Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_histogram.wasp
Title produced by softwareHistogram
Date of computationSun, 11 Dec 2016 14:44:30 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/11/t1481464025ica1phosl08pxwz.htm/, Retrieved Fri, 01 Nov 2024 03:30:19 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=298784, Retrieved Fri, 01 Nov 2024 03:30:19 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact160
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [ML Fitting and QQ Plot- Normal Distribution] [Histogram] [2016-12-02 11:39:44] [937b9e6718912fc8986df66e31b6c342]
- RMP     [Histogram] [HISTO&FREQ STATPAP] [2016-12-11 13:44:30] [863feeaf19a0ddfce7bd9c25059c4d8a] [Current]
- RMP       [Mean Plot] [mean plot] [2016-12-17 16:47:20] [937b9e6718912fc8986df66e31b6c342]
- RMP       [ARIMA Forecasting] [arimafore] [2016-12-17 17:02:14] [937b9e6718912fc8986df66e31b6c342]
- RMP       [Structural Time Series Models] [structural time s...] [2016-12-17 17:08:21] [937b9e6718912fc8986df66e31b6c342]
- RMP       [Exponential Smoothing] [exp smo pap] [2016-12-17 17:15:48] [937b9e6718912fc8986df66e31b6c342]
- RMP       [Variance Reduction Matrix] [] [2016-12-17 17:20:54] [937b9e6718912fc8986df66e31b6c342]
- RMP       [(Partial) Autocorrelation Function] [] [2016-12-17 17:32:40] [937b9e6718912fc8986df66e31b6c342]
Feedback Forum

Post a new message
Dataseries X:
4790.92
4795.33
4822.62
4797.52
4822.17
4843.08
4850.79
4827.02
4796.65
4854.96
4870.81
4891.06
4881.38
4921.43
4956.21
4962.81
4949.38
4977.99
4992.73
5009.02
4990.98
5014.96
5022.23
5028.83
4894.36
4918.13
4936.4
4899.87
4862.89
4882.69
4895.46
4883.8
4855.4
4874.33
4880.94
4861.79
4851.44
4840.22
4842.42
4827.02
4749.77
4866.63
4734.37
4726.44
4753.51
4867.29
4793.35
4822.4
4865.09
4987.67
4900.96
4904.71
4889.52
5015.63
4938.81
4924.73
4871.48
4998.24
4891.06
4876.54
4824.15




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time0 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time0 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298784&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]0 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=298784&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298784&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time0 seconds
R ServerBig Analytics Cloud Computing Center







Frequency Table (Histogram)
BinsMidpointAbs. FrequencyRel. FrequencyCumul. Rel. Freq.Density
[4700,4750[472530.049180.049180.000984
[4750,4800[477560.0983610.1475410.001967
[4800,4850[482590.1475410.2950820.002951
[4850,4900[4875230.3770490.6721310.007541
[4900,4950[492580.1311480.8032790.002623
[4950,5000[497570.1147540.9180330.002295
[5000,5050]502550.08196710.001639

\begin{tabular}{lllllllll}
\hline
Frequency Table (Histogram) \tabularnewline
Bins & Midpoint & Abs. Frequency & Rel. Frequency & Cumul. Rel. Freq. & Density \tabularnewline
[4700,4750[ & 4725 & 3 & 0.04918 & 0.04918 & 0.000984 \tabularnewline
[4750,4800[ & 4775 & 6 & 0.098361 & 0.147541 & 0.001967 \tabularnewline
[4800,4850[ & 4825 & 9 & 0.147541 & 0.295082 & 0.002951 \tabularnewline
[4850,4900[ & 4875 & 23 & 0.377049 & 0.672131 & 0.007541 \tabularnewline
[4900,4950[ & 4925 & 8 & 0.131148 & 0.803279 & 0.002623 \tabularnewline
[4950,5000[ & 4975 & 7 & 0.114754 & 0.918033 & 0.002295 \tabularnewline
[5000,5050] & 5025 & 5 & 0.081967 & 1 & 0.001639 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298784&T=1

[TABLE]
[ROW][C]Frequency Table (Histogram)[/C][/ROW]
[ROW][C]Bins[/C][C]Midpoint[/C][C]Abs. Frequency[/C][C]Rel. Frequency[/C][C]Cumul. Rel. Freq.[/C][C]Density[/C][/ROW]
[ROW][C][4700,4750[[/C][C]4725[/C][C]3[/C][C]0.04918[/C][C]0.04918[/C][C]0.000984[/C][/ROW]
[ROW][C][4750,4800[[/C][C]4775[/C][C]6[/C][C]0.098361[/C][C]0.147541[/C][C]0.001967[/C][/ROW]
[ROW][C][4800,4850[[/C][C]4825[/C][C]9[/C][C]0.147541[/C][C]0.295082[/C][C]0.002951[/C][/ROW]
[ROW][C][4850,4900[[/C][C]4875[/C][C]23[/C][C]0.377049[/C][C]0.672131[/C][C]0.007541[/C][/ROW]
[ROW][C][4900,4950[[/C][C]4925[/C][C]8[/C][C]0.131148[/C][C]0.803279[/C][C]0.002623[/C][/ROW]
[ROW][C][4950,5000[[/C][C]4975[/C][C]7[/C][C]0.114754[/C][C]0.918033[/C][C]0.002295[/C][/ROW]
[ROW][C][5000,5050][/C][C]5025[/C][C]5[/C][C]0.081967[/C][C]1[/C][C]0.001639[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298784&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298784&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Frequency Table (Histogram)
BinsMidpointAbs. FrequencyRel. FrequencyCumul. Rel. Freq.Density
[4700,4750[472530.049180.049180.000984
[4750,4800[477560.0983610.1475410.001967
[4800,4850[482590.1475410.2950820.002951
[4850,4900[4875230.3770490.6721310.007541
[4900,4950[492580.1311480.8032790.002623
[4950,5000[497570.1147540.9180330.002295
[5000,5050]502550.08196710.001639



Parameters (Session):
Parameters (R input):
par1 = ; par2 = grey ; par3 = FALSE ; par4 = Unknown ;
R code (references can be found in the software module):
par1 <- as.numeric(par1)
if (par3 == 'TRUE') par3 <- TRUE
if (par3 == 'FALSE') par3 <- FALSE
if (par4 == 'Unknown') par1 <- as.numeric(par1)
if (par4 == 'Interval/Ratio') par1 <- as.numeric(par1)
if (par4 == '3-point Likert') par1 <- c(1:3 - 0.5, 3.5)
if (par4 == '4-point Likert') par1 <- c(1:4 - 0.5, 4.5)
if (par4 == '5-point Likert') par1 <- c(1:5 - 0.5, 5.5)
if (par4 == '6-point Likert') par1 <- c(1:6 - 0.5, 6.5)
if (par4 == '7-point Likert') par1 <- c(1:7 - 0.5, 7.5)
if (par4 == '8-point Likert') par1 <- c(1:8 - 0.5, 8.5)
if (par4 == '9-point Likert') par1 <- c(1:9 - 0.5, 9.5)
if (par4 == '10-point Likert') par1 <- c(1:10 - 0.5, 10.5)
bitmap(file='test1.png')
if(is.numeric(x[1])) {
if (is.na(par1)) {
myhist<-hist(x,col=par2,main=main,xlab=xlab,right=par3)
} else {
if (par1 < 0) par1 <- 3
if (par1 > 50) par1 <- 50
myhist<-hist(x,breaks=par1,col=par2,main=main,xlab=xlab,right=par3)
}
} else {
barplot(mytab <- sort(table(x),T),col=par2,main='Frequency Plot',xlab=xlab,ylab='Absolute Frequency')
}
dev.off()
if(is.numeric(x[1])) {
myhist
n <- length(x)
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Frequency Table (Histogram)',6,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Bins',header=TRUE)
a<-table.element(a,'Midpoint',header=TRUE)
a<-table.element(a,'Abs. Frequency',header=TRUE)
a<-table.element(a,'Rel. Frequency',header=TRUE)
a<-table.element(a,'Cumul. Rel. Freq.',header=TRUE)
a<-table.element(a,'Density',header=TRUE)
a<-table.row.end(a)
crf <- 0
if (par3 == FALSE) mybracket <- '[' else mybracket <- ']'
mynumrows <- (length(myhist$breaks)-1)
for (i in 1:mynumrows) {
a<-table.row.start(a)
if (i == 1)
dum <- paste('[',myhist$breaks[i],sep='')
else
dum <- paste(mybracket,myhist$breaks[i],sep='')
dum <- paste(dum,myhist$breaks[i+1],sep=',')
if (i==mynumrows)
dum <- paste(dum,']',sep='')
else
dum <- paste(dum,mybracket,sep='')
a<-table.element(a,dum,header=TRUE)
a<-table.element(a,myhist$mids[i])
a<-table.element(a,myhist$counts[i])
rf <- myhist$counts[i]/n
crf <- crf + rf
a<-table.element(a,round(rf,6))
a<-table.element(a,round(crf,6))
a<-table.element(a,round(myhist$density[i],6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
} else {
mytab
reltab <- mytab / sum(mytab)
n <- length(mytab)
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Frequency Table (Categorical Data)',3,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Category',header=TRUE)
a<-table.element(a,'Abs. Frequency',header=TRUE)
a<-table.element(a,'Rel. Frequency',header=TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,labels(mytab)$x[i],header=TRUE)
a<-table.element(a,mytab[i])
a<-table.element(a,round(reltab[i],4))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')
}