52564092961[/C][C]-218.812859055537[/C][/ROW]
[ROW][C]17[/C][C]5789.5132838705[/C][C]6555.60911985236[/C][C]-766.095835981853[/C][/ROW]
[ROW][C]18[/C][C]6523.97303152911[/C][C]6571.6925987751[/C][C]-47.7195672459937[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298872&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298872&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Structural Time Series Model -- Extrapolation
tObservedLevelSeasonal
16715.336524840486298.27345708844417.06306775204
26628.987137673256314.35693601119314.630201662065
36403.154610889766330.4404149339372.7141959558313
46127.711034801146346.52389385667-218.812859055537
55596.511536797576362.60737277942-766.095835981853
66330.971284456176378.69085170216-47.7195672459937
76812.15513539126394.77433062491417.38080476629
86436.559840890626410.8578095476525.7020313429673
96500.493315950216426.941288470473.5520274798164
107073.996805328476443.02476739314630.972037935329
115676.562119870636459.10824631589-782.54612644526
126338.351747072946475.19172523863-136.839978165695
136908.338271913426491.27520416138417.06306775204
146821.988884746196507.35868308412314.630201662065
156596.15635796276523.4421620068772.7141959558312
166320.712781874076539.52564092961-218.812859055537
175789.51328387056555.60911985236-766.095835981853
186523.973031529116571.6925987751-47.7195672459937



Parameters (Session):
par1 = 12 ; par2 = 18 ; par3 = BFGS ;
Parameters (R input):
par1 = 12 ; par2 = 18 ; par3 = BFGS ;
R code (references can be found in the software module):
require('stsm')
require('stsm.class')
require('KFKSDS')
par1 <- as.numeric(par1)
par2 <- as.numeric(par2)
nx <- length(x)
x <- ts(x,frequency=par1)
m <- StructTS(x,type='BSM')
print(m$coef)
print(m$fitted)
print(m$resid)
mylevel <- as.numeric(m$fitted[,'level'])
myslope <- as.numeric(m$fitted[,'slope'])
myseas <- as.numeric(m$fitted[,'sea'])
myresid <- as.numeric(m$resid)
myfit <- mylevel+myseas
mm <- stsm.model(model = 'BSM', y = x, transPars = 'StructTS')
fit2 <- stsmFit(mm, stsm.method = 'maxlik.td.optim', method = par3, KF.args = list(P0cov = TRUE))
(fit2.comps <- tsSmooth(fit2, P0cov = FALSE)$states)
m2 <- set.pars(mm, pmax(fit2$par, .Machine$double.eps))
(ss <- char2numeric(m2))
(pred <- predict(ss, x, n.ahead = par2))
mylagmax <- nx/2
bitmap(file='test2.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(x),lag.max = mylagmax,main='Observed')
acf(mylevel,na.action=na.pass,lag.max = mylagmax,main='Level')
acf(myseas,na.action=na.pass,lag.max = mylagmax,main='Seasonal')
acf(myresid,na.action=na.pass,lag.max = mylagmax,main='Standardized Residals')
par(op)
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
spectrum(as.numeric(x),main='Observed')
spectrum(mylevel,main='Level')
spectrum(myseas,main='Seasonal')
spectrum(myresid,main='Standardized Residals')
par(op)
dev.off()
bitmap(file='test4.png')
op <- par(mfrow = c(2,2))
cpgram(as.numeric(x),main='Observed')
cpgram(mylevel,main='Level')
cpgram(myseas,main='Seasonal')
cpgram(myresid,main='Standardized Residals')
par(op)
dev.off()
bitmap(file='test1.png')
plot(as.numeric(m$resid),main='Standardized Residuals',ylab='Residuals',xlab='time',type='b')
grid()
dev.off()
bitmap(file='test5.png')
op <- par(mfrow = c(2,2))
hist(m$resid,main='Residual Histogram')
plot(density(m$resid),main='Residual Kernel Density')
qqnorm(m$resid,main='Residual Normal QQ Plot')
qqline(m$resid)
plot(m$resid^2, myfit^2,main='Sq.Resid vs. Sq.Fit',xlab='Squared residuals',ylab='Squared Fit')
par(op)
dev.off()
bitmap(file='test6.png')
par(mfrow = c(3,1), mar = c(3,3,3,3))
plot(cbind(x, pred$pred), type = 'n', plot.type = 'single', ylab = '')
lines(x)
polygon(c(time(pred$pred), rev(time(pred$pred))), c(pred$pred + 2 * pred$se, rev(pred$pred)), col = 'gray85', border = NA)
polygon(c(time(pred$pred), rev(time(pred$pred))), c(pred$pred - 2 * pred$se, rev(pred$pred)), col = ' gray85', border = NA)
lines(pred$pred, col = 'blue', lwd = 1.5)
mtext(text = 'forecasts of the observed series', side = 3, adj = 0)
plot(cbind(x, pred$a[,1]), type = 'n', plot.type = 'single', ylab = '')
lines(x)
polygon(c(time(pred$a[,1]), rev(time(pred$a[,1]))), c(pred$a[,1] + 2 * sqrt(pred$P[,1]), rev(pred$a[,1])), col = 'gray85', border = NA)
polygon(c(time(pred$a[,1]), rev(time(pred$a[,1]))), c(pred$a[,1] - 2 * sqrt(pred$P[,1]), rev(pred$a[,1])), col = ' gray85', border = NA)
lines(pred$a[,1], col = 'blue', lwd = 1.5)
mtext(text = 'forecasts of the level component', side = 3, adj = 0)
plot(cbind(fit2.comps[,3], pred$a[,3]), type = 'n', plot.type = 'single', ylab = '')
lines(fit2.comps[,3])
polygon(c(time(pred$a[,3]), rev(time(pred$a[,3]))), c(pred$a[,3] + 2 * sqrt(pred$P[,3]), rev(pred$a[,3])), col = 'gray85', border = NA)
polygon(c(time(pred$a[,3]), rev(time(pred$a[,3]))), c(pred$a[,3] - 2 * sqrt(pred$P[,3]), rev(pred$a[,3])), col = ' gray85', border = NA)
lines(pred$a[,3], col = 'blue', lwd = 1.5)
mtext(text = 'forecasts of the seasonal component', side = 3, adj = 0)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Structural Time Series Model -- Interpolation',6,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observed',header=TRUE)
a<-table.element(a,'Level',header=TRUE)
a<-table.element(a,'Slope',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,'Stand. Residuals',header=TRUE)
a<-table.row.end(a)
for (i in 1:nx) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
a<-table.element(a,mylevel[i])
a<-table.element(a,myslope[i])
a<-table.element(a,myseas[i])
a<-table.element(a,myresid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Structural Time Series Model -- Extrapolation',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observed',header=TRUE)
a<-table.element(a,'Level',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.row.end(a)
for (i in 1:par2) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,pred$pred[i])
a<-table.element(a,pred$a[i,1])
a<-table.element(a,pred$a[i,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')