Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_autocorrelation.wasp
Title produced by software(Partial) Autocorrelation Function
Date of computationSun, 11 Dec 2016 17:45:30 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/11/t1481474894tkb7qauk3lqcs18.htm/, Retrieved Fri, 01 Nov 2024 03:26:35 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=298829, Retrieved Fri, 01 Nov 2024 03:26:35 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact70
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [(Partial) Autocorrelation Function] [Autocorrelation f...] [2016-12-11 16:45:30] [10299735033611e1e2dae6371997f8c9] [Current]
Feedback Forum

Post a new message
Dataseries X:
3567.2
3968.25
4285.35
4130.95
4219.4
4626.2
3860.75
4174.15
4668.65
4630.05
4553.7
4603.85
4310.7
4831.3
5145.3
4886.65
4934.05
5304.7
4419.45
4804.85
5105
5132.6
4982.5
4906.7
4506.4
5010.85
5392.25
5049.7
5143.9
5449.9
4520.4
4936.95
5358.55
5289.5
5123.55
4985.65
4682.65
5175.55
5374.7
5289
5176.15
5604.25
4608.8
4898.15
5448.65
5373.05
5078.6
5233.4
4629.2
5387.8
5736.65
5357.9
5337.95
5795.5
4804.05
5120.5
5850.45
5734.75
5539
5582.85
4983.1
5672
6185.8
5835.6
5930.4
6444.65
5171.05
5739.1
6413.9
6230.2
6015.45
6174.25
5579.25
6133.45
6478.7
6184.4
6185.65
6556
5123.25
6028.9
6499.95
6190.05
6027.95
6034
5128.75
6087.7
6628.15
6075.3
6352.1
6824
5412.35
6171.25
6521.35
6457.6
5930.95
5842.7
5120.1
5719.95
5946.7
5921.1
6072
6489.4
5291.15
5986.45
6538.15
6442.8
6169.55
5793
5254.85
6050.75
6606.15
6221.15
6293.4
6908.4
5498.95
6145.35




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time1 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298829&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]1 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=298829&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298829&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center







Autocorrelation Function
Time lag kACF(k)T-STATP-value
1-0.155736-1.58060.058523
2-0.539587-5.47620
30.0148180.15040.440378
40.5131675.20810
50.1241161.25960.105323
6-0.871881-8.84860
70.1223741.2420.108537
80.5025975.10081e-06
9-0.032567-0.33050.37084
10-0.47579-4.82872e-06
11-0.09589-0.97320.166372
120.7433667.54430
13-0.095341-0.96760.167755
14-0.483177-4.90372e-06
150.0534220.54220.294433
160.4566674.63475e-06
170.0666860.67680.250029
18-0.664898-6.7480
190.0944690.95880.169963
200.4538164.60576e-06

\begin{tabular}{lllllllll}
\hline
Autocorrelation Function \tabularnewline
Time lag k & ACF(k) & T-STAT & P-value \tabularnewline
1 & -0.155736 & -1.5806 & 0.058523 \tabularnewline
2 & -0.539587 & -5.4762 & 0 \tabularnewline
3 & 0.014818 & 0.1504 & 0.440378 \tabularnewline
4 & 0.513167 & 5.2081 & 0 \tabularnewline
5 & 0.124116 & 1.2596 & 0.105323 \tabularnewline
6 & -0.871881 & -8.8486 & 0 \tabularnewline
7 & 0.122374 & 1.242 & 0.108537 \tabularnewline
8 & 0.502597 & 5.1008 & 1e-06 \tabularnewline
9 & -0.032567 & -0.3305 & 0.37084 \tabularnewline
10 & -0.47579 & -4.8287 & 2e-06 \tabularnewline
11 & -0.09589 & -0.9732 & 0.166372 \tabularnewline
12 & 0.743366 & 7.5443 & 0 \tabularnewline
13 & -0.095341 & -0.9676 & 0.167755 \tabularnewline
14 & -0.483177 & -4.9037 & 2e-06 \tabularnewline
15 & 0.053422 & 0.5422 & 0.294433 \tabularnewline
16 & 0.456667 & 4.6347 & 5e-06 \tabularnewline
17 & 0.066686 & 0.6768 & 0.250029 \tabularnewline
18 & -0.664898 & -6.748 & 0 \tabularnewline
19 & 0.094469 & 0.9588 & 0.169963 \tabularnewline
20 & 0.453816 & 4.6057 & 6e-06 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298829&T=1

[TABLE]
[ROW][C]Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]ACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]-0.155736[/C][C]-1.5806[/C][C]0.058523[/C][/ROW]
[ROW][C]2[/C][C]-0.539587[/C][C]-5.4762[/C][C]0[/C][/ROW]
[ROW][C]3[/C][C]0.014818[/C][C]0.1504[/C][C]0.440378[/C][/ROW]
[ROW][C]4[/C][C]0.513167[/C][C]5.2081[/C][C]0[/C][/ROW]
[ROW][C]5[/C][C]0.124116[/C][C]1.2596[/C][C]0.105323[/C][/ROW]
[ROW][C]6[/C][C]-0.871881[/C][C]-8.8486[/C][C]0[/C][/ROW]
[ROW][C]7[/C][C]0.122374[/C][C]1.242[/C][C]0.108537[/C][/ROW]
[ROW][C]8[/C][C]0.502597[/C][C]5.1008[/C][C]1e-06[/C][/ROW]
[ROW][C]9[/C][C]-0.032567[/C][C]-0.3305[/C][C]0.37084[/C][/ROW]
[ROW][C]10[/C][C]-0.47579[/C][C]-4.8287[/C][C]2e-06[/C][/ROW]
[ROW][C]11[/C][C]-0.09589[/C][C]-0.9732[/C][C]0.166372[/C][/ROW]
[ROW][C]12[/C][C]0.743366[/C][C]7.5443[/C][C]0[/C][/ROW]
[ROW][C]13[/C][C]-0.095341[/C][C]-0.9676[/C][C]0.167755[/C][/ROW]
[ROW][C]14[/C][C]-0.483177[/C][C]-4.9037[/C][C]2e-06[/C][/ROW]
[ROW][C]15[/C][C]0.053422[/C][C]0.5422[/C][C]0.294433[/C][/ROW]
[ROW][C]16[/C][C]0.456667[/C][C]4.6347[/C][C]5e-06[/C][/ROW]
[ROW][C]17[/C][C]0.066686[/C][C]0.6768[/C][C]0.250029[/C][/ROW]
[ROW][C]18[/C][C]-0.664898[/C][C]-6.748[/C][C]0[/C][/ROW]
[ROW][C]19[/C][C]0.094469[/C][C]0.9588[/C][C]0.169963[/C][/ROW]
[ROW][C]20[/C][C]0.453816[/C][C]4.6057[/C][C]6e-06[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298829&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298829&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Autocorrelation Function
Time lag kACF(k)T-STATP-value
1-0.155736-1.58060.058523
2-0.539587-5.47620
30.0148180.15040.440378
40.5131675.20810
50.1241161.25960.105323
6-0.871881-8.84860
70.1223741.2420.108537
80.5025975.10081e-06
9-0.032567-0.33050.37084
10-0.47579-4.82872e-06
11-0.09589-0.97320.166372
120.7433667.54430
13-0.095341-0.96760.167755
14-0.483177-4.90372e-06
150.0534220.54220.294433
160.4566674.63475e-06
170.0666860.67680.250029
18-0.664898-6.7480
190.0944690.95880.169963
200.4538164.60576e-06







Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
1-0.155736-1.58060.058523
2-0.577856-5.86460
3-0.319679-3.24440.000794
40.1980582.01010.023519
50.4007624.06734.7e-05
6-0.734236-7.45170
7-0.196878-1.99810.024171
8-0.258664-2.62520.00499
9-0.151112-1.53360.064094
10-0.087995-0.8930.186957
11-0.047047-0.47750.317018
12-0.114118-1.15820.124735
13-0.069411-0.70440.241373
14-0.183292-1.86020.032855
15-0.09249-0.93870.175048
16-0.020345-0.20650.418413
17-0.015445-0.15680.437874
18-0.137793-1.39840.082491
19-0.038357-0.38930.348936
20-0.146583-1.48770.069948

\begin{tabular}{lllllllll}
\hline
Partial Autocorrelation Function \tabularnewline
Time lag k & PACF(k) & T-STAT & P-value \tabularnewline
1 & -0.155736 & -1.5806 & 0.058523 \tabularnewline
2 & -0.577856 & -5.8646 & 0 \tabularnewline
3 & -0.319679 & -3.2444 & 0.000794 \tabularnewline
4 & 0.198058 & 2.0101 & 0.023519 \tabularnewline
5 & 0.400762 & 4.0673 & 4.7e-05 \tabularnewline
6 & -0.734236 & -7.4517 & 0 \tabularnewline
7 & -0.196878 & -1.9981 & 0.024171 \tabularnewline
8 & -0.258664 & -2.6252 & 0.00499 \tabularnewline
9 & -0.151112 & -1.5336 & 0.064094 \tabularnewline
10 & -0.087995 & -0.893 & 0.186957 \tabularnewline
11 & -0.047047 & -0.4775 & 0.317018 \tabularnewline
12 & -0.114118 & -1.1582 & 0.124735 \tabularnewline
13 & -0.069411 & -0.7044 & 0.241373 \tabularnewline
14 & -0.183292 & -1.8602 & 0.032855 \tabularnewline
15 & -0.09249 & -0.9387 & 0.175048 \tabularnewline
16 & -0.020345 & -0.2065 & 0.418413 \tabularnewline
17 & -0.015445 & -0.1568 & 0.437874 \tabularnewline
18 & -0.137793 & -1.3984 & 0.082491 \tabularnewline
19 & -0.038357 & -0.3893 & 0.348936 \tabularnewline
20 & -0.146583 & -1.4877 & 0.069948 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298829&T=2

[TABLE]
[ROW][C]Partial Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]PACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]-0.155736[/C][C]-1.5806[/C][C]0.058523[/C][/ROW]
[ROW][C]2[/C][C]-0.577856[/C][C]-5.8646[/C][C]0[/C][/ROW]
[ROW][C]3[/C][C]-0.319679[/C][C]-3.2444[/C][C]0.000794[/C][/ROW]
[ROW][C]4[/C][C]0.198058[/C][C]2.0101[/C][C]0.023519[/C][/ROW]
[ROW][C]5[/C][C]0.400762[/C][C]4.0673[/C][C]4.7e-05[/C][/ROW]
[ROW][C]6[/C][C]-0.734236[/C][C]-7.4517[/C][C]0[/C][/ROW]
[ROW][C]7[/C][C]-0.196878[/C][C]-1.9981[/C][C]0.024171[/C][/ROW]
[ROW][C]8[/C][C]-0.258664[/C][C]-2.6252[/C][C]0.00499[/C][/ROW]
[ROW][C]9[/C][C]-0.151112[/C][C]-1.5336[/C][C]0.064094[/C][/ROW]
[ROW][C]10[/C][C]-0.087995[/C][C]-0.893[/C][C]0.186957[/C][/ROW]
[ROW][C]11[/C][C]-0.047047[/C][C]-0.4775[/C][C]0.317018[/C][/ROW]
[ROW][C]12[/C][C]-0.114118[/C][C]-1.1582[/C][C]0.124735[/C][/ROW]
[ROW][C]13[/C][C]-0.069411[/C][C]-0.7044[/C][C]0.241373[/C][/ROW]
[ROW][C]14[/C][C]-0.183292[/C][C]-1.8602[/C][C]0.032855[/C][/ROW]
[ROW][C]15[/C][C]-0.09249[/C][C]-0.9387[/C][C]0.175048[/C][/ROW]
[ROW][C]16[/C][C]-0.020345[/C][C]-0.2065[/C][C]0.418413[/C][/ROW]
[ROW][C]17[/C][C]-0.015445[/C][C]-0.1568[/C][C]0.437874[/C][/ROW]
[ROW][C]18[/C][C]-0.137793[/C][C]-1.3984[/C][C]0.082491[/C][/ROW]
[ROW][C]19[/C][C]-0.038357[/C][C]-0.3893[/C][C]0.348936[/C][/ROW]
[ROW][C]20[/C][C]-0.146583[/C][C]-1.4877[/C][C]0.069948[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298829&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298829&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
1-0.155736-1.58060.058523
2-0.577856-5.86460
3-0.319679-3.24440.000794
40.1980582.01010.023519
50.4007624.06734.7e-05
6-0.734236-7.45170
7-0.196878-1.99810.024171
8-0.258664-2.62520.00499
9-0.151112-1.53360.064094
10-0.087995-0.8930.186957
11-0.047047-0.47750.317018
12-0.114118-1.15820.124735
13-0.069411-0.70440.241373
14-0.183292-1.86020.032855
15-0.09249-0.93870.175048
16-0.020345-0.20650.418413
17-0.015445-0.15680.437874
18-0.137793-1.39840.082491
19-0.038357-0.38930.348936
20-0.146583-1.48770.069948



Parameters (Session):
par1 = Default ; par2 = 1 ; par3 = 1 ; par4 = 2 ; par5 = 6 ; par6 = White Noise ; par7 = 0.95 ;
Parameters (R input):
par1 = Default ; par2 = 1 ; par3 = 1 ; par4 = 2 ; par5 = 6 ; par6 = White Noise ; par7 = 0.95 ; par8 = ;
R code (references can be found in the software module):
par8 <- ''
par7 <- '0.95'
par6 <- 'White Noise'
par5 <- '6'
par4 <- '2'
par3 <- '2'
par2 <- '1'
par1 <- 'Default'
if (par1 == 'Default') {
par1 = 10*log10(length(x))
} else {
par1 <- as.numeric(par1)
}
par2 <- as.numeric(par2)
par3 <- as.numeric(par3)
par4 <- as.numeric(par4)
par5 <- as.numeric(par5)
if (par6 == 'White Noise') par6 <- 'white' else par6 <- 'ma'
par7 <- as.numeric(par7)
if (par8 != '') par8 <- as.numeric(par8)
x <- na.omit(x)
ox <- x
if (par8 == '') {
if (par2 == 0) {
x <- log(x)
} else {
x <- (x ^ par2 - 1) / par2
}
} else {
x <- log(x,base=par8)
}
if (par3 > 0) x <- diff(x,lag=1,difference=par3)
if (par4 > 0) x <- diff(x,lag=par5,difference=par4)
bitmap(file='picts.png')
op <- par(mfrow=c(2,1))
plot(ox,type='l',main='Original Time Series',xlab='time',ylab='value')
if (par8=='') {
mytitle <- paste('Working Time Series (lambda=',par2,', d=',par3,', D=',par4,')',sep='')
mysub <- paste('(lambda=',par2,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='')
} else {
mytitle <- paste('Working Time Series (base=',par8,', d=',par3,', D=',par4,')',sep='')
mysub <- paste('(base=',par8,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='')
}
plot(x,type='l', main=mytitle,xlab='time',ylab='value')
par(op)
dev.off()
bitmap(file='pic1.png')
racf <- acf(x, par1, main='Autocorrelation', xlab='time lag', ylab='ACF', ci.type=par6, ci=par7, sub=mysub)
dev.off()
bitmap(file='pic2.png')
rpacf <- pacf(x,par1,main='Partial Autocorrelation',xlab='lags',ylab='PACF',sub=mysub)
dev.off()
(myacf <- c(racf$acf))
(mypacf <- c(rpacf$acf))
lengthx <- length(x)
sqrtn <- sqrt(lengthx)
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,'ACF(k)',header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 2:(par1+1)) {
a<-table.row.start(a)
a<-table.element(a,i-1,header=TRUE)
a<-table.element(a,round(myacf[i],6))
mytstat <- myacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Partial Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,'PACF(k)',header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:par1) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,round(mypacf[i],6))
mytstat <- mypacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')