Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationSat, 10 Dec 2016 18:18:03 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/10/t1481390412zjjkkr8yadsq8el.htm/, Retrieved Fri, 01 Nov 2024 03:46:22 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=298734, Retrieved Fri, 01 Nov 2024 03:46:22 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact73
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Multiple Regression] [Multiple regressi...] [2016-12-10 17:18:03] [2e11ca31a00cf8de75c33c1af2d59434] [Current]
Feedback Forum

Post a new message
Dataseries X:
13	4	2	3	5	1	1
16	5	3	4	5	2	1
17	4	4	4	5	2	1
15	3	4	3	4	2	1
16	4	4	4	5	1	1
16	3	4	4	5	2	1
17	3	4	3	3	2	1
16	3	4	4	4	2	1
17	4	5	4	5	1	0
17	4	5	4	5	1	1
17	4	4	4	5	1	1
15	4	4	3	5	1	0
16	4	4	3	4	1	0
14	3	3	4	4	1	1
16	4	4	4	2	1	1
17	3	4	4	4	2	1
16	3	4	4	4	1	1
NA	5	5	5	5	2	0
15	5	5	3	4	2	1
17	4	4	4	5	2	1
16	3	4	3	4	2	1
15	4	4	4	5	1	1
16	4	4	4	4	2	1
15	4	4	4	4	2	1
17	4	4	4	4	1	1
15	3	4	4	4	1	1
16	3	4	3	5	1	0
15	4	4	4	4	1	0
16	2	4	4	5	1	1
16	5	4	4	4	1	1
13	4	3	4	4	1	1
15	4	5	4	5	2	0
17	5	4	4	4	1	1
15	4	3	4	4	1	0
13	2	3	4	5	2	1
17	4	5	4	4	1	1
15	3	4	4	4	1	1
14	4	3	3	4	2	0
14	4	3	4	4	1	0
18	4	4	4	4	1	0
15	5	4	4	4	2	0
17	4	5	4	5	2	1
13	3	3	4	4	2	0
16	5	5	3	5	2	1
15	5	4	3	4	2	0
15	4	4	3	4	2	1
16	4	4	4	4	2	1
15	3	5	3	3	2	0
13	4	4	4	5	2	1
NA	2	3	2	3	1	1
17	4	5	4	4	2	0
17	5	5	4	5	1	0
17	5	5	4	4	2	0
11	4	3	4	5	2	0
14	4	3	3	4	1	1
13	4	4	4	4	2	1
15	3	4	3	3	1	1
17	3	4	4	4	1	0
16	4	4	3	5	2	0
15	4	4	4	5	1	1
17	5	5	4	5	2	1
16	2	4	4	5	2	0
16	4	4	4	5	2	1
16	3	4	4	2	2	1
15	4	4	4	5	1	1
12	4	2	4	4	2	1
17	4	4	3	5	1	1
14	4	4	3	5	2	1
14	5	4	3	3	1	1
16	3	4	3	5	2	1
15	3	4	3	4	2	1
15	4	5	5	5	2	1
13	4	4	4	4	1	1
13	4	4	4	4	2	0
17	4	4	5	5	1	1
15	3	4	4	4	2	1
16	4	4	4	5	1	1
14	3	4	3	5	2	1
15	3	3	4	4	1	1
17	4	3	4	4	2	1
16	4	4	4	4	2	1
12	3	3	4	4	1	1
16	4	4	4	5	1	1
17	4	4	4	5	1	0
17	4	4	4	5	2	1
20	5	4	4	4	2	1
17	5	4	5	4	2	1
18	4	4	4	5	2	1
15	3	4	4	4	2	1
17	3	4	4	4	1	1
14	4	2	3	4	2	1
15	4	4	4	4	1	0
17	4	4	4	4	1	1
16	4	4	4	5	1	1
17	4	5	4	5	1	0
15	3	4	3	5	2	1
16	4	4	4	4	2	1
18	5	4	4	4	2	1
18	5	4	5	4	1	1
16	4	5	4	5	2	1
NA	3	4	4	4	2	1
17	5	3	4	5	1	1
15	4	4	4	4	1	1
13	5	4	4	4	2	1
15	3	4	3	4	2	1
17	5	4	5	5	2	1
16	4	4	3	4	2	0
16	4	4	3	4	1	1
15	4	4	4	4	1	1
16	4	4	4	4	1	1
16	3	4	4	5	2	1
13	4	4	4	4	2	1
15	4	4	3	4	2	0
12	3	3	3	5	1	1
19	4	4	3	4	1	1
16	3	4	4	4	2	1
16	4	4	4	3	1	1
17	5	4	5	5	1	1
16	5	4	4	5	2	0
14	4	4	4	4	1	0
15	4	4	3	4	1	0
14	3	4	3	4	1	1
16	4	4	4	4	2	0
15	4	4	4	5	2	1
17	4	5	4	4	2	1
15	3	4	4	4	2	1
16	4	4	3	4	2	1
16	4	4	4	4	1	1
15	3	4	3	4	1	0
15	4	4	3	4	2	0
11	3	2	2	4	2	1
16	4	4	3	5	2	0
18	5	4	3	5	1	1
13	2	4	3	3	2	0
11	3	3	4	4	1	1
16	4	4	3	4	1	1
18	5	5	4	5	1	0
NA	NA	NA	NA	NA	1	1
15	4	5	4	4	2	1
19	5	5	5	5	1	1
17	4	5	4	5	1	1
13	4	4	3	4	1	0
14	3	4	4	5	1	0
16	4	4	4	4	2	1
13	4	4	4	4	1	1
17	4	4	4	5	2	1
14	4	4	4	5	2	1
19	5	4	3	5	2	1
14	4	3	4	4	2	1
16	4	4	4	4	1	1
12	3	3	3	4	1	1
16	4	5	4	4	1	1
16	4	4	3	4	1	1
15	4	4	4	4	2	0
12	3	4	3	5	2	0
15	4	4	4	4	2	1
17	5	4	4	5	2	0
13	4	4	4	3	1	1
15	2	3	4	4	2	1
18	4	4	4	4	1	0
15	4	3	3	5	2	1
18	4	4	4	4	1	0
15	4	5	5	4	1	1
15	5	4	4	4	1	1
16	5	4	3	4	1	1
13	3	3	4	5	1	1
16	4	4	4	4	2	1
13	4	4	4	5	2	1
16	2	3	5	5	1	1




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time9 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time9 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298734&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]9 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=298734&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298734&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time9 seconds
R ServerBig Analytics Cloud Computing Center







Multiple Linear Regression - Estimated Regression Equation
TVSUM[t] = + 7.14991 + 0.494707SK1[t] + 1.13836SK2[t] + 0.314517SK4[t] + 0.190641SK5[t] -0.189145ALG4[t] + 0.255395ALG2[t] + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
TVSUM[t] =  +  7.14991 +  0.494707SK1[t] +  1.13836SK2[t] +  0.314517SK4[t] +  0.190641SK5[t] -0.189145ALG4[t] +  0.255395ALG2[t]  + e[t] \tabularnewline
 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298734&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]TVSUM[t] =  +  7.14991 +  0.494707SK1[t] +  1.13836SK2[t] +  0.314517SK4[t] +  0.190641SK5[t] -0.189145ALG4[t] +  0.255395ALG2[t]  + e[t][/C][/ROW]
[ROW][C][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298734&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298734&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
TVSUM[t] = + 7.14991 + 0.494707SK1[t] + 1.13836SK2[t] + 0.314517SK4[t] + 0.190641SK5[t] -0.189145ALG4[t] + 0.255395ALG2[t] + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)+7.15 1.253+5.7060e+00 5.555e-08 2.778e-08
SK1+0.4947 0.1582+3.1280e+00 0.002096 0.001048
SK2+1.138 0.1918+5.9350e+00 1.803e-08 9.017e-09
SK4+0.3145 0.2088+1.5060e+00 0.134 0.06702
SK5+0.1906 0.1807+1.0550e+00 0.2931 0.1466
ALG4-0.1891 0.2196-8.6120e-01 0.3904 0.1952
ALG2+0.2554 0.2534+1.0080e+00 0.3151 0.1576

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & +7.15 &  1.253 & +5.7060e+00 &  5.555e-08 &  2.778e-08 \tabularnewline
SK1 & +0.4947 &  0.1582 & +3.1280e+00 &  0.002096 &  0.001048 \tabularnewline
SK2 & +1.138 &  0.1918 & +5.9350e+00 &  1.803e-08 &  9.017e-09 \tabularnewline
SK4 & +0.3145 &  0.2088 & +1.5060e+00 &  0.134 &  0.06702 \tabularnewline
SK5 & +0.1906 &  0.1807 & +1.0550e+00 &  0.2931 &  0.1466 \tabularnewline
ALG4 & -0.1891 &  0.2196 & -8.6120e-01 &  0.3904 &  0.1952 \tabularnewline
ALG2 & +0.2554 &  0.2534 & +1.0080e+00 &  0.3151 &  0.1576 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298734&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]+7.15[/C][C] 1.253[/C][C]+5.7060e+00[/C][C] 5.555e-08[/C][C] 2.778e-08[/C][/ROW]
[ROW][C]SK1[/C][C]+0.4947[/C][C] 0.1582[/C][C]+3.1280e+00[/C][C] 0.002096[/C][C] 0.001048[/C][/ROW]
[ROW][C]SK2[/C][C]+1.138[/C][C] 0.1918[/C][C]+5.9350e+00[/C][C] 1.803e-08[/C][C] 9.017e-09[/C][/ROW]
[ROW][C]SK4[/C][C]+0.3145[/C][C] 0.2088[/C][C]+1.5060e+00[/C][C] 0.134[/C][C] 0.06702[/C][/ROW]
[ROW][C]SK5[/C][C]+0.1906[/C][C] 0.1807[/C][C]+1.0550e+00[/C][C] 0.2931[/C][C] 0.1466[/C][/ROW]
[ROW][C]ALG4[/C][C]-0.1891[/C][C] 0.2196[/C][C]-8.6120e-01[/C][C] 0.3904[/C][C] 0.1952[/C][/ROW]
[ROW][C]ALG2[/C][C]+0.2554[/C][C] 0.2534[/C][C]+1.0080e+00[/C][C] 0.3151[/C][C] 0.1576[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298734&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298734&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)+7.15 1.253+5.7060e+00 5.555e-08 2.778e-08
SK1+0.4947 0.1582+3.1280e+00 0.002096 0.001048
SK2+1.138 0.1918+5.9350e+00 1.803e-08 9.017e-09
SK4+0.3145 0.2088+1.5060e+00 0.134 0.06702
SK5+0.1906 0.1807+1.0550e+00 0.2931 0.1466
ALG4-0.1891 0.2196-8.6120e-01 0.3904 0.1952
ALG2+0.2554 0.2534+1.0080e+00 0.3151 0.1576







Multiple Linear Regression - Regression Statistics
Multiple R 0.5629
R-squared 0.3168
Adjusted R-squared 0.2909
F-TEST (value) 12.21
F-TEST (DF numerator)6
F-TEST (DF denominator)158
p-value 2.907e-11
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 1.397
Sum Squared Residuals 308.2

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R &  0.5629 \tabularnewline
R-squared &  0.3168 \tabularnewline
Adjusted R-squared &  0.2909 \tabularnewline
F-TEST (value) &  12.21 \tabularnewline
F-TEST (DF numerator) & 6 \tabularnewline
F-TEST (DF denominator) & 158 \tabularnewline
p-value &  2.907e-11 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation &  1.397 \tabularnewline
Sum Squared Residuals &  308.2 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298734&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C] 0.5629[/C][/ROW]
[ROW][C]R-squared[/C][C] 0.3168[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C] 0.2909[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C] 12.21[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]6[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]158[/C][/ROW]
[ROW][C]p-value[/C][C] 2.907e-11[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C] 1.397[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C] 308.2[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298734&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298734&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R 0.5629
R-squared 0.3168
Adjusted R-squared 0.2909
F-TEST (value) 12.21
F-TEST (DF numerator)6
F-TEST (DF denominator)158
p-value 2.907e-11
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 1.397
Sum Squared Residuals 308.2







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 13 13.37-0.3685
2 16 15.13 0.8731
3 17 15.77 1.229
4 15 14.77 0.2293
5 16 15.96 0.04028
6 16 15.28 0.7241
7 17 14.58 2.42
8 16 15.09 0.9148
9 17 16.84 0.1573
10 17 17.1-0.09808
11 17 15.96 1.04
12 15 15.39-0.3898
13 16 15.2 0.8008
14 14 14.14-0.136
15 16 15.39 0.6122
16 17 15.09 1.915
17 16 15.27 0.7256
18 15 16.9-1.898
19 17 15.77 1.229
20 16 14.77 1.229
21 15 15.96-0.9597
22 16 15.58 0.4201
23 15 15.58-0.5799
24 17 15.77 1.231
25 15 15.27-0.2744
26 16 14.9 1.105
27 15 15.51-0.5137
28 16 14.97 1.03
29 16 16.26-0.2638
30 13 14.63-1.631
31 15 16.65-1.654
32 17 16.26 0.7362
33 15 14.38 0.6247
34 13 13.64-0.6428
35 17 16.91 0.09256
36 15 15.27-0.2744
37 14 13.87 0.1283
38 14 14.38-0.3753
39 18 15.51 2.486
40 15 15.82-0.8192
41 17 16.91 0.09107
42 13 13.69-0.6915
43 16 17.09-1.089
44 15 15.5-0.5047
45 15 15.27-0.2654
46 16 15.58 0.4201
47 15 15.46-0.463
48 13 15.77-2.771
49 17 16.46 0.5371
50 17 17.34-0.3374
51 17 16.96 0.0424
52 11 14.38-3.377
53 14 14.32-0.3162
54 13 15.58-2.58
55 15 14.77 0.2308
56 17 15.02 1.981
57 16 15.2 0.7993
58 15 15.96-0.9597
59 17 17.4-0.4036
60 16 14.53 1.474
61 16 15.77 0.2294
62 16 14.7 1.296
63 15 15.96-0.9597
64 12 13.3-1.303
65 17 15.65 1.355
66 14 15.46-1.456
67 14 15.76-1.759
68 16 14.96 1.039
69 15 14.77 0.2293
70 15 17.22-2.223
71 13 15.77-2.769
72 13 15.32-2.325
73 17 16.27 0.7258
74 15 15.09-0.08522
75 16 15.96 0.04028
76 14 14.96-0.9613
77 15 14.14 0.864
78 17 14.44 2.558
79 16 15.58 0.4201
80 12 14.14-2.136
81 16 15.96 0.04028
82 17 15.7 1.296
83 17 15.77 1.229
84 20 16.07 3.925
85 17 16.39 0.6108
86 18 15.77 2.229
87 15 15.09-0.08522
88 17 15.27 1.726
89 14 12.99 1.011
90 15 15.51-0.5137
91 17 15.77 1.231
92 16 15.96 0.04028
93 17 16.84 0.1573
94 15 14.96 0.03865
95 16 15.58 0.4201
96 18 16.07 1.925
97 18 16.58 1.422
98 16 16.91-0.9089
99 17 15.32 1.684
100 15 15.77-0.7691
101 13 16.07-3.075
102 15 14.77 0.2293
103 17 16.58 0.4202
104 16 15.01 0.99
105 16 15.45 0.5454
106 15 15.77-0.7691
107 16 15.77 0.2309
108 16 15.28 0.7241
109 13 15.58-2.58
110 15 15.01-0.01002
111 12 14.01-2.012
112 19 15.45 3.545
113 16 15.09 0.9148
114 16 15.58 0.4216
115 17 16.77 0.2311
116 16 16.01-0.009883
117 14 15.51-1.514
118 15 15.2-0.1992
119 14 14.96-0.9598
120 16 15.32 0.6755
121 15 15.77-0.7706
122 17 16.72 0.2817
123 15 15.09-0.08522
124 16 15.27 0.7346
125 16 15.77 0.2309
126 15 14.7 0.2955
127 15 15.01-0.01002
128 11 12.18-1.179
129 16 15.2 0.7993
130 18 16.14 1.86
131 13 13.83-0.83
132 11 14.14-3.136
133 16 15.45 0.5454
134 18 17.34 0.6626
135 15 16.72-1.718
136 19 17.91 1.093
137 17 17.1-0.09808
138 13 15.2-2.199
139 14 15.21-1.21
140 16 15.58 0.4201
141 13 15.77-2.769
142 17 15.77 1.229
143 14 15.77-1.771
144 19 15.95 3.049
145 14 14.44-0.4416
146 16 15.77 0.2309
147 12 13.82-1.821
148 16 16.91-0.9074
149 16 15.45 0.5454
150 15 15.32-0.3245
151 12 14.71-2.706
152 15 15.58-0.5799
153 17 16.01 0.9901
154 13 15.58-2.578
155 15 13.45 1.548
156 18 15.51 2.486
157 15 14.32 0.6823
158 18 15.51 2.486
159 15 17.22-2.222
160 15 16.26-1.264
161 16 15.95 0.05074
162 13 14.33-1.327
163 16 15.58 0.4201
164 13 15.77-2.771
165 16 14.15 1.854

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 &  13 &  13.37 & -0.3685 \tabularnewline
2 &  16 &  15.13 &  0.8731 \tabularnewline
3 &  17 &  15.77 &  1.229 \tabularnewline
4 &  15 &  14.77 &  0.2293 \tabularnewline
5 &  16 &  15.96 &  0.04028 \tabularnewline
6 &  16 &  15.28 &  0.7241 \tabularnewline
7 &  17 &  14.58 &  2.42 \tabularnewline
8 &  16 &  15.09 &  0.9148 \tabularnewline
9 &  17 &  16.84 &  0.1573 \tabularnewline
10 &  17 &  17.1 & -0.09808 \tabularnewline
11 &  17 &  15.96 &  1.04 \tabularnewline
12 &  15 &  15.39 & -0.3898 \tabularnewline
13 &  16 &  15.2 &  0.8008 \tabularnewline
14 &  14 &  14.14 & -0.136 \tabularnewline
15 &  16 &  15.39 &  0.6122 \tabularnewline
16 &  17 &  15.09 &  1.915 \tabularnewline
17 &  16 &  15.27 &  0.7256 \tabularnewline
18 &  15 &  16.9 & -1.898 \tabularnewline
19 &  17 &  15.77 &  1.229 \tabularnewline
20 &  16 &  14.77 &  1.229 \tabularnewline
21 &  15 &  15.96 & -0.9597 \tabularnewline
22 &  16 &  15.58 &  0.4201 \tabularnewline
23 &  15 &  15.58 & -0.5799 \tabularnewline
24 &  17 &  15.77 &  1.231 \tabularnewline
25 &  15 &  15.27 & -0.2744 \tabularnewline
26 &  16 &  14.9 &  1.105 \tabularnewline
27 &  15 &  15.51 & -0.5137 \tabularnewline
28 &  16 &  14.97 &  1.03 \tabularnewline
29 &  16 &  16.26 & -0.2638 \tabularnewline
30 &  13 &  14.63 & -1.631 \tabularnewline
31 &  15 &  16.65 & -1.654 \tabularnewline
32 &  17 &  16.26 &  0.7362 \tabularnewline
33 &  15 &  14.38 &  0.6247 \tabularnewline
34 &  13 &  13.64 & -0.6428 \tabularnewline
35 &  17 &  16.91 &  0.09256 \tabularnewline
36 &  15 &  15.27 & -0.2744 \tabularnewline
37 &  14 &  13.87 &  0.1283 \tabularnewline
38 &  14 &  14.38 & -0.3753 \tabularnewline
39 &  18 &  15.51 &  2.486 \tabularnewline
40 &  15 &  15.82 & -0.8192 \tabularnewline
41 &  17 &  16.91 &  0.09107 \tabularnewline
42 &  13 &  13.69 & -0.6915 \tabularnewline
43 &  16 &  17.09 & -1.089 \tabularnewline
44 &  15 &  15.5 & -0.5047 \tabularnewline
45 &  15 &  15.27 & -0.2654 \tabularnewline
46 &  16 &  15.58 &  0.4201 \tabularnewline
47 &  15 &  15.46 & -0.463 \tabularnewline
48 &  13 &  15.77 & -2.771 \tabularnewline
49 &  17 &  16.46 &  0.5371 \tabularnewline
50 &  17 &  17.34 & -0.3374 \tabularnewline
51 &  17 &  16.96 &  0.0424 \tabularnewline
52 &  11 &  14.38 & -3.377 \tabularnewline
53 &  14 &  14.32 & -0.3162 \tabularnewline
54 &  13 &  15.58 & -2.58 \tabularnewline
55 &  15 &  14.77 &  0.2308 \tabularnewline
56 &  17 &  15.02 &  1.981 \tabularnewline
57 &  16 &  15.2 &  0.7993 \tabularnewline
58 &  15 &  15.96 & -0.9597 \tabularnewline
59 &  17 &  17.4 & -0.4036 \tabularnewline
60 &  16 &  14.53 &  1.474 \tabularnewline
61 &  16 &  15.77 &  0.2294 \tabularnewline
62 &  16 &  14.7 &  1.296 \tabularnewline
63 &  15 &  15.96 & -0.9597 \tabularnewline
64 &  12 &  13.3 & -1.303 \tabularnewline
65 &  17 &  15.65 &  1.355 \tabularnewline
66 &  14 &  15.46 & -1.456 \tabularnewline
67 &  14 &  15.76 & -1.759 \tabularnewline
68 &  16 &  14.96 &  1.039 \tabularnewline
69 &  15 &  14.77 &  0.2293 \tabularnewline
70 &  15 &  17.22 & -2.223 \tabularnewline
71 &  13 &  15.77 & -2.769 \tabularnewline
72 &  13 &  15.32 & -2.325 \tabularnewline
73 &  17 &  16.27 &  0.7258 \tabularnewline
74 &  15 &  15.09 & -0.08522 \tabularnewline
75 &  16 &  15.96 &  0.04028 \tabularnewline
76 &  14 &  14.96 & -0.9613 \tabularnewline
77 &  15 &  14.14 &  0.864 \tabularnewline
78 &  17 &  14.44 &  2.558 \tabularnewline
79 &  16 &  15.58 &  0.4201 \tabularnewline
80 &  12 &  14.14 & -2.136 \tabularnewline
81 &  16 &  15.96 &  0.04028 \tabularnewline
82 &  17 &  15.7 &  1.296 \tabularnewline
83 &  17 &  15.77 &  1.229 \tabularnewline
84 &  20 &  16.07 &  3.925 \tabularnewline
85 &  17 &  16.39 &  0.6108 \tabularnewline
86 &  18 &  15.77 &  2.229 \tabularnewline
87 &  15 &  15.09 & -0.08522 \tabularnewline
88 &  17 &  15.27 &  1.726 \tabularnewline
89 &  14 &  12.99 &  1.011 \tabularnewline
90 &  15 &  15.51 & -0.5137 \tabularnewline
91 &  17 &  15.77 &  1.231 \tabularnewline
92 &  16 &  15.96 &  0.04028 \tabularnewline
93 &  17 &  16.84 &  0.1573 \tabularnewline
94 &  15 &  14.96 &  0.03865 \tabularnewline
95 &  16 &  15.58 &  0.4201 \tabularnewline
96 &  18 &  16.07 &  1.925 \tabularnewline
97 &  18 &  16.58 &  1.422 \tabularnewline
98 &  16 &  16.91 & -0.9089 \tabularnewline
99 &  17 &  15.32 &  1.684 \tabularnewline
100 &  15 &  15.77 & -0.7691 \tabularnewline
101 &  13 &  16.07 & -3.075 \tabularnewline
102 &  15 &  14.77 &  0.2293 \tabularnewline
103 &  17 &  16.58 &  0.4202 \tabularnewline
104 &  16 &  15.01 &  0.99 \tabularnewline
105 &  16 &  15.45 &  0.5454 \tabularnewline
106 &  15 &  15.77 & -0.7691 \tabularnewline
107 &  16 &  15.77 &  0.2309 \tabularnewline
108 &  16 &  15.28 &  0.7241 \tabularnewline
109 &  13 &  15.58 & -2.58 \tabularnewline
110 &  15 &  15.01 & -0.01002 \tabularnewline
111 &  12 &  14.01 & -2.012 \tabularnewline
112 &  19 &  15.45 &  3.545 \tabularnewline
113 &  16 &  15.09 &  0.9148 \tabularnewline
114 &  16 &  15.58 &  0.4216 \tabularnewline
115 &  17 &  16.77 &  0.2311 \tabularnewline
116 &  16 &  16.01 & -0.009883 \tabularnewline
117 &  14 &  15.51 & -1.514 \tabularnewline
118 &  15 &  15.2 & -0.1992 \tabularnewline
119 &  14 &  14.96 & -0.9598 \tabularnewline
120 &  16 &  15.32 &  0.6755 \tabularnewline
121 &  15 &  15.77 & -0.7706 \tabularnewline
122 &  17 &  16.72 &  0.2817 \tabularnewline
123 &  15 &  15.09 & -0.08522 \tabularnewline
124 &  16 &  15.27 &  0.7346 \tabularnewline
125 &  16 &  15.77 &  0.2309 \tabularnewline
126 &  15 &  14.7 &  0.2955 \tabularnewline
127 &  15 &  15.01 & -0.01002 \tabularnewline
128 &  11 &  12.18 & -1.179 \tabularnewline
129 &  16 &  15.2 &  0.7993 \tabularnewline
130 &  18 &  16.14 &  1.86 \tabularnewline
131 &  13 &  13.83 & -0.83 \tabularnewline
132 &  11 &  14.14 & -3.136 \tabularnewline
133 &  16 &  15.45 &  0.5454 \tabularnewline
134 &  18 &  17.34 &  0.6626 \tabularnewline
135 &  15 &  16.72 & -1.718 \tabularnewline
136 &  19 &  17.91 &  1.093 \tabularnewline
137 &  17 &  17.1 & -0.09808 \tabularnewline
138 &  13 &  15.2 & -2.199 \tabularnewline
139 &  14 &  15.21 & -1.21 \tabularnewline
140 &  16 &  15.58 &  0.4201 \tabularnewline
141 &  13 &  15.77 & -2.769 \tabularnewline
142 &  17 &  15.77 &  1.229 \tabularnewline
143 &  14 &  15.77 & -1.771 \tabularnewline
144 &  19 &  15.95 &  3.049 \tabularnewline
145 &  14 &  14.44 & -0.4416 \tabularnewline
146 &  16 &  15.77 &  0.2309 \tabularnewline
147 &  12 &  13.82 & -1.821 \tabularnewline
148 &  16 &  16.91 & -0.9074 \tabularnewline
149 &  16 &  15.45 &  0.5454 \tabularnewline
150 &  15 &  15.32 & -0.3245 \tabularnewline
151 &  12 &  14.71 & -2.706 \tabularnewline
152 &  15 &  15.58 & -0.5799 \tabularnewline
153 &  17 &  16.01 &  0.9901 \tabularnewline
154 &  13 &  15.58 & -2.578 \tabularnewline
155 &  15 &  13.45 &  1.548 \tabularnewline
156 &  18 &  15.51 &  2.486 \tabularnewline
157 &  15 &  14.32 &  0.6823 \tabularnewline
158 &  18 &  15.51 &  2.486 \tabularnewline
159 &  15 &  17.22 & -2.222 \tabularnewline
160 &  15 &  16.26 & -1.264 \tabularnewline
161 &  16 &  15.95 &  0.05074 \tabularnewline
162 &  13 &  14.33 & -1.327 \tabularnewline
163 &  16 &  15.58 &  0.4201 \tabularnewline
164 &  13 &  15.77 & -2.771 \tabularnewline
165 &  16 &  14.15 &  1.854 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298734&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C] 13[/C][C] 13.37[/C][C]-0.3685[/C][/ROW]
[ROW][C]2[/C][C] 16[/C][C] 15.13[/C][C] 0.8731[/C][/ROW]
[ROW][C]3[/C][C] 17[/C][C] 15.77[/C][C] 1.229[/C][/ROW]
[ROW][C]4[/C][C] 15[/C][C] 14.77[/C][C] 0.2293[/C][/ROW]
[ROW][C]5[/C][C] 16[/C][C] 15.96[/C][C] 0.04028[/C][/ROW]
[ROW][C]6[/C][C] 16[/C][C] 15.28[/C][C] 0.7241[/C][/ROW]
[ROW][C]7[/C][C] 17[/C][C] 14.58[/C][C] 2.42[/C][/ROW]
[ROW][C]8[/C][C] 16[/C][C] 15.09[/C][C] 0.9148[/C][/ROW]
[ROW][C]9[/C][C] 17[/C][C] 16.84[/C][C] 0.1573[/C][/ROW]
[ROW][C]10[/C][C] 17[/C][C] 17.1[/C][C]-0.09808[/C][/ROW]
[ROW][C]11[/C][C] 17[/C][C] 15.96[/C][C] 1.04[/C][/ROW]
[ROW][C]12[/C][C] 15[/C][C] 15.39[/C][C]-0.3898[/C][/ROW]
[ROW][C]13[/C][C] 16[/C][C] 15.2[/C][C] 0.8008[/C][/ROW]
[ROW][C]14[/C][C] 14[/C][C] 14.14[/C][C]-0.136[/C][/ROW]
[ROW][C]15[/C][C] 16[/C][C] 15.39[/C][C] 0.6122[/C][/ROW]
[ROW][C]16[/C][C] 17[/C][C] 15.09[/C][C] 1.915[/C][/ROW]
[ROW][C]17[/C][C] 16[/C][C] 15.27[/C][C] 0.7256[/C][/ROW]
[ROW][C]18[/C][C] 15[/C][C] 16.9[/C][C]-1.898[/C][/ROW]
[ROW][C]19[/C][C] 17[/C][C] 15.77[/C][C] 1.229[/C][/ROW]
[ROW][C]20[/C][C] 16[/C][C] 14.77[/C][C] 1.229[/C][/ROW]
[ROW][C]21[/C][C] 15[/C][C] 15.96[/C][C]-0.9597[/C][/ROW]
[ROW][C]22[/C][C] 16[/C][C] 15.58[/C][C] 0.4201[/C][/ROW]
[ROW][C]23[/C][C] 15[/C][C] 15.58[/C][C]-0.5799[/C][/ROW]
[ROW][C]24[/C][C] 17[/C][C] 15.77[/C][C] 1.231[/C][/ROW]
[ROW][C]25[/C][C] 15[/C][C] 15.27[/C][C]-0.2744[/C][/ROW]
[ROW][C]26[/C][C] 16[/C][C] 14.9[/C][C] 1.105[/C][/ROW]
[ROW][C]27[/C][C] 15[/C][C] 15.51[/C][C]-0.5137[/C][/ROW]
[ROW][C]28[/C][C] 16[/C][C] 14.97[/C][C] 1.03[/C][/ROW]
[ROW][C]29[/C][C] 16[/C][C] 16.26[/C][C]-0.2638[/C][/ROW]
[ROW][C]30[/C][C] 13[/C][C] 14.63[/C][C]-1.631[/C][/ROW]
[ROW][C]31[/C][C] 15[/C][C] 16.65[/C][C]-1.654[/C][/ROW]
[ROW][C]32[/C][C] 17[/C][C] 16.26[/C][C] 0.7362[/C][/ROW]
[ROW][C]33[/C][C] 15[/C][C] 14.38[/C][C] 0.6247[/C][/ROW]
[ROW][C]34[/C][C] 13[/C][C] 13.64[/C][C]-0.6428[/C][/ROW]
[ROW][C]35[/C][C] 17[/C][C] 16.91[/C][C] 0.09256[/C][/ROW]
[ROW][C]36[/C][C] 15[/C][C] 15.27[/C][C]-0.2744[/C][/ROW]
[ROW][C]37[/C][C] 14[/C][C] 13.87[/C][C] 0.1283[/C][/ROW]
[ROW][C]38[/C][C] 14[/C][C] 14.38[/C][C]-0.3753[/C][/ROW]
[ROW][C]39[/C][C] 18[/C][C] 15.51[/C][C] 2.486[/C][/ROW]
[ROW][C]40[/C][C] 15[/C][C] 15.82[/C][C]-0.8192[/C][/ROW]
[ROW][C]41[/C][C] 17[/C][C] 16.91[/C][C] 0.09107[/C][/ROW]
[ROW][C]42[/C][C] 13[/C][C] 13.69[/C][C]-0.6915[/C][/ROW]
[ROW][C]43[/C][C] 16[/C][C] 17.09[/C][C]-1.089[/C][/ROW]
[ROW][C]44[/C][C] 15[/C][C] 15.5[/C][C]-0.5047[/C][/ROW]
[ROW][C]45[/C][C] 15[/C][C] 15.27[/C][C]-0.2654[/C][/ROW]
[ROW][C]46[/C][C] 16[/C][C] 15.58[/C][C] 0.4201[/C][/ROW]
[ROW][C]47[/C][C] 15[/C][C] 15.46[/C][C]-0.463[/C][/ROW]
[ROW][C]48[/C][C] 13[/C][C] 15.77[/C][C]-2.771[/C][/ROW]
[ROW][C]49[/C][C] 17[/C][C] 16.46[/C][C] 0.5371[/C][/ROW]
[ROW][C]50[/C][C] 17[/C][C] 17.34[/C][C]-0.3374[/C][/ROW]
[ROW][C]51[/C][C] 17[/C][C] 16.96[/C][C] 0.0424[/C][/ROW]
[ROW][C]52[/C][C] 11[/C][C] 14.38[/C][C]-3.377[/C][/ROW]
[ROW][C]53[/C][C] 14[/C][C] 14.32[/C][C]-0.3162[/C][/ROW]
[ROW][C]54[/C][C] 13[/C][C] 15.58[/C][C]-2.58[/C][/ROW]
[ROW][C]55[/C][C] 15[/C][C] 14.77[/C][C] 0.2308[/C][/ROW]
[ROW][C]56[/C][C] 17[/C][C] 15.02[/C][C] 1.981[/C][/ROW]
[ROW][C]57[/C][C] 16[/C][C] 15.2[/C][C] 0.7993[/C][/ROW]
[ROW][C]58[/C][C] 15[/C][C] 15.96[/C][C]-0.9597[/C][/ROW]
[ROW][C]59[/C][C] 17[/C][C] 17.4[/C][C]-0.4036[/C][/ROW]
[ROW][C]60[/C][C] 16[/C][C] 14.53[/C][C] 1.474[/C][/ROW]
[ROW][C]61[/C][C] 16[/C][C] 15.77[/C][C] 0.2294[/C][/ROW]
[ROW][C]62[/C][C] 16[/C][C] 14.7[/C][C] 1.296[/C][/ROW]
[ROW][C]63[/C][C] 15[/C][C] 15.96[/C][C]-0.9597[/C][/ROW]
[ROW][C]64[/C][C] 12[/C][C] 13.3[/C][C]-1.303[/C][/ROW]
[ROW][C]65[/C][C] 17[/C][C] 15.65[/C][C] 1.355[/C][/ROW]
[ROW][C]66[/C][C] 14[/C][C] 15.46[/C][C]-1.456[/C][/ROW]
[ROW][C]67[/C][C] 14[/C][C] 15.76[/C][C]-1.759[/C][/ROW]
[ROW][C]68[/C][C] 16[/C][C] 14.96[/C][C] 1.039[/C][/ROW]
[ROW][C]69[/C][C] 15[/C][C] 14.77[/C][C] 0.2293[/C][/ROW]
[ROW][C]70[/C][C] 15[/C][C] 17.22[/C][C]-2.223[/C][/ROW]
[ROW][C]71[/C][C] 13[/C][C] 15.77[/C][C]-2.769[/C][/ROW]
[ROW][C]72[/C][C] 13[/C][C] 15.32[/C][C]-2.325[/C][/ROW]
[ROW][C]73[/C][C] 17[/C][C] 16.27[/C][C] 0.7258[/C][/ROW]
[ROW][C]74[/C][C] 15[/C][C] 15.09[/C][C]-0.08522[/C][/ROW]
[ROW][C]75[/C][C] 16[/C][C] 15.96[/C][C] 0.04028[/C][/ROW]
[ROW][C]76[/C][C] 14[/C][C] 14.96[/C][C]-0.9613[/C][/ROW]
[ROW][C]77[/C][C] 15[/C][C] 14.14[/C][C] 0.864[/C][/ROW]
[ROW][C]78[/C][C] 17[/C][C] 14.44[/C][C] 2.558[/C][/ROW]
[ROW][C]79[/C][C] 16[/C][C] 15.58[/C][C] 0.4201[/C][/ROW]
[ROW][C]80[/C][C] 12[/C][C] 14.14[/C][C]-2.136[/C][/ROW]
[ROW][C]81[/C][C] 16[/C][C] 15.96[/C][C] 0.04028[/C][/ROW]
[ROW][C]82[/C][C] 17[/C][C] 15.7[/C][C] 1.296[/C][/ROW]
[ROW][C]83[/C][C] 17[/C][C] 15.77[/C][C] 1.229[/C][/ROW]
[ROW][C]84[/C][C] 20[/C][C] 16.07[/C][C] 3.925[/C][/ROW]
[ROW][C]85[/C][C] 17[/C][C] 16.39[/C][C] 0.6108[/C][/ROW]
[ROW][C]86[/C][C] 18[/C][C] 15.77[/C][C] 2.229[/C][/ROW]
[ROW][C]87[/C][C] 15[/C][C] 15.09[/C][C]-0.08522[/C][/ROW]
[ROW][C]88[/C][C] 17[/C][C] 15.27[/C][C] 1.726[/C][/ROW]
[ROW][C]89[/C][C] 14[/C][C] 12.99[/C][C] 1.011[/C][/ROW]
[ROW][C]90[/C][C] 15[/C][C] 15.51[/C][C]-0.5137[/C][/ROW]
[ROW][C]91[/C][C] 17[/C][C] 15.77[/C][C] 1.231[/C][/ROW]
[ROW][C]92[/C][C] 16[/C][C] 15.96[/C][C] 0.04028[/C][/ROW]
[ROW][C]93[/C][C] 17[/C][C] 16.84[/C][C] 0.1573[/C][/ROW]
[ROW][C]94[/C][C] 15[/C][C] 14.96[/C][C] 0.03865[/C][/ROW]
[ROW][C]95[/C][C] 16[/C][C] 15.58[/C][C] 0.4201[/C][/ROW]
[ROW][C]96[/C][C] 18[/C][C] 16.07[/C][C] 1.925[/C][/ROW]
[ROW][C]97[/C][C] 18[/C][C] 16.58[/C][C] 1.422[/C][/ROW]
[ROW][C]98[/C][C] 16[/C][C] 16.91[/C][C]-0.9089[/C][/ROW]
[ROW][C]99[/C][C] 17[/C][C] 15.32[/C][C] 1.684[/C][/ROW]
[ROW][C]100[/C][C] 15[/C][C] 15.77[/C][C]-0.7691[/C][/ROW]
[ROW][C]101[/C][C] 13[/C][C] 16.07[/C][C]-3.075[/C][/ROW]
[ROW][C]102[/C][C] 15[/C][C] 14.77[/C][C] 0.2293[/C][/ROW]
[ROW][C]103[/C][C] 17[/C][C] 16.58[/C][C] 0.4202[/C][/ROW]
[ROW][C]104[/C][C] 16[/C][C] 15.01[/C][C] 0.99[/C][/ROW]
[ROW][C]105[/C][C] 16[/C][C] 15.45[/C][C] 0.5454[/C][/ROW]
[ROW][C]106[/C][C] 15[/C][C] 15.77[/C][C]-0.7691[/C][/ROW]
[ROW][C]107[/C][C] 16[/C][C] 15.77[/C][C] 0.2309[/C][/ROW]
[ROW][C]108[/C][C] 16[/C][C] 15.28[/C][C] 0.7241[/C][/ROW]
[ROW][C]109[/C][C] 13[/C][C] 15.58[/C][C]-2.58[/C][/ROW]
[ROW][C]110[/C][C] 15[/C][C] 15.01[/C][C]-0.01002[/C][/ROW]
[ROW][C]111[/C][C] 12[/C][C] 14.01[/C][C]-2.012[/C][/ROW]
[ROW][C]112[/C][C] 19[/C][C] 15.45[/C][C] 3.545[/C][/ROW]
[ROW][C]113[/C][C] 16[/C][C] 15.09[/C][C] 0.9148[/C][/ROW]
[ROW][C]114[/C][C] 16[/C][C] 15.58[/C][C] 0.4216[/C][/ROW]
[ROW][C]115[/C][C] 17[/C][C] 16.77[/C][C] 0.2311[/C][/ROW]
[ROW][C]116[/C][C] 16[/C][C] 16.01[/C][C]-0.009883[/C][/ROW]
[ROW][C]117[/C][C] 14[/C][C] 15.51[/C][C]-1.514[/C][/ROW]
[ROW][C]118[/C][C] 15[/C][C] 15.2[/C][C]-0.1992[/C][/ROW]
[ROW][C]119[/C][C] 14[/C][C] 14.96[/C][C]-0.9598[/C][/ROW]
[ROW][C]120[/C][C] 16[/C][C] 15.32[/C][C] 0.6755[/C][/ROW]
[ROW][C]121[/C][C] 15[/C][C] 15.77[/C][C]-0.7706[/C][/ROW]
[ROW][C]122[/C][C] 17[/C][C] 16.72[/C][C] 0.2817[/C][/ROW]
[ROW][C]123[/C][C] 15[/C][C] 15.09[/C][C]-0.08522[/C][/ROW]
[ROW][C]124[/C][C] 16[/C][C] 15.27[/C][C] 0.7346[/C][/ROW]
[ROW][C]125[/C][C] 16[/C][C] 15.77[/C][C] 0.2309[/C][/ROW]
[ROW][C]126[/C][C] 15[/C][C] 14.7[/C][C] 0.2955[/C][/ROW]
[ROW][C]127[/C][C] 15[/C][C] 15.01[/C][C]-0.01002[/C][/ROW]
[ROW][C]128[/C][C] 11[/C][C] 12.18[/C][C]-1.179[/C][/ROW]
[ROW][C]129[/C][C] 16[/C][C] 15.2[/C][C] 0.7993[/C][/ROW]
[ROW][C]130[/C][C] 18[/C][C] 16.14[/C][C] 1.86[/C][/ROW]
[ROW][C]131[/C][C] 13[/C][C] 13.83[/C][C]-0.83[/C][/ROW]
[ROW][C]132[/C][C] 11[/C][C] 14.14[/C][C]-3.136[/C][/ROW]
[ROW][C]133[/C][C] 16[/C][C] 15.45[/C][C] 0.5454[/C][/ROW]
[ROW][C]134[/C][C] 18[/C][C] 17.34[/C][C] 0.6626[/C][/ROW]
[ROW][C]135[/C][C] 15[/C][C] 16.72[/C][C]-1.718[/C][/ROW]
[ROW][C]136[/C][C] 19[/C][C] 17.91[/C][C] 1.093[/C][/ROW]
[ROW][C]137[/C][C] 17[/C][C] 17.1[/C][C]-0.09808[/C][/ROW]
[ROW][C]138[/C][C] 13[/C][C] 15.2[/C][C]-2.199[/C][/ROW]
[ROW][C]139[/C][C] 14[/C][C] 15.21[/C][C]-1.21[/C][/ROW]
[ROW][C]140[/C][C] 16[/C][C] 15.58[/C][C] 0.4201[/C][/ROW]
[ROW][C]141[/C][C] 13[/C][C] 15.77[/C][C]-2.769[/C][/ROW]
[ROW][C]142[/C][C] 17[/C][C] 15.77[/C][C] 1.229[/C][/ROW]
[ROW][C]143[/C][C] 14[/C][C] 15.77[/C][C]-1.771[/C][/ROW]
[ROW][C]144[/C][C] 19[/C][C] 15.95[/C][C] 3.049[/C][/ROW]
[ROW][C]145[/C][C] 14[/C][C] 14.44[/C][C]-0.4416[/C][/ROW]
[ROW][C]146[/C][C] 16[/C][C] 15.77[/C][C] 0.2309[/C][/ROW]
[ROW][C]147[/C][C] 12[/C][C] 13.82[/C][C]-1.821[/C][/ROW]
[ROW][C]148[/C][C] 16[/C][C] 16.91[/C][C]-0.9074[/C][/ROW]
[ROW][C]149[/C][C] 16[/C][C] 15.45[/C][C] 0.5454[/C][/ROW]
[ROW][C]150[/C][C] 15[/C][C] 15.32[/C][C]-0.3245[/C][/ROW]
[ROW][C]151[/C][C] 12[/C][C] 14.71[/C][C]-2.706[/C][/ROW]
[ROW][C]152[/C][C] 15[/C][C] 15.58[/C][C]-0.5799[/C][/ROW]
[ROW][C]153[/C][C] 17[/C][C] 16.01[/C][C] 0.9901[/C][/ROW]
[ROW][C]154[/C][C] 13[/C][C] 15.58[/C][C]-2.578[/C][/ROW]
[ROW][C]155[/C][C] 15[/C][C] 13.45[/C][C] 1.548[/C][/ROW]
[ROW][C]156[/C][C] 18[/C][C] 15.51[/C][C] 2.486[/C][/ROW]
[ROW][C]157[/C][C] 15[/C][C] 14.32[/C][C] 0.6823[/C][/ROW]
[ROW][C]158[/C][C] 18[/C][C] 15.51[/C][C] 2.486[/C][/ROW]
[ROW][C]159[/C][C] 15[/C][C] 17.22[/C][C]-2.222[/C][/ROW]
[ROW][C]160[/C][C] 15[/C][C] 16.26[/C][C]-1.264[/C][/ROW]
[ROW][C]161[/C][C] 16[/C][C] 15.95[/C][C] 0.05074[/C][/ROW]
[ROW][C]162[/C][C] 13[/C][C] 14.33[/C][C]-1.327[/C][/ROW]
[ROW][C]163[/C][C] 16[/C][C] 15.58[/C][C] 0.4201[/C][/ROW]
[ROW][C]164[/C][C] 13[/C][C] 15.77[/C][C]-2.771[/C][/ROW]
[ROW][C]165[/C][C] 16[/C][C] 14.15[/C][C] 1.854[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298734&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298734&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 13 13.37-0.3685
2 16 15.13 0.8731
3 17 15.77 1.229
4 15 14.77 0.2293
5 16 15.96 0.04028
6 16 15.28 0.7241
7 17 14.58 2.42
8 16 15.09 0.9148
9 17 16.84 0.1573
10 17 17.1-0.09808
11 17 15.96 1.04
12 15 15.39-0.3898
13 16 15.2 0.8008
14 14 14.14-0.136
15 16 15.39 0.6122
16 17 15.09 1.915
17 16 15.27 0.7256
18 15 16.9-1.898
19 17 15.77 1.229
20 16 14.77 1.229
21 15 15.96-0.9597
22 16 15.58 0.4201
23 15 15.58-0.5799
24 17 15.77 1.231
25 15 15.27-0.2744
26 16 14.9 1.105
27 15 15.51-0.5137
28 16 14.97 1.03
29 16 16.26-0.2638
30 13 14.63-1.631
31 15 16.65-1.654
32 17 16.26 0.7362
33 15 14.38 0.6247
34 13 13.64-0.6428
35 17 16.91 0.09256
36 15 15.27-0.2744
37 14 13.87 0.1283
38 14 14.38-0.3753
39 18 15.51 2.486
40 15 15.82-0.8192
41 17 16.91 0.09107
42 13 13.69-0.6915
43 16 17.09-1.089
44 15 15.5-0.5047
45 15 15.27-0.2654
46 16 15.58 0.4201
47 15 15.46-0.463
48 13 15.77-2.771
49 17 16.46 0.5371
50 17 17.34-0.3374
51 17 16.96 0.0424
52 11 14.38-3.377
53 14 14.32-0.3162
54 13 15.58-2.58
55 15 14.77 0.2308
56 17 15.02 1.981
57 16 15.2 0.7993
58 15 15.96-0.9597
59 17 17.4-0.4036
60 16 14.53 1.474
61 16 15.77 0.2294
62 16 14.7 1.296
63 15 15.96-0.9597
64 12 13.3-1.303
65 17 15.65 1.355
66 14 15.46-1.456
67 14 15.76-1.759
68 16 14.96 1.039
69 15 14.77 0.2293
70 15 17.22-2.223
71 13 15.77-2.769
72 13 15.32-2.325
73 17 16.27 0.7258
74 15 15.09-0.08522
75 16 15.96 0.04028
76 14 14.96-0.9613
77 15 14.14 0.864
78 17 14.44 2.558
79 16 15.58 0.4201
80 12 14.14-2.136
81 16 15.96 0.04028
82 17 15.7 1.296
83 17 15.77 1.229
84 20 16.07 3.925
85 17 16.39 0.6108
86 18 15.77 2.229
87 15 15.09-0.08522
88 17 15.27 1.726
89 14 12.99 1.011
90 15 15.51-0.5137
91 17 15.77 1.231
92 16 15.96 0.04028
93 17 16.84 0.1573
94 15 14.96 0.03865
95 16 15.58 0.4201
96 18 16.07 1.925
97 18 16.58 1.422
98 16 16.91-0.9089
99 17 15.32 1.684
100 15 15.77-0.7691
101 13 16.07-3.075
102 15 14.77 0.2293
103 17 16.58 0.4202
104 16 15.01 0.99
105 16 15.45 0.5454
106 15 15.77-0.7691
107 16 15.77 0.2309
108 16 15.28 0.7241
109 13 15.58-2.58
110 15 15.01-0.01002
111 12 14.01-2.012
112 19 15.45 3.545
113 16 15.09 0.9148
114 16 15.58 0.4216
115 17 16.77 0.2311
116 16 16.01-0.009883
117 14 15.51-1.514
118 15 15.2-0.1992
119 14 14.96-0.9598
120 16 15.32 0.6755
121 15 15.77-0.7706
122 17 16.72 0.2817
123 15 15.09-0.08522
124 16 15.27 0.7346
125 16 15.77 0.2309
126 15 14.7 0.2955
127 15 15.01-0.01002
128 11 12.18-1.179
129 16 15.2 0.7993
130 18 16.14 1.86
131 13 13.83-0.83
132 11 14.14-3.136
133 16 15.45 0.5454
134 18 17.34 0.6626
135 15 16.72-1.718
136 19 17.91 1.093
137 17 17.1-0.09808
138 13 15.2-2.199
139 14 15.21-1.21
140 16 15.58 0.4201
141 13 15.77-2.769
142 17 15.77 1.229
143 14 15.77-1.771
144 19 15.95 3.049
145 14 14.44-0.4416
146 16 15.77 0.2309
147 12 13.82-1.821
148 16 16.91-0.9074
149 16 15.45 0.5454
150 15 15.32-0.3245
151 12 14.71-2.706
152 15 15.58-0.5799
153 17 16.01 0.9901
154 13 15.58-2.578
155 15 13.45 1.548
156 18 15.51 2.486
157 15 14.32 0.6823
158 18 15.51 2.486
159 15 17.22-2.222
160 15 16.26-1.264
161 16 15.95 0.05074
162 13 14.33-1.327
163 16 15.58 0.4201
164 13 15.77-2.771
165 16 14.15 1.854







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
10 0.1218 0.2436 0.8782
11 0.0955 0.191 0.9045
12 0.04047 0.08095 0.9595
13 0.01603 0.03205 0.984
14 0.01111 0.02223 0.9889
15 0.01165 0.02331 0.9883
16 0.008816 0.01763 0.9912
17 0.004503 0.009006 0.9955
18 0.03369 0.06738 0.9663
19 0.02119 0.04238 0.9788
20 0.01337 0.02674 0.9866
21 0.01043 0.02086 0.9896
22 0.006782 0.01356 0.9932
23 0.01025 0.02049 0.9898
24 0.01063 0.02126 0.9894
25 0.009207 0.01841 0.9908
26 0.005871 0.01174 0.9941
27 0.005946 0.01189 0.9941
28 0.003556 0.007112 0.9964
29 0.002071 0.004142 0.9979
30 0.004592 0.009185 0.9954
31 0.01246 0.02492 0.9875
32 0.01251 0.02502 0.9875
33 0.008712 0.01742 0.9913
34 0.0138 0.02759 0.9862
35 0.00901 0.01802 0.991
36 0.006883 0.01377 0.9931
37 0.004411 0.008822 0.9956
38 0.00286 0.005721 0.9971
39 0.01009 0.02018 0.9899
40 0.008102 0.01621 0.9919
41 0.005318 0.01064 0.9947
42 0.004879 0.009757 0.9951
43 0.004057 0.008114 0.9959
44 0.002696 0.005393 0.9973
45 0.001818 0.003637 0.9982
46 0.001164 0.002328 0.9988
47 0.000965 0.00193 0.999
48 0.005021 0.01004 0.995
49 0.003665 0.007331 0.9963
50 0.002446 0.004892 0.9976
51 0.001641 0.003282 0.9984
52 0.01002 0.02003 0.99
53 0.007379 0.01476 0.9926
54 0.01957 0.03915 0.9804
55 0.01612 0.03223 0.9839
56 0.01951 0.03902 0.9805
57 0.01785 0.03571 0.9821
58 0.01522 0.03043 0.9848
59 0.01136 0.02273 0.9886
60 0.01089 0.02178 0.9891
61 0.008234 0.01647 0.9918
62 0.007564 0.01513 0.9924
63 0.006376 0.01275 0.9936
64 0.0057 0.0114 0.9943
65 0.005803 0.01161 0.9942
66 0.005998 0.012 0.994
67 0.007662 0.01532 0.9923
68 0.006522 0.01304 0.9935
69 0.004778 0.009556 0.9952
70 0.007629 0.01526 0.9924
71 0.02167 0.04334 0.9783
72 0.03554 0.07109 0.9645
73 0.03186 0.06372 0.9681
74 0.02468 0.04936 0.9753
75 0.01868 0.03736 0.9813
76 0.01703 0.03405 0.983
77 0.01421 0.02842 0.9858
78 0.03672 0.07344 0.9633
79 0.02968 0.05935 0.9703
80 0.04706 0.09411 0.9529
81 0.03689 0.07378 0.9631
82 0.03606 0.07212 0.9639
83 0.03647 0.07293 0.9635
84 0.1856 0.3713 0.8144
85 0.1642 0.3283 0.8358
86 0.2129 0.4257 0.7871
87 0.1841 0.3681 0.8159
88 0.2083 0.4166 0.7917
89 0.192 0.384 0.808
90 0.1658 0.3315 0.8342
91 0.1614 0.3229 0.8386
92 0.1347 0.2693 0.8653
93 0.1114 0.2228 0.8886
94 0.09154 0.1831 0.9085
95 0.07608 0.1522 0.9239
96 0.09277 0.1855 0.9072
97 0.09439 0.1888 0.9056
98 0.08339 0.1668 0.9166
99 0.09043 0.1809 0.9096
100 0.07754 0.1551 0.9225
101 0.1602 0.3204 0.8398
102 0.1358 0.2716 0.8642
103 0.1135 0.2269 0.8865
104 0.102 0.204 0.898
105 0.08587 0.1717 0.9141
106 0.07271 0.1454 0.9273
107 0.05882 0.1176 0.9412
108 0.05077 0.1015 0.9492
109 0.08289 0.1658 0.9171
110 0.06589 0.1318 0.9341
111 0.07873 0.1575 0.9213
112 0.2371 0.4743 0.7629
113 0.2309 0.4619 0.7691
114 0.2135 0.427 0.7865
115 0.1794 0.3588 0.8206
116 0.1571 0.3142 0.8429
117 0.161 0.322 0.839
118 0.1321 0.2642 0.8679
119 0.1131 0.2262 0.8869
120 0.09329 0.1866 0.9067
121 0.07999 0.16 0.92
122 0.0665 0.133 0.9335
123 0.05448 0.109 0.9455
124 0.04904 0.09808 0.951
125 0.039 0.078 0.961
126 0.03191 0.06382 0.9681
127 0.02332 0.04664 0.9767
128 0.01925 0.0385 0.9808
129 0.01448 0.02895 0.9855
130 0.01629 0.03258 0.9837
131 0.01381 0.02762 0.9862
132 0.03529 0.07058 0.9647
133 0.03315 0.0663 0.9668
134 0.02443 0.04885 0.9756
135 0.01978 0.03957 0.9802
136 0.01569 0.03138 0.9843
137 0.01322 0.02644 0.9868
138 0.01698 0.03397 0.983
139 0.0144 0.0288 0.9856
140 0.01097 0.02195 0.989
141 0.01956 0.03912 0.9804
142 0.02027 0.04055 0.9797
143 0.01803 0.03606 0.982
144 0.1148 0.2296 0.8852
145 0.09345 0.1869 0.9065
146 0.0691 0.1382 0.9309
147 0.09835 0.1967 0.9016
148 0.1035 0.207 0.8965
149 0.1419 0.2837 0.8581
150 0.162 0.324 0.838
151 0.3419 0.6839 0.6581
152 0.2488 0.4976 0.7512
153 0.1773 0.3547 0.8227
154 0.4269 0.8538 0.5731
155 0.5361 0.9278 0.4639

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
10 &  0.1218 &  0.2436 &  0.8782 \tabularnewline
11 &  0.0955 &  0.191 &  0.9045 \tabularnewline
12 &  0.04047 &  0.08095 &  0.9595 \tabularnewline
13 &  0.01603 &  0.03205 &  0.984 \tabularnewline
14 &  0.01111 &  0.02223 &  0.9889 \tabularnewline
15 &  0.01165 &  0.02331 &  0.9883 \tabularnewline
16 &  0.008816 &  0.01763 &  0.9912 \tabularnewline
17 &  0.004503 &  0.009006 &  0.9955 \tabularnewline
18 &  0.03369 &  0.06738 &  0.9663 \tabularnewline
19 &  0.02119 &  0.04238 &  0.9788 \tabularnewline
20 &  0.01337 &  0.02674 &  0.9866 \tabularnewline
21 &  0.01043 &  0.02086 &  0.9896 \tabularnewline
22 &  0.006782 &  0.01356 &  0.9932 \tabularnewline
23 &  0.01025 &  0.02049 &  0.9898 \tabularnewline
24 &  0.01063 &  0.02126 &  0.9894 \tabularnewline
25 &  0.009207 &  0.01841 &  0.9908 \tabularnewline
26 &  0.005871 &  0.01174 &  0.9941 \tabularnewline
27 &  0.005946 &  0.01189 &  0.9941 \tabularnewline
28 &  0.003556 &  0.007112 &  0.9964 \tabularnewline
29 &  0.002071 &  0.004142 &  0.9979 \tabularnewline
30 &  0.004592 &  0.009185 &  0.9954 \tabularnewline
31 &  0.01246 &  0.02492 &  0.9875 \tabularnewline
32 &  0.01251 &  0.02502 &  0.9875 \tabularnewline
33 &  0.008712 &  0.01742 &  0.9913 \tabularnewline
34 &  0.0138 &  0.02759 &  0.9862 \tabularnewline
35 &  0.00901 &  0.01802 &  0.991 \tabularnewline
36 &  0.006883 &  0.01377 &  0.9931 \tabularnewline
37 &  0.004411 &  0.008822 &  0.9956 \tabularnewline
38 &  0.00286 &  0.005721 &  0.9971 \tabularnewline
39 &  0.01009 &  0.02018 &  0.9899 \tabularnewline
40 &  0.008102 &  0.01621 &  0.9919 \tabularnewline
41 &  0.005318 &  0.01064 &  0.9947 \tabularnewline
42 &  0.004879 &  0.009757 &  0.9951 \tabularnewline
43 &  0.004057 &  0.008114 &  0.9959 \tabularnewline
44 &  0.002696 &  0.005393 &  0.9973 \tabularnewline
45 &  0.001818 &  0.003637 &  0.9982 \tabularnewline
46 &  0.001164 &  0.002328 &  0.9988 \tabularnewline
47 &  0.000965 &  0.00193 &  0.999 \tabularnewline
48 &  0.005021 &  0.01004 &  0.995 \tabularnewline
49 &  0.003665 &  0.007331 &  0.9963 \tabularnewline
50 &  0.002446 &  0.004892 &  0.9976 \tabularnewline
51 &  0.001641 &  0.003282 &  0.9984 \tabularnewline
52 &  0.01002 &  0.02003 &  0.99 \tabularnewline
53 &  0.007379 &  0.01476 &  0.9926 \tabularnewline
54 &  0.01957 &  0.03915 &  0.9804 \tabularnewline
55 &  0.01612 &  0.03223 &  0.9839 \tabularnewline
56 &  0.01951 &  0.03902 &  0.9805 \tabularnewline
57 &  0.01785 &  0.03571 &  0.9821 \tabularnewline
58 &  0.01522 &  0.03043 &  0.9848 \tabularnewline
59 &  0.01136 &  0.02273 &  0.9886 \tabularnewline
60 &  0.01089 &  0.02178 &  0.9891 \tabularnewline
61 &  0.008234 &  0.01647 &  0.9918 \tabularnewline
62 &  0.007564 &  0.01513 &  0.9924 \tabularnewline
63 &  0.006376 &  0.01275 &  0.9936 \tabularnewline
64 &  0.0057 &  0.0114 &  0.9943 \tabularnewline
65 &  0.005803 &  0.01161 &  0.9942 \tabularnewline
66 &  0.005998 &  0.012 &  0.994 \tabularnewline
67 &  0.007662 &  0.01532 &  0.9923 \tabularnewline
68 &  0.006522 &  0.01304 &  0.9935 \tabularnewline
69 &  0.004778 &  0.009556 &  0.9952 \tabularnewline
70 &  0.007629 &  0.01526 &  0.9924 \tabularnewline
71 &  0.02167 &  0.04334 &  0.9783 \tabularnewline
72 &  0.03554 &  0.07109 &  0.9645 \tabularnewline
73 &  0.03186 &  0.06372 &  0.9681 \tabularnewline
74 &  0.02468 &  0.04936 &  0.9753 \tabularnewline
75 &  0.01868 &  0.03736 &  0.9813 \tabularnewline
76 &  0.01703 &  0.03405 &  0.983 \tabularnewline
77 &  0.01421 &  0.02842 &  0.9858 \tabularnewline
78 &  0.03672 &  0.07344 &  0.9633 \tabularnewline
79 &  0.02968 &  0.05935 &  0.9703 \tabularnewline
80 &  0.04706 &  0.09411 &  0.9529 \tabularnewline
81 &  0.03689 &  0.07378 &  0.9631 \tabularnewline
82 &  0.03606 &  0.07212 &  0.9639 \tabularnewline
83 &  0.03647 &  0.07293 &  0.9635 \tabularnewline
84 &  0.1856 &  0.3713 &  0.8144 \tabularnewline
85 &  0.1642 &  0.3283 &  0.8358 \tabularnewline
86 &  0.2129 &  0.4257 &  0.7871 \tabularnewline
87 &  0.1841 &  0.3681 &  0.8159 \tabularnewline
88 &  0.2083 &  0.4166 &  0.7917 \tabularnewline
89 &  0.192 &  0.384 &  0.808 \tabularnewline
90 &  0.1658 &  0.3315 &  0.8342 \tabularnewline
91 &  0.1614 &  0.3229 &  0.8386 \tabularnewline
92 &  0.1347 &  0.2693 &  0.8653 \tabularnewline
93 &  0.1114 &  0.2228 &  0.8886 \tabularnewline
94 &  0.09154 &  0.1831 &  0.9085 \tabularnewline
95 &  0.07608 &  0.1522 &  0.9239 \tabularnewline
96 &  0.09277 &  0.1855 &  0.9072 \tabularnewline
97 &  0.09439 &  0.1888 &  0.9056 \tabularnewline
98 &  0.08339 &  0.1668 &  0.9166 \tabularnewline
99 &  0.09043 &  0.1809 &  0.9096 \tabularnewline
100 &  0.07754 &  0.1551 &  0.9225 \tabularnewline
101 &  0.1602 &  0.3204 &  0.8398 \tabularnewline
102 &  0.1358 &  0.2716 &  0.8642 \tabularnewline
103 &  0.1135 &  0.2269 &  0.8865 \tabularnewline
104 &  0.102 &  0.204 &  0.898 \tabularnewline
105 &  0.08587 &  0.1717 &  0.9141 \tabularnewline
106 &  0.07271 &  0.1454 &  0.9273 \tabularnewline
107 &  0.05882 &  0.1176 &  0.9412 \tabularnewline
108 &  0.05077 &  0.1015 &  0.9492 \tabularnewline
109 &  0.08289 &  0.1658 &  0.9171 \tabularnewline
110 &  0.06589 &  0.1318 &  0.9341 \tabularnewline
111 &  0.07873 &  0.1575 &  0.9213 \tabularnewline
112 &  0.2371 &  0.4743 &  0.7629 \tabularnewline
113 &  0.2309 &  0.4619 &  0.7691 \tabularnewline
114 &  0.2135 &  0.427 &  0.7865 \tabularnewline
115 &  0.1794 &  0.3588 &  0.8206 \tabularnewline
116 &  0.1571 &  0.3142 &  0.8429 \tabularnewline
117 &  0.161 &  0.322 &  0.839 \tabularnewline
118 &  0.1321 &  0.2642 &  0.8679 \tabularnewline
119 &  0.1131 &  0.2262 &  0.8869 \tabularnewline
120 &  0.09329 &  0.1866 &  0.9067 \tabularnewline
121 &  0.07999 &  0.16 &  0.92 \tabularnewline
122 &  0.0665 &  0.133 &  0.9335 \tabularnewline
123 &  0.05448 &  0.109 &  0.9455 \tabularnewline
124 &  0.04904 &  0.09808 &  0.951 \tabularnewline
125 &  0.039 &  0.078 &  0.961 \tabularnewline
126 &  0.03191 &  0.06382 &  0.9681 \tabularnewline
127 &  0.02332 &  0.04664 &  0.9767 \tabularnewline
128 &  0.01925 &  0.0385 &  0.9808 \tabularnewline
129 &  0.01448 &  0.02895 &  0.9855 \tabularnewline
130 &  0.01629 &  0.03258 &  0.9837 \tabularnewline
131 &  0.01381 &  0.02762 &  0.9862 \tabularnewline
132 &  0.03529 &  0.07058 &  0.9647 \tabularnewline
133 &  0.03315 &  0.0663 &  0.9668 \tabularnewline
134 &  0.02443 &  0.04885 &  0.9756 \tabularnewline
135 &  0.01978 &  0.03957 &  0.9802 \tabularnewline
136 &  0.01569 &  0.03138 &  0.9843 \tabularnewline
137 &  0.01322 &  0.02644 &  0.9868 \tabularnewline
138 &  0.01698 &  0.03397 &  0.983 \tabularnewline
139 &  0.0144 &  0.0288 &  0.9856 \tabularnewline
140 &  0.01097 &  0.02195 &  0.989 \tabularnewline
141 &  0.01956 &  0.03912 &  0.9804 \tabularnewline
142 &  0.02027 &  0.04055 &  0.9797 \tabularnewline
143 &  0.01803 &  0.03606 &  0.982 \tabularnewline
144 &  0.1148 &  0.2296 &  0.8852 \tabularnewline
145 &  0.09345 &  0.1869 &  0.9065 \tabularnewline
146 &  0.0691 &  0.1382 &  0.9309 \tabularnewline
147 &  0.09835 &  0.1967 &  0.9016 \tabularnewline
148 &  0.1035 &  0.207 &  0.8965 \tabularnewline
149 &  0.1419 &  0.2837 &  0.8581 \tabularnewline
150 &  0.162 &  0.324 &  0.838 \tabularnewline
151 &  0.3419 &  0.6839 &  0.6581 \tabularnewline
152 &  0.2488 &  0.4976 &  0.7512 \tabularnewline
153 &  0.1773 &  0.3547 &  0.8227 \tabularnewline
154 &  0.4269 &  0.8538 &  0.5731 \tabularnewline
155 &  0.5361 &  0.9278 &  0.4639 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298734&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]10[/C][C] 0.1218[/C][C] 0.2436[/C][C] 0.8782[/C][/ROW]
[ROW][C]11[/C][C] 0.0955[/C][C] 0.191[/C][C] 0.9045[/C][/ROW]
[ROW][C]12[/C][C] 0.04047[/C][C] 0.08095[/C][C] 0.9595[/C][/ROW]
[ROW][C]13[/C][C] 0.01603[/C][C] 0.03205[/C][C] 0.984[/C][/ROW]
[ROW][C]14[/C][C] 0.01111[/C][C] 0.02223[/C][C] 0.9889[/C][/ROW]
[ROW][C]15[/C][C] 0.01165[/C][C] 0.02331[/C][C] 0.9883[/C][/ROW]
[ROW][C]16[/C][C] 0.008816[/C][C] 0.01763[/C][C] 0.9912[/C][/ROW]
[ROW][C]17[/C][C] 0.004503[/C][C] 0.009006[/C][C] 0.9955[/C][/ROW]
[ROW][C]18[/C][C] 0.03369[/C][C] 0.06738[/C][C] 0.9663[/C][/ROW]
[ROW][C]19[/C][C] 0.02119[/C][C] 0.04238[/C][C] 0.9788[/C][/ROW]
[ROW][C]20[/C][C] 0.01337[/C][C] 0.02674[/C][C] 0.9866[/C][/ROW]
[ROW][C]21[/C][C] 0.01043[/C][C] 0.02086[/C][C] 0.9896[/C][/ROW]
[ROW][C]22[/C][C] 0.006782[/C][C] 0.01356[/C][C] 0.9932[/C][/ROW]
[ROW][C]23[/C][C] 0.01025[/C][C] 0.02049[/C][C] 0.9898[/C][/ROW]
[ROW][C]24[/C][C] 0.01063[/C][C] 0.02126[/C][C] 0.9894[/C][/ROW]
[ROW][C]25[/C][C] 0.009207[/C][C] 0.01841[/C][C] 0.9908[/C][/ROW]
[ROW][C]26[/C][C] 0.005871[/C][C] 0.01174[/C][C] 0.9941[/C][/ROW]
[ROW][C]27[/C][C] 0.005946[/C][C] 0.01189[/C][C] 0.9941[/C][/ROW]
[ROW][C]28[/C][C] 0.003556[/C][C] 0.007112[/C][C] 0.9964[/C][/ROW]
[ROW][C]29[/C][C] 0.002071[/C][C] 0.004142[/C][C] 0.9979[/C][/ROW]
[ROW][C]30[/C][C] 0.004592[/C][C] 0.009185[/C][C] 0.9954[/C][/ROW]
[ROW][C]31[/C][C] 0.01246[/C][C] 0.02492[/C][C] 0.9875[/C][/ROW]
[ROW][C]32[/C][C] 0.01251[/C][C] 0.02502[/C][C] 0.9875[/C][/ROW]
[ROW][C]33[/C][C] 0.008712[/C][C] 0.01742[/C][C] 0.9913[/C][/ROW]
[ROW][C]34[/C][C] 0.0138[/C][C] 0.02759[/C][C] 0.9862[/C][/ROW]
[ROW][C]35[/C][C] 0.00901[/C][C] 0.01802[/C][C] 0.991[/C][/ROW]
[ROW][C]36[/C][C] 0.006883[/C][C] 0.01377[/C][C] 0.9931[/C][/ROW]
[ROW][C]37[/C][C] 0.004411[/C][C] 0.008822[/C][C] 0.9956[/C][/ROW]
[ROW][C]38[/C][C] 0.00286[/C][C] 0.005721[/C][C] 0.9971[/C][/ROW]
[ROW][C]39[/C][C] 0.01009[/C][C] 0.02018[/C][C] 0.9899[/C][/ROW]
[ROW][C]40[/C][C] 0.008102[/C][C] 0.01621[/C][C] 0.9919[/C][/ROW]
[ROW][C]41[/C][C] 0.005318[/C][C] 0.01064[/C][C] 0.9947[/C][/ROW]
[ROW][C]42[/C][C] 0.004879[/C][C] 0.009757[/C][C] 0.9951[/C][/ROW]
[ROW][C]43[/C][C] 0.004057[/C][C] 0.008114[/C][C] 0.9959[/C][/ROW]
[ROW][C]44[/C][C] 0.002696[/C][C] 0.005393[/C][C] 0.9973[/C][/ROW]
[ROW][C]45[/C][C] 0.001818[/C][C] 0.003637[/C][C] 0.9982[/C][/ROW]
[ROW][C]46[/C][C] 0.001164[/C][C] 0.002328[/C][C] 0.9988[/C][/ROW]
[ROW][C]47[/C][C] 0.000965[/C][C] 0.00193[/C][C] 0.999[/C][/ROW]
[ROW][C]48[/C][C] 0.005021[/C][C] 0.01004[/C][C] 0.995[/C][/ROW]
[ROW][C]49[/C][C] 0.003665[/C][C] 0.007331[/C][C] 0.9963[/C][/ROW]
[ROW][C]50[/C][C] 0.002446[/C][C] 0.004892[/C][C] 0.9976[/C][/ROW]
[ROW][C]51[/C][C] 0.001641[/C][C] 0.003282[/C][C] 0.9984[/C][/ROW]
[ROW][C]52[/C][C] 0.01002[/C][C] 0.02003[/C][C] 0.99[/C][/ROW]
[ROW][C]53[/C][C] 0.007379[/C][C] 0.01476[/C][C] 0.9926[/C][/ROW]
[ROW][C]54[/C][C] 0.01957[/C][C] 0.03915[/C][C] 0.9804[/C][/ROW]
[ROW][C]55[/C][C] 0.01612[/C][C] 0.03223[/C][C] 0.9839[/C][/ROW]
[ROW][C]56[/C][C] 0.01951[/C][C] 0.03902[/C][C] 0.9805[/C][/ROW]
[ROW][C]57[/C][C] 0.01785[/C][C] 0.03571[/C][C] 0.9821[/C][/ROW]
[ROW][C]58[/C][C] 0.01522[/C][C] 0.03043[/C][C] 0.9848[/C][/ROW]
[ROW][C]59[/C][C] 0.01136[/C][C] 0.02273[/C][C] 0.9886[/C][/ROW]
[ROW][C]60[/C][C] 0.01089[/C][C] 0.02178[/C][C] 0.9891[/C][/ROW]
[ROW][C]61[/C][C] 0.008234[/C][C] 0.01647[/C][C] 0.9918[/C][/ROW]
[ROW][C]62[/C][C] 0.007564[/C][C] 0.01513[/C][C] 0.9924[/C][/ROW]
[ROW][C]63[/C][C] 0.006376[/C][C] 0.01275[/C][C] 0.9936[/C][/ROW]
[ROW][C]64[/C][C] 0.0057[/C][C] 0.0114[/C][C] 0.9943[/C][/ROW]
[ROW][C]65[/C][C] 0.005803[/C][C] 0.01161[/C][C] 0.9942[/C][/ROW]
[ROW][C]66[/C][C] 0.005998[/C][C] 0.012[/C][C] 0.994[/C][/ROW]
[ROW][C]67[/C][C] 0.007662[/C][C] 0.01532[/C][C] 0.9923[/C][/ROW]
[ROW][C]68[/C][C] 0.006522[/C][C] 0.01304[/C][C] 0.9935[/C][/ROW]
[ROW][C]69[/C][C] 0.004778[/C][C] 0.009556[/C][C] 0.9952[/C][/ROW]
[ROW][C]70[/C][C] 0.007629[/C][C] 0.01526[/C][C] 0.9924[/C][/ROW]
[ROW][C]71[/C][C] 0.02167[/C][C] 0.04334[/C][C] 0.9783[/C][/ROW]
[ROW][C]72[/C][C] 0.03554[/C][C] 0.07109[/C][C] 0.9645[/C][/ROW]
[ROW][C]73[/C][C] 0.03186[/C][C] 0.06372[/C][C] 0.9681[/C][/ROW]
[ROW][C]74[/C][C] 0.02468[/C][C] 0.04936[/C][C] 0.9753[/C][/ROW]
[ROW][C]75[/C][C] 0.01868[/C][C] 0.03736[/C][C] 0.9813[/C][/ROW]
[ROW][C]76[/C][C] 0.01703[/C][C] 0.03405[/C][C] 0.983[/C][/ROW]
[ROW][C]77[/C][C] 0.01421[/C][C] 0.02842[/C][C] 0.9858[/C][/ROW]
[ROW][C]78[/C][C] 0.03672[/C][C] 0.07344[/C][C] 0.9633[/C][/ROW]
[ROW][C]79[/C][C] 0.02968[/C][C] 0.05935[/C][C] 0.9703[/C][/ROW]
[ROW][C]80[/C][C] 0.04706[/C][C] 0.09411[/C][C] 0.9529[/C][/ROW]
[ROW][C]81[/C][C] 0.03689[/C][C] 0.07378[/C][C] 0.9631[/C][/ROW]
[ROW][C]82[/C][C] 0.03606[/C][C] 0.07212[/C][C] 0.9639[/C][/ROW]
[ROW][C]83[/C][C] 0.03647[/C][C] 0.07293[/C][C] 0.9635[/C][/ROW]
[ROW][C]84[/C][C] 0.1856[/C][C] 0.3713[/C][C] 0.8144[/C][/ROW]
[ROW][C]85[/C][C] 0.1642[/C][C] 0.3283[/C][C] 0.8358[/C][/ROW]
[ROW][C]86[/C][C] 0.2129[/C][C] 0.4257[/C][C] 0.7871[/C][/ROW]
[ROW][C]87[/C][C] 0.1841[/C][C] 0.3681[/C][C] 0.8159[/C][/ROW]
[ROW][C]88[/C][C] 0.2083[/C][C] 0.4166[/C][C] 0.7917[/C][/ROW]
[ROW][C]89[/C][C] 0.192[/C][C] 0.384[/C][C] 0.808[/C][/ROW]
[ROW][C]90[/C][C] 0.1658[/C][C] 0.3315[/C][C] 0.8342[/C][/ROW]
[ROW][C]91[/C][C] 0.1614[/C][C] 0.3229[/C][C] 0.8386[/C][/ROW]
[ROW][C]92[/C][C] 0.1347[/C][C] 0.2693[/C][C] 0.8653[/C][/ROW]
[ROW][C]93[/C][C] 0.1114[/C][C] 0.2228[/C][C] 0.8886[/C][/ROW]
[ROW][C]94[/C][C] 0.09154[/C][C] 0.1831[/C][C] 0.9085[/C][/ROW]
[ROW][C]95[/C][C] 0.07608[/C][C] 0.1522[/C][C] 0.9239[/C][/ROW]
[ROW][C]96[/C][C] 0.09277[/C][C] 0.1855[/C][C] 0.9072[/C][/ROW]
[ROW][C]97[/C][C] 0.09439[/C][C] 0.1888[/C][C] 0.9056[/C][/ROW]
[ROW][C]98[/C][C] 0.08339[/C][C] 0.1668[/C][C] 0.9166[/C][/ROW]
[ROW][C]99[/C][C] 0.09043[/C][C] 0.1809[/C][C] 0.9096[/C][/ROW]
[ROW][C]100[/C][C] 0.07754[/C][C] 0.1551[/C][C] 0.9225[/C][/ROW]
[ROW][C]101[/C][C] 0.1602[/C][C] 0.3204[/C][C] 0.8398[/C][/ROW]
[ROW][C]102[/C][C] 0.1358[/C][C] 0.2716[/C][C] 0.8642[/C][/ROW]
[ROW][C]103[/C][C] 0.1135[/C][C] 0.2269[/C][C] 0.8865[/C][/ROW]
[ROW][C]104[/C][C] 0.102[/C][C] 0.204[/C][C] 0.898[/C][/ROW]
[ROW][C]105[/C][C] 0.08587[/C][C] 0.1717[/C][C] 0.9141[/C][/ROW]
[ROW][C]106[/C][C] 0.07271[/C][C] 0.1454[/C][C] 0.9273[/C][/ROW]
[ROW][C]107[/C][C] 0.05882[/C][C] 0.1176[/C][C] 0.9412[/C][/ROW]
[ROW][C]108[/C][C] 0.05077[/C][C] 0.1015[/C][C] 0.9492[/C][/ROW]
[ROW][C]109[/C][C] 0.08289[/C][C] 0.1658[/C][C] 0.9171[/C][/ROW]
[ROW][C]110[/C][C] 0.06589[/C][C] 0.1318[/C][C] 0.9341[/C][/ROW]
[ROW][C]111[/C][C] 0.07873[/C][C] 0.1575[/C][C] 0.9213[/C][/ROW]
[ROW][C]112[/C][C] 0.2371[/C][C] 0.4743[/C][C] 0.7629[/C][/ROW]
[ROW][C]113[/C][C] 0.2309[/C][C] 0.4619[/C][C] 0.7691[/C][/ROW]
[ROW][C]114[/C][C] 0.2135[/C][C] 0.427[/C][C] 0.7865[/C][/ROW]
[ROW][C]115[/C][C] 0.1794[/C][C] 0.3588[/C][C] 0.8206[/C][/ROW]
[ROW][C]116[/C][C] 0.1571[/C][C] 0.3142[/C][C] 0.8429[/C][/ROW]
[ROW][C]117[/C][C] 0.161[/C][C] 0.322[/C][C] 0.839[/C][/ROW]
[ROW][C]118[/C][C] 0.1321[/C][C] 0.2642[/C][C] 0.8679[/C][/ROW]
[ROW][C]119[/C][C] 0.1131[/C][C] 0.2262[/C][C] 0.8869[/C][/ROW]
[ROW][C]120[/C][C] 0.09329[/C][C] 0.1866[/C][C] 0.9067[/C][/ROW]
[ROW][C]121[/C][C] 0.07999[/C][C] 0.16[/C][C] 0.92[/C][/ROW]
[ROW][C]122[/C][C] 0.0665[/C][C] 0.133[/C][C] 0.9335[/C][/ROW]
[ROW][C]123[/C][C] 0.05448[/C][C] 0.109[/C][C] 0.9455[/C][/ROW]
[ROW][C]124[/C][C] 0.04904[/C][C] 0.09808[/C][C] 0.951[/C][/ROW]
[ROW][C]125[/C][C] 0.039[/C][C] 0.078[/C][C] 0.961[/C][/ROW]
[ROW][C]126[/C][C] 0.03191[/C][C] 0.06382[/C][C] 0.9681[/C][/ROW]
[ROW][C]127[/C][C] 0.02332[/C][C] 0.04664[/C][C] 0.9767[/C][/ROW]
[ROW][C]128[/C][C] 0.01925[/C][C] 0.0385[/C][C] 0.9808[/C][/ROW]
[ROW][C]129[/C][C] 0.01448[/C][C] 0.02895[/C][C] 0.9855[/C][/ROW]
[ROW][C]130[/C][C] 0.01629[/C][C] 0.03258[/C][C] 0.9837[/C][/ROW]
[ROW][C]131[/C][C] 0.01381[/C][C] 0.02762[/C][C] 0.9862[/C][/ROW]
[ROW][C]132[/C][C] 0.03529[/C][C] 0.07058[/C][C] 0.9647[/C][/ROW]
[ROW][C]133[/C][C] 0.03315[/C][C] 0.0663[/C][C] 0.9668[/C][/ROW]
[ROW][C]134[/C][C] 0.02443[/C][C] 0.04885[/C][C] 0.9756[/C][/ROW]
[ROW][C]135[/C][C] 0.01978[/C][C] 0.03957[/C][C] 0.9802[/C][/ROW]
[ROW][C]136[/C][C] 0.01569[/C][C] 0.03138[/C][C] 0.9843[/C][/ROW]
[ROW][C]137[/C][C] 0.01322[/C][C] 0.02644[/C][C] 0.9868[/C][/ROW]
[ROW][C]138[/C][C] 0.01698[/C][C] 0.03397[/C][C] 0.983[/C][/ROW]
[ROW][C]139[/C][C] 0.0144[/C][C] 0.0288[/C][C] 0.9856[/C][/ROW]
[ROW][C]140[/C][C] 0.01097[/C][C] 0.02195[/C][C] 0.989[/C][/ROW]
[ROW][C]141[/C][C] 0.01956[/C][C] 0.03912[/C][C] 0.9804[/C][/ROW]
[ROW][C]142[/C][C] 0.02027[/C][C] 0.04055[/C][C] 0.9797[/C][/ROW]
[ROW][C]143[/C][C] 0.01803[/C][C] 0.03606[/C][C] 0.982[/C][/ROW]
[ROW][C]144[/C][C] 0.1148[/C][C] 0.2296[/C][C] 0.8852[/C][/ROW]
[ROW][C]145[/C][C] 0.09345[/C][C] 0.1869[/C][C] 0.9065[/C][/ROW]
[ROW][C]146[/C][C] 0.0691[/C][C] 0.1382[/C][C] 0.9309[/C][/ROW]
[ROW][C]147[/C][C] 0.09835[/C][C] 0.1967[/C][C] 0.9016[/C][/ROW]
[ROW][C]148[/C][C] 0.1035[/C][C] 0.207[/C][C] 0.8965[/C][/ROW]
[ROW][C]149[/C][C] 0.1419[/C][C] 0.2837[/C][C] 0.8581[/C][/ROW]
[ROW][C]150[/C][C] 0.162[/C][C] 0.324[/C][C] 0.838[/C][/ROW]
[ROW][C]151[/C][C] 0.3419[/C][C] 0.6839[/C][C] 0.6581[/C][/ROW]
[ROW][C]152[/C][C] 0.2488[/C][C] 0.4976[/C][C] 0.7512[/C][/ROW]
[ROW][C]153[/C][C] 0.1773[/C][C] 0.3547[/C][C] 0.8227[/C][/ROW]
[ROW][C]154[/C][C] 0.4269[/C][C] 0.8538[/C][C] 0.5731[/C][/ROW]
[ROW][C]155[/C][C] 0.5361[/C][C] 0.9278[/C][C] 0.4639[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298734&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298734&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
10 0.1218 0.2436 0.8782
11 0.0955 0.191 0.9045
12 0.04047 0.08095 0.9595
13 0.01603 0.03205 0.984
14 0.01111 0.02223 0.9889
15 0.01165 0.02331 0.9883
16 0.008816 0.01763 0.9912
17 0.004503 0.009006 0.9955
18 0.03369 0.06738 0.9663
19 0.02119 0.04238 0.9788
20 0.01337 0.02674 0.9866
21 0.01043 0.02086 0.9896
22 0.006782 0.01356 0.9932
23 0.01025 0.02049 0.9898
24 0.01063 0.02126 0.9894
25 0.009207 0.01841 0.9908
26 0.005871 0.01174 0.9941
27 0.005946 0.01189 0.9941
28 0.003556 0.007112 0.9964
29 0.002071 0.004142 0.9979
30 0.004592 0.009185 0.9954
31 0.01246 0.02492 0.9875
32 0.01251 0.02502 0.9875
33 0.008712 0.01742 0.9913
34 0.0138 0.02759 0.9862
35 0.00901 0.01802 0.991
36 0.006883 0.01377 0.9931
37 0.004411 0.008822 0.9956
38 0.00286 0.005721 0.9971
39 0.01009 0.02018 0.9899
40 0.008102 0.01621 0.9919
41 0.005318 0.01064 0.9947
42 0.004879 0.009757 0.9951
43 0.004057 0.008114 0.9959
44 0.002696 0.005393 0.9973
45 0.001818 0.003637 0.9982
46 0.001164 0.002328 0.9988
47 0.000965 0.00193 0.999
48 0.005021 0.01004 0.995
49 0.003665 0.007331 0.9963
50 0.002446 0.004892 0.9976
51 0.001641 0.003282 0.9984
52 0.01002 0.02003 0.99
53 0.007379 0.01476 0.9926
54 0.01957 0.03915 0.9804
55 0.01612 0.03223 0.9839
56 0.01951 0.03902 0.9805
57 0.01785 0.03571 0.9821
58 0.01522 0.03043 0.9848
59 0.01136 0.02273 0.9886
60 0.01089 0.02178 0.9891
61 0.008234 0.01647 0.9918
62 0.007564 0.01513 0.9924
63 0.006376 0.01275 0.9936
64 0.0057 0.0114 0.9943
65 0.005803 0.01161 0.9942
66 0.005998 0.012 0.994
67 0.007662 0.01532 0.9923
68 0.006522 0.01304 0.9935
69 0.004778 0.009556 0.9952
70 0.007629 0.01526 0.9924
71 0.02167 0.04334 0.9783
72 0.03554 0.07109 0.9645
73 0.03186 0.06372 0.9681
74 0.02468 0.04936 0.9753
75 0.01868 0.03736 0.9813
76 0.01703 0.03405 0.983
77 0.01421 0.02842 0.9858
78 0.03672 0.07344 0.9633
79 0.02968 0.05935 0.9703
80 0.04706 0.09411 0.9529
81 0.03689 0.07378 0.9631
82 0.03606 0.07212 0.9639
83 0.03647 0.07293 0.9635
84 0.1856 0.3713 0.8144
85 0.1642 0.3283 0.8358
86 0.2129 0.4257 0.7871
87 0.1841 0.3681 0.8159
88 0.2083 0.4166 0.7917
89 0.192 0.384 0.808
90 0.1658 0.3315 0.8342
91 0.1614 0.3229 0.8386
92 0.1347 0.2693 0.8653
93 0.1114 0.2228 0.8886
94 0.09154 0.1831 0.9085
95 0.07608 0.1522 0.9239
96 0.09277 0.1855 0.9072
97 0.09439 0.1888 0.9056
98 0.08339 0.1668 0.9166
99 0.09043 0.1809 0.9096
100 0.07754 0.1551 0.9225
101 0.1602 0.3204 0.8398
102 0.1358 0.2716 0.8642
103 0.1135 0.2269 0.8865
104 0.102 0.204 0.898
105 0.08587 0.1717 0.9141
106 0.07271 0.1454 0.9273
107 0.05882 0.1176 0.9412
108 0.05077 0.1015 0.9492
109 0.08289 0.1658 0.9171
110 0.06589 0.1318 0.9341
111 0.07873 0.1575 0.9213
112 0.2371 0.4743 0.7629
113 0.2309 0.4619 0.7691
114 0.2135 0.427 0.7865
115 0.1794 0.3588 0.8206
116 0.1571 0.3142 0.8429
117 0.161 0.322 0.839
118 0.1321 0.2642 0.8679
119 0.1131 0.2262 0.8869
120 0.09329 0.1866 0.9067
121 0.07999 0.16 0.92
122 0.0665 0.133 0.9335
123 0.05448 0.109 0.9455
124 0.04904 0.09808 0.951
125 0.039 0.078 0.961
126 0.03191 0.06382 0.9681
127 0.02332 0.04664 0.9767
128 0.01925 0.0385 0.9808
129 0.01448 0.02895 0.9855
130 0.01629 0.03258 0.9837
131 0.01381 0.02762 0.9862
132 0.03529 0.07058 0.9647
133 0.03315 0.0663 0.9668
134 0.02443 0.04885 0.9756
135 0.01978 0.03957 0.9802
136 0.01569 0.03138 0.9843
137 0.01322 0.02644 0.9868
138 0.01698 0.03397 0.983
139 0.0144 0.0288 0.9856
140 0.01097 0.02195 0.989
141 0.01956 0.03912 0.9804
142 0.02027 0.04055 0.9797
143 0.01803 0.03606 0.982
144 0.1148 0.2296 0.8852
145 0.09345 0.1869 0.9065
146 0.0691 0.1382 0.9309
147 0.09835 0.1967 0.9016
148 0.1035 0.207 0.8965
149 0.1419 0.2837 0.8581
150 0.162 0.324 0.838
151 0.3419 0.6839 0.6581
152 0.2488 0.4976 0.7512
153 0.1773 0.3547 0.8227
154 0.4269 0.8538 0.5731
155 0.5361 0.9278 0.4639







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level16 0.1096NOK
5% type I error level770.527397NOK
10% type I error level920.630137NOK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 16 &  0.1096 & NOK \tabularnewline
5% type I error level & 77 & 0.527397 & NOK \tabularnewline
10% type I error level & 92 & 0.630137 & NOK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298734&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]16[/C][C] 0.1096[/C][C]NOK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]77[/C][C]0.527397[/C][C]NOK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]92[/C][C]0.630137[/C][C]NOK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298734&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298734&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level16 0.1096NOK
5% type I error level770.527397NOK
10% type I error level920.630137NOK







Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 1.5549, df1 = 2, df2 = 156, p-value = 0.2145
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = 1.1453, df1 = 12, df2 = 146, p-value = 0.3285
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 0.51398, df1 = 2, df2 = 156, p-value = 0.5991

\begin{tabular}{lllllllll}
\hline
Ramsey RESET F-Test for powers (2 and 3) of fitted values \tabularnewline
> reset_test_fitted
	RESET test
data:  mylm
RESET = 1.5549, df1 = 2, df2 = 156, p-value = 0.2145
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of regressors \tabularnewline
> reset_test_regressors
	RESET test
data:  mylm
RESET = 1.1453, df1 = 12, df2 = 146, p-value = 0.3285
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of principal components \tabularnewline
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 0.51398, df1 = 2, df2 = 156, p-value = 0.5991
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=298734&T=7

[TABLE]
[ROW][C]Ramsey RESET F-Test for powers (2 and 3) of fitted values[/C][/ROW]
[ROW][C]
> reset_test_fitted
	RESET test
data:  mylm
RESET = 1.5549, df1 = 2, df2 = 156, p-value = 0.2145
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of regressors[/C][/ROW] [ROW][C]
> reset_test_regressors
	RESET test
data:  mylm
RESET = 1.1453, df1 = 12, df2 = 146, p-value = 0.3285
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of principal components[/C][/ROW] [ROW][C]
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 0.51398, df1 = 2, df2 = 156, p-value = 0.5991
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=298734&T=7

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298734&T=7

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 1.5549, df1 = 2, df2 = 156, p-value = 0.2145
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = 1.1453, df1 = 12, df2 = 146, p-value = 0.3285
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 0.51398, df1 = 2, df2 = 156, p-value = 0.5991







Variance Inflation Factors (Multicollinearity)
> vif
     SK1      SK2      SK4      SK5     ALG4     ALG2 
1.100311 1.124616 1.113117 1.031838 1.019182 1.047036 

\begin{tabular}{lllllllll}
\hline
Variance Inflation Factors (Multicollinearity) \tabularnewline
> vif
     SK1      SK2      SK4      SK5     ALG4     ALG2 
1.100311 1.124616 1.113117 1.031838 1.019182 1.047036 
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=298734&T=8

[TABLE]
[ROW][C]Variance Inflation Factors (Multicollinearity)[/C][/ROW]
[ROW][C]
> vif
     SK1      SK2      SK4      SK5     ALG4     ALG2 
1.100311 1.124616 1.113117 1.031838 1.019182 1.047036 
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=298734&T=8

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298734&T=8

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Variance Inflation Factors (Multicollinearity)
> vif
     SK1      SK2      SK4      SK5     ALG4     ALG2 
1.100311 1.124616 1.113117 1.031838 1.019182 1.047036 



Parameters (Session):
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ; par4 = 0 ; par5 = 0 ;
Parameters (R input):
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ; par4 = 0 ; par5 = 0 ;
R code (references can be found in the software module):
library(lattice)
library(lmtest)
library(car)
library(MASS)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
mywarning <- ''
par1 <- as.numeric(par1)
if(is.na(par1)) {
par1 <- 1
mywarning = 'Warning: you did not specify the column number of the endogenous series! The first column was selected by default.'
}
if (par4=='') par4 <- 0
par4 <- as.numeric(par4)
if (par5=='') par5 <- 0
par5 <- as.numeric(par5)
x <- na.omit(t(y))
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'Seasonal Differences (s=12)'){
(n <- n - 12)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+12,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'First and Seasonal Differences (s=12)'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
(n <- n - 12)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+12,j] - x[i,j]
}
}
x <- x2
}
if(par4 > 0) {
x2 <- array(0, dim=c(n-par4,par4), dimnames=list(1:(n-par4), paste(colnames(x)[par1],'(t-',1:par4,')',sep='')))
for (i in 1:(n-par4)) {
for (j in 1:par4) {
x2[i,j] <- x[i+par4-j,par1]
}
}
x <- cbind(x[(par4+1):n,], x2)
n <- n - par4
}
if(par5 > 0) {
x2 <- array(0, dim=c(n-par5*12,par5), dimnames=list(1:(n-par5*12), paste(colnames(x)[par1],'(t-',1:par5,'s)',sep='')))
for (i in 1:(n-par5*12)) {
for (j in 1:par5) {
x2[i,j] <- x[i+par5*12-j*12,par1]
}
}
x <- cbind(x[(par5*12+1):n,], x2)
n <- n - par5*12
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
(k <- length(x[n,]))
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
print(x)
(k <- length(x[n,]))
head(x)
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
sresid <- studres(mylm)
hist(sresid, freq=FALSE, main='Distribution of Studentized Residuals')
xfit<-seq(min(sresid),max(sresid),length=40)
yfit<-dnorm(xfit)
lines(xfit, yfit)
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqPlot(mylm, main='QQ Plot')
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
print(z)
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, signif(mysum$coefficients[i,1],6), sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, mywarning)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Multiple Linear Regression - Ordinary Least Squares', 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,formatC(signif(mysum$coefficients[i,1],5),format='g',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,2],5),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,3],4),format='e',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4],4),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4]/2,4),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a,formatC(signif(sqrt(mysum$r.squared),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$adj.r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a,formatC(signif(mysum$fstatistic[1],6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[2],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[3],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a,formatC(signif(1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a,formatC(signif(mysum$sigma,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a,formatC(signif(sum(myerror*myerror),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
myr <- as.numeric(mysum$resid)
myr
if(n < 200) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,formatC(signif(x[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(x[i]-mysum$resid[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$resid[i],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,1],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,2],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,3],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant1,6))
a<-table.element(a,formatC(signif(numsignificant1/numgqtests,6),format='g',flag=' '))
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant5,6))
a<-table.element(a,signif(numsignificant5/numgqtests,6))
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant10,6))
a<-table.element(a,signif(numsignificant10/numgqtests,6))
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}
}
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of fitted values',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_fitted <- resettest(mylm,power=2:3,type='fitted')
a<-table.element(a,paste('
',RC.texteval('reset_test_fitted'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of regressors',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_regressors <- resettest(mylm,power=2:3,type='regressor')
a<-table.element(a,paste('
',RC.texteval('reset_test_regressors'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of principal components',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_principal_components <- resettest(mylm,power=2:3,type='princomp')
a<-table.element(a,paste('
',RC.texteval('reset_test_principal_components'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable8.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Variance Inflation Factors (Multicollinearity)',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
vif <- vif(mylm)
a<-table.element(a,paste('
',RC.texteval('vif'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable9.tab')