Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_autocorrelation.wasp
Title produced by software(Partial) Autocorrelation Function
Date of computationSun, 11 Dec 2016 17:49:55 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/11/t1481475021kbsrsw85y4hrdni.htm/, Retrieved Fri, 01 Nov 2024 03:29:54 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=298830, Retrieved Fri, 01 Nov 2024 03:29:54 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact71
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [(Partial) Autocorrelation Function] [Autocorrelation F...] [2016-12-11 16:49:55] [10299735033611e1e2dae6371997f8c9] [Current]
Feedback Forum

Post a new message
Dataseries X:
3567.2
3968.25
4285.35
4130.95
4219.4
4626.2
3860.75
4174.15
4668.65
4630.05
4553.7
4603.85
4310.7
4831.3
5145.3
4886.65
4934.05
5304.7
4419.45
4804.85
5105
5132.6
4982.5
4906.7
4506.4
5010.85
5392.25
5049.7
5143.9
5449.9
4520.4
4936.95
5358.55
5289.5
5123.55
4985.65
4682.65
5175.55
5374.7
5289
5176.15
5604.25
4608.8
4898.15
5448.65
5373.05
5078.6
5233.4
4629.2
5387.8
5736.65
5357.9
5337.95
5795.5
4804.05
5120.5
5850.45
5734.75
5539
5582.85
4983.1
5672
6185.8
5835.6
5930.4
6444.65
5171.05
5739.1
6413.9
6230.2
6015.45
6174.25
5579.25
6133.45
6478.7
6184.4
6185.65
6556
5123.25
6028.9
6499.95
6190.05
6027.95
6034
5128.75
6087.7
6628.15
6075.3
6352.1
6824
5412.35
6171.25
6521.35
6457.6
5930.95
5842.7
5120.1
5719.95
5946.7
5921.1
6072
6489.4
5291.15
5986.45
6538.15
6442.8
6169.55
5793
5254.85
6050.75
6606.15
6221.15
6293.4
6908.4
5498.95
6145.35




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time2 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298830&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]2 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=298830&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298830&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center







Autocorrelation Function
Time lag kACF(k)T-STATP-value
1-0.170699-1.78210.038755
2-0.513382-5.35990
30.0272330.28430.388353
40.4759664.96921e-06
50.1179251.23120.110455
6-0.821824-8.58010
70.1145231.19570.117214
80.4593074.79533e-06
9-0.00966-0.10090.459926
10-0.440169-4.59556e-06
11-0.09983-1.04230.1498
120.679237.09140
13-0.069057-0.7210.236232
14-0.436595-4.55827e-06
150.0175010.18270.427679
160.4146344.32891.7e-05
170.1011081.05560.146742
18-0.642443-6.70730
190.0675950.70570.240935
200.4517134.7164e-06

\begin{tabular}{lllllllll}
\hline
Autocorrelation Function \tabularnewline
Time lag k & ACF(k) & T-STAT & P-value \tabularnewline
1 & -0.170699 & -1.7821 & 0.038755 \tabularnewline
2 & -0.513382 & -5.3599 & 0 \tabularnewline
3 & 0.027233 & 0.2843 & 0.388353 \tabularnewline
4 & 0.475966 & 4.9692 & 1e-06 \tabularnewline
5 & 0.117925 & 1.2312 & 0.110455 \tabularnewline
6 & -0.821824 & -8.5801 & 0 \tabularnewline
7 & 0.114523 & 1.1957 & 0.117214 \tabularnewline
8 & 0.459307 & 4.7953 & 3e-06 \tabularnewline
9 & -0.00966 & -0.1009 & 0.459926 \tabularnewline
10 & -0.440169 & -4.5955 & 6e-06 \tabularnewline
11 & -0.09983 & -1.0423 & 0.1498 \tabularnewline
12 & 0.67923 & 7.0914 & 0 \tabularnewline
13 & -0.069057 & -0.721 & 0.236232 \tabularnewline
14 & -0.436595 & -4.5582 & 7e-06 \tabularnewline
15 & 0.017501 & 0.1827 & 0.427679 \tabularnewline
16 & 0.414634 & 4.3289 & 1.7e-05 \tabularnewline
17 & 0.101108 & 1.0556 & 0.146742 \tabularnewline
18 & -0.642443 & -6.7073 & 0 \tabularnewline
19 & 0.067595 & 0.7057 & 0.240935 \tabularnewline
20 & 0.451713 & 4.716 & 4e-06 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298830&T=1

[TABLE]
[ROW][C]Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]ACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]-0.170699[/C][C]-1.7821[/C][C]0.038755[/C][/ROW]
[ROW][C]2[/C][C]-0.513382[/C][C]-5.3599[/C][C]0[/C][/ROW]
[ROW][C]3[/C][C]0.027233[/C][C]0.2843[/C][C]0.388353[/C][/ROW]
[ROW][C]4[/C][C]0.475966[/C][C]4.9692[/C][C]1e-06[/C][/ROW]
[ROW][C]5[/C][C]0.117925[/C][C]1.2312[/C][C]0.110455[/C][/ROW]
[ROW][C]6[/C][C]-0.821824[/C][C]-8.5801[/C][C]0[/C][/ROW]
[ROW][C]7[/C][C]0.114523[/C][C]1.1957[/C][C]0.117214[/C][/ROW]
[ROW][C]8[/C][C]0.459307[/C][C]4.7953[/C][C]3e-06[/C][/ROW]
[ROW][C]9[/C][C]-0.00966[/C][C]-0.1009[/C][C]0.459926[/C][/ROW]
[ROW][C]10[/C][C]-0.440169[/C][C]-4.5955[/C][C]6e-06[/C][/ROW]
[ROW][C]11[/C][C]-0.09983[/C][C]-1.0423[/C][C]0.1498[/C][/ROW]
[ROW][C]12[/C][C]0.67923[/C][C]7.0914[/C][C]0[/C][/ROW]
[ROW][C]13[/C][C]-0.069057[/C][C]-0.721[/C][C]0.236232[/C][/ROW]
[ROW][C]14[/C][C]-0.436595[/C][C]-4.5582[/C][C]7e-06[/C][/ROW]
[ROW][C]15[/C][C]0.017501[/C][C]0.1827[/C][C]0.427679[/C][/ROW]
[ROW][C]16[/C][C]0.414634[/C][C]4.3289[/C][C]1.7e-05[/C][/ROW]
[ROW][C]17[/C][C]0.101108[/C][C]1.0556[/C][C]0.146742[/C][/ROW]
[ROW][C]18[/C][C]-0.642443[/C][C]-6.7073[/C][C]0[/C][/ROW]
[ROW][C]19[/C][C]0.067595[/C][C]0.7057[/C][C]0.240935[/C][/ROW]
[ROW][C]20[/C][C]0.451713[/C][C]4.716[/C][C]4e-06[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298830&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298830&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Autocorrelation Function
Time lag kACF(k)T-STATP-value
1-0.170699-1.78210.038755
2-0.513382-5.35990
30.0272330.28430.388353
40.4759664.96921e-06
50.1179251.23120.110455
6-0.821824-8.58010
70.1145231.19570.117214
80.4593074.79533e-06
9-0.00966-0.10090.459926
10-0.440169-4.59556e-06
11-0.09983-1.04230.1498
120.679237.09140
13-0.069057-0.7210.236232
14-0.436595-4.55827e-06
150.0175010.18270.427679
160.4146344.32891.7e-05
170.1011081.05560.146742
18-0.642443-6.70730
190.0675950.70570.240935
200.4517134.7164e-06







Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
1-0.170699-1.78210.038755
2-0.558803-5.83410
3-0.306661-3.20160.000896
40.1764931.84260.034049
50.387444.0454.9e-05
6-0.654867-6.8370
7-0.237473-2.47930.007348
8-0.294836-3.07820.001317
9-0.034532-0.36050.359575
10-0.039764-0.41520.339423
11-0.028524-0.29780.38321
12-0.053715-0.56080.288041
13-0.034577-0.3610.3594
14-0.131334-1.37120.086569
15-0.012715-0.13280.447318
160.012620.13180.447709
170.1434231.49740.068593
18-0.204493-2.1350.017502
19-0.049882-0.52080.301786
20-0.00338-0.03530.485959

\begin{tabular}{lllllllll}
\hline
Partial Autocorrelation Function \tabularnewline
Time lag k & PACF(k) & T-STAT & P-value \tabularnewline
1 & -0.170699 & -1.7821 & 0.038755 \tabularnewline
2 & -0.558803 & -5.8341 & 0 \tabularnewline
3 & -0.306661 & -3.2016 & 0.000896 \tabularnewline
4 & 0.176493 & 1.8426 & 0.034049 \tabularnewline
5 & 0.38744 & 4.045 & 4.9e-05 \tabularnewline
6 & -0.654867 & -6.837 & 0 \tabularnewline
7 & -0.237473 & -2.4793 & 0.007348 \tabularnewline
8 & -0.294836 & -3.0782 & 0.001317 \tabularnewline
9 & -0.034532 & -0.3605 & 0.359575 \tabularnewline
10 & -0.039764 & -0.4152 & 0.339423 \tabularnewline
11 & -0.028524 & -0.2978 & 0.38321 \tabularnewline
12 & -0.053715 & -0.5608 & 0.288041 \tabularnewline
13 & -0.034577 & -0.361 & 0.3594 \tabularnewline
14 & -0.131334 & -1.3712 & 0.086569 \tabularnewline
15 & -0.012715 & -0.1328 & 0.447318 \tabularnewline
16 & 0.01262 & 0.1318 & 0.447709 \tabularnewline
17 & 0.143423 & 1.4974 & 0.068593 \tabularnewline
18 & -0.204493 & -2.135 & 0.017502 \tabularnewline
19 & -0.049882 & -0.5208 & 0.301786 \tabularnewline
20 & -0.00338 & -0.0353 & 0.485959 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298830&T=2

[TABLE]
[ROW][C]Partial Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]PACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]-0.170699[/C][C]-1.7821[/C][C]0.038755[/C][/ROW]
[ROW][C]2[/C][C]-0.558803[/C][C]-5.8341[/C][C]0[/C][/ROW]
[ROW][C]3[/C][C]-0.306661[/C][C]-3.2016[/C][C]0.000896[/C][/ROW]
[ROW][C]4[/C][C]0.176493[/C][C]1.8426[/C][C]0.034049[/C][/ROW]
[ROW][C]5[/C][C]0.38744[/C][C]4.045[/C][C]4.9e-05[/C][/ROW]
[ROW][C]6[/C][C]-0.654867[/C][C]-6.837[/C][C]0[/C][/ROW]
[ROW][C]7[/C][C]-0.237473[/C][C]-2.4793[/C][C]0.007348[/C][/ROW]
[ROW][C]8[/C][C]-0.294836[/C][C]-3.0782[/C][C]0.001317[/C][/ROW]
[ROW][C]9[/C][C]-0.034532[/C][C]-0.3605[/C][C]0.359575[/C][/ROW]
[ROW][C]10[/C][C]-0.039764[/C][C]-0.4152[/C][C]0.339423[/C][/ROW]
[ROW][C]11[/C][C]-0.028524[/C][C]-0.2978[/C][C]0.38321[/C][/ROW]
[ROW][C]12[/C][C]-0.053715[/C][C]-0.5608[/C][C]0.288041[/C][/ROW]
[ROW][C]13[/C][C]-0.034577[/C][C]-0.361[/C][C]0.3594[/C][/ROW]
[ROW][C]14[/C][C]-0.131334[/C][C]-1.3712[/C][C]0.086569[/C][/ROW]
[ROW][C]15[/C][C]-0.012715[/C][C]-0.1328[/C][C]0.447318[/C][/ROW]
[ROW][C]16[/C][C]0.01262[/C][C]0.1318[/C][C]0.447709[/C][/ROW]
[ROW][C]17[/C][C]0.143423[/C][C]1.4974[/C][C]0.068593[/C][/ROW]
[ROW][C]18[/C][C]-0.204493[/C][C]-2.135[/C][C]0.017502[/C][/ROW]
[ROW][C]19[/C][C]-0.049882[/C][C]-0.5208[/C][C]0.301786[/C][/ROW]
[ROW][C]20[/C][C]-0.00338[/C][C]-0.0353[/C][C]0.485959[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298830&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298830&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
1-0.170699-1.78210.038755
2-0.558803-5.83410
3-0.306661-3.20160.000896
40.1764931.84260.034049
50.387444.0454.9e-05
6-0.654867-6.8370
7-0.237473-2.47930.007348
8-0.294836-3.07820.001317
9-0.034532-0.36050.359575
10-0.039764-0.41520.339423
11-0.028524-0.29780.38321
12-0.053715-0.56080.288041
13-0.034577-0.3610.3594
14-0.131334-1.37120.086569
15-0.012715-0.13280.447318
160.012620.13180.447709
170.1434231.49740.068593
18-0.204493-2.1350.017502
19-0.049882-0.52080.301786
20-0.00338-0.03530.485959



Parameters (Session):
par1 = Default ; par2 = 1 ; par3 = 1 ; par4 = 1 ; par5 = 6 ; par6 = White Noise ; par7 = 0.95 ;
Parameters (R input):
par1 = Default ; par2 = 1 ; par3 = 1 ; par4 = 1 ; par5 = 6 ; par6 = White Noise ; par7 = 0.95 ; par8 = ;
R code (references can be found in the software module):
if (par1 == 'Default') {
par1 = 10*log10(length(x))
} else {
par1 <- as.numeric(par1)
}
par2 <- as.numeric(par2)
par3 <- as.numeric(par3)
par4 <- as.numeric(par4)
par5 <- as.numeric(par5)
if (par6 == 'White Noise') par6 <- 'white' else par6 <- 'ma'
par7 <- as.numeric(par7)
if (par8 != '') par8 <- as.numeric(par8)
x <- na.omit(x)
ox <- x
if (par8 == '') {
if (par2 == 0) {
x <- log(x)
} else {
x <- (x ^ par2 - 1) / par2
}
} else {
x <- log(x,base=par8)
}
if (par3 > 0) x <- diff(x,lag=1,difference=par3)
if (par4 > 0) x <- diff(x,lag=par5,difference=par4)
bitmap(file='picts.png')
op <- par(mfrow=c(2,1))
plot(ox,type='l',main='Original Time Series',xlab='time',ylab='value')
if (par8=='') {
mytitle <- paste('Working Time Series (lambda=',par2,', d=',par3,', D=',par4,')',sep='')
mysub <- paste('(lambda=',par2,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='')
} else {
mytitle <- paste('Working Time Series (base=',par8,', d=',par3,', D=',par4,')',sep='')
mysub <- paste('(base=',par8,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='')
}
plot(x,type='l', main=mytitle,xlab='time',ylab='value')
par(op)
dev.off()
bitmap(file='pic1.png')
racf <- acf(x, par1, main='Autocorrelation', xlab='time lag', ylab='ACF', ci.type=par6, ci=par7, sub=mysub)
dev.off()
bitmap(file='pic2.png')
rpacf <- pacf(x,par1,main='Partial Autocorrelation',xlab='lags',ylab='PACF',sub=mysub)
dev.off()
(myacf <- c(racf$acf))
(mypacf <- c(rpacf$acf))
lengthx <- length(x)
sqrtn <- sqrt(lengthx)
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,'ACF(k)',header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 2:(par1+1)) {
a<-table.row.start(a)
a<-table.element(a,i-1,header=TRUE)
a<-table.element(a,round(myacf[i],6))
mytstat <- myacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Partial Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,'PACF(k)',header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:par1) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,round(mypacf[i],6))
mytstat <- mypacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')