Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_pairs.wasp
Title produced by softwareKendall tau Correlation Matrix
Date of computationSat, 10 Dec 2016 20:33:13 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/10/t1481398528fz4xcaoza19iyj1.htm/, Retrieved Fri, 01 Nov 2024 03:28:52 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=298742, Retrieved Fri, 01 Nov 2024 03:28:52 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact86
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Kendall tau Correlation Matrix] [Correlation Matri...] [2016-12-10 19:33:13] [070714f07871aeb0c40d04255feda5cb] [Current]
Feedback Forum

Post a new message
Dataseries X:
4	2	4	3	5	4	13
5	3	3	4	5	4	16
4	4	5	4	5	4	17
3	4	3	3	4	4	15
4	4	5	4	5	4	16
3	4	4	4	5	5	16
3	4	4	3	3	4	18
3	4	5	4	4	4	16
4	5	4	4	5	5	17
4	5	5	4	5	5	17
4	4	2	4	5	4	17
4	4	5	3	5	4	15
4	4	4	3	4	5	16
3	3	5	4	4	5	14
4	4	5	4	2	5	16
3	4	5	4	4	5	17
3	4	5	4	4	5	16
5	5	4	3	4	4	15
4	4	4	4	5	4	17
3	4	5	3	4	5	16
4	4	4	4	5	5	15
4	4	5	4	4	5	16
4	4	5	4	4	4	15
4	4	5	4	4	5	17
3	4	4	4	4	4	14
3	4	4	3	5	5	16
4	4	4	4	4	4	15
2	4	5	4	5	5	16
5	4	4	4	4	4	16
4	3	5	4	4	4	13
4	5	5	4	5	5	15
5	4	5	4	4	5	17
4	3	5	4	5	5	15
2	3	5	4	5	4	13
4	5	2	4	4	4	17
3	4	5	4	4	4	15
4	3	5	3	4	5	14
4	3	3	4	4	4	14
4	4	5	4	4	4	18
5	4	4	4	4	4	15
4	5	5	4	5	5	17
3	3	4	4	4	4	13
5	5	5	3	5	5	16
5	4	5	3	4	4	15
4	4	4	3	4	5	15
4	4	4	4	4	4	16
3	5	5	3	3	4	15
4	4	4	4	5	4	13
4	5	5	4	4	4	17
5	5	2	4	5	4	18
5	5	5	4	4	4	18
4	3	5	4	5	5	11
4	3	4	3	4	5	14
4	4	5	4	4	4	13
3	4	4	3	3	4	15
3	4	4	4	4	3	17
4	4	4	3	5	4	16
4	4	4	4	5	4	15
5	5	3	4	5	5	17
2	4	4	4	5	5	16
4	4	4	4	5	5	16
3	4	4	4	2	4	16
4	4	5	4	5	5	15
4	2	4	4	4	4	12
4	4	4	3	5	3	17
4	4	4	3	5	4	14
5	4	5	3	3	5	14
3	4	4	3	5	5	16
3	4	4	3	4	5	15
4	5	5	5	5	4	15
4	4	3	4	4	4	14
4	4	4	4	4	4	13
4	4	4	5	5	4	18
3	4	3	4	4	4	15
4	4	4	4	5	4	16
3	4	5	3	5	5	14
3	3	5	4	4	5	15
4	3	5	4	4	4	17
4	4	5	4	4	5	16
3	3	3	4	4	4	10
4	4	4	4	5	4	16
4	4	3	4	5	5	17
4	4	4	4	5	5	17
5	4	4	4	4	4	20
5	4	3	5	4	5	17
4	4	5	4	5	5	18
3	4	5	4	4	5	15
3	3	4	4	4	4	17
4	2	3	3	4	4	14
4	4	5	4	4	3	15
4	4	5	4	4	5	17
4	4	4	4	5	4	16
4	5	4	4	5	3	17
3	4	4	3	5	5	15
4	4	5	4	4	5	16
5	4	3	4	4	5	18
5	4	5	5	4	5	18
4	5	4	4	5	5	16
5	3	4	4	5	5	17
4	4	5	4	4	5	15
5	4	4	4	4	5	13
3	4	4	3	4	4	15
5	4	4	5	5	5	17
4	4	5	3	5	5	16
4	4	3	3	4	3	16
4	4	5	4	4	4	15
4	4	5	4	4	4	16
3	4	5	4	5	3	16
4	4	4	4	4	4	14
4	4	4	3	4	5	15
3	3	4	3	5	5	12
4	4	4	3	4	4	19
3	4	5	4	4	4	16
4	4	5	4	3	4	16
5	4	5	1	5	5	17
5	4	5	4	5	5	16
4	4	4	4	4	3	14
4	4	5	3	4	4	15
3	4	4	3	4	5	14
4	4	4	4	4	4	16
4	4	4	4	5	4	15
4	5	3	4	4	4	17
3	4	4	4	4	4	15
4	4	4	3	4	4	16
4	4	4	4	4	5	16
3	4	3	3	4	4	15
4	4	4	3	4	3	15
3	2	4	2	4	4	11
4	4	4	3	5	4	16
5	4	4	3	5	4	18
2	4	4	3	3	5	13
3	3	4	4	4	4	11
4	4	4	3	4	4	16
5	5	4	4	5	4	18
4	5	5	4	4	4	15
5	5	5	5	5	4	19
4	5	5	4	5	5	17
4	4	4	3	4	5	13
3	4	5	4	5	4	14
4	4	5	4	4	4	16
4	4	2	4	4	4	13
4	4	3	4	5	5	17
4	4	4	4	5	5	14
5	4	5	3	5	4	19
4	3	5	4	4	4	14
4	4	5	4	4	4	16
3	3	2	3	4	4	12
4	5	5	4	4	3	16
4	4	4	3	4	4	16
4	4	4	4	4	5	15
3	4	5	3	5	5	12
4	4	5	4	4	5	15
5	4	5	4	5	4	17
4	4	5	4	3	4	14
2	3	5	4	4	4	15
4	4	4	4	4	5	18
4	3	4	3	5	5	15
4	4	4	4	4	3	18
4	5	5	5	4	4	15
5	4	3	4	4	4	15
5	4	4	3	4	4	16
3	3	1	4	5	5	13
4	4	4	4	4	5	16
4	4	4	4	5	4	14
2	3	4	5	5	4	16




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time1 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298742&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]1 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=298742&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298742&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center







Correlations for all pairs of data series (method=kendall)
SK1SK2SK3SK4SK5SK6TVDC
SK110.264-0.0080.1270.1150.0010.303
SK20.26410.1050.120.08-0.0210.376
SK3-0.0080.10510.113-0.0370.1350.035
SK40.1270.120.11310.082-0.0310.194
SK50.1150.08-0.0370.08210.1660.16
SK60.001-0.0210.135-0.0310.16610.021
TVDC0.3030.3760.0350.1940.160.0211

\begin{tabular}{lllllllll}
\hline
Correlations for all pairs of data series (method=kendall) \tabularnewline
  & SK1 & SK2 & SK3 & SK4 & SK5 & SK6 & TVDC \tabularnewline
SK1 & 1 & 0.264 & -0.008 & 0.127 & 0.115 & 0.001 & 0.303 \tabularnewline
SK2 & 0.264 & 1 & 0.105 & 0.12 & 0.08 & -0.021 & 0.376 \tabularnewline
SK3 & -0.008 & 0.105 & 1 & 0.113 & -0.037 & 0.135 & 0.035 \tabularnewline
SK4 & 0.127 & 0.12 & 0.113 & 1 & 0.082 & -0.031 & 0.194 \tabularnewline
SK5 & 0.115 & 0.08 & -0.037 & 0.082 & 1 & 0.166 & 0.16 \tabularnewline
SK6 & 0.001 & -0.021 & 0.135 & -0.031 & 0.166 & 1 & 0.021 \tabularnewline
TVDC & 0.303 & 0.376 & 0.035 & 0.194 & 0.16 & 0.021 & 1 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298742&T=1

[TABLE]
[ROW][C]Correlations for all pairs of data series (method=kendall)[/C][/ROW]
[ROW][C] [/C][C]SK1[/C][C]SK2[/C][C]SK3[/C][C]SK4[/C][C]SK5[/C][C]SK6[/C][C]TVDC[/C][/ROW]
[ROW][C]SK1[/C][C]1[/C][C]0.264[/C][C]-0.008[/C][C]0.127[/C][C]0.115[/C][C]0.001[/C][C]0.303[/C][/ROW]
[ROW][C]SK2[/C][C]0.264[/C][C]1[/C][C]0.105[/C][C]0.12[/C][C]0.08[/C][C]-0.021[/C][C]0.376[/C][/ROW]
[ROW][C]SK3[/C][C]-0.008[/C][C]0.105[/C][C]1[/C][C]0.113[/C][C]-0.037[/C][C]0.135[/C][C]0.035[/C][/ROW]
[ROW][C]SK4[/C][C]0.127[/C][C]0.12[/C][C]0.113[/C][C]1[/C][C]0.082[/C][C]-0.031[/C][C]0.194[/C][/ROW]
[ROW][C]SK5[/C][C]0.115[/C][C]0.08[/C][C]-0.037[/C][C]0.082[/C][C]1[/C][C]0.166[/C][C]0.16[/C][/ROW]
[ROW][C]SK6[/C][C]0.001[/C][C]-0.021[/C][C]0.135[/C][C]-0.031[/C][C]0.166[/C][C]1[/C][C]0.021[/C][/ROW]
[ROW][C]TVDC[/C][C]0.303[/C][C]0.376[/C][C]0.035[/C][C]0.194[/C][C]0.16[/C][C]0.021[/C][C]1[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298742&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298742&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Correlations for all pairs of data series (method=kendall)
SK1SK2SK3SK4SK5SK6TVDC
SK110.264-0.0080.1270.1150.0010.303
SK20.26410.1050.120.08-0.0210.376
SK3-0.0080.10510.113-0.0370.1350.035
SK40.1270.120.11310.082-0.0310.194
SK50.1150.08-0.0370.08210.1660.16
SK60.001-0.0210.135-0.0310.16610.021
TVDC0.3030.3760.0350.1940.160.0211







Correlations for all pairs of data series with p-values
pairPearson rSpearman rhoKendall tau
SK1;SK20.2740.28930.2641
p-value(4e-04)(2e-04)(2e-04)
SK1;SK3-0.0166-0.0087-0.0077
p-value(0.8327)(0.912)(0.9133)
SK1;SK40.08680.13420.1268
p-value(0.2676)(0.0857)(0.0786)
SK1;SK50.11660.12350.1154
p-value(0.1358)(0.1141)(0.1099)
SK1;SK6-8e-040.00140.0014
p-value(0.9921)(0.9861)(0.9843)
SK1;TVDC0.36520.35770.3033
p-value(0)(0)(0)
SK2;SK30.11520.11330.1046
p-value(0.1407)(0.1475)(0.1431)
SK2;SK40.16620.12760.1197
p-value(0.0329)(0.1023)(0.1018)
SK2;SK50.06420.08650.0803
p-value(0.4123)(0.2694)(0.2729)
SK2;SK6-0.0151-0.0229-0.0208
p-value(0.8471)(0.7706)(0.7766)
SK2;TVDC0.48840.43390.3761
p-value(0)(0)(0)
SK3;SK40.05470.12190.1128
p-value(0.4852)(0.1189)(0.1202)
SK3;SK5-0.0592-0.0406-0.0375
p-value(0.4498)(0.6043)(0.6064)
SK3;SK60.12350.14630.1352
p-value(0.1139)(0.0609)(0.0625)
SK3;TVDC0.08420.0420.0354
p-value(0.2823)(0.5925)(0.5901)
SK4;SK50.06910.0860.0825
p-value(0.3781)(0.272)(0.2676)
SK4;SK6-0.0379-0.0327-0.031
p-value(0.6285)(0.6767)(0.6766)
SK4;TVDC0.19350.22160.1939
p-value(0.0128)(0.0042)(0.004)
SK5;SK60.13960.17440.1655
p-value(0.0736)(0.0251)(0.0262)
SK5;TVDC0.12930.18570.16
p-value(0.0978)(0.0169)(0.0176)
SK6;TVDC-0.00810.02410.0211
p-value(0.918)(0.7589)(0.7545)

\begin{tabular}{lllllllll}
\hline
Correlations for all pairs of data series with p-values \tabularnewline
pair & Pearson r & Spearman rho & Kendall tau \tabularnewline
SK1;SK2 & 0.274 & 0.2893 & 0.2641 \tabularnewline
p-value & (4e-04) & (2e-04) & (2e-04) \tabularnewline
SK1;SK3 & -0.0166 & -0.0087 & -0.0077 \tabularnewline
p-value & (0.8327) & (0.912) & (0.9133) \tabularnewline
SK1;SK4 & 0.0868 & 0.1342 & 0.1268 \tabularnewline
p-value & (0.2676) & (0.0857) & (0.0786) \tabularnewline
SK1;SK5 & 0.1166 & 0.1235 & 0.1154 \tabularnewline
p-value & (0.1358) & (0.1141) & (0.1099) \tabularnewline
SK1;SK6 & -8e-04 & 0.0014 & 0.0014 \tabularnewline
p-value & (0.9921) & (0.9861) & (0.9843) \tabularnewline
SK1;TVDC & 0.3652 & 0.3577 & 0.3033 \tabularnewline
p-value & (0) & (0) & (0) \tabularnewline
SK2;SK3 & 0.1152 & 0.1133 & 0.1046 \tabularnewline
p-value & (0.1407) & (0.1475) & (0.1431) \tabularnewline
SK2;SK4 & 0.1662 & 0.1276 & 0.1197 \tabularnewline
p-value & (0.0329) & (0.1023) & (0.1018) \tabularnewline
SK2;SK5 & 0.0642 & 0.0865 & 0.0803 \tabularnewline
p-value & (0.4123) & (0.2694) & (0.2729) \tabularnewline
SK2;SK6 & -0.0151 & -0.0229 & -0.0208 \tabularnewline
p-value & (0.8471) & (0.7706) & (0.7766) \tabularnewline
SK2;TVDC & 0.4884 & 0.4339 & 0.3761 \tabularnewline
p-value & (0) & (0) & (0) \tabularnewline
SK3;SK4 & 0.0547 & 0.1219 & 0.1128 \tabularnewline
p-value & (0.4852) & (0.1189) & (0.1202) \tabularnewline
SK3;SK5 & -0.0592 & -0.0406 & -0.0375 \tabularnewline
p-value & (0.4498) & (0.6043) & (0.6064) \tabularnewline
SK3;SK6 & 0.1235 & 0.1463 & 0.1352 \tabularnewline
p-value & (0.1139) & (0.0609) & (0.0625) \tabularnewline
SK3;TVDC & 0.0842 & 0.042 & 0.0354 \tabularnewline
p-value & (0.2823) & (0.5925) & (0.5901) \tabularnewline
SK4;SK5 & 0.0691 & 0.086 & 0.0825 \tabularnewline
p-value & (0.3781) & (0.272) & (0.2676) \tabularnewline
SK4;SK6 & -0.0379 & -0.0327 & -0.031 \tabularnewline
p-value & (0.6285) & (0.6767) & (0.6766) \tabularnewline
SK4;TVDC & 0.1935 & 0.2216 & 0.1939 \tabularnewline
p-value & (0.0128) & (0.0042) & (0.004) \tabularnewline
SK5;SK6 & 0.1396 & 0.1744 & 0.1655 \tabularnewline
p-value & (0.0736) & (0.0251) & (0.0262) \tabularnewline
SK5;TVDC & 0.1293 & 0.1857 & 0.16 \tabularnewline
p-value & (0.0978) & (0.0169) & (0.0176) \tabularnewline
SK6;TVDC & -0.0081 & 0.0241 & 0.0211 \tabularnewline
p-value & (0.918) & (0.7589) & (0.7545) \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298742&T=2

[TABLE]
[ROW][C]Correlations for all pairs of data series with p-values[/C][/ROW]
[ROW][C]pair[/C][C]Pearson r[/C][C]Spearman rho[/C][C]Kendall tau[/C][/ROW]
[ROW][C]SK1;SK2[/C][C]0.274[/C][C]0.2893[/C][C]0.2641[/C][/ROW]
[ROW][C]p-value[/C][C](4e-04)[/C][C](2e-04)[/C][C](2e-04)[/C][/ROW]
[ROW][C]SK1;SK3[/C][C]-0.0166[/C][C]-0.0087[/C][C]-0.0077[/C][/ROW]
[ROW][C]p-value[/C][C](0.8327)[/C][C](0.912)[/C][C](0.9133)[/C][/ROW]
[ROW][C]SK1;SK4[/C][C]0.0868[/C][C]0.1342[/C][C]0.1268[/C][/ROW]
[ROW][C]p-value[/C][C](0.2676)[/C][C](0.0857)[/C][C](0.0786)[/C][/ROW]
[ROW][C]SK1;SK5[/C][C]0.1166[/C][C]0.1235[/C][C]0.1154[/C][/ROW]
[ROW][C]p-value[/C][C](0.1358)[/C][C](0.1141)[/C][C](0.1099)[/C][/ROW]
[ROW][C]SK1;SK6[/C][C]-8e-04[/C][C]0.0014[/C][C]0.0014[/C][/ROW]
[ROW][C]p-value[/C][C](0.9921)[/C][C](0.9861)[/C][C](0.9843)[/C][/ROW]
[ROW][C]SK1;TVDC[/C][C]0.3652[/C][C]0.3577[/C][C]0.3033[/C][/ROW]
[ROW][C]p-value[/C][C](0)[/C][C](0)[/C][C](0)[/C][/ROW]
[ROW][C]SK2;SK3[/C][C]0.1152[/C][C]0.1133[/C][C]0.1046[/C][/ROW]
[ROW][C]p-value[/C][C](0.1407)[/C][C](0.1475)[/C][C](0.1431)[/C][/ROW]
[ROW][C]SK2;SK4[/C][C]0.1662[/C][C]0.1276[/C][C]0.1197[/C][/ROW]
[ROW][C]p-value[/C][C](0.0329)[/C][C](0.1023)[/C][C](0.1018)[/C][/ROW]
[ROW][C]SK2;SK5[/C][C]0.0642[/C][C]0.0865[/C][C]0.0803[/C][/ROW]
[ROW][C]p-value[/C][C](0.4123)[/C][C](0.2694)[/C][C](0.2729)[/C][/ROW]
[ROW][C]SK2;SK6[/C][C]-0.0151[/C][C]-0.0229[/C][C]-0.0208[/C][/ROW]
[ROW][C]p-value[/C][C](0.8471)[/C][C](0.7706)[/C][C](0.7766)[/C][/ROW]
[ROW][C]SK2;TVDC[/C][C]0.4884[/C][C]0.4339[/C][C]0.3761[/C][/ROW]
[ROW][C]p-value[/C][C](0)[/C][C](0)[/C][C](0)[/C][/ROW]
[ROW][C]SK3;SK4[/C][C]0.0547[/C][C]0.1219[/C][C]0.1128[/C][/ROW]
[ROW][C]p-value[/C][C](0.4852)[/C][C](0.1189)[/C][C](0.1202)[/C][/ROW]
[ROW][C]SK3;SK5[/C][C]-0.0592[/C][C]-0.0406[/C][C]-0.0375[/C][/ROW]
[ROW][C]p-value[/C][C](0.4498)[/C][C](0.6043)[/C][C](0.6064)[/C][/ROW]
[ROW][C]SK3;SK6[/C][C]0.1235[/C][C]0.1463[/C][C]0.1352[/C][/ROW]
[ROW][C]p-value[/C][C](0.1139)[/C][C](0.0609)[/C][C](0.0625)[/C][/ROW]
[ROW][C]SK3;TVDC[/C][C]0.0842[/C][C]0.042[/C][C]0.0354[/C][/ROW]
[ROW][C]p-value[/C][C](0.2823)[/C][C](0.5925)[/C][C](0.5901)[/C][/ROW]
[ROW][C]SK4;SK5[/C][C]0.0691[/C][C]0.086[/C][C]0.0825[/C][/ROW]
[ROW][C]p-value[/C][C](0.3781)[/C][C](0.272)[/C][C](0.2676)[/C][/ROW]
[ROW][C]SK4;SK6[/C][C]-0.0379[/C][C]-0.0327[/C][C]-0.031[/C][/ROW]
[ROW][C]p-value[/C][C](0.6285)[/C][C](0.6767)[/C][C](0.6766)[/C][/ROW]
[ROW][C]SK4;TVDC[/C][C]0.1935[/C][C]0.2216[/C][C]0.1939[/C][/ROW]
[ROW][C]p-value[/C][C](0.0128)[/C][C](0.0042)[/C][C](0.004)[/C][/ROW]
[ROW][C]SK5;SK6[/C][C]0.1396[/C][C]0.1744[/C][C]0.1655[/C][/ROW]
[ROW][C]p-value[/C][C](0.0736)[/C][C](0.0251)[/C][C](0.0262)[/C][/ROW]
[ROW][C]SK5;TVDC[/C][C]0.1293[/C][C]0.1857[/C][C]0.16[/C][/ROW]
[ROW][C]p-value[/C][C](0.0978)[/C][C](0.0169)[/C][C](0.0176)[/C][/ROW]
[ROW][C]SK6;TVDC[/C][C]-0.0081[/C][C]0.0241[/C][C]0.0211[/C][/ROW]
[ROW][C]p-value[/C][C](0.918)[/C][C](0.7589)[/C][C](0.7545)[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298742&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298742&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Correlations for all pairs of data series with p-values
pairPearson rSpearman rhoKendall tau
SK1;SK20.2740.28930.2641
p-value(4e-04)(2e-04)(2e-04)
SK1;SK3-0.0166-0.0087-0.0077
p-value(0.8327)(0.912)(0.9133)
SK1;SK40.08680.13420.1268
p-value(0.2676)(0.0857)(0.0786)
SK1;SK50.11660.12350.1154
p-value(0.1358)(0.1141)(0.1099)
SK1;SK6-8e-040.00140.0014
p-value(0.9921)(0.9861)(0.9843)
SK1;TVDC0.36520.35770.3033
p-value(0)(0)(0)
SK2;SK30.11520.11330.1046
p-value(0.1407)(0.1475)(0.1431)
SK2;SK40.16620.12760.1197
p-value(0.0329)(0.1023)(0.1018)
SK2;SK50.06420.08650.0803
p-value(0.4123)(0.2694)(0.2729)
SK2;SK6-0.0151-0.0229-0.0208
p-value(0.8471)(0.7706)(0.7766)
SK2;TVDC0.48840.43390.3761
p-value(0)(0)(0)
SK3;SK40.05470.12190.1128
p-value(0.4852)(0.1189)(0.1202)
SK3;SK5-0.0592-0.0406-0.0375
p-value(0.4498)(0.6043)(0.6064)
SK3;SK60.12350.14630.1352
p-value(0.1139)(0.0609)(0.0625)
SK3;TVDC0.08420.0420.0354
p-value(0.2823)(0.5925)(0.5901)
SK4;SK50.06910.0860.0825
p-value(0.3781)(0.272)(0.2676)
SK4;SK6-0.0379-0.0327-0.031
p-value(0.6285)(0.6767)(0.6766)
SK4;TVDC0.19350.22160.1939
p-value(0.0128)(0.0042)(0.004)
SK5;SK60.13960.17440.1655
p-value(0.0736)(0.0251)(0.0262)
SK5;TVDC0.12930.18570.16
p-value(0.0978)(0.0169)(0.0176)
SK6;TVDC-0.00810.02410.0211
p-value(0.918)(0.7589)(0.7545)







Meta Analysis of Correlation Tests
Number of significant by total number of Correlations
Type I errorPearson rSpearman rhoKendall tau
0.010.140.190.19
0.020.190.240.24
0.030.190.290.29
0.040.240.290.29
0.050.240.290.29
0.060.240.290.29
0.070.240.330.33
0.080.290.330.38
0.090.290.380.38
0.10.330.380.38

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Correlation Tests \tabularnewline
Number of significant by total number of Correlations \tabularnewline
Type I error & Pearson r & Spearman rho & Kendall tau \tabularnewline
0.01 & 0.14 & 0.19 & 0.19 \tabularnewline
0.02 & 0.19 & 0.24 & 0.24 \tabularnewline
0.03 & 0.19 & 0.29 & 0.29 \tabularnewline
0.04 & 0.24 & 0.29 & 0.29 \tabularnewline
0.05 & 0.24 & 0.29 & 0.29 \tabularnewline
0.06 & 0.24 & 0.29 & 0.29 \tabularnewline
0.07 & 0.24 & 0.33 & 0.33 \tabularnewline
0.08 & 0.29 & 0.33 & 0.38 \tabularnewline
0.09 & 0.29 & 0.38 & 0.38 \tabularnewline
0.1 & 0.33 & 0.38 & 0.38 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298742&T=3

[TABLE]
[ROW][C]Meta Analysis of Correlation Tests[/C][/ROW]
[ROW][C]Number of significant by total number of Correlations[/C][/ROW]
[ROW][C]Type I error[/C][C]Pearson r[/C][C]Spearman rho[/C][C]Kendall tau[/C][/ROW]
[ROW][C]0.01[/C][C]0.14[/C][C]0.19[/C][C]0.19[/C][/ROW]
[ROW][C]0.02[/C][C]0.19[/C][C]0.24[/C][C]0.24[/C][/ROW]
[ROW][C]0.03[/C][C]0.19[/C][C]0.29[/C][C]0.29[/C][/ROW]
[ROW][C]0.04[/C][C]0.24[/C][C]0.29[/C][C]0.29[/C][/ROW]
[ROW][C]0.05[/C][C]0.24[/C][C]0.29[/C][C]0.29[/C][/ROW]
[ROW][C]0.06[/C][C]0.24[/C][C]0.29[/C][C]0.29[/C][/ROW]
[ROW][C]0.07[/C][C]0.24[/C][C]0.33[/C][C]0.33[/C][/ROW]
[ROW][C]0.08[/C][C]0.29[/C][C]0.33[/C][C]0.38[/C][/ROW]
[ROW][C]0.09[/C][C]0.29[/C][C]0.38[/C][C]0.38[/C][/ROW]
[ROW][C]0.1[/C][C]0.33[/C][C]0.38[/C][C]0.38[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298742&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298742&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Correlation Tests
Number of significant by total number of Correlations
Type I errorPearson rSpearman rhoKendall tau
0.010.140.190.19
0.020.190.240.24
0.030.190.290.29
0.040.240.290.29
0.050.240.290.29
0.060.240.290.29
0.070.240.330.33
0.080.290.330.38
0.090.290.380.38
0.10.330.380.38



Parameters (Session):
par1 = kendall ;
Parameters (R input):
par1 = kendall ;
R code (references can be found in the software module):
panel.tau <- function(x, y, digits=2, prefix='', cex.cor)
{
usr <- par('usr'); on.exit(par(usr))
par(usr = c(0, 1, 0, 1))
rr <- cor.test(x, y, method=par1)
r <- round(rr$p.value,2)
txt <- format(c(r, 0.123456789), digits=digits)[1]
txt <- paste(prefix, txt, sep='')
if(missing(cex.cor)) cex <- 0.5/strwidth(txt)
text(0.5, 0.5, txt, cex = cex)
}
panel.hist <- function(x, ...)
{
usr <- par('usr'); on.exit(par(usr))
par(usr = c(usr[1:2], 0, 1.5) )
h <- hist(x, plot = FALSE)
breaks <- h$breaks; nB <- length(breaks)
y <- h$counts; y <- y/max(y)
rect(breaks[-nB], 0, breaks[-1], y, col='grey', ...)
}
x <- na.omit(x)
y <- t(na.omit(t(y)))
bitmap(file='test1.png')
pairs(t(y),diag.panel=panel.hist, upper.panel=panel.smooth, lower.panel=panel.tau, main=main)
dev.off()
load(file='createtable')
n <- length(y[,1])
print(n)
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,paste('Correlations for all pairs of data series (method=',par1,')',sep=''),n+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,' ',header=TRUE)
for (i in 1:n) {
a<-table.element(a,dimnames(t(x))[[2]][i],header=TRUE)
}
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,dimnames(t(x))[[2]][i],header=TRUE)
for (j in 1:n) {
r <- cor.test(y[i,],y[j,],method=par1)
a<-table.element(a,round(r$estimate,3))
}
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
ncorrs <- (n*n -n)/2
mycorrs <- array(0, dim=c(10,3))
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Correlations for all pairs of data series with p-values',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'pair',1,TRUE)
a<-table.element(a,'Pearson r',1,TRUE)
a<-table.element(a,'Spearman rho',1,TRUE)
a<-table.element(a,'Kendall tau',1,TRUE)
a<-table.row.end(a)
cor.test(y[1,],y[2,],method=par1)
for (i in 1:(n-1))
{
for (j in (i+1):n)
{
a<-table.row.start(a)
dum <- paste(dimnames(t(x))[[2]][i],';',dimnames(t(x))[[2]][j],sep='')
a<-table.element(a,dum,header=TRUE)
rp <- cor.test(y[i,],y[j,],method='pearson')
a<-table.element(a,round(rp$estimate,4))
rs <- cor.test(y[i,],y[j,],method='spearman')
a<-table.element(a,round(rs$estimate,4))
rk <- cor.test(y[i,],y[j,],method='kendall')
a<-table.element(a,round(rk$estimate,4))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value',header=T)
a<-table.element(a,paste('(',round(rp$p.value,4),')',sep=''))
a<-table.element(a,paste('(',round(rs$p.value,4),')',sep=''))
a<-table.element(a,paste('(',round(rk$p.value,4),')',sep=''))
a<-table.row.end(a)
for (iii in 1:10) {
iiid100 <- iii / 100
if (rp$p.value < iiid100) mycorrs[iii, 1] = mycorrs[iii, 1] + 1
if (rs$p.value < iiid100) mycorrs[iii, 2] = mycorrs[iii, 2] + 1
if (rk$p.value < iiid100) mycorrs[iii, 3] = mycorrs[iii, 3] + 1
}
}
}
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Correlation Tests',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Number of significant by total number of Correlations',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Type I error',1,TRUE)
a<-table.element(a,'Pearson r',1,TRUE)
a<-table.element(a,'Spearman rho',1,TRUE)
a<-table.element(a,'Kendall tau',1,TRUE)
a<-table.row.end(a)
for (iii in 1:10) {
iiid100 <- iii / 100
a<-table.row.start(a)
a<-table.element(a,round(iiid100,2),header=T)
a<-table.element(a,round(mycorrs[iii,1]/ncorrs,2))
a<-table.element(a,round(mycorrs[iii,2]/ncorrs,2))
a<-table.element(a,round(mycorrs[iii,3]/ncorrs,2))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')