Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_arimaforecasting.wasp
Title produced by softwareARIMA Forecasting
Date of computationSat, 10 Dec 2016 17:18:41 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/10/t148138673605lt3xe7aolui43.htm/, Retrieved Fri, 01 Nov 2024 03:45:32 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=298710, Retrieved Fri, 01 Nov 2024 03:45:32 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact75
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [ARIMA Forecasting] [eeeee] [2016-12-10 16:18:41] [f0fcaf0884a2ab8e55345d70fdb8db2d] [Current]
Feedback Forum

Post a new message
Dataseries X:
1.894
1.757
3.582
5.321
5.561
5.907
4.944
4.966
3.258
1.964
1.743
1.262
2.086
1.793
3.548
5.672
6.084
4.914
4.990
5.139
3.218
2.179
2.238
1.442
2.205
2.025
3.531
4.977
7.998
4.880
5.231
5.202
3.303
2.683
2.202
1.376
2.422
1.997
3.163
5.964
5.657
6.415
6.208
4.500
2.939
2.702
2.090
1.504
2.549
1.931
3.013
6.204
5.788
5.611
5.594
4.647
3.490
2.487
1.992
1.507
2.306
2.002
3.075
5.331
5.589
5.813
4.876
4.665
3.601
2.192
2.111
1.580
2.288
1.993
3.228
5.000
5.480
5.770
4.962
4.685
3.607
2.222
2.467
1.594
2.228
1.910
3.157
4.809
6.249
4.607
4.975
4.784
3.028
2.461
2.218
1.351
2.070
1.887
3.024
4.596
6.398
4.459
5.382
4.359
2.687
2.249
2.154
1.169
2.429
1.762
2.846
5.627
5.749
4.502
5.720
4.403
2.867
2.635
2.059
1.511
2.359
1.741
2.917
6.249
5.760
6.250
5.134
4.831
3.695
2.462
2.146
1.579




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time2 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298710&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]2 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=298710&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298710&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center







Univariate ARIMA Extrapolation Forecast
timeY[t]F[t]95% LB95% UBp-value(H0: Y[t] = F[t])P(F[t]>Y[t-1])P(F[t]>Y[t-s])P(F[t]>Y[108])
961.351-------
972.07-------
981.887-------
993.024-------
1004.596-------
1016.398-------
1024.459-------
1035.382-------
1044.359-------
1052.687-------
1062.249-------
1072.154-------
1081.169-------
1092.4292.0681.76662.43990.028510.49591
1101.7621.88861.622.21810.22577e-040.50381
1112.8462.84722.39483.41740.49830.99990.27171
1125.6274.63563.75985.79630.04710.99870.52671
1135.7496.15444.90287.85540.32020.72830.38951
1144.5024.56533.70615.70250.45660.02070.57271
1155.725.28814.24956.68230.27190.86540.44751
1164.4034.4033.57865.49230.50.00890.53151
1172.8672.81982.35043.41880.438700.66811
1182.6352.23781.88752.67770.03840.00250.48021
1192.0592.21061.86562.64320.24620.02730.60111
1201.5111.23681.07191.43630.003500.74740.7474
1212.3592.09921.70042.62880.16820.98530.11110.9997
1221.7411.89241.54242.3530.25970.02350.71050.999
1232.9172.90152.30183.72110.48520.99720.55281
1246.2494.67113.56326.27180.02670.98410.12091
1255.766.16754.59998.50680.36640.47280.63711
1266.254.57473.49536.13080.01740.06770.53651
1275.1345.21963.94467.08660.46420.13970.29971
1284.8314.47873.42585.9940.32430.19830.5391
1293.6952.86382.26293.68980.024300.4971
1302.4622.28121.82982.88890.279900.12690.9998
1312.1462.21331.77872.79660.41060.20170.69790.9998
1321.5791.26071.04721.53450.011300.03660.7444

\begin{tabular}{lllllllll}
\hline
Univariate ARIMA Extrapolation Forecast \tabularnewline
time & Y[t] & F[t] & 95% LB & 95% UB & p-value(H0: Y[t] = F[t]) & P(F[t]>Y[t-1]) & P(F[t]>Y[t-s]) & P(F[t]>Y[108]) \tabularnewline
96 & 1.351 & - & - & - & - & - & - & - \tabularnewline
97 & 2.07 & - & - & - & - & - & - & - \tabularnewline
98 & 1.887 & - & - & - & - & - & - & - \tabularnewline
99 & 3.024 & - & - & - & - & - & - & - \tabularnewline
100 & 4.596 & - & - & - & - & - & - & - \tabularnewline
101 & 6.398 & - & - & - & - & - & - & - \tabularnewline
102 & 4.459 & - & - & - & - & - & - & - \tabularnewline
103 & 5.382 & - & - & - & - & - & - & - \tabularnewline
104 & 4.359 & - & - & - & - & - & - & - \tabularnewline
105 & 2.687 & - & - & - & - & - & - & - \tabularnewline
106 & 2.249 & - & - & - & - & - & - & - \tabularnewline
107 & 2.154 & - & - & - & - & - & - & - \tabularnewline
108 & 1.169 & - & - & - & - & - & - & - \tabularnewline
109 & 2.429 & 2.068 & 1.7666 & 2.4399 & 0.0285 & 1 & 0.4959 & 1 \tabularnewline
110 & 1.762 & 1.8886 & 1.62 & 2.2181 & 0.2257 & 7e-04 & 0.5038 & 1 \tabularnewline
111 & 2.846 & 2.8472 & 2.3948 & 3.4174 & 0.4983 & 0.9999 & 0.2717 & 1 \tabularnewline
112 & 5.627 & 4.6356 & 3.7598 & 5.7963 & 0.0471 & 0.9987 & 0.5267 & 1 \tabularnewline
113 & 5.749 & 6.1544 & 4.9028 & 7.8554 & 0.3202 & 0.7283 & 0.3895 & 1 \tabularnewline
114 & 4.502 & 4.5653 & 3.7061 & 5.7025 & 0.4566 & 0.0207 & 0.5727 & 1 \tabularnewline
115 & 5.72 & 5.2881 & 4.2495 & 6.6823 & 0.2719 & 0.8654 & 0.4475 & 1 \tabularnewline
116 & 4.403 & 4.403 & 3.5786 & 5.4923 & 0.5 & 0.0089 & 0.5315 & 1 \tabularnewline
117 & 2.867 & 2.8198 & 2.3504 & 3.4188 & 0.4387 & 0 & 0.6681 & 1 \tabularnewline
118 & 2.635 & 2.2378 & 1.8875 & 2.6777 & 0.0384 & 0.0025 & 0.4802 & 1 \tabularnewline
119 & 2.059 & 2.2106 & 1.8656 & 2.6432 & 0.2462 & 0.0273 & 0.6011 & 1 \tabularnewline
120 & 1.511 & 1.2368 & 1.0719 & 1.4363 & 0.0035 & 0 & 0.7474 & 0.7474 \tabularnewline
121 & 2.359 & 2.0992 & 1.7004 & 2.6288 & 0.1682 & 0.9853 & 0.1111 & 0.9997 \tabularnewline
122 & 1.741 & 1.8924 & 1.5424 & 2.353 & 0.2597 & 0.0235 & 0.7105 & 0.999 \tabularnewline
123 & 2.917 & 2.9015 & 2.3018 & 3.7211 & 0.4852 & 0.9972 & 0.5528 & 1 \tabularnewline
124 & 6.249 & 4.6711 & 3.5632 & 6.2718 & 0.0267 & 0.9841 & 0.1209 & 1 \tabularnewline
125 & 5.76 & 6.1675 & 4.5999 & 8.5068 & 0.3664 & 0.4728 & 0.6371 & 1 \tabularnewline
126 & 6.25 & 4.5747 & 3.4953 & 6.1308 & 0.0174 & 0.0677 & 0.5365 & 1 \tabularnewline
127 & 5.134 & 5.2196 & 3.9446 & 7.0866 & 0.4642 & 0.1397 & 0.2997 & 1 \tabularnewline
128 & 4.831 & 4.4787 & 3.4258 & 5.994 & 0.3243 & 0.1983 & 0.539 & 1 \tabularnewline
129 & 3.695 & 2.8638 & 2.2629 & 3.6898 & 0.0243 & 0 & 0.497 & 1 \tabularnewline
130 & 2.462 & 2.2812 & 1.8298 & 2.8889 & 0.2799 & 0 & 0.1269 & 0.9998 \tabularnewline
131 & 2.146 & 2.2133 & 1.7787 & 2.7966 & 0.4106 & 0.2017 & 0.6979 & 0.9998 \tabularnewline
132 & 1.579 & 1.2607 & 1.0472 & 1.5345 & 0.0113 & 0 & 0.0366 & 0.7444 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298710&T=1

[TABLE]
[ROW][C]Univariate ARIMA Extrapolation Forecast[/C][/ROW]
[ROW][C]time[/C][C]Y[t][/C][C]F[t][/C][C]95% LB[/C][C]95% UB[/C][C]p-value(H0: Y[t] = F[t])[/C][C]P(F[t]>Y[t-1])[/C][C]P(F[t]>Y[t-s])[/C][C]P(F[t]>Y[108])[/C][/ROW]
[ROW][C]96[/C][C]1.351[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]97[/C][C]2.07[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]98[/C][C]1.887[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]99[/C][C]3.024[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]100[/C][C]4.596[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]101[/C][C]6.398[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]102[/C][C]4.459[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]103[/C][C]5.382[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]104[/C][C]4.359[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]105[/C][C]2.687[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]106[/C][C]2.249[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]107[/C][C]2.154[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]108[/C][C]1.169[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]109[/C][C]2.429[/C][C]2.068[/C][C]1.7666[/C][C]2.4399[/C][C]0.0285[/C][C]1[/C][C]0.4959[/C][C]1[/C][/ROW]
[ROW][C]110[/C][C]1.762[/C][C]1.8886[/C][C]1.62[/C][C]2.2181[/C][C]0.2257[/C][C]7e-04[/C][C]0.5038[/C][C]1[/C][/ROW]
[ROW][C]111[/C][C]2.846[/C][C]2.8472[/C][C]2.3948[/C][C]3.4174[/C][C]0.4983[/C][C]0.9999[/C][C]0.2717[/C][C]1[/C][/ROW]
[ROW][C]112[/C][C]5.627[/C][C]4.6356[/C][C]3.7598[/C][C]5.7963[/C][C]0.0471[/C][C]0.9987[/C][C]0.5267[/C][C]1[/C][/ROW]
[ROW][C]113[/C][C]5.749[/C][C]6.1544[/C][C]4.9028[/C][C]7.8554[/C][C]0.3202[/C][C]0.7283[/C][C]0.3895[/C][C]1[/C][/ROW]
[ROW][C]114[/C][C]4.502[/C][C]4.5653[/C][C]3.7061[/C][C]5.7025[/C][C]0.4566[/C][C]0.0207[/C][C]0.5727[/C][C]1[/C][/ROW]
[ROW][C]115[/C][C]5.72[/C][C]5.2881[/C][C]4.2495[/C][C]6.6823[/C][C]0.2719[/C][C]0.8654[/C][C]0.4475[/C][C]1[/C][/ROW]
[ROW][C]116[/C][C]4.403[/C][C]4.403[/C][C]3.5786[/C][C]5.4923[/C][C]0.5[/C][C]0.0089[/C][C]0.5315[/C][C]1[/C][/ROW]
[ROW][C]117[/C][C]2.867[/C][C]2.8198[/C][C]2.3504[/C][C]3.4188[/C][C]0.4387[/C][C]0[/C][C]0.6681[/C][C]1[/C][/ROW]
[ROW][C]118[/C][C]2.635[/C][C]2.2378[/C][C]1.8875[/C][C]2.6777[/C][C]0.0384[/C][C]0.0025[/C][C]0.4802[/C][C]1[/C][/ROW]
[ROW][C]119[/C][C]2.059[/C][C]2.2106[/C][C]1.8656[/C][C]2.6432[/C][C]0.2462[/C][C]0.0273[/C][C]0.6011[/C][C]1[/C][/ROW]
[ROW][C]120[/C][C]1.511[/C][C]1.2368[/C][C]1.0719[/C][C]1.4363[/C][C]0.0035[/C][C]0[/C][C]0.7474[/C][C]0.7474[/C][/ROW]
[ROW][C]121[/C][C]2.359[/C][C]2.0992[/C][C]1.7004[/C][C]2.6288[/C][C]0.1682[/C][C]0.9853[/C][C]0.1111[/C][C]0.9997[/C][/ROW]
[ROW][C]122[/C][C]1.741[/C][C]1.8924[/C][C]1.5424[/C][C]2.353[/C][C]0.2597[/C][C]0.0235[/C][C]0.7105[/C][C]0.999[/C][/ROW]
[ROW][C]123[/C][C]2.917[/C][C]2.9015[/C][C]2.3018[/C][C]3.7211[/C][C]0.4852[/C][C]0.9972[/C][C]0.5528[/C][C]1[/C][/ROW]
[ROW][C]124[/C][C]6.249[/C][C]4.6711[/C][C]3.5632[/C][C]6.2718[/C][C]0.0267[/C][C]0.9841[/C][C]0.1209[/C][C]1[/C][/ROW]
[ROW][C]125[/C][C]5.76[/C][C]6.1675[/C][C]4.5999[/C][C]8.5068[/C][C]0.3664[/C][C]0.4728[/C][C]0.6371[/C][C]1[/C][/ROW]
[ROW][C]126[/C][C]6.25[/C][C]4.5747[/C][C]3.4953[/C][C]6.1308[/C][C]0.0174[/C][C]0.0677[/C][C]0.5365[/C][C]1[/C][/ROW]
[ROW][C]127[/C][C]5.134[/C][C]5.2196[/C][C]3.9446[/C][C]7.0866[/C][C]0.4642[/C][C]0.1397[/C][C]0.2997[/C][C]1[/C][/ROW]
[ROW][C]128[/C][C]4.831[/C][C]4.4787[/C][C]3.4258[/C][C]5.994[/C][C]0.3243[/C][C]0.1983[/C][C]0.539[/C][C]1[/C][/ROW]
[ROW][C]129[/C][C]3.695[/C][C]2.8638[/C][C]2.2629[/C][C]3.6898[/C][C]0.0243[/C][C]0[/C][C]0.497[/C][C]1[/C][/ROW]
[ROW][C]130[/C][C]2.462[/C][C]2.2812[/C][C]1.8298[/C][C]2.8889[/C][C]0.2799[/C][C]0[/C][C]0.1269[/C][C]0.9998[/C][/ROW]
[ROW][C]131[/C][C]2.146[/C][C]2.2133[/C][C]1.7787[/C][C]2.7966[/C][C]0.4106[/C][C]0.2017[/C][C]0.6979[/C][C]0.9998[/C][/ROW]
[ROW][C]132[/C][C]1.579[/C][C]1.2607[/C][C]1.0472[/C][C]1.5345[/C][C]0.0113[/C][C]0[/C][C]0.0366[/C][C]0.7444[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298710&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298710&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Univariate ARIMA Extrapolation Forecast
timeY[t]F[t]95% LB95% UBp-value(H0: Y[t] = F[t])P(F[t]>Y[t-1])P(F[t]>Y[t-s])P(F[t]>Y[108])
961.351-------
972.07-------
981.887-------
993.024-------
1004.596-------
1016.398-------
1024.459-------
1035.382-------
1044.359-------
1052.687-------
1062.249-------
1072.154-------
1081.169-------
1092.4292.0681.76662.43990.028510.49591
1101.7621.88861.622.21810.22577e-040.50381
1112.8462.84722.39483.41740.49830.99990.27171
1125.6274.63563.75985.79630.04710.99870.52671
1135.7496.15444.90287.85540.32020.72830.38951
1144.5024.56533.70615.70250.45660.02070.57271
1155.725.28814.24956.68230.27190.86540.44751
1164.4034.4033.57865.49230.50.00890.53151
1172.8672.81982.35043.41880.438700.66811
1182.6352.23781.88752.67770.03840.00250.48021
1192.0592.21061.86562.64320.24620.02730.60111
1201.5111.23681.07191.43630.003500.74740.7474
1212.3592.09921.70042.62880.16820.98530.11110.9997
1221.7411.89241.54242.3530.25970.02350.71050.999
1232.9172.90152.30183.72110.48520.99720.55281
1246.2494.67113.56326.27180.02670.98410.12091
1255.766.16754.59998.50680.36640.47280.63711
1266.254.57473.49536.13080.01740.06770.53651
1275.1345.21963.94467.08660.46420.13970.29971
1284.8314.47873.42585.9940.32430.19830.5391
1293.6952.86382.26293.68980.024300.4971
1302.4622.28121.82982.88890.279900.12690.9998
1312.1462.21331.77872.79660.41060.20170.69790.9998
1321.5791.26071.04721.53450.011300.03660.7444







Univariate ARIMA Extrapolation Forecast Performance
time% S.E.PEMAPEsMAPESq.EMSERMSEScaledEMASE
1090.09170.14860.14860.16050.1303000.36170.3617
1100.089-0.07190.11020.11490.0160.07320.2705-0.12690.2443
1110.1022-4e-040.07360.076800.04880.2209-0.00120.1633
1120.12770.17620.09930.10590.98290.28230.53130.99350.3708
1130.141-0.07050.09350.09830.16440.25870.5086-0.40630.3779
1140.1271-0.01410.08030.08430.0040.21630.465-0.06340.3255
1150.13450.07550.07960.08340.18650.2120.46050.43280.3408
1160.126200.06960.07300.18550.430700.2982
1170.10840.01650.06370.06670.00220.16510.40640.04730.2703
1180.10030.15070.07240.07640.15770.16440.40550.3980.2831
1190.0999-0.07360.07250.07590.0230.15150.3893-0.15190.2712
1200.08230.18150.08160.08620.07520.14520.3810.27470.2715
1210.12870.11010.08380.08850.06750.13920.37310.26030.2706
1220.1242-0.0870.0840.08820.02290.13090.3618-0.15170.2621
1230.14410.00530.07880.08262e-040.12220.34960.01560.2457
1240.17480.25250.08960.09552.48990.27020.51981.58120.3292
1250.1935-0.07080.08850.09390.16610.2640.5139-0.40840.3338
1260.17350.2680.09850.10592.80650.40530.63661.67880.4085
1270.1825-0.01670.09420.10120.00730.38440.62-0.08580.3915
1280.17260.07290.09310.09990.12410.37130.60940.35310.3896
1290.14720.2250.09940.10720.69090.38660.62170.83290.4107
1300.13590.07340.09820.10580.03270.37050.60870.18120.4003
1310.1345-0.03140.09530.10260.00450.35460.5954-0.06740.3858
1320.11080.20160.09970.10760.10130.3440.58650.31890.383

\begin{tabular}{lllllllll}
\hline
Univariate ARIMA Extrapolation Forecast Performance \tabularnewline
time & % S.E. & PE & MAPE & sMAPE & Sq.E & MSE & RMSE & ScaledE & MASE \tabularnewline
109 & 0.0917 & 0.1486 & 0.1486 & 0.1605 & 0.1303 & 0 & 0 & 0.3617 & 0.3617 \tabularnewline
110 & 0.089 & -0.0719 & 0.1102 & 0.1149 & 0.016 & 0.0732 & 0.2705 & -0.1269 & 0.2443 \tabularnewline
111 & 0.1022 & -4e-04 & 0.0736 & 0.0768 & 0 & 0.0488 & 0.2209 & -0.0012 & 0.1633 \tabularnewline
112 & 0.1277 & 0.1762 & 0.0993 & 0.1059 & 0.9829 & 0.2823 & 0.5313 & 0.9935 & 0.3708 \tabularnewline
113 & 0.141 & -0.0705 & 0.0935 & 0.0983 & 0.1644 & 0.2587 & 0.5086 & -0.4063 & 0.3779 \tabularnewline
114 & 0.1271 & -0.0141 & 0.0803 & 0.0843 & 0.004 & 0.2163 & 0.465 & -0.0634 & 0.3255 \tabularnewline
115 & 0.1345 & 0.0755 & 0.0796 & 0.0834 & 0.1865 & 0.212 & 0.4605 & 0.4328 & 0.3408 \tabularnewline
116 & 0.1262 & 0 & 0.0696 & 0.073 & 0 & 0.1855 & 0.4307 & 0 & 0.2982 \tabularnewline
117 & 0.1084 & 0.0165 & 0.0637 & 0.0667 & 0.0022 & 0.1651 & 0.4064 & 0.0473 & 0.2703 \tabularnewline
118 & 0.1003 & 0.1507 & 0.0724 & 0.0764 & 0.1577 & 0.1644 & 0.4055 & 0.398 & 0.2831 \tabularnewline
119 & 0.0999 & -0.0736 & 0.0725 & 0.0759 & 0.023 & 0.1515 & 0.3893 & -0.1519 & 0.2712 \tabularnewline
120 & 0.0823 & 0.1815 & 0.0816 & 0.0862 & 0.0752 & 0.1452 & 0.381 & 0.2747 & 0.2715 \tabularnewline
121 & 0.1287 & 0.1101 & 0.0838 & 0.0885 & 0.0675 & 0.1392 & 0.3731 & 0.2603 & 0.2706 \tabularnewline
122 & 0.1242 & -0.087 & 0.084 & 0.0882 & 0.0229 & 0.1309 & 0.3618 & -0.1517 & 0.2621 \tabularnewline
123 & 0.1441 & 0.0053 & 0.0788 & 0.0826 & 2e-04 & 0.1222 & 0.3496 & 0.0156 & 0.2457 \tabularnewline
124 & 0.1748 & 0.2525 & 0.0896 & 0.0955 & 2.4899 & 0.2702 & 0.5198 & 1.5812 & 0.3292 \tabularnewline
125 & 0.1935 & -0.0708 & 0.0885 & 0.0939 & 0.1661 & 0.264 & 0.5139 & -0.4084 & 0.3338 \tabularnewline
126 & 0.1735 & 0.268 & 0.0985 & 0.1059 & 2.8065 & 0.4053 & 0.6366 & 1.6788 & 0.4085 \tabularnewline
127 & 0.1825 & -0.0167 & 0.0942 & 0.1012 & 0.0073 & 0.3844 & 0.62 & -0.0858 & 0.3915 \tabularnewline
128 & 0.1726 & 0.0729 & 0.0931 & 0.0999 & 0.1241 & 0.3713 & 0.6094 & 0.3531 & 0.3896 \tabularnewline
129 & 0.1472 & 0.225 & 0.0994 & 0.1072 & 0.6909 & 0.3866 & 0.6217 & 0.8329 & 0.4107 \tabularnewline
130 & 0.1359 & 0.0734 & 0.0982 & 0.1058 & 0.0327 & 0.3705 & 0.6087 & 0.1812 & 0.4003 \tabularnewline
131 & 0.1345 & -0.0314 & 0.0953 & 0.1026 & 0.0045 & 0.3546 & 0.5954 & -0.0674 & 0.3858 \tabularnewline
132 & 0.1108 & 0.2016 & 0.0997 & 0.1076 & 0.1013 & 0.344 & 0.5865 & 0.3189 & 0.383 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298710&T=2

[TABLE]
[ROW][C]Univariate ARIMA Extrapolation Forecast Performance[/C][/ROW]
[ROW][C]time[/C][C]% S.E.[/C][C]PE[/C][C]MAPE[/C][C]sMAPE[/C][C]Sq.E[/C][C]MSE[/C][C]RMSE[/C][C]ScaledE[/C][C]MASE[/C][/ROW]
[ROW][C]109[/C][C]0.0917[/C][C]0.1486[/C][C]0.1486[/C][C]0.1605[/C][C]0.1303[/C][C]0[/C][C]0[/C][C]0.3617[/C][C]0.3617[/C][/ROW]
[ROW][C]110[/C][C]0.089[/C][C]-0.0719[/C][C]0.1102[/C][C]0.1149[/C][C]0.016[/C][C]0.0732[/C][C]0.2705[/C][C]-0.1269[/C][C]0.2443[/C][/ROW]
[ROW][C]111[/C][C]0.1022[/C][C]-4e-04[/C][C]0.0736[/C][C]0.0768[/C][C]0[/C][C]0.0488[/C][C]0.2209[/C][C]-0.0012[/C][C]0.1633[/C][/ROW]
[ROW][C]112[/C][C]0.1277[/C][C]0.1762[/C][C]0.0993[/C][C]0.1059[/C][C]0.9829[/C][C]0.2823[/C][C]0.5313[/C][C]0.9935[/C][C]0.3708[/C][/ROW]
[ROW][C]113[/C][C]0.141[/C][C]-0.0705[/C][C]0.0935[/C][C]0.0983[/C][C]0.1644[/C][C]0.2587[/C][C]0.5086[/C][C]-0.4063[/C][C]0.3779[/C][/ROW]
[ROW][C]114[/C][C]0.1271[/C][C]-0.0141[/C][C]0.0803[/C][C]0.0843[/C][C]0.004[/C][C]0.2163[/C][C]0.465[/C][C]-0.0634[/C][C]0.3255[/C][/ROW]
[ROW][C]115[/C][C]0.1345[/C][C]0.0755[/C][C]0.0796[/C][C]0.0834[/C][C]0.1865[/C][C]0.212[/C][C]0.4605[/C][C]0.4328[/C][C]0.3408[/C][/ROW]
[ROW][C]116[/C][C]0.1262[/C][C]0[/C][C]0.0696[/C][C]0.073[/C][C]0[/C][C]0.1855[/C][C]0.4307[/C][C]0[/C][C]0.2982[/C][/ROW]
[ROW][C]117[/C][C]0.1084[/C][C]0.0165[/C][C]0.0637[/C][C]0.0667[/C][C]0.0022[/C][C]0.1651[/C][C]0.4064[/C][C]0.0473[/C][C]0.2703[/C][/ROW]
[ROW][C]118[/C][C]0.1003[/C][C]0.1507[/C][C]0.0724[/C][C]0.0764[/C][C]0.1577[/C][C]0.1644[/C][C]0.4055[/C][C]0.398[/C][C]0.2831[/C][/ROW]
[ROW][C]119[/C][C]0.0999[/C][C]-0.0736[/C][C]0.0725[/C][C]0.0759[/C][C]0.023[/C][C]0.1515[/C][C]0.3893[/C][C]-0.1519[/C][C]0.2712[/C][/ROW]
[ROW][C]120[/C][C]0.0823[/C][C]0.1815[/C][C]0.0816[/C][C]0.0862[/C][C]0.0752[/C][C]0.1452[/C][C]0.381[/C][C]0.2747[/C][C]0.2715[/C][/ROW]
[ROW][C]121[/C][C]0.1287[/C][C]0.1101[/C][C]0.0838[/C][C]0.0885[/C][C]0.0675[/C][C]0.1392[/C][C]0.3731[/C][C]0.2603[/C][C]0.2706[/C][/ROW]
[ROW][C]122[/C][C]0.1242[/C][C]-0.087[/C][C]0.084[/C][C]0.0882[/C][C]0.0229[/C][C]0.1309[/C][C]0.3618[/C][C]-0.1517[/C][C]0.2621[/C][/ROW]
[ROW][C]123[/C][C]0.1441[/C][C]0.0053[/C][C]0.0788[/C][C]0.0826[/C][C]2e-04[/C][C]0.1222[/C][C]0.3496[/C][C]0.0156[/C][C]0.2457[/C][/ROW]
[ROW][C]124[/C][C]0.1748[/C][C]0.2525[/C][C]0.0896[/C][C]0.0955[/C][C]2.4899[/C][C]0.2702[/C][C]0.5198[/C][C]1.5812[/C][C]0.3292[/C][/ROW]
[ROW][C]125[/C][C]0.1935[/C][C]-0.0708[/C][C]0.0885[/C][C]0.0939[/C][C]0.1661[/C][C]0.264[/C][C]0.5139[/C][C]-0.4084[/C][C]0.3338[/C][/ROW]
[ROW][C]126[/C][C]0.1735[/C][C]0.268[/C][C]0.0985[/C][C]0.1059[/C][C]2.8065[/C][C]0.4053[/C][C]0.6366[/C][C]1.6788[/C][C]0.4085[/C][/ROW]
[ROW][C]127[/C][C]0.1825[/C][C]-0.0167[/C][C]0.0942[/C][C]0.1012[/C][C]0.0073[/C][C]0.3844[/C][C]0.62[/C][C]-0.0858[/C][C]0.3915[/C][/ROW]
[ROW][C]128[/C][C]0.1726[/C][C]0.0729[/C][C]0.0931[/C][C]0.0999[/C][C]0.1241[/C][C]0.3713[/C][C]0.6094[/C][C]0.3531[/C][C]0.3896[/C][/ROW]
[ROW][C]129[/C][C]0.1472[/C][C]0.225[/C][C]0.0994[/C][C]0.1072[/C][C]0.6909[/C][C]0.3866[/C][C]0.6217[/C][C]0.8329[/C][C]0.4107[/C][/ROW]
[ROW][C]130[/C][C]0.1359[/C][C]0.0734[/C][C]0.0982[/C][C]0.1058[/C][C]0.0327[/C][C]0.3705[/C][C]0.6087[/C][C]0.1812[/C][C]0.4003[/C][/ROW]
[ROW][C]131[/C][C]0.1345[/C][C]-0.0314[/C][C]0.0953[/C][C]0.1026[/C][C]0.0045[/C][C]0.3546[/C][C]0.5954[/C][C]-0.0674[/C][C]0.3858[/C][/ROW]
[ROW][C]132[/C][C]0.1108[/C][C]0.2016[/C][C]0.0997[/C][C]0.1076[/C][C]0.1013[/C][C]0.344[/C][C]0.5865[/C][C]0.3189[/C][C]0.383[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298710&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298710&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Univariate ARIMA Extrapolation Forecast Performance
time% S.E.PEMAPEsMAPESq.EMSERMSEScaledEMASE
1090.09170.14860.14860.16050.1303000.36170.3617
1100.089-0.07190.11020.11490.0160.07320.2705-0.12690.2443
1110.1022-4e-040.07360.076800.04880.2209-0.00120.1633
1120.12770.17620.09930.10590.98290.28230.53130.99350.3708
1130.141-0.07050.09350.09830.16440.25870.5086-0.40630.3779
1140.1271-0.01410.08030.08430.0040.21630.465-0.06340.3255
1150.13450.07550.07960.08340.18650.2120.46050.43280.3408
1160.126200.06960.07300.18550.430700.2982
1170.10840.01650.06370.06670.00220.16510.40640.04730.2703
1180.10030.15070.07240.07640.15770.16440.40550.3980.2831
1190.0999-0.07360.07250.07590.0230.15150.3893-0.15190.2712
1200.08230.18150.08160.08620.07520.14520.3810.27470.2715
1210.12870.11010.08380.08850.06750.13920.37310.26030.2706
1220.1242-0.0870.0840.08820.02290.13090.3618-0.15170.2621
1230.14410.00530.07880.08262e-040.12220.34960.01560.2457
1240.17480.25250.08960.09552.48990.27020.51981.58120.3292
1250.1935-0.07080.08850.09390.16610.2640.5139-0.40840.3338
1260.17350.2680.09850.10592.80650.40530.63661.67880.4085
1270.1825-0.01670.09420.10120.00730.38440.62-0.08580.3915
1280.17260.07290.09310.09990.12410.37130.60940.35310.3896
1290.14720.2250.09940.10720.69090.38660.62170.83290.4107
1300.13590.07340.09820.10580.03270.37050.60870.18120.4003
1310.1345-0.03140.09530.10260.00450.35460.5954-0.06740.3858
1320.11080.20160.09970.10760.10130.3440.58650.31890.383



Parameters (Session):
par1 = 24 ; par2 = -0.3 ; par3 = 0 ; par4 = 1 ; par5 = 12 ; par6 = 3 ; par7 = 0 ; par8 = 2 ; par9 = 0 ; par10 = FALSE ;
Parameters (R input):
par1 = 24 ; par2 = -0.3 ; par3 = 0 ; par4 = 1 ; par5 = 12 ; par6 = 3 ; par7 = 0 ; par8 = 2 ; par9 = 0 ; par10 = FALSE ;
R code (references can be found in the software module):
par1 <- as.numeric(par1) #cut off periods
par2 <- as.numeric(par2) #lambda
par3 <- as.numeric(par3) #degree of non-seasonal differencing
par4 <- as.numeric(par4) #degree of seasonal differencing
par5 <- as.numeric(par5) #seasonal period
par6 <- as.numeric(par6) #p
par7 <- as.numeric(par7) #q
par8 <- as.numeric(par8) #P
par9 <- as.numeric(par9) #Q
if (par10 == 'TRUE') par10 <- TRUE
if (par10 == 'FALSE') par10 <- FALSE
if (par2 == 0) x <- log(x)
if (par2 != 0) x <- x^par2
lx <- length(x)
first <- lx - 2*par1
nx <- lx - par1
nx1 <- nx + 1
fx <- lx - nx
if (fx < 1) {
fx <- par5*2
nx1 <- lx + fx - 1
first <- lx - 2*fx
}
first <- 1
if (fx < 3) fx <- round(lx/10,0)
(arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML'))
(forecast <- predict(arima.out,fx))
(lb <- forecast$pred - 1.96 * forecast$se)
(ub <- forecast$pred + 1.96 * forecast$se)
if (par2 == 0) {
x <- exp(x)
forecast$pred <- exp(forecast$pred)
lb <- exp(lb)
ub <- exp(ub)
}
if (par2 != 0) {
x <- x^(1/par2)
forecast$pred <- forecast$pred^(1/par2)
lb <- lb^(1/par2)
ub <- ub^(1/par2)
}
if (par2 < 0) {
olb <- lb
lb <- ub
ub <- olb
}
(actandfor <- c(x[1:nx], forecast$pred))
(perc.se <- (ub-forecast$pred)/1.96/forecast$pred)
bitmap(file='test1.png')
opar <- par(mar=c(4,4,2,2),las=1)
ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub))
plot(x,ylim=ylim,type='n',xlim=c(first,lx))
usr <- par('usr')
rect(usr[1],usr[3],nx+1,usr[4],border=NA,col='lemonchiffon')
rect(nx1,usr[3],usr[2],usr[4],border=NA,col='lavender')
abline(h= (-3:3)*2 , col ='gray', lty =3)
polygon( c(nx1:lx,lx:nx1), c(lb,rev(ub)), col = 'orange', lty=2,border=NA)
lines(nx1:lx, lb , lty=2)
lines(nx1:lx, ub , lty=2)
lines(x, lwd=2)
lines(nx1:lx, forecast$pred , lwd=2 , col ='white')
box()
par(opar)
dev.off()
prob.dec <- array(NA, dim=fx)
prob.sdec <- array(NA, dim=fx)
prob.ldec <- array(NA, dim=fx)
prob.pval <- array(NA, dim=fx)
perf.pe <- array(0, dim=fx)
perf.spe <- array(0, dim=fx)
perf.scalederr <- array(0, dim=fx)
perf.mase <- array(0, dim=fx)
perf.mase1 <- array(0, dim=fx)
perf.mape <- array(0, dim=fx)
perf.smape <- array(0, dim=fx)
perf.mape1 <- array(0, dim=fx)
perf.smape1 <- array(0,dim=fx)
perf.se <- array(0, dim=fx)
perf.mse <- array(0, dim=fx)
perf.mse1 <- array(0, dim=fx)
perf.rmse <- array(0, dim=fx)
perf.scaleddenom <- 0
for (i in 2:fx) {
perf.scaleddenom = perf.scaleddenom + abs(x[nx+i] - x[nx+i-1])
}
perf.scaleddenom = perf.scaleddenom / (fx-1)
for (i in 1:fx) {
locSD <- (ub[i] - forecast$pred[i]) / 1.96
perf.scalederr[i] = (x[nx+i] - forecast$pred[i]) / perf.scaleddenom
perf.pe[i] = (x[nx+i] - forecast$pred[i]) / x[nx+i]
perf.spe[i] = 2*(x[nx+i] - forecast$pred[i]) / (x[nx+i] + forecast$pred[i])
perf.se[i] = (x[nx+i] - forecast$pred[i])^2
prob.dec[i] = pnorm((x[nx+i-1] - forecast$pred[i]) / locSD)
prob.sdec[i] = pnorm((x[nx+i-par5] - forecast$pred[i]) / locSD)
prob.ldec[i] = pnorm((x[nx] - forecast$pred[i]) / locSD)
prob.pval[i] = pnorm(abs(x[nx+i] - forecast$pred[i]) / locSD)
}
perf.mape[1] = abs(perf.pe[1])
perf.smape[1] = abs(perf.spe[1])
perf.mape1[1] = perf.mape[1]
perf.smape1[1] = perf.smape[1]
perf.mse[1] = perf.se[1]
perf.mase[1] = abs(perf.scalederr[1])
perf.mase1[1] = perf.mase[1]
for (i in 2:fx) {
perf.mape[i] = perf.mape[i-1] + abs(perf.pe[i])
perf.mape1[i] = perf.mape[i] / i
perf.smape[i] = perf.smape[i-1] + abs(perf.spe[i])
perf.smape1[i] = perf.smape[i] / i
perf.mse[i] = perf.mse[i-1] + perf.se[i]
perf.mse1[i] = perf.mse[i] / i
perf.mase[i] = perf.mase[i-1] + abs(perf.scalederr[i])
perf.mase1[i] = perf.mase[i] / i
}
perf.rmse = sqrt(perf.mse1)
bitmap(file='test2.png')
plot(forecast$pred, pch=19, type='b',main='ARIMA Extrapolation Forecast', ylab='Forecast and 95% CI', xlab='time',ylim=c(min(lb),max(ub)))
dum <- forecast$pred
dum[1:par1] <- x[(nx+1):lx]
lines(dum, lty=1)
lines(ub,lty=3)
lines(lb,lty=3)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Univariate ARIMA Extrapolation Forecast',9,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'time',1,header=TRUE)
a<-table.element(a,'Y[t]',1,header=TRUE)
a<-table.element(a,'F[t]',1,header=TRUE)
a<-table.element(a,'95% LB',1,header=TRUE)
a<-table.element(a,'95% UB',1,header=TRUE)
a<-table.element(a,'p-value
(H0: Y[t] = F[t])',1,header=TRUE)
a<-table.element(a,'P(F[t]>Y[t-1])',1,header=TRUE)
a<-table.element(a,'P(F[t]>Y[t-s])',1,header=TRUE)
mylab <- paste('P(F[t]>Y[',nx,sep='')
mylab <- paste(mylab,'])',sep='')
a<-table.element(a,mylab,1,header=TRUE)
a<-table.row.end(a)
for (i in (nx-par5):nx) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.row.end(a)
}
for (i in 1:fx) {
a<-table.row.start(a)
a<-table.element(a,nx+i,header=TRUE)
a<-table.element(a,round(x[nx+i],4))
a<-table.element(a,round(forecast$pred[i],4))
a<-table.element(a,round(lb[i],4))
a<-table.element(a,round(ub[i],4))
a<-table.element(a,round((1-prob.pval[i]),4))
a<-table.element(a,round((1-prob.dec[i]),4))
a<-table.element(a,round((1-prob.sdec[i]),4))
a<-table.element(a,round((1-prob.ldec[i]),4))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Univariate ARIMA Extrapolation Forecast Performance',10,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'time',1,header=TRUE)
a<-table.element(a,'% S.E.',1,header=TRUE)
a<-table.element(a,'PE',1,header=TRUE)
a<-table.element(a,'MAPE',1,header=TRUE)
a<-table.element(a,'sMAPE',1,header=TRUE)
a<-table.element(a,'Sq.E',1,header=TRUE)
a<-table.element(a,'MSE',1,header=TRUE)
a<-table.element(a,'RMSE',1,header=TRUE)
a<-table.element(a,'ScaledE',1,header=TRUE)
a<-table.element(a,'MASE',1,header=TRUE)
a<-table.row.end(a)
for (i in 1:fx) {
a<-table.row.start(a)
a<-table.element(a,nx+i,header=TRUE)
a<-table.element(a,round(perc.se[i],4))
a<-table.element(a,round(perf.pe[i],4))
a<-table.element(a,round(perf.mape1[i],4))
a<-table.element(a,round(perf.smape1[i],4))
a<-table.element(a,round(perf.se[i],4))
a<-table.element(a,round(perf.mse1[i],4))
a<-table.element(a,round(perf.rmse[i],4))
a<-table.element(a,round(perf.scalederr[i],4))
a<-table.element(a,round(perf.mase1[i],4))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')