Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationSat, 10 Dec 2016 18:02:59 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/10/t1481389567bicr2uvjsetq3d6.htm/, Retrieved Fri, 01 Nov 2024 03:33:02 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=298729, Retrieved Fri, 01 Nov 2024 03:33:02 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact117
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Multiple Regression] [Multiple regressi...] [2016-12-10 17:02:59] [2e11ca31a00cf8de75c33c1af2d59434] [Current]
Feedback Forum

Post a new message
Dataseries X:
13	4	2	4	3	5	1	1
16	5	3	3	4	5	2	1
17	4	4	5	4	5	2	1
15	3	4	3	3	4	2	1
16	4	4	5	4	5	1	1
16	3	4	4	4	5	2	1
17	3	4	4	3	3	2	1
16	3	4	5	4	4	2	1
17	4	5	4	4	5	1	0
17	4	5	5	4	5	1	1
17	4	4	2	4	5	1	1
15	4	4	5	3	5	1	0
16	4	4	4	3	4	1	0
14	3	3	5	4	4	1	1
16	4	4	5	4	2	1	1
17	3	4	5	4	4	2	1
16	3	4	5	4	4	1	1
NA	5	5	5	5	5	2	0
15	5	5	4	3	4	2	1
17	4	4	4	4	5	2	1
16	3	4	5	3	4	2	1
15	4	4	4	4	5	1	1
16	4	4	5	4	4	2	1
15	4	4	5	4	4	2	1
17	4	4	5	4	4	1	1
15	3	4	4	4	4	1	1
16	3	4	4	3	5	1	0
15	4	4	4	4	4	1	0
16	2	4	5	4	5	1	1
16	5	4	4	4	4	1	1
13	4	3	5	4	4	1	1
15	4	5	5	4	5	2	0
17	5	4	5	4	4	1	1
15	4	3	5	4	4	1	0
13	2	3	5	4	5	2	1
17	4	5	2	4	4	1	1
15	3	4	5	4	4	1	1
14	4	3	5	3	4	2	0
14	4	3	3	4	4	1	0
18	4	4	5	4	4	1	0
15	5	4	4	4	4	2	0
17	4	5	5	4	5	2	1
13	3	3	4	4	4	2	0
16	5	5	5	3	5	2	1
15	5	4	5	3	4	2	0
15	4	4	4	3	4	2	1
16	4	4	4	4	4	2	1
15	3	5	5	3	3	2	0
13	4	4	4	4	5	2	1
NA	2	3	4	2	3	1	1
17	4	5	5	4	4	2	0
17	5	5	2	4	5	1	0
17	5	5	5	4	4	2	0
11	4	3	5	4	5	2	0
14	4	3	4	3	4	1	1
13	4	4	5	4	4	2	1
15	3	4	4	3	3	1	1
17	3	4	4	4	4	1	0
16	4	4	4	3	5	2	0
15	4	4	4	4	5	1	1
17	5	5	3	4	5	2	1
16	2	4	4	4	5	2	0
16	4	4	4	4	5	2	1
16	3	4	4	4	2	2	1
15	4	4	5	4	5	1	1
12	4	2	4	4	4	2	1
17	4	4	4	3	5	1	1
14	4	4	4	3	5	2	1
14	5	4	5	3	3	1	1
16	3	4	4	3	5	2	1
15	3	4	4	3	4	2	1
15	4	5	5	5	5	2	1
13	4	4	3	4	4	1	1
13	4	4	4	4	4	2	0
17	4	4	4	5	5	1	1
15	3	4	3	4	4	2	1
16	4	4	4	4	5	1	1
14	3	4	5	3	5	2	1
15	3	3	5	4	4	1	1
17	4	3	5	4	4	2	1
16	4	4	5	4	4	2	1
12	3	3	3	4	4	1	1
16	4	4	4	4	5	1	1
17	4	4	3	4	5	1	0
17	4	4	4	4	5	2	1
20	5	4	4	4	4	2	1
17	5	4	3	5	4	2	1
18	4	4	5	4	5	2	1
15	3	4	5	4	4	2	1
17	3	4	4	4	4	1	1
14	4	2	3	3	4	2	1
15	4	4	5	4	4	1	0
17	4	4	5	4	4	1	1
16	4	4	4	4	5	1	1
17	4	5	4	4	5	1	0
15	3	4	4	3	5	2	1
16	4	4	5	4	4	2	1
18	5	4	3	4	4	2	1
18	5	4	5	5	4	1	1
16	4	5	4	4	5	2	1
NA	3	4	5	4	4	2	1
17	5	3	4	4	5	1	1
15	4	4	5	4	4	1	1
13	5	4	4	4	4	2	1
15	3	4	4	3	4	2	1
17	5	4	4	5	5	2	1
16	4	4	5	3	4	2	0
16	4	4	3	3	4	1	1
15	4	4	5	4	4	1	1
16	4	4	5	4	4	1	1
16	3	4	5	4	5	2	1
13	4	4	4	4	4	2	1
15	4	4	4	3	4	2	0
12	3	3	4	3	5	1	1
19	4	4	4	3	4	1	1
16	3	4	5	4	4	2	1
16	4	4	5	4	3	1	1
17	5	4	5	5	5	1	1
16	5	4	5	4	5	2	0
14	4	4	4	4	4	1	0
15	4	4	5	3	4	1	0
14	3	4	4	3	4	1	1
16	4	4	4	4	4	2	0
15	4	4	4	4	5	2	1
17	4	5	3	4	4	2	1
15	3	4	4	4	4	2	1
16	4	4	4	3	4	2	1
16	4	4	4	4	4	1	1
15	3	4	3	3	4	1	0
15	4	4	4	3	4	2	0
11	3	2	4	2	4	2	1
16	4	4	4	3	5	2	0
18	5	4	4	3	5	1	1
13	2	4	4	3	3	2	0
11	3	3	4	4	4	1	1
16	4	4	4	3	4	1	1
18	5	5	4	4	5	1	0
NA	NA	NA	NA	NA	NA	1	1
15	4	5	5	4	4	2	1
19	5	5	5	5	5	1	1
17	4	5	5	4	5	1	1
13	4	4	4	3	4	1	0
14	3	4	5	4	5	1	0
16	4	4	5	4	4	2	1
13	4	4	2	4	4	1	1
17	4	4	3	4	5	2	1
14	4	4	4	4	5	2	1
19	5	4	5	3	5	2	1
14	4	3	5	4	4	2	1
16	4	4	5	4	4	1	1
12	3	3	2	3	4	1	1
16	4	5	5	4	4	1	1
16	4	4	4	3	4	1	1
15	4	4	4	4	4	2	0
12	3	4	5	3	5	2	0
15	4	4	5	4	4	2	1
17	5	4	5	4	5	2	0
13	4	4	5	4	3	1	1
15	2	3	5	4	4	2	1
18	4	4	4	4	4	1	0
15	4	3	4	3	5	2	1
18	4	4	4	4	4	1	0
15	4	5	5	5	4	1	1
15	5	4	3	4	4	1	1
16	5	4	4	3	4	1	1
13	3	3	4	4	5	1	1
16	4	4	4	4	4	2	1
13	4	4	4	4	5	2	1
16	2	3	4	5	5	1	1




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time9 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time9 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298729&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]9 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=298729&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298729&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time9 seconds
R ServerBig Analytics Cloud Computing Center







Multiple Linear Regression - Estimated Regression Equation
TVSUM[t] = + 6.89546 + 0.500311SK1[t] + 1.13193SK2[t] + 0.068942SK3[t] + 0.301189SK4[t] + 0.197086SK5[t] -0.199599ALG4[t] + 0.259592ALG2[t] + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
TVSUM[t] =  +  6.89546 +  0.500311SK1[t] +  1.13193SK2[t] +  0.068942SK3[t] +  0.301189SK4[t] +  0.197086SK5[t] -0.199599ALG4[t] +  0.259592ALG2[t]  + e[t] \tabularnewline
 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298729&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]TVSUM[t] =  +  6.89546 +  0.500311SK1[t] +  1.13193SK2[t] +  0.068942SK3[t] +  0.301189SK4[t] +  0.197086SK5[t] -0.199599ALG4[t] +  0.259592ALG2[t]  + e[t][/C][/ROW]
[ROW][C][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298729&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298729&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
TVSUM[t] = + 6.89546 + 0.500311SK1[t] + 1.13193SK2[t] + 0.068942SK3[t] + 0.301189SK4[t] + 0.197086SK5[t] -0.199599ALG4[t] + 0.259592ALG2[t] + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)+6.896 1.37+5.0350e+00 1.3e-06 6.499e-07
SK1+0.5003 0.159+3.1470e+00 0.001977 0.0009886
SK2+1.132 0.1928+5.8710e+00 2.493e-08 1.247e-08
SK3+0.06894 0.1479+4.6610e-01 0.6418 0.3209
SK4+0.3012 0.2113+1.4250e+00 0.156 0.07801
SK5+0.1971 0.1817+1.0850e+00 0.2797 0.1399
ALG4-0.1996 0.2213-9.0190e-01 0.3685 0.1842
ALG2+0.2596 0.2542+1.0210e+00 0.3088 0.1544

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & +6.896 &  1.37 & +5.0350e+00 &  1.3e-06 &  6.499e-07 \tabularnewline
SK1 & +0.5003 &  0.159 & +3.1470e+00 &  0.001977 &  0.0009886 \tabularnewline
SK2 & +1.132 &  0.1928 & +5.8710e+00 &  2.493e-08 &  1.247e-08 \tabularnewline
SK3 & +0.06894 &  0.1479 & +4.6610e-01 &  0.6418 &  0.3209 \tabularnewline
SK4 & +0.3012 &  0.2113 & +1.4250e+00 &  0.156 &  0.07801 \tabularnewline
SK5 & +0.1971 &  0.1817 & +1.0850e+00 &  0.2797 &  0.1399 \tabularnewline
ALG4 & -0.1996 &  0.2213 & -9.0190e-01 &  0.3685 &  0.1842 \tabularnewline
ALG2 & +0.2596 &  0.2542 & +1.0210e+00 &  0.3088 &  0.1544 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298729&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]+6.896[/C][C] 1.37[/C][C]+5.0350e+00[/C][C] 1.3e-06[/C][C] 6.499e-07[/C][/ROW]
[ROW][C]SK1[/C][C]+0.5003[/C][C] 0.159[/C][C]+3.1470e+00[/C][C] 0.001977[/C][C] 0.0009886[/C][/ROW]
[ROW][C]SK2[/C][C]+1.132[/C][C] 0.1928[/C][C]+5.8710e+00[/C][C] 2.493e-08[/C][C] 1.247e-08[/C][/ROW]
[ROW][C]SK3[/C][C]+0.06894[/C][C] 0.1479[/C][C]+4.6610e-01[/C][C] 0.6418[/C][C] 0.3209[/C][/ROW]
[ROW][C]SK4[/C][C]+0.3012[/C][C] 0.2113[/C][C]+1.4250e+00[/C][C] 0.156[/C][C] 0.07801[/C][/ROW]
[ROW][C]SK5[/C][C]+0.1971[/C][C] 0.1817[/C][C]+1.0850e+00[/C][C] 0.2797[/C][C] 0.1399[/C][/ROW]
[ROW][C]ALG4[/C][C]-0.1996[/C][C] 0.2213[/C][C]-9.0190e-01[/C][C] 0.3685[/C][C] 0.1842[/C][/ROW]
[ROW][C]ALG2[/C][C]+0.2596[/C][C] 0.2542[/C][C]+1.0210e+00[/C][C] 0.3088[/C][C] 0.1544[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298729&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298729&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)+6.896 1.37+5.0350e+00 1.3e-06 6.499e-07
SK1+0.5003 0.159+3.1470e+00 0.001977 0.0009886
SK2+1.132 0.1928+5.8710e+00 2.493e-08 1.247e-08
SK3+0.06894 0.1479+4.6610e-01 0.6418 0.3209
SK4+0.3012 0.2113+1.4250e+00 0.156 0.07801
SK5+0.1971 0.1817+1.0850e+00 0.2797 0.1399
ALG4-0.1996 0.2213-9.0190e-01 0.3685 0.1842
ALG2+0.2596 0.2542+1.0210e+00 0.3088 0.1544







Multiple Linear Regression - Regression Statistics
Multiple R 0.5637
R-squared 0.3178
Adjusted R-squared 0.2874
F-TEST (value) 10.45
F-TEST (DF numerator)7
F-TEST (DF denominator)157
p-value 9.722e-11
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 1.4
Sum Squared Residuals 307.7

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R &  0.5637 \tabularnewline
R-squared &  0.3178 \tabularnewline
Adjusted R-squared &  0.2874 \tabularnewline
F-TEST (value) &  10.45 \tabularnewline
F-TEST (DF numerator) & 7 \tabularnewline
F-TEST (DF denominator) & 157 \tabularnewline
p-value &  9.722e-11 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation &  1.4 \tabularnewline
Sum Squared Residuals &  307.7 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298729&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C] 0.5637[/C][/ROW]
[ROW][C]R-squared[/C][C] 0.3178[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C] 0.2874[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C] 10.45[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]7[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]157[/C][/ROW]
[ROW][C]p-value[/C][C] 9.722e-11[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C] 1.4[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C] 307.7[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298729&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298729&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R 0.5637
R-squared 0.3178
Adjusted R-squared 0.2874
F-TEST (value) 10.45
F-TEST (DF numerator)7
F-TEST (DF denominator)157
p-value 9.722e-11
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 1.4
Sum Squared Residuals 307.7







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 13 13.39-0.3853
2 16 15.05 0.9498
3 17 15.82 1.18
4 15 14.68 0.3167
5 16 16.02-0.01932
6 16 15.25 0.7495
7 17 14.56 2.445
8 16 15.12 0.8777
9 17 16.82 0.1773
10 17 17.15-0.1513
11 17 15.81 1.188
12 15 15.46-0.4585
13 16 15.19 0.8075
14 14 14.19-0.19
15 16 15.43 0.5719
16 17 15.12 1.878
17 16 15.32 0.6781
18 15 16.88-1.885
19 17 15.75 1.249
20 16 14.82 1.179
21 15 15.95-0.9504
22 16 15.62 0.3774
23 15 15.62-0.6226
24 17 15.82 1.178
25 15 15.25-0.253
26 16 14.89 1.111
27 15 15.49-0.4937
28 16 15.02 0.9813
29 16 16.25-0.2536
30 13 14.69-1.69
31 15 16.69-1.692
32 17 16.32 0.6775
33 15 14.43 0.5693
34 13 13.69-0.6872
35 17 16.75 0.2527
36 15 15.32-0.3219
37 14 13.93 0.07008
38 14 14.29-0.2928
39 18 15.56 2.437
40 15 15.79-0.7944
41 17 16.95 0.04835
42 13 13.66-0.6619
43 16 17.15-1.151
44 15 15.56-0.5622
45 15 15.25-0.2525
46 16 15.55 0.4463
47 15 15.5-0.4964
48 13 15.75-2.751
49 17 16.5 0.505
50 17 17.19-0.1851
51 17 17 0.004714
52 11 14.43-3.428
53 14 14.32-0.3202
54 13 15.62-2.623
55 15 14.75 0.2453
56 17 14.99 2.007
57 16 15.19 0.81
58 15 15.95-0.9504
59 17 17.31-0.3141
60 16 14.49 1.509
61 16 15.75 0.2492
62 16 14.66 1.341
63 15 16.02-1.019
64 12 13.29-1.29
65 17 15.65 1.351
66 14 15.45-1.45
67 14 15.82-1.824
68 16 14.95 1.051
69 15 14.75 0.2478
70 15 17.25-2.253
71 13 15.68-2.684
72 13 15.29-2.294
73 17 16.25 0.7484
74 15 14.98 0.01556
75 16 15.95 0.04962
76 14 15.02-1.018
77 15 14.19 0.81
78 17 14.49 2.509
79 16 15.62 0.3774
80 12 14.05-2.052
81 16 15.95 0.04962
82 17 15.62 1.378
83 17 15.75 1.249
84 20 16.05 3.946
85 17 16.29 0.7137
86 18 15.82 2.18
87 15 15.12-0.1223
88 17 15.25 1.747
89 14 12.92 1.08
90 15 15.56-0.5626
91 17 15.82 1.178
92 16 15.95 0.04962
93 17 16.82 0.1773
94 15 14.95 0.05072
95 16 15.62 0.3774
96 18 15.99 2.015
97 18 16.62 1.376
98 16 16.88-0.8827
99 17 15.32 1.681
100 15 15.82-0.8222
101 13 16.05-3.054
102 15 14.75 0.2478
103 17 16.55 0.4477
104 16 15.06 0.9381
105 16 15.38 0.6168
106 15 15.82-0.8222
107 16 15.82 0.1778
108 16 15.32 0.6806
109 13 15.55-2.554
110 15 14.99 0.007087
111 12 14.02-2.017
112 19 15.45 3.548
113 16 15.12 0.8777
114 16 15.63 0.3749
115 17 16.82 0.1792
116 16 16.06-0.06044
117 14 15.49-1.494
118 15 15.26-0.2615
119 14 14.95-0.9518
120 16 15.29 0.7059
121 15 15.75-0.7508
122 17 16.62 0.3833
123 15 15.05-0.05338
124 16 15.25 0.7475
125 16 15.75 0.2467
126 15 14.62 0.3767
127 15 14.99 0.007087
128 11 12.19-1.187
129 16 15.19 0.81
130 18 16.15 1.851
131 13 13.8-0.7952
132 11 14.12-3.121
133 16 15.45 0.5479
134 18 17.32 0.677
135 15 16.75-1.755
136 19 17.95 1.047
137 17 17.15-0.1513
138 13 15.19-2.193
139 14 15.26-1.259
140 16 15.62 0.3774
141 13 15.62-2.615
142 17 15.68 1.318
143 14 15.75-1.751
144 19 16.02 2.981
145 14 14.49-0.4907
146 16 15.82 0.1778
147 12 13.68-1.682
148 16 16.95-0.9542
149 16 15.45 0.5479
150 15 15.29-0.2941
151 12 14.76-2.759
152 15 15.62-0.6226
153 17 16.06 0.9396
154 13 15.63-2.625
155 15 13.49 1.51
156 18 15.49 2.506
157 15 14.32 0.6823
158 18 15.49 2.506
159 15 17.26-2.255
160 15 16.18-1.185
161 16 15.95 0.04759
162 13 14.32-1.318
163 16 15.55 0.4463
164 13 15.75-2.751
165 16 14.12 1.881

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 &  13 &  13.39 & -0.3853 \tabularnewline
2 &  16 &  15.05 &  0.9498 \tabularnewline
3 &  17 &  15.82 &  1.18 \tabularnewline
4 &  15 &  14.68 &  0.3167 \tabularnewline
5 &  16 &  16.02 & -0.01932 \tabularnewline
6 &  16 &  15.25 &  0.7495 \tabularnewline
7 &  17 &  14.56 &  2.445 \tabularnewline
8 &  16 &  15.12 &  0.8777 \tabularnewline
9 &  17 &  16.82 &  0.1773 \tabularnewline
10 &  17 &  17.15 & -0.1513 \tabularnewline
11 &  17 &  15.81 &  1.188 \tabularnewline
12 &  15 &  15.46 & -0.4585 \tabularnewline
13 &  16 &  15.19 &  0.8075 \tabularnewline
14 &  14 &  14.19 & -0.19 \tabularnewline
15 &  16 &  15.43 &  0.5719 \tabularnewline
16 &  17 &  15.12 &  1.878 \tabularnewline
17 &  16 &  15.32 &  0.6781 \tabularnewline
18 &  15 &  16.88 & -1.885 \tabularnewline
19 &  17 &  15.75 &  1.249 \tabularnewline
20 &  16 &  14.82 &  1.179 \tabularnewline
21 &  15 &  15.95 & -0.9504 \tabularnewline
22 &  16 &  15.62 &  0.3774 \tabularnewline
23 &  15 &  15.62 & -0.6226 \tabularnewline
24 &  17 &  15.82 &  1.178 \tabularnewline
25 &  15 &  15.25 & -0.253 \tabularnewline
26 &  16 &  14.89 &  1.111 \tabularnewline
27 &  15 &  15.49 & -0.4937 \tabularnewline
28 &  16 &  15.02 &  0.9813 \tabularnewline
29 &  16 &  16.25 & -0.2536 \tabularnewline
30 &  13 &  14.69 & -1.69 \tabularnewline
31 &  15 &  16.69 & -1.692 \tabularnewline
32 &  17 &  16.32 &  0.6775 \tabularnewline
33 &  15 &  14.43 &  0.5693 \tabularnewline
34 &  13 &  13.69 & -0.6872 \tabularnewline
35 &  17 &  16.75 &  0.2527 \tabularnewline
36 &  15 &  15.32 & -0.3219 \tabularnewline
37 &  14 &  13.93 &  0.07008 \tabularnewline
38 &  14 &  14.29 & -0.2928 \tabularnewline
39 &  18 &  15.56 &  2.437 \tabularnewline
40 &  15 &  15.79 & -0.7944 \tabularnewline
41 &  17 &  16.95 &  0.04835 \tabularnewline
42 &  13 &  13.66 & -0.6619 \tabularnewline
43 &  16 &  17.15 & -1.151 \tabularnewline
44 &  15 &  15.56 & -0.5622 \tabularnewline
45 &  15 &  15.25 & -0.2525 \tabularnewline
46 &  16 &  15.55 &  0.4463 \tabularnewline
47 &  15 &  15.5 & -0.4964 \tabularnewline
48 &  13 &  15.75 & -2.751 \tabularnewline
49 &  17 &  16.5 &  0.505 \tabularnewline
50 &  17 &  17.19 & -0.1851 \tabularnewline
51 &  17 &  17 &  0.004714 \tabularnewline
52 &  11 &  14.43 & -3.428 \tabularnewline
53 &  14 &  14.32 & -0.3202 \tabularnewline
54 &  13 &  15.62 & -2.623 \tabularnewline
55 &  15 &  14.75 &  0.2453 \tabularnewline
56 &  17 &  14.99 &  2.007 \tabularnewline
57 &  16 &  15.19 &  0.81 \tabularnewline
58 &  15 &  15.95 & -0.9504 \tabularnewline
59 &  17 &  17.31 & -0.3141 \tabularnewline
60 &  16 &  14.49 &  1.509 \tabularnewline
61 &  16 &  15.75 &  0.2492 \tabularnewline
62 &  16 &  14.66 &  1.341 \tabularnewline
63 &  15 &  16.02 & -1.019 \tabularnewline
64 &  12 &  13.29 & -1.29 \tabularnewline
65 &  17 &  15.65 &  1.351 \tabularnewline
66 &  14 &  15.45 & -1.45 \tabularnewline
67 &  14 &  15.82 & -1.824 \tabularnewline
68 &  16 &  14.95 &  1.051 \tabularnewline
69 &  15 &  14.75 &  0.2478 \tabularnewline
70 &  15 &  17.25 & -2.253 \tabularnewline
71 &  13 &  15.68 & -2.684 \tabularnewline
72 &  13 &  15.29 & -2.294 \tabularnewline
73 &  17 &  16.25 &  0.7484 \tabularnewline
74 &  15 &  14.98 &  0.01556 \tabularnewline
75 &  16 &  15.95 &  0.04962 \tabularnewline
76 &  14 &  15.02 & -1.018 \tabularnewline
77 &  15 &  14.19 &  0.81 \tabularnewline
78 &  17 &  14.49 &  2.509 \tabularnewline
79 &  16 &  15.62 &  0.3774 \tabularnewline
80 &  12 &  14.05 & -2.052 \tabularnewline
81 &  16 &  15.95 &  0.04962 \tabularnewline
82 &  17 &  15.62 &  1.378 \tabularnewline
83 &  17 &  15.75 &  1.249 \tabularnewline
84 &  20 &  16.05 &  3.946 \tabularnewline
85 &  17 &  16.29 &  0.7137 \tabularnewline
86 &  18 &  15.82 &  2.18 \tabularnewline
87 &  15 &  15.12 & -0.1223 \tabularnewline
88 &  17 &  15.25 &  1.747 \tabularnewline
89 &  14 &  12.92 &  1.08 \tabularnewline
90 &  15 &  15.56 & -0.5626 \tabularnewline
91 &  17 &  15.82 &  1.178 \tabularnewline
92 &  16 &  15.95 &  0.04962 \tabularnewline
93 &  17 &  16.82 &  0.1773 \tabularnewline
94 &  15 &  14.95 &  0.05072 \tabularnewline
95 &  16 &  15.62 &  0.3774 \tabularnewline
96 &  18 &  15.99 &  2.015 \tabularnewline
97 &  18 &  16.62 &  1.376 \tabularnewline
98 &  16 &  16.88 & -0.8827 \tabularnewline
99 &  17 &  15.32 &  1.681 \tabularnewline
100 &  15 &  15.82 & -0.8222 \tabularnewline
101 &  13 &  16.05 & -3.054 \tabularnewline
102 &  15 &  14.75 &  0.2478 \tabularnewline
103 &  17 &  16.55 &  0.4477 \tabularnewline
104 &  16 &  15.06 &  0.9381 \tabularnewline
105 &  16 &  15.38 &  0.6168 \tabularnewline
106 &  15 &  15.82 & -0.8222 \tabularnewline
107 &  16 &  15.82 &  0.1778 \tabularnewline
108 &  16 &  15.32 &  0.6806 \tabularnewline
109 &  13 &  15.55 & -2.554 \tabularnewline
110 &  15 &  14.99 &  0.007087 \tabularnewline
111 &  12 &  14.02 & -2.017 \tabularnewline
112 &  19 &  15.45 &  3.548 \tabularnewline
113 &  16 &  15.12 &  0.8777 \tabularnewline
114 &  16 &  15.63 &  0.3749 \tabularnewline
115 &  17 &  16.82 &  0.1792 \tabularnewline
116 &  16 &  16.06 & -0.06044 \tabularnewline
117 &  14 &  15.49 & -1.494 \tabularnewline
118 &  15 &  15.26 & -0.2615 \tabularnewline
119 &  14 &  14.95 & -0.9518 \tabularnewline
120 &  16 &  15.29 &  0.7059 \tabularnewline
121 &  15 &  15.75 & -0.7508 \tabularnewline
122 &  17 &  16.62 &  0.3833 \tabularnewline
123 &  15 &  15.05 & -0.05338 \tabularnewline
124 &  16 &  15.25 &  0.7475 \tabularnewline
125 &  16 &  15.75 &  0.2467 \tabularnewline
126 &  15 &  14.62 &  0.3767 \tabularnewline
127 &  15 &  14.99 &  0.007087 \tabularnewline
128 &  11 &  12.19 & -1.187 \tabularnewline
129 &  16 &  15.19 &  0.81 \tabularnewline
130 &  18 &  16.15 &  1.851 \tabularnewline
131 &  13 &  13.8 & -0.7952 \tabularnewline
132 &  11 &  14.12 & -3.121 \tabularnewline
133 &  16 &  15.45 &  0.5479 \tabularnewline
134 &  18 &  17.32 &  0.677 \tabularnewline
135 &  15 &  16.75 & -1.755 \tabularnewline
136 &  19 &  17.95 &  1.047 \tabularnewline
137 &  17 &  17.15 & -0.1513 \tabularnewline
138 &  13 &  15.19 & -2.193 \tabularnewline
139 &  14 &  15.26 & -1.259 \tabularnewline
140 &  16 &  15.62 &  0.3774 \tabularnewline
141 &  13 &  15.62 & -2.615 \tabularnewline
142 &  17 &  15.68 &  1.318 \tabularnewline
143 &  14 &  15.75 & -1.751 \tabularnewline
144 &  19 &  16.02 &  2.981 \tabularnewline
145 &  14 &  14.49 & -0.4907 \tabularnewline
146 &  16 &  15.82 &  0.1778 \tabularnewline
147 &  12 &  13.68 & -1.682 \tabularnewline
148 &  16 &  16.95 & -0.9542 \tabularnewline
149 &  16 &  15.45 &  0.5479 \tabularnewline
150 &  15 &  15.29 & -0.2941 \tabularnewline
151 &  12 &  14.76 & -2.759 \tabularnewline
152 &  15 &  15.62 & -0.6226 \tabularnewline
153 &  17 &  16.06 &  0.9396 \tabularnewline
154 &  13 &  15.63 & -2.625 \tabularnewline
155 &  15 &  13.49 &  1.51 \tabularnewline
156 &  18 &  15.49 &  2.506 \tabularnewline
157 &  15 &  14.32 &  0.6823 \tabularnewline
158 &  18 &  15.49 &  2.506 \tabularnewline
159 &  15 &  17.26 & -2.255 \tabularnewline
160 &  15 &  16.18 & -1.185 \tabularnewline
161 &  16 &  15.95 &  0.04759 \tabularnewline
162 &  13 &  14.32 & -1.318 \tabularnewline
163 &  16 &  15.55 &  0.4463 \tabularnewline
164 &  13 &  15.75 & -2.751 \tabularnewline
165 &  16 &  14.12 &  1.881 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298729&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C] 13[/C][C] 13.39[/C][C]-0.3853[/C][/ROW]
[ROW][C]2[/C][C] 16[/C][C] 15.05[/C][C] 0.9498[/C][/ROW]
[ROW][C]3[/C][C] 17[/C][C] 15.82[/C][C] 1.18[/C][/ROW]
[ROW][C]4[/C][C] 15[/C][C] 14.68[/C][C] 0.3167[/C][/ROW]
[ROW][C]5[/C][C] 16[/C][C] 16.02[/C][C]-0.01932[/C][/ROW]
[ROW][C]6[/C][C] 16[/C][C] 15.25[/C][C] 0.7495[/C][/ROW]
[ROW][C]7[/C][C] 17[/C][C] 14.56[/C][C] 2.445[/C][/ROW]
[ROW][C]8[/C][C] 16[/C][C] 15.12[/C][C] 0.8777[/C][/ROW]
[ROW][C]9[/C][C] 17[/C][C] 16.82[/C][C] 0.1773[/C][/ROW]
[ROW][C]10[/C][C] 17[/C][C] 17.15[/C][C]-0.1513[/C][/ROW]
[ROW][C]11[/C][C] 17[/C][C] 15.81[/C][C] 1.188[/C][/ROW]
[ROW][C]12[/C][C] 15[/C][C] 15.46[/C][C]-0.4585[/C][/ROW]
[ROW][C]13[/C][C] 16[/C][C] 15.19[/C][C] 0.8075[/C][/ROW]
[ROW][C]14[/C][C] 14[/C][C] 14.19[/C][C]-0.19[/C][/ROW]
[ROW][C]15[/C][C] 16[/C][C] 15.43[/C][C] 0.5719[/C][/ROW]
[ROW][C]16[/C][C] 17[/C][C] 15.12[/C][C] 1.878[/C][/ROW]
[ROW][C]17[/C][C] 16[/C][C] 15.32[/C][C] 0.6781[/C][/ROW]
[ROW][C]18[/C][C] 15[/C][C] 16.88[/C][C]-1.885[/C][/ROW]
[ROW][C]19[/C][C] 17[/C][C] 15.75[/C][C] 1.249[/C][/ROW]
[ROW][C]20[/C][C] 16[/C][C] 14.82[/C][C] 1.179[/C][/ROW]
[ROW][C]21[/C][C] 15[/C][C] 15.95[/C][C]-0.9504[/C][/ROW]
[ROW][C]22[/C][C] 16[/C][C] 15.62[/C][C] 0.3774[/C][/ROW]
[ROW][C]23[/C][C] 15[/C][C] 15.62[/C][C]-0.6226[/C][/ROW]
[ROW][C]24[/C][C] 17[/C][C] 15.82[/C][C] 1.178[/C][/ROW]
[ROW][C]25[/C][C] 15[/C][C] 15.25[/C][C]-0.253[/C][/ROW]
[ROW][C]26[/C][C] 16[/C][C] 14.89[/C][C] 1.111[/C][/ROW]
[ROW][C]27[/C][C] 15[/C][C] 15.49[/C][C]-0.4937[/C][/ROW]
[ROW][C]28[/C][C] 16[/C][C] 15.02[/C][C] 0.9813[/C][/ROW]
[ROW][C]29[/C][C] 16[/C][C] 16.25[/C][C]-0.2536[/C][/ROW]
[ROW][C]30[/C][C] 13[/C][C] 14.69[/C][C]-1.69[/C][/ROW]
[ROW][C]31[/C][C] 15[/C][C] 16.69[/C][C]-1.692[/C][/ROW]
[ROW][C]32[/C][C] 17[/C][C] 16.32[/C][C] 0.6775[/C][/ROW]
[ROW][C]33[/C][C] 15[/C][C] 14.43[/C][C] 0.5693[/C][/ROW]
[ROW][C]34[/C][C] 13[/C][C] 13.69[/C][C]-0.6872[/C][/ROW]
[ROW][C]35[/C][C] 17[/C][C] 16.75[/C][C] 0.2527[/C][/ROW]
[ROW][C]36[/C][C] 15[/C][C] 15.32[/C][C]-0.3219[/C][/ROW]
[ROW][C]37[/C][C] 14[/C][C] 13.93[/C][C] 0.07008[/C][/ROW]
[ROW][C]38[/C][C] 14[/C][C] 14.29[/C][C]-0.2928[/C][/ROW]
[ROW][C]39[/C][C] 18[/C][C] 15.56[/C][C] 2.437[/C][/ROW]
[ROW][C]40[/C][C] 15[/C][C] 15.79[/C][C]-0.7944[/C][/ROW]
[ROW][C]41[/C][C] 17[/C][C] 16.95[/C][C] 0.04835[/C][/ROW]
[ROW][C]42[/C][C] 13[/C][C] 13.66[/C][C]-0.6619[/C][/ROW]
[ROW][C]43[/C][C] 16[/C][C] 17.15[/C][C]-1.151[/C][/ROW]
[ROW][C]44[/C][C] 15[/C][C] 15.56[/C][C]-0.5622[/C][/ROW]
[ROW][C]45[/C][C] 15[/C][C] 15.25[/C][C]-0.2525[/C][/ROW]
[ROW][C]46[/C][C] 16[/C][C] 15.55[/C][C] 0.4463[/C][/ROW]
[ROW][C]47[/C][C] 15[/C][C] 15.5[/C][C]-0.4964[/C][/ROW]
[ROW][C]48[/C][C] 13[/C][C] 15.75[/C][C]-2.751[/C][/ROW]
[ROW][C]49[/C][C] 17[/C][C] 16.5[/C][C] 0.505[/C][/ROW]
[ROW][C]50[/C][C] 17[/C][C] 17.19[/C][C]-0.1851[/C][/ROW]
[ROW][C]51[/C][C] 17[/C][C] 17[/C][C] 0.004714[/C][/ROW]
[ROW][C]52[/C][C] 11[/C][C] 14.43[/C][C]-3.428[/C][/ROW]
[ROW][C]53[/C][C] 14[/C][C] 14.32[/C][C]-0.3202[/C][/ROW]
[ROW][C]54[/C][C] 13[/C][C] 15.62[/C][C]-2.623[/C][/ROW]
[ROW][C]55[/C][C] 15[/C][C] 14.75[/C][C] 0.2453[/C][/ROW]
[ROW][C]56[/C][C] 17[/C][C] 14.99[/C][C] 2.007[/C][/ROW]
[ROW][C]57[/C][C] 16[/C][C] 15.19[/C][C] 0.81[/C][/ROW]
[ROW][C]58[/C][C] 15[/C][C] 15.95[/C][C]-0.9504[/C][/ROW]
[ROW][C]59[/C][C] 17[/C][C] 17.31[/C][C]-0.3141[/C][/ROW]
[ROW][C]60[/C][C] 16[/C][C] 14.49[/C][C] 1.509[/C][/ROW]
[ROW][C]61[/C][C] 16[/C][C] 15.75[/C][C] 0.2492[/C][/ROW]
[ROW][C]62[/C][C] 16[/C][C] 14.66[/C][C] 1.341[/C][/ROW]
[ROW][C]63[/C][C] 15[/C][C] 16.02[/C][C]-1.019[/C][/ROW]
[ROW][C]64[/C][C] 12[/C][C] 13.29[/C][C]-1.29[/C][/ROW]
[ROW][C]65[/C][C] 17[/C][C] 15.65[/C][C] 1.351[/C][/ROW]
[ROW][C]66[/C][C] 14[/C][C] 15.45[/C][C]-1.45[/C][/ROW]
[ROW][C]67[/C][C] 14[/C][C] 15.82[/C][C]-1.824[/C][/ROW]
[ROW][C]68[/C][C] 16[/C][C] 14.95[/C][C] 1.051[/C][/ROW]
[ROW][C]69[/C][C] 15[/C][C] 14.75[/C][C] 0.2478[/C][/ROW]
[ROW][C]70[/C][C] 15[/C][C] 17.25[/C][C]-2.253[/C][/ROW]
[ROW][C]71[/C][C] 13[/C][C] 15.68[/C][C]-2.684[/C][/ROW]
[ROW][C]72[/C][C] 13[/C][C] 15.29[/C][C]-2.294[/C][/ROW]
[ROW][C]73[/C][C] 17[/C][C] 16.25[/C][C] 0.7484[/C][/ROW]
[ROW][C]74[/C][C] 15[/C][C] 14.98[/C][C] 0.01556[/C][/ROW]
[ROW][C]75[/C][C] 16[/C][C] 15.95[/C][C] 0.04962[/C][/ROW]
[ROW][C]76[/C][C] 14[/C][C] 15.02[/C][C]-1.018[/C][/ROW]
[ROW][C]77[/C][C] 15[/C][C] 14.19[/C][C] 0.81[/C][/ROW]
[ROW][C]78[/C][C] 17[/C][C] 14.49[/C][C] 2.509[/C][/ROW]
[ROW][C]79[/C][C] 16[/C][C] 15.62[/C][C] 0.3774[/C][/ROW]
[ROW][C]80[/C][C] 12[/C][C] 14.05[/C][C]-2.052[/C][/ROW]
[ROW][C]81[/C][C] 16[/C][C] 15.95[/C][C] 0.04962[/C][/ROW]
[ROW][C]82[/C][C] 17[/C][C] 15.62[/C][C] 1.378[/C][/ROW]
[ROW][C]83[/C][C] 17[/C][C] 15.75[/C][C] 1.249[/C][/ROW]
[ROW][C]84[/C][C] 20[/C][C] 16.05[/C][C] 3.946[/C][/ROW]
[ROW][C]85[/C][C] 17[/C][C] 16.29[/C][C] 0.7137[/C][/ROW]
[ROW][C]86[/C][C] 18[/C][C] 15.82[/C][C] 2.18[/C][/ROW]
[ROW][C]87[/C][C] 15[/C][C] 15.12[/C][C]-0.1223[/C][/ROW]
[ROW][C]88[/C][C] 17[/C][C] 15.25[/C][C] 1.747[/C][/ROW]
[ROW][C]89[/C][C] 14[/C][C] 12.92[/C][C] 1.08[/C][/ROW]
[ROW][C]90[/C][C] 15[/C][C] 15.56[/C][C]-0.5626[/C][/ROW]
[ROW][C]91[/C][C] 17[/C][C] 15.82[/C][C] 1.178[/C][/ROW]
[ROW][C]92[/C][C] 16[/C][C] 15.95[/C][C] 0.04962[/C][/ROW]
[ROW][C]93[/C][C] 17[/C][C] 16.82[/C][C] 0.1773[/C][/ROW]
[ROW][C]94[/C][C] 15[/C][C] 14.95[/C][C] 0.05072[/C][/ROW]
[ROW][C]95[/C][C] 16[/C][C] 15.62[/C][C] 0.3774[/C][/ROW]
[ROW][C]96[/C][C] 18[/C][C] 15.99[/C][C] 2.015[/C][/ROW]
[ROW][C]97[/C][C] 18[/C][C] 16.62[/C][C] 1.376[/C][/ROW]
[ROW][C]98[/C][C] 16[/C][C] 16.88[/C][C]-0.8827[/C][/ROW]
[ROW][C]99[/C][C] 17[/C][C] 15.32[/C][C] 1.681[/C][/ROW]
[ROW][C]100[/C][C] 15[/C][C] 15.82[/C][C]-0.8222[/C][/ROW]
[ROW][C]101[/C][C] 13[/C][C] 16.05[/C][C]-3.054[/C][/ROW]
[ROW][C]102[/C][C] 15[/C][C] 14.75[/C][C] 0.2478[/C][/ROW]
[ROW][C]103[/C][C] 17[/C][C] 16.55[/C][C] 0.4477[/C][/ROW]
[ROW][C]104[/C][C] 16[/C][C] 15.06[/C][C] 0.9381[/C][/ROW]
[ROW][C]105[/C][C] 16[/C][C] 15.38[/C][C] 0.6168[/C][/ROW]
[ROW][C]106[/C][C] 15[/C][C] 15.82[/C][C]-0.8222[/C][/ROW]
[ROW][C]107[/C][C] 16[/C][C] 15.82[/C][C] 0.1778[/C][/ROW]
[ROW][C]108[/C][C] 16[/C][C] 15.32[/C][C] 0.6806[/C][/ROW]
[ROW][C]109[/C][C] 13[/C][C] 15.55[/C][C]-2.554[/C][/ROW]
[ROW][C]110[/C][C] 15[/C][C] 14.99[/C][C] 0.007087[/C][/ROW]
[ROW][C]111[/C][C] 12[/C][C] 14.02[/C][C]-2.017[/C][/ROW]
[ROW][C]112[/C][C] 19[/C][C] 15.45[/C][C] 3.548[/C][/ROW]
[ROW][C]113[/C][C] 16[/C][C] 15.12[/C][C] 0.8777[/C][/ROW]
[ROW][C]114[/C][C] 16[/C][C] 15.63[/C][C] 0.3749[/C][/ROW]
[ROW][C]115[/C][C] 17[/C][C] 16.82[/C][C] 0.1792[/C][/ROW]
[ROW][C]116[/C][C] 16[/C][C] 16.06[/C][C]-0.06044[/C][/ROW]
[ROW][C]117[/C][C] 14[/C][C] 15.49[/C][C]-1.494[/C][/ROW]
[ROW][C]118[/C][C] 15[/C][C] 15.26[/C][C]-0.2615[/C][/ROW]
[ROW][C]119[/C][C] 14[/C][C] 14.95[/C][C]-0.9518[/C][/ROW]
[ROW][C]120[/C][C] 16[/C][C] 15.29[/C][C] 0.7059[/C][/ROW]
[ROW][C]121[/C][C] 15[/C][C] 15.75[/C][C]-0.7508[/C][/ROW]
[ROW][C]122[/C][C] 17[/C][C] 16.62[/C][C] 0.3833[/C][/ROW]
[ROW][C]123[/C][C] 15[/C][C] 15.05[/C][C]-0.05338[/C][/ROW]
[ROW][C]124[/C][C] 16[/C][C] 15.25[/C][C] 0.7475[/C][/ROW]
[ROW][C]125[/C][C] 16[/C][C] 15.75[/C][C] 0.2467[/C][/ROW]
[ROW][C]126[/C][C] 15[/C][C] 14.62[/C][C] 0.3767[/C][/ROW]
[ROW][C]127[/C][C] 15[/C][C] 14.99[/C][C] 0.007087[/C][/ROW]
[ROW][C]128[/C][C] 11[/C][C] 12.19[/C][C]-1.187[/C][/ROW]
[ROW][C]129[/C][C] 16[/C][C] 15.19[/C][C] 0.81[/C][/ROW]
[ROW][C]130[/C][C] 18[/C][C] 16.15[/C][C] 1.851[/C][/ROW]
[ROW][C]131[/C][C] 13[/C][C] 13.8[/C][C]-0.7952[/C][/ROW]
[ROW][C]132[/C][C] 11[/C][C] 14.12[/C][C]-3.121[/C][/ROW]
[ROW][C]133[/C][C] 16[/C][C] 15.45[/C][C] 0.5479[/C][/ROW]
[ROW][C]134[/C][C] 18[/C][C] 17.32[/C][C] 0.677[/C][/ROW]
[ROW][C]135[/C][C] 15[/C][C] 16.75[/C][C]-1.755[/C][/ROW]
[ROW][C]136[/C][C] 19[/C][C] 17.95[/C][C] 1.047[/C][/ROW]
[ROW][C]137[/C][C] 17[/C][C] 17.15[/C][C]-0.1513[/C][/ROW]
[ROW][C]138[/C][C] 13[/C][C] 15.19[/C][C]-2.193[/C][/ROW]
[ROW][C]139[/C][C] 14[/C][C] 15.26[/C][C]-1.259[/C][/ROW]
[ROW][C]140[/C][C] 16[/C][C] 15.62[/C][C] 0.3774[/C][/ROW]
[ROW][C]141[/C][C] 13[/C][C] 15.62[/C][C]-2.615[/C][/ROW]
[ROW][C]142[/C][C] 17[/C][C] 15.68[/C][C] 1.318[/C][/ROW]
[ROW][C]143[/C][C] 14[/C][C] 15.75[/C][C]-1.751[/C][/ROW]
[ROW][C]144[/C][C] 19[/C][C] 16.02[/C][C] 2.981[/C][/ROW]
[ROW][C]145[/C][C] 14[/C][C] 14.49[/C][C]-0.4907[/C][/ROW]
[ROW][C]146[/C][C] 16[/C][C] 15.82[/C][C] 0.1778[/C][/ROW]
[ROW][C]147[/C][C] 12[/C][C] 13.68[/C][C]-1.682[/C][/ROW]
[ROW][C]148[/C][C] 16[/C][C] 16.95[/C][C]-0.9542[/C][/ROW]
[ROW][C]149[/C][C] 16[/C][C] 15.45[/C][C] 0.5479[/C][/ROW]
[ROW][C]150[/C][C] 15[/C][C] 15.29[/C][C]-0.2941[/C][/ROW]
[ROW][C]151[/C][C] 12[/C][C] 14.76[/C][C]-2.759[/C][/ROW]
[ROW][C]152[/C][C] 15[/C][C] 15.62[/C][C]-0.6226[/C][/ROW]
[ROW][C]153[/C][C] 17[/C][C] 16.06[/C][C] 0.9396[/C][/ROW]
[ROW][C]154[/C][C] 13[/C][C] 15.63[/C][C]-2.625[/C][/ROW]
[ROW][C]155[/C][C] 15[/C][C] 13.49[/C][C] 1.51[/C][/ROW]
[ROW][C]156[/C][C] 18[/C][C] 15.49[/C][C] 2.506[/C][/ROW]
[ROW][C]157[/C][C] 15[/C][C] 14.32[/C][C] 0.6823[/C][/ROW]
[ROW][C]158[/C][C] 18[/C][C] 15.49[/C][C] 2.506[/C][/ROW]
[ROW][C]159[/C][C] 15[/C][C] 17.26[/C][C]-2.255[/C][/ROW]
[ROW][C]160[/C][C] 15[/C][C] 16.18[/C][C]-1.185[/C][/ROW]
[ROW][C]161[/C][C] 16[/C][C] 15.95[/C][C] 0.04759[/C][/ROW]
[ROW][C]162[/C][C] 13[/C][C] 14.32[/C][C]-1.318[/C][/ROW]
[ROW][C]163[/C][C] 16[/C][C] 15.55[/C][C] 0.4463[/C][/ROW]
[ROW][C]164[/C][C] 13[/C][C] 15.75[/C][C]-2.751[/C][/ROW]
[ROW][C]165[/C][C] 16[/C][C] 14.12[/C][C] 1.881[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298729&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298729&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 13 13.39-0.3853
2 16 15.05 0.9498
3 17 15.82 1.18
4 15 14.68 0.3167
5 16 16.02-0.01932
6 16 15.25 0.7495
7 17 14.56 2.445
8 16 15.12 0.8777
9 17 16.82 0.1773
10 17 17.15-0.1513
11 17 15.81 1.188
12 15 15.46-0.4585
13 16 15.19 0.8075
14 14 14.19-0.19
15 16 15.43 0.5719
16 17 15.12 1.878
17 16 15.32 0.6781
18 15 16.88-1.885
19 17 15.75 1.249
20 16 14.82 1.179
21 15 15.95-0.9504
22 16 15.62 0.3774
23 15 15.62-0.6226
24 17 15.82 1.178
25 15 15.25-0.253
26 16 14.89 1.111
27 15 15.49-0.4937
28 16 15.02 0.9813
29 16 16.25-0.2536
30 13 14.69-1.69
31 15 16.69-1.692
32 17 16.32 0.6775
33 15 14.43 0.5693
34 13 13.69-0.6872
35 17 16.75 0.2527
36 15 15.32-0.3219
37 14 13.93 0.07008
38 14 14.29-0.2928
39 18 15.56 2.437
40 15 15.79-0.7944
41 17 16.95 0.04835
42 13 13.66-0.6619
43 16 17.15-1.151
44 15 15.56-0.5622
45 15 15.25-0.2525
46 16 15.55 0.4463
47 15 15.5-0.4964
48 13 15.75-2.751
49 17 16.5 0.505
50 17 17.19-0.1851
51 17 17 0.004714
52 11 14.43-3.428
53 14 14.32-0.3202
54 13 15.62-2.623
55 15 14.75 0.2453
56 17 14.99 2.007
57 16 15.19 0.81
58 15 15.95-0.9504
59 17 17.31-0.3141
60 16 14.49 1.509
61 16 15.75 0.2492
62 16 14.66 1.341
63 15 16.02-1.019
64 12 13.29-1.29
65 17 15.65 1.351
66 14 15.45-1.45
67 14 15.82-1.824
68 16 14.95 1.051
69 15 14.75 0.2478
70 15 17.25-2.253
71 13 15.68-2.684
72 13 15.29-2.294
73 17 16.25 0.7484
74 15 14.98 0.01556
75 16 15.95 0.04962
76 14 15.02-1.018
77 15 14.19 0.81
78 17 14.49 2.509
79 16 15.62 0.3774
80 12 14.05-2.052
81 16 15.95 0.04962
82 17 15.62 1.378
83 17 15.75 1.249
84 20 16.05 3.946
85 17 16.29 0.7137
86 18 15.82 2.18
87 15 15.12-0.1223
88 17 15.25 1.747
89 14 12.92 1.08
90 15 15.56-0.5626
91 17 15.82 1.178
92 16 15.95 0.04962
93 17 16.82 0.1773
94 15 14.95 0.05072
95 16 15.62 0.3774
96 18 15.99 2.015
97 18 16.62 1.376
98 16 16.88-0.8827
99 17 15.32 1.681
100 15 15.82-0.8222
101 13 16.05-3.054
102 15 14.75 0.2478
103 17 16.55 0.4477
104 16 15.06 0.9381
105 16 15.38 0.6168
106 15 15.82-0.8222
107 16 15.82 0.1778
108 16 15.32 0.6806
109 13 15.55-2.554
110 15 14.99 0.007087
111 12 14.02-2.017
112 19 15.45 3.548
113 16 15.12 0.8777
114 16 15.63 0.3749
115 17 16.82 0.1792
116 16 16.06-0.06044
117 14 15.49-1.494
118 15 15.26-0.2615
119 14 14.95-0.9518
120 16 15.29 0.7059
121 15 15.75-0.7508
122 17 16.62 0.3833
123 15 15.05-0.05338
124 16 15.25 0.7475
125 16 15.75 0.2467
126 15 14.62 0.3767
127 15 14.99 0.007087
128 11 12.19-1.187
129 16 15.19 0.81
130 18 16.15 1.851
131 13 13.8-0.7952
132 11 14.12-3.121
133 16 15.45 0.5479
134 18 17.32 0.677
135 15 16.75-1.755
136 19 17.95 1.047
137 17 17.15-0.1513
138 13 15.19-2.193
139 14 15.26-1.259
140 16 15.62 0.3774
141 13 15.62-2.615
142 17 15.68 1.318
143 14 15.75-1.751
144 19 16.02 2.981
145 14 14.49-0.4907
146 16 15.82 0.1778
147 12 13.68-1.682
148 16 16.95-0.9542
149 16 15.45 0.5479
150 15 15.29-0.2941
151 12 14.76-2.759
152 15 15.62-0.6226
153 17 16.06 0.9396
154 13 15.63-2.625
155 15 13.49 1.51
156 18 15.49 2.506
157 15 14.32 0.6823
158 18 15.49 2.506
159 15 17.26-2.255
160 15 16.18-1.185
161 16 15.95 0.04759
162 13 14.32-1.318
163 16 15.55 0.4463
164 13 15.75-2.751
165 16 14.12 1.881







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
11 0.178 0.3559 0.822
12 0.08193 0.1639 0.9181
13 0.03335 0.0667 0.9667
14 0.02014 0.04027 0.9799
15 0.01783 0.03566 0.9822
16 0.01501 0.03002 0.985
17 0.007775 0.01555 0.9922
18 0.039 0.078 0.961
19 0.02419 0.04838 0.9758
20 0.01707 0.03414 0.9829
21 0.01388 0.02775 0.9861
22 0.008225 0.01645 0.9918
23 0.0102 0.02041 0.9898
24 0.01224 0.02449 0.9878
25 0.01224 0.02449 0.9878
26 0.007713 0.01543 0.9923
27 0.008537 0.01707 0.9915
28 0.005115 0.01023 0.9949
29 0.002982 0.005963 0.997
30 0.005568 0.01114 0.9944
31 0.01247 0.02494 0.9875
32 0.0144 0.0288 0.9856
33 0.01025 0.0205 0.9898
34 0.01505 0.03011 0.9849
35 0.01077 0.02153 0.9892
36 0.007973 0.01595 0.992
37 0.005078 0.01016 0.9949
38 0.003575 0.007151 0.9964
39 0.01281 0.02562 0.9872
40 0.01043 0.02086 0.9896
41 0.0069 0.0138 0.9931
42 0.006459 0.01292 0.9935
43 0.005284 0.01057 0.9947
44 0.003529 0.007057 0.9965
45 0.002407 0.004815 0.9976
46 0.001547 0.003095 0.9985
47 0.001271 0.002542 0.9987
48 0.00637 0.01274 0.9936
49 0.004673 0.009346 0.9953
50 0.003113 0.006227 0.9969
51 0.002107 0.004215 0.9979
52 0.01202 0.02405 0.988
53 0.00891 0.01782 0.9911
54 0.02272 0.04544 0.9773
55 0.01896 0.03792 0.981
56 0.02249 0.04498 0.9775
57 0.02033 0.04065 0.9797
58 0.01733 0.03465 0.9827
59 0.01272 0.02543 0.9873
60 0.01195 0.0239 0.9881
61 0.008972 0.01794 0.991
62 0.008205 0.01641 0.9918
63 0.006787 0.01358 0.9932
64 0.006203 0.01241 0.9938
65 0.00629 0.01258 0.9937
66 0.00655 0.0131 0.9935
67 0.00821 0.01642 0.9918
68 0.00693 0.01386 0.9931
69 0.005131 0.01026 0.9949
70 0.007824 0.01565 0.9922
71 0.0241 0.04819 0.9759
72 0.0394 0.0788 0.9606
73 0.03531 0.07061 0.9647
74 0.02813 0.05626 0.9719
75 0.02137 0.04274 0.9786
76 0.01945 0.0389 0.9806
77 0.01597 0.03194 0.984
78 0.03998 0.07995 0.96
79 0.03236 0.06472 0.9676
80 0.04988 0.09976 0.9501
81 0.03914 0.07827 0.9609
82 0.03915 0.0783 0.9609
83 0.03964 0.07929 0.9604
84 0.1957 0.3914 0.8043
85 0.1746 0.3492 0.8254
86 0.222 0.4439 0.778
87 0.1914 0.3828 0.8086
88 0.2178 0.4356 0.7822
89 0.2015 0.403 0.7985
90 0.1748 0.3497 0.8252
91 0.1678 0.3356 0.8322
92 0.1402 0.2803 0.8598
93 0.1162 0.2323 0.8838
94 0.09563 0.1913 0.9044
95 0.07896 0.1579 0.921
96 0.1006 0.2012 0.8994
97 0.1013 0.2027 0.8987
98 0.08871 0.1774 0.9113
99 0.0963 0.1926 0.9037
100 0.08304 0.1661 0.917
101 0.1653 0.3305 0.8347
102 0.1404 0.2809 0.8596
103 0.1179 0.2358 0.8821
104 0.1045 0.209 0.8955
105 0.08971 0.1794 0.9103
106 0.07657 0.1531 0.9234
107 0.06119 0.1224 0.9388
108 0.05185 0.1037 0.9482
109 0.08248 0.165 0.9175
110 0.06537 0.1307 0.9346
111 0.07906 0.1581 0.9209
112 0.2348 0.4696 0.7652
113 0.2242 0.4484 0.7758
114 0.2031 0.4061 0.7969
115 0.17 0.3401 0.83
116 0.1496 0.2992 0.8504
117 0.1525 0.305 0.8475
118 0.125 0.2499 0.875
119 0.1065 0.213 0.8935
120 0.0877 0.1754 0.9123
121 0.07411 0.1482 0.9259
122 0.06478 0.1296 0.9352
123 0.05416 0.1083 0.9458
124 0.04968 0.09936 0.9503
125 0.03957 0.07914 0.9604
126 0.03444 0.06887 0.9656
127 0.02525 0.0505 0.9748
128 0.02189 0.04377 0.9781
129 0.01665 0.03329 0.9834
130 0.01801 0.03602 0.982
131 0.01676 0.03353 0.9832
132 0.04604 0.09207 0.954
133 0.04237 0.08475 0.9576
134 0.03256 0.06512 0.9674
135 0.02612 0.05224 0.9739
136 0.0199 0.0398 0.9801
137 0.0156 0.0312 0.9844
138 0.01962 0.03923 0.9804
139 0.01933 0.03866 0.9807
140 0.01422 0.02844 0.9858
141 0.01631 0.03261 0.9837
142 0.02608 0.05216 0.9739
143 0.02 0.04 0.98
144 0.09646 0.1929 0.9035
145 0.08693 0.1739 0.9131
146 0.05931 0.1186 0.9407
147 0.0711 0.1422 0.9289
148 0.07635 0.1527 0.9236
149 0.1006 0.2013 0.8994
150 0.1416 0.2832 0.8584
151 0.33 0.6601 0.67
152 0.2425 0.4849 0.7575
153 0.2296 0.4592 0.7704
154 0.2826 0.5651 0.7174

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
11 &  0.178 &  0.3559 &  0.822 \tabularnewline
12 &  0.08193 &  0.1639 &  0.9181 \tabularnewline
13 &  0.03335 &  0.0667 &  0.9667 \tabularnewline
14 &  0.02014 &  0.04027 &  0.9799 \tabularnewline
15 &  0.01783 &  0.03566 &  0.9822 \tabularnewline
16 &  0.01501 &  0.03002 &  0.985 \tabularnewline
17 &  0.007775 &  0.01555 &  0.9922 \tabularnewline
18 &  0.039 &  0.078 &  0.961 \tabularnewline
19 &  0.02419 &  0.04838 &  0.9758 \tabularnewline
20 &  0.01707 &  0.03414 &  0.9829 \tabularnewline
21 &  0.01388 &  0.02775 &  0.9861 \tabularnewline
22 &  0.008225 &  0.01645 &  0.9918 \tabularnewline
23 &  0.0102 &  0.02041 &  0.9898 \tabularnewline
24 &  0.01224 &  0.02449 &  0.9878 \tabularnewline
25 &  0.01224 &  0.02449 &  0.9878 \tabularnewline
26 &  0.007713 &  0.01543 &  0.9923 \tabularnewline
27 &  0.008537 &  0.01707 &  0.9915 \tabularnewline
28 &  0.005115 &  0.01023 &  0.9949 \tabularnewline
29 &  0.002982 &  0.005963 &  0.997 \tabularnewline
30 &  0.005568 &  0.01114 &  0.9944 \tabularnewline
31 &  0.01247 &  0.02494 &  0.9875 \tabularnewline
32 &  0.0144 &  0.0288 &  0.9856 \tabularnewline
33 &  0.01025 &  0.0205 &  0.9898 \tabularnewline
34 &  0.01505 &  0.03011 &  0.9849 \tabularnewline
35 &  0.01077 &  0.02153 &  0.9892 \tabularnewline
36 &  0.007973 &  0.01595 &  0.992 \tabularnewline
37 &  0.005078 &  0.01016 &  0.9949 \tabularnewline
38 &  0.003575 &  0.007151 &  0.9964 \tabularnewline
39 &  0.01281 &  0.02562 &  0.9872 \tabularnewline
40 &  0.01043 &  0.02086 &  0.9896 \tabularnewline
41 &  0.0069 &  0.0138 &  0.9931 \tabularnewline
42 &  0.006459 &  0.01292 &  0.9935 \tabularnewline
43 &  0.005284 &  0.01057 &  0.9947 \tabularnewline
44 &  0.003529 &  0.007057 &  0.9965 \tabularnewline
45 &  0.002407 &  0.004815 &  0.9976 \tabularnewline
46 &  0.001547 &  0.003095 &  0.9985 \tabularnewline
47 &  0.001271 &  0.002542 &  0.9987 \tabularnewline
48 &  0.00637 &  0.01274 &  0.9936 \tabularnewline
49 &  0.004673 &  0.009346 &  0.9953 \tabularnewline
50 &  0.003113 &  0.006227 &  0.9969 \tabularnewline
51 &  0.002107 &  0.004215 &  0.9979 \tabularnewline
52 &  0.01202 &  0.02405 &  0.988 \tabularnewline
53 &  0.00891 &  0.01782 &  0.9911 \tabularnewline
54 &  0.02272 &  0.04544 &  0.9773 \tabularnewline
55 &  0.01896 &  0.03792 &  0.981 \tabularnewline
56 &  0.02249 &  0.04498 &  0.9775 \tabularnewline
57 &  0.02033 &  0.04065 &  0.9797 \tabularnewline
58 &  0.01733 &  0.03465 &  0.9827 \tabularnewline
59 &  0.01272 &  0.02543 &  0.9873 \tabularnewline
60 &  0.01195 &  0.0239 &  0.9881 \tabularnewline
61 &  0.008972 &  0.01794 &  0.991 \tabularnewline
62 &  0.008205 &  0.01641 &  0.9918 \tabularnewline
63 &  0.006787 &  0.01358 &  0.9932 \tabularnewline
64 &  0.006203 &  0.01241 &  0.9938 \tabularnewline
65 &  0.00629 &  0.01258 &  0.9937 \tabularnewline
66 &  0.00655 &  0.0131 &  0.9935 \tabularnewline
67 &  0.00821 &  0.01642 &  0.9918 \tabularnewline
68 &  0.00693 &  0.01386 &  0.9931 \tabularnewline
69 &  0.005131 &  0.01026 &  0.9949 \tabularnewline
70 &  0.007824 &  0.01565 &  0.9922 \tabularnewline
71 &  0.0241 &  0.04819 &  0.9759 \tabularnewline
72 &  0.0394 &  0.0788 &  0.9606 \tabularnewline
73 &  0.03531 &  0.07061 &  0.9647 \tabularnewline
74 &  0.02813 &  0.05626 &  0.9719 \tabularnewline
75 &  0.02137 &  0.04274 &  0.9786 \tabularnewline
76 &  0.01945 &  0.0389 &  0.9806 \tabularnewline
77 &  0.01597 &  0.03194 &  0.984 \tabularnewline
78 &  0.03998 &  0.07995 &  0.96 \tabularnewline
79 &  0.03236 &  0.06472 &  0.9676 \tabularnewline
80 &  0.04988 &  0.09976 &  0.9501 \tabularnewline
81 &  0.03914 &  0.07827 &  0.9609 \tabularnewline
82 &  0.03915 &  0.0783 &  0.9609 \tabularnewline
83 &  0.03964 &  0.07929 &  0.9604 \tabularnewline
84 &  0.1957 &  0.3914 &  0.8043 \tabularnewline
85 &  0.1746 &  0.3492 &  0.8254 \tabularnewline
86 &  0.222 &  0.4439 &  0.778 \tabularnewline
87 &  0.1914 &  0.3828 &  0.8086 \tabularnewline
88 &  0.2178 &  0.4356 &  0.7822 \tabularnewline
89 &  0.2015 &  0.403 &  0.7985 \tabularnewline
90 &  0.1748 &  0.3497 &  0.8252 \tabularnewline
91 &  0.1678 &  0.3356 &  0.8322 \tabularnewline
92 &  0.1402 &  0.2803 &  0.8598 \tabularnewline
93 &  0.1162 &  0.2323 &  0.8838 \tabularnewline
94 &  0.09563 &  0.1913 &  0.9044 \tabularnewline
95 &  0.07896 &  0.1579 &  0.921 \tabularnewline
96 &  0.1006 &  0.2012 &  0.8994 \tabularnewline
97 &  0.1013 &  0.2027 &  0.8987 \tabularnewline
98 &  0.08871 &  0.1774 &  0.9113 \tabularnewline
99 &  0.0963 &  0.1926 &  0.9037 \tabularnewline
100 &  0.08304 &  0.1661 &  0.917 \tabularnewline
101 &  0.1653 &  0.3305 &  0.8347 \tabularnewline
102 &  0.1404 &  0.2809 &  0.8596 \tabularnewline
103 &  0.1179 &  0.2358 &  0.8821 \tabularnewline
104 &  0.1045 &  0.209 &  0.8955 \tabularnewline
105 &  0.08971 &  0.1794 &  0.9103 \tabularnewline
106 &  0.07657 &  0.1531 &  0.9234 \tabularnewline
107 &  0.06119 &  0.1224 &  0.9388 \tabularnewline
108 &  0.05185 &  0.1037 &  0.9482 \tabularnewline
109 &  0.08248 &  0.165 &  0.9175 \tabularnewline
110 &  0.06537 &  0.1307 &  0.9346 \tabularnewline
111 &  0.07906 &  0.1581 &  0.9209 \tabularnewline
112 &  0.2348 &  0.4696 &  0.7652 \tabularnewline
113 &  0.2242 &  0.4484 &  0.7758 \tabularnewline
114 &  0.2031 &  0.4061 &  0.7969 \tabularnewline
115 &  0.17 &  0.3401 &  0.83 \tabularnewline
116 &  0.1496 &  0.2992 &  0.8504 \tabularnewline
117 &  0.1525 &  0.305 &  0.8475 \tabularnewline
118 &  0.125 &  0.2499 &  0.875 \tabularnewline
119 &  0.1065 &  0.213 &  0.8935 \tabularnewline
120 &  0.0877 &  0.1754 &  0.9123 \tabularnewline
121 &  0.07411 &  0.1482 &  0.9259 \tabularnewline
122 &  0.06478 &  0.1296 &  0.9352 \tabularnewline
123 &  0.05416 &  0.1083 &  0.9458 \tabularnewline
124 &  0.04968 &  0.09936 &  0.9503 \tabularnewline
125 &  0.03957 &  0.07914 &  0.9604 \tabularnewline
126 &  0.03444 &  0.06887 &  0.9656 \tabularnewline
127 &  0.02525 &  0.0505 &  0.9748 \tabularnewline
128 &  0.02189 &  0.04377 &  0.9781 \tabularnewline
129 &  0.01665 &  0.03329 &  0.9834 \tabularnewline
130 &  0.01801 &  0.03602 &  0.982 \tabularnewline
131 &  0.01676 &  0.03353 &  0.9832 \tabularnewline
132 &  0.04604 &  0.09207 &  0.954 \tabularnewline
133 &  0.04237 &  0.08475 &  0.9576 \tabularnewline
134 &  0.03256 &  0.06512 &  0.9674 \tabularnewline
135 &  0.02612 &  0.05224 &  0.9739 \tabularnewline
136 &  0.0199 &  0.0398 &  0.9801 \tabularnewline
137 &  0.0156 &  0.0312 &  0.9844 \tabularnewline
138 &  0.01962 &  0.03923 &  0.9804 \tabularnewline
139 &  0.01933 &  0.03866 &  0.9807 \tabularnewline
140 &  0.01422 &  0.02844 &  0.9858 \tabularnewline
141 &  0.01631 &  0.03261 &  0.9837 \tabularnewline
142 &  0.02608 &  0.05216 &  0.9739 \tabularnewline
143 &  0.02 &  0.04 &  0.98 \tabularnewline
144 &  0.09646 &  0.1929 &  0.9035 \tabularnewline
145 &  0.08693 &  0.1739 &  0.9131 \tabularnewline
146 &  0.05931 &  0.1186 &  0.9407 \tabularnewline
147 &  0.0711 &  0.1422 &  0.9289 \tabularnewline
148 &  0.07635 &  0.1527 &  0.9236 \tabularnewline
149 &  0.1006 &  0.2013 &  0.8994 \tabularnewline
150 &  0.1416 &  0.2832 &  0.8584 \tabularnewline
151 &  0.33 &  0.6601 &  0.67 \tabularnewline
152 &  0.2425 &  0.4849 &  0.7575 \tabularnewline
153 &  0.2296 &  0.4592 &  0.7704 \tabularnewline
154 &  0.2826 &  0.5651 &  0.7174 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298729&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]11[/C][C] 0.178[/C][C] 0.3559[/C][C] 0.822[/C][/ROW]
[ROW][C]12[/C][C] 0.08193[/C][C] 0.1639[/C][C] 0.9181[/C][/ROW]
[ROW][C]13[/C][C] 0.03335[/C][C] 0.0667[/C][C] 0.9667[/C][/ROW]
[ROW][C]14[/C][C] 0.02014[/C][C] 0.04027[/C][C] 0.9799[/C][/ROW]
[ROW][C]15[/C][C] 0.01783[/C][C] 0.03566[/C][C] 0.9822[/C][/ROW]
[ROW][C]16[/C][C] 0.01501[/C][C] 0.03002[/C][C] 0.985[/C][/ROW]
[ROW][C]17[/C][C] 0.007775[/C][C] 0.01555[/C][C] 0.9922[/C][/ROW]
[ROW][C]18[/C][C] 0.039[/C][C] 0.078[/C][C] 0.961[/C][/ROW]
[ROW][C]19[/C][C] 0.02419[/C][C] 0.04838[/C][C] 0.9758[/C][/ROW]
[ROW][C]20[/C][C] 0.01707[/C][C] 0.03414[/C][C] 0.9829[/C][/ROW]
[ROW][C]21[/C][C] 0.01388[/C][C] 0.02775[/C][C] 0.9861[/C][/ROW]
[ROW][C]22[/C][C] 0.008225[/C][C] 0.01645[/C][C] 0.9918[/C][/ROW]
[ROW][C]23[/C][C] 0.0102[/C][C] 0.02041[/C][C] 0.9898[/C][/ROW]
[ROW][C]24[/C][C] 0.01224[/C][C] 0.02449[/C][C] 0.9878[/C][/ROW]
[ROW][C]25[/C][C] 0.01224[/C][C] 0.02449[/C][C] 0.9878[/C][/ROW]
[ROW][C]26[/C][C] 0.007713[/C][C] 0.01543[/C][C] 0.9923[/C][/ROW]
[ROW][C]27[/C][C] 0.008537[/C][C] 0.01707[/C][C] 0.9915[/C][/ROW]
[ROW][C]28[/C][C] 0.005115[/C][C] 0.01023[/C][C] 0.9949[/C][/ROW]
[ROW][C]29[/C][C] 0.002982[/C][C] 0.005963[/C][C] 0.997[/C][/ROW]
[ROW][C]30[/C][C] 0.005568[/C][C] 0.01114[/C][C] 0.9944[/C][/ROW]
[ROW][C]31[/C][C] 0.01247[/C][C] 0.02494[/C][C] 0.9875[/C][/ROW]
[ROW][C]32[/C][C] 0.0144[/C][C] 0.0288[/C][C] 0.9856[/C][/ROW]
[ROW][C]33[/C][C] 0.01025[/C][C] 0.0205[/C][C] 0.9898[/C][/ROW]
[ROW][C]34[/C][C] 0.01505[/C][C] 0.03011[/C][C] 0.9849[/C][/ROW]
[ROW][C]35[/C][C] 0.01077[/C][C] 0.02153[/C][C] 0.9892[/C][/ROW]
[ROW][C]36[/C][C] 0.007973[/C][C] 0.01595[/C][C] 0.992[/C][/ROW]
[ROW][C]37[/C][C] 0.005078[/C][C] 0.01016[/C][C] 0.9949[/C][/ROW]
[ROW][C]38[/C][C] 0.003575[/C][C] 0.007151[/C][C] 0.9964[/C][/ROW]
[ROW][C]39[/C][C] 0.01281[/C][C] 0.02562[/C][C] 0.9872[/C][/ROW]
[ROW][C]40[/C][C] 0.01043[/C][C] 0.02086[/C][C] 0.9896[/C][/ROW]
[ROW][C]41[/C][C] 0.0069[/C][C] 0.0138[/C][C] 0.9931[/C][/ROW]
[ROW][C]42[/C][C] 0.006459[/C][C] 0.01292[/C][C] 0.9935[/C][/ROW]
[ROW][C]43[/C][C] 0.005284[/C][C] 0.01057[/C][C] 0.9947[/C][/ROW]
[ROW][C]44[/C][C] 0.003529[/C][C] 0.007057[/C][C] 0.9965[/C][/ROW]
[ROW][C]45[/C][C] 0.002407[/C][C] 0.004815[/C][C] 0.9976[/C][/ROW]
[ROW][C]46[/C][C] 0.001547[/C][C] 0.003095[/C][C] 0.9985[/C][/ROW]
[ROW][C]47[/C][C] 0.001271[/C][C] 0.002542[/C][C] 0.9987[/C][/ROW]
[ROW][C]48[/C][C] 0.00637[/C][C] 0.01274[/C][C] 0.9936[/C][/ROW]
[ROW][C]49[/C][C] 0.004673[/C][C] 0.009346[/C][C] 0.9953[/C][/ROW]
[ROW][C]50[/C][C] 0.003113[/C][C] 0.006227[/C][C] 0.9969[/C][/ROW]
[ROW][C]51[/C][C] 0.002107[/C][C] 0.004215[/C][C] 0.9979[/C][/ROW]
[ROW][C]52[/C][C] 0.01202[/C][C] 0.02405[/C][C] 0.988[/C][/ROW]
[ROW][C]53[/C][C] 0.00891[/C][C] 0.01782[/C][C] 0.9911[/C][/ROW]
[ROW][C]54[/C][C] 0.02272[/C][C] 0.04544[/C][C] 0.9773[/C][/ROW]
[ROW][C]55[/C][C] 0.01896[/C][C] 0.03792[/C][C] 0.981[/C][/ROW]
[ROW][C]56[/C][C] 0.02249[/C][C] 0.04498[/C][C] 0.9775[/C][/ROW]
[ROW][C]57[/C][C] 0.02033[/C][C] 0.04065[/C][C] 0.9797[/C][/ROW]
[ROW][C]58[/C][C] 0.01733[/C][C] 0.03465[/C][C] 0.9827[/C][/ROW]
[ROW][C]59[/C][C] 0.01272[/C][C] 0.02543[/C][C] 0.9873[/C][/ROW]
[ROW][C]60[/C][C] 0.01195[/C][C] 0.0239[/C][C] 0.9881[/C][/ROW]
[ROW][C]61[/C][C] 0.008972[/C][C] 0.01794[/C][C] 0.991[/C][/ROW]
[ROW][C]62[/C][C] 0.008205[/C][C] 0.01641[/C][C] 0.9918[/C][/ROW]
[ROW][C]63[/C][C] 0.006787[/C][C] 0.01358[/C][C] 0.9932[/C][/ROW]
[ROW][C]64[/C][C] 0.006203[/C][C] 0.01241[/C][C] 0.9938[/C][/ROW]
[ROW][C]65[/C][C] 0.00629[/C][C] 0.01258[/C][C] 0.9937[/C][/ROW]
[ROW][C]66[/C][C] 0.00655[/C][C] 0.0131[/C][C] 0.9935[/C][/ROW]
[ROW][C]67[/C][C] 0.00821[/C][C] 0.01642[/C][C] 0.9918[/C][/ROW]
[ROW][C]68[/C][C] 0.00693[/C][C] 0.01386[/C][C] 0.9931[/C][/ROW]
[ROW][C]69[/C][C] 0.005131[/C][C] 0.01026[/C][C] 0.9949[/C][/ROW]
[ROW][C]70[/C][C] 0.007824[/C][C] 0.01565[/C][C] 0.9922[/C][/ROW]
[ROW][C]71[/C][C] 0.0241[/C][C] 0.04819[/C][C] 0.9759[/C][/ROW]
[ROW][C]72[/C][C] 0.0394[/C][C] 0.0788[/C][C] 0.9606[/C][/ROW]
[ROW][C]73[/C][C] 0.03531[/C][C] 0.07061[/C][C] 0.9647[/C][/ROW]
[ROW][C]74[/C][C] 0.02813[/C][C] 0.05626[/C][C] 0.9719[/C][/ROW]
[ROW][C]75[/C][C] 0.02137[/C][C] 0.04274[/C][C] 0.9786[/C][/ROW]
[ROW][C]76[/C][C] 0.01945[/C][C] 0.0389[/C][C] 0.9806[/C][/ROW]
[ROW][C]77[/C][C] 0.01597[/C][C] 0.03194[/C][C] 0.984[/C][/ROW]
[ROW][C]78[/C][C] 0.03998[/C][C] 0.07995[/C][C] 0.96[/C][/ROW]
[ROW][C]79[/C][C] 0.03236[/C][C] 0.06472[/C][C] 0.9676[/C][/ROW]
[ROW][C]80[/C][C] 0.04988[/C][C] 0.09976[/C][C] 0.9501[/C][/ROW]
[ROW][C]81[/C][C] 0.03914[/C][C] 0.07827[/C][C] 0.9609[/C][/ROW]
[ROW][C]82[/C][C] 0.03915[/C][C] 0.0783[/C][C] 0.9609[/C][/ROW]
[ROW][C]83[/C][C] 0.03964[/C][C] 0.07929[/C][C] 0.9604[/C][/ROW]
[ROW][C]84[/C][C] 0.1957[/C][C] 0.3914[/C][C] 0.8043[/C][/ROW]
[ROW][C]85[/C][C] 0.1746[/C][C] 0.3492[/C][C] 0.8254[/C][/ROW]
[ROW][C]86[/C][C] 0.222[/C][C] 0.4439[/C][C] 0.778[/C][/ROW]
[ROW][C]87[/C][C] 0.1914[/C][C] 0.3828[/C][C] 0.8086[/C][/ROW]
[ROW][C]88[/C][C] 0.2178[/C][C] 0.4356[/C][C] 0.7822[/C][/ROW]
[ROW][C]89[/C][C] 0.2015[/C][C] 0.403[/C][C] 0.7985[/C][/ROW]
[ROW][C]90[/C][C] 0.1748[/C][C] 0.3497[/C][C] 0.8252[/C][/ROW]
[ROW][C]91[/C][C] 0.1678[/C][C] 0.3356[/C][C] 0.8322[/C][/ROW]
[ROW][C]92[/C][C] 0.1402[/C][C] 0.2803[/C][C] 0.8598[/C][/ROW]
[ROW][C]93[/C][C] 0.1162[/C][C] 0.2323[/C][C] 0.8838[/C][/ROW]
[ROW][C]94[/C][C] 0.09563[/C][C] 0.1913[/C][C] 0.9044[/C][/ROW]
[ROW][C]95[/C][C] 0.07896[/C][C] 0.1579[/C][C] 0.921[/C][/ROW]
[ROW][C]96[/C][C] 0.1006[/C][C] 0.2012[/C][C] 0.8994[/C][/ROW]
[ROW][C]97[/C][C] 0.1013[/C][C] 0.2027[/C][C] 0.8987[/C][/ROW]
[ROW][C]98[/C][C] 0.08871[/C][C] 0.1774[/C][C] 0.9113[/C][/ROW]
[ROW][C]99[/C][C] 0.0963[/C][C] 0.1926[/C][C] 0.9037[/C][/ROW]
[ROW][C]100[/C][C] 0.08304[/C][C] 0.1661[/C][C] 0.917[/C][/ROW]
[ROW][C]101[/C][C] 0.1653[/C][C] 0.3305[/C][C] 0.8347[/C][/ROW]
[ROW][C]102[/C][C] 0.1404[/C][C] 0.2809[/C][C] 0.8596[/C][/ROW]
[ROW][C]103[/C][C] 0.1179[/C][C] 0.2358[/C][C] 0.8821[/C][/ROW]
[ROW][C]104[/C][C] 0.1045[/C][C] 0.209[/C][C] 0.8955[/C][/ROW]
[ROW][C]105[/C][C] 0.08971[/C][C] 0.1794[/C][C] 0.9103[/C][/ROW]
[ROW][C]106[/C][C] 0.07657[/C][C] 0.1531[/C][C] 0.9234[/C][/ROW]
[ROW][C]107[/C][C] 0.06119[/C][C] 0.1224[/C][C] 0.9388[/C][/ROW]
[ROW][C]108[/C][C] 0.05185[/C][C] 0.1037[/C][C] 0.9482[/C][/ROW]
[ROW][C]109[/C][C] 0.08248[/C][C] 0.165[/C][C] 0.9175[/C][/ROW]
[ROW][C]110[/C][C] 0.06537[/C][C] 0.1307[/C][C] 0.9346[/C][/ROW]
[ROW][C]111[/C][C] 0.07906[/C][C] 0.1581[/C][C] 0.9209[/C][/ROW]
[ROW][C]112[/C][C] 0.2348[/C][C] 0.4696[/C][C] 0.7652[/C][/ROW]
[ROW][C]113[/C][C] 0.2242[/C][C] 0.4484[/C][C] 0.7758[/C][/ROW]
[ROW][C]114[/C][C] 0.2031[/C][C] 0.4061[/C][C] 0.7969[/C][/ROW]
[ROW][C]115[/C][C] 0.17[/C][C] 0.3401[/C][C] 0.83[/C][/ROW]
[ROW][C]116[/C][C] 0.1496[/C][C] 0.2992[/C][C] 0.8504[/C][/ROW]
[ROW][C]117[/C][C] 0.1525[/C][C] 0.305[/C][C] 0.8475[/C][/ROW]
[ROW][C]118[/C][C] 0.125[/C][C] 0.2499[/C][C] 0.875[/C][/ROW]
[ROW][C]119[/C][C] 0.1065[/C][C] 0.213[/C][C] 0.8935[/C][/ROW]
[ROW][C]120[/C][C] 0.0877[/C][C] 0.1754[/C][C] 0.9123[/C][/ROW]
[ROW][C]121[/C][C] 0.07411[/C][C] 0.1482[/C][C] 0.9259[/C][/ROW]
[ROW][C]122[/C][C] 0.06478[/C][C] 0.1296[/C][C] 0.9352[/C][/ROW]
[ROW][C]123[/C][C] 0.05416[/C][C] 0.1083[/C][C] 0.9458[/C][/ROW]
[ROW][C]124[/C][C] 0.04968[/C][C] 0.09936[/C][C] 0.9503[/C][/ROW]
[ROW][C]125[/C][C] 0.03957[/C][C] 0.07914[/C][C] 0.9604[/C][/ROW]
[ROW][C]126[/C][C] 0.03444[/C][C] 0.06887[/C][C] 0.9656[/C][/ROW]
[ROW][C]127[/C][C] 0.02525[/C][C] 0.0505[/C][C] 0.9748[/C][/ROW]
[ROW][C]128[/C][C] 0.02189[/C][C] 0.04377[/C][C] 0.9781[/C][/ROW]
[ROW][C]129[/C][C] 0.01665[/C][C] 0.03329[/C][C] 0.9834[/C][/ROW]
[ROW][C]130[/C][C] 0.01801[/C][C] 0.03602[/C][C] 0.982[/C][/ROW]
[ROW][C]131[/C][C] 0.01676[/C][C] 0.03353[/C][C] 0.9832[/C][/ROW]
[ROW][C]132[/C][C] 0.04604[/C][C] 0.09207[/C][C] 0.954[/C][/ROW]
[ROW][C]133[/C][C] 0.04237[/C][C] 0.08475[/C][C] 0.9576[/C][/ROW]
[ROW][C]134[/C][C] 0.03256[/C][C] 0.06512[/C][C] 0.9674[/C][/ROW]
[ROW][C]135[/C][C] 0.02612[/C][C] 0.05224[/C][C] 0.9739[/C][/ROW]
[ROW][C]136[/C][C] 0.0199[/C][C] 0.0398[/C][C] 0.9801[/C][/ROW]
[ROW][C]137[/C][C] 0.0156[/C][C] 0.0312[/C][C] 0.9844[/C][/ROW]
[ROW][C]138[/C][C] 0.01962[/C][C] 0.03923[/C][C] 0.9804[/C][/ROW]
[ROW][C]139[/C][C] 0.01933[/C][C] 0.03866[/C][C] 0.9807[/C][/ROW]
[ROW][C]140[/C][C] 0.01422[/C][C] 0.02844[/C][C] 0.9858[/C][/ROW]
[ROW][C]141[/C][C] 0.01631[/C][C] 0.03261[/C][C] 0.9837[/C][/ROW]
[ROW][C]142[/C][C] 0.02608[/C][C] 0.05216[/C][C] 0.9739[/C][/ROW]
[ROW][C]143[/C][C] 0.02[/C][C] 0.04[/C][C] 0.98[/C][/ROW]
[ROW][C]144[/C][C] 0.09646[/C][C] 0.1929[/C][C] 0.9035[/C][/ROW]
[ROW][C]145[/C][C] 0.08693[/C][C] 0.1739[/C][C] 0.9131[/C][/ROW]
[ROW][C]146[/C][C] 0.05931[/C][C] 0.1186[/C][C] 0.9407[/C][/ROW]
[ROW][C]147[/C][C] 0.0711[/C][C] 0.1422[/C][C] 0.9289[/C][/ROW]
[ROW][C]148[/C][C] 0.07635[/C][C] 0.1527[/C][C] 0.9236[/C][/ROW]
[ROW][C]149[/C][C] 0.1006[/C][C] 0.2013[/C][C] 0.8994[/C][/ROW]
[ROW][C]150[/C][C] 0.1416[/C][C] 0.2832[/C][C] 0.8584[/C][/ROW]
[ROW][C]151[/C][C] 0.33[/C][C] 0.6601[/C][C] 0.67[/C][/ROW]
[ROW][C]152[/C][C] 0.2425[/C][C] 0.4849[/C][C] 0.7575[/C][/ROW]
[ROW][C]153[/C][C] 0.2296[/C][C] 0.4592[/C][C] 0.7704[/C][/ROW]
[ROW][C]154[/C][C] 0.2826[/C][C] 0.5651[/C][C] 0.7174[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298729&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298729&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
11 0.178 0.3559 0.822
12 0.08193 0.1639 0.9181
13 0.03335 0.0667 0.9667
14 0.02014 0.04027 0.9799
15 0.01783 0.03566 0.9822
16 0.01501 0.03002 0.985
17 0.007775 0.01555 0.9922
18 0.039 0.078 0.961
19 0.02419 0.04838 0.9758
20 0.01707 0.03414 0.9829
21 0.01388 0.02775 0.9861
22 0.008225 0.01645 0.9918
23 0.0102 0.02041 0.9898
24 0.01224 0.02449 0.9878
25 0.01224 0.02449 0.9878
26 0.007713 0.01543 0.9923
27 0.008537 0.01707 0.9915
28 0.005115 0.01023 0.9949
29 0.002982 0.005963 0.997
30 0.005568 0.01114 0.9944
31 0.01247 0.02494 0.9875
32 0.0144 0.0288 0.9856
33 0.01025 0.0205 0.9898
34 0.01505 0.03011 0.9849
35 0.01077 0.02153 0.9892
36 0.007973 0.01595 0.992
37 0.005078 0.01016 0.9949
38 0.003575 0.007151 0.9964
39 0.01281 0.02562 0.9872
40 0.01043 0.02086 0.9896
41 0.0069 0.0138 0.9931
42 0.006459 0.01292 0.9935
43 0.005284 0.01057 0.9947
44 0.003529 0.007057 0.9965
45 0.002407 0.004815 0.9976
46 0.001547 0.003095 0.9985
47 0.001271 0.002542 0.9987
48 0.00637 0.01274 0.9936
49 0.004673 0.009346 0.9953
50 0.003113 0.006227 0.9969
51 0.002107 0.004215 0.9979
52 0.01202 0.02405 0.988
53 0.00891 0.01782 0.9911
54 0.02272 0.04544 0.9773
55 0.01896 0.03792 0.981
56 0.02249 0.04498 0.9775
57 0.02033 0.04065 0.9797
58 0.01733 0.03465 0.9827
59 0.01272 0.02543 0.9873
60 0.01195 0.0239 0.9881
61 0.008972 0.01794 0.991
62 0.008205 0.01641 0.9918
63 0.006787 0.01358 0.9932
64 0.006203 0.01241 0.9938
65 0.00629 0.01258 0.9937
66 0.00655 0.0131 0.9935
67 0.00821 0.01642 0.9918
68 0.00693 0.01386 0.9931
69 0.005131 0.01026 0.9949
70 0.007824 0.01565 0.9922
71 0.0241 0.04819 0.9759
72 0.0394 0.0788 0.9606
73 0.03531 0.07061 0.9647
74 0.02813 0.05626 0.9719
75 0.02137 0.04274 0.9786
76 0.01945 0.0389 0.9806
77 0.01597 0.03194 0.984
78 0.03998 0.07995 0.96
79 0.03236 0.06472 0.9676
80 0.04988 0.09976 0.9501
81 0.03914 0.07827 0.9609
82 0.03915 0.0783 0.9609
83 0.03964 0.07929 0.9604
84 0.1957 0.3914 0.8043
85 0.1746 0.3492 0.8254
86 0.222 0.4439 0.778
87 0.1914 0.3828 0.8086
88 0.2178 0.4356 0.7822
89 0.2015 0.403 0.7985
90 0.1748 0.3497 0.8252
91 0.1678 0.3356 0.8322
92 0.1402 0.2803 0.8598
93 0.1162 0.2323 0.8838
94 0.09563 0.1913 0.9044
95 0.07896 0.1579 0.921
96 0.1006 0.2012 0.8994
97 0.1013 0.2027 0.8987
98 0.08871 0.1774 0.9113
99 0.0963 0.1926 0.9037
100 0.08304 0.1661 0.917
101 0.1653 0.3305 0.8347
102 0.1404 0.2809 0.8596
103 0.1179 0.2358 0.8821
104 0.1045 0.209 0.8955
105 0.08971 0.1794 0.9103
106 0.07657 0.1531 0.9234
107 0.06119 0.1224 0.9388
108 0.05185 0.1037 0.9482
109 0.08248 0.165 0.9175
110 0.06537 0.1307 0.9346
111 0.07906 0.1581 0.9209
112 0.2348 0.4696 0.7652
113 0.2242 0.4484 0.7758
114 0.2031 0.4061 0.7969
115 0.17 0.3401 0.83
116 0.1496 0.2992 0.8504
117 0.1525 0.305 0.8475
118 0.125 0.2499 0.875
119 0.1065 0.213 0.8935
120 0.0877 0.1754 0.9123
121 0.07411 0.1482 0.9259
122 0.06478 0.1296 0.9352
123 0.05416 0.1083 0.9458
124 0.04968 0.09936 0.9503
125 0.03957 0.07914 0.9604
126 0.03444 0.06887 0.9656
127 0.02525 0.0505 0.9748
128 0.02189 0.04377 0.9781
129 0.01665 0.03329 0.9834
130 0.01801 0.03602 0.982
131 0.01676 0.03353 0.9832
132 0.04604 0.09207 0.954
133 0.04237 0.08475 0.9576
134 0.03256 0.06512 0.9674
135 0.02612 0.05224 0.9739
136 0.0199 0.0398 0.9801
137 0.0156 0.0312 0.9844
138 0.01962 0.03923 0.9804
139 0.01933 0.03866 0.9807
140 0.01422 0.02844 0.9858
141 0.01631 0.03261 0.9837
142 0.02608 0.05216 0.9739
143 0.02 0.04 0.98
144 0.09646 0.1929 0.9035
145 0.08693 0.1739 0.9131
146 0.05931 0.1186 0.9407
147 0.0711 0.1422 0.9289
148 0.07635 0.1527 0.9236
149 0.1006 0.2013 0.8994
150 0.1416 0.2832 0.8584
151 0.33 0.6601 0.67
152 0.2425 0.4849 0.7575
153 0.2296 0.4592 0.7704
154 0.2826 0.5651 0.7174







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level9 0.0625NOK
5% type I error level710.493056NOK
10% type I error level910.631944NOK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 9 &  0.0625 & NOK \tabularnewline
5% type I error level & 71 & 0.493056 & NOK \tabularnewline
10% type I error level & 91 & 0.631944 & NOK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298729&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]9[/C][C] 0.0625[/C][C]NOK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]71[/C][C]0.493056[/C][C]NOK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]91[/C][C]0.631944[/C][C]NOK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298729&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298729&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level9 0.0625NOK
5% type I error level710.493056NOK
10% type I error level910.631944NOK







Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 1.5522, df1 = 2, df2 = 155, p-value = 0.215
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = 1.0235, df1 = 14, df2 = 143, p-value = 0.4335
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 0.64757, df1 = 2, df2 = 155, p-value = 0.5247

\begin{tabular}{lllllllll}
\hline
Ramsey RESET F-Test for powers (2 and 3) of fitted values \tabularnewline
> reset_test_fitted
	RESET test
data:  mylm
RESET = 1.5522, df1 = 2, df2 = 155, p-value = 0.215
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of regressors \tabularnewline
> reset_test_regressors
	RESET test
data:  mylm
RESET = 1.0235, df1 = 14, df2 = 143, p-value = 0.4335
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of principal components \tabularnewline
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 0.64757, df1 = 2, df2 = 155, p-value = 0.5247
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=298729&T=7

[TABLE]
[ROW][C]Ramsey RESET F-Test for powers (2 and 3) of fitted values[/C][/ROW]
[ROW][C]
> reset_test_fitted
	RESET test
data:  mylm
RESET = 1.5522, df1 = 2, df2 = 155, p-value = 0.215
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of regressors[/C][/ROW] [ROW][C]
> reset_test_regressors
	RESET test
data:  mylm
RESET = 1.0235, df1 = 14, df2 = 143, p-value = 0.4335
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of principal components[/C][/ROW] [ROW][C]
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 0.64757, df1 = 2, df2 = 155, p-value = 0.5247
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=298729&T=7

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298729&T=7

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 1.5522, df1 = 2, df2 = 155, p-value = 0.215
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = 1.0235, df1 = 14, df2 = 143, p-value = 0.4335
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 0.64757, df1 = 2, df2 = 155, p-value = 0.5247







Variance Inflation Factors (Multicollinearity)
> vif
     SK1      SK2      SK3      SK4      SK5     ALG4     ALG2 
1.106636 1.130403 1.041361 1.133883 1.037848 1.029758 1.048351 

\begin{tabular}{lllllllll}
\hline
Variance Inflation Factors (Multicollinearity) \tabularnewline
> vif
     SK1      SK2      SK3      SK4      SK5     ALG4     ALG2 
1.106636 1.130403 1.041361 1.133883 1.037848 1.029758 1.048351 
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=298729&T=8

[TABLE]
[ROW][C]Variance Inflation Factors (Multicollinearity)[/C][/ROW]
[ROW][C]
> vif
     SK1      SK2      SK3      SK4      SK5     ALG4     ALG2 
1.106636 1.130403 1.041361 1.133883 1.037848 1.029758 1.048351 
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=298729&T=8

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298729&T=8

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Variance Inflation Factors (Multicollinearity)
> vif
     SK1      SK2      SK3      SK4      SK5     ALG4     ALG2 
1.106636 1.130403 1.041361 1.133883 1.037848 1.029758 1.048351 



Parameters (Session):
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ; par4 = 0 ; par5 = 0 ;
Parameters (R input):
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ; par4 = 0 ; par5 = 0 ;
R code (references can be found in the software module):
library(lattice)
library(lmtest)
library(car)
library(MASS)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
mywarning <- ''
par1 <- as.numeric(par1)
if(is.na(par1)) {
par1 <- 1
mywarning = 'Warning: you did not specify the column number of the endogenous series! The first column was selected by default.'
}
if (par4=='') par4 <- 0
par4 <- as.numeric(par4)
if (par5=='') par5 <- 0
par5 <- as.numeric(par5)
x <- na.omit(t(y))
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'Seasonal Differences (s=12)'){
(n <- n - 12)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+12,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'First and Seasonal Differences (s=12)'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
(n <- n - 12)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+12,j] - x[i,j]
}
}
x <- x2
}
if(par4 > 0) {
x2 <- array(0, dim=c(n-par4,par4), dimnames=list(1:(n-par4), paste(colnames(x)[par1],'(t-',1:par4,')',sep='')))
for (i in 1:(n-par4)) {
for (j in 1:par4) {
x2[i,j] <- x[i+par4-j,par1]
}
}
x <- cbind(x[(par4+1):n,], x2)
n <- n - par4
}
if(par5 > 0) {
x2 <- array(0, dim=c(n-par5*12,par5), dimnames=list(1:(n-par5*12), paste(colnames(x)[par1],'(t-',1:par5,'s)',sep='')))
for (i in 1:(n-par5*12)) {
for (j in 1:par5) {
x2[i,j] <- x[i+par5*12-j*12,par1]
}
}
x <- cbind(x[(par5*12+1):n,], x2)
n <- n - par5*12
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
(k <- length(x[n,]))
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
print(x)
(k <- length(x[n,]))
head(x)
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
sresid <- studres(mylm)
hist(sresid, freq=FALSE, main='Distribution of Studentized Residuals')
xfit<-seq(min(sresid),max(sresid),length=40)
yfit<-dnorm(xfit)
lines(xfit, yfit)
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqPlot(mylm, main='QQ Plot')
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
print(z)
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, signif(mysum$coefficients[i,1],6), sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, mywarning)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Multiple Linear Regression - Ordinary Least Squares', 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,formatC(signif(mysum$coefficients[i,1],5),format='g',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,2],5),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,3],4),format='e',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4],4),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4]/2,4),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a,formatC(signif(sqrt(mysum$r.squared),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$adj.r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a,formatC(signif(mysum$fstatistic[1],6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[2],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[3],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a,formatC(signif(1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a,formatC(signif(mysum$sigma,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a,formatC(signif(sum(myerror*myerror),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
myr <- as.numeric(mysum$resid)
myr
if(n < 200) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,formatC(signif(x[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(x[i]-mysum$resid[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$resid[i],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,1],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,2],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,3],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant1,6))
a<-table.element(a,formatC(signif(numsignificant1/numgqtests,6),format='g',flag=' '))
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant5,6))
a<-table.element(a,signif(numsignificant5/numgqtests,6))
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant10,6))
a<-table.element(a,signif(numsignificant10/numgqtests,6))
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}
}
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of fitted values',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_fitted <- resettest(mylm,power=2:3,type='fitted')
a<-table.element(a,paste('
',RC.texteval('reset_test_fitted'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of regressors',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_regressors <- resettest(mylm,power=2:3,type='regressor')
a<-table.element(a,paste('
',RC.texteval('reset_test_regressors'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of principal components',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_principal_components <- resettest(mylm,power=2:3,type='princomp')
a<-table.element(a,paste('
',RC.texteval('reset_test_principal_components'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable8.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Variance Inflation Factors (Multicollinearity)',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
vif <- vif(mylm)
a<-table.element(a,paste('
',RC.texteval('vif'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable9.tab')