Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_arimabackwardselection.wasp
Title produced by softwareARIMA Backward Selection
Date of computationSat, 10 Dec 2016 17:16:19 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/10/t1481386691gaq55n4md3o4tlc.htm/, Retrieved Fri, 01 Nov 2024 03:38:58 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=298708, Retrieved Fri, 01 Nov 2024 03:38:58 +0000
QR Codes:

Original text written by user:Grote Q en P op nul. p en q op max gezet. seizoenaliteit op 1 want lange termijn trend box cox op 1 want heb geen flauw idee hoe je dat berekent.
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact76
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [ARIMA Backward Selection] [Arima backward se...] [2016-12-10 16:16:19] [673dd365cbcfe0c4e35658a2fe545652] [Current]
Feedback Forum

Post a new message
Dataseries X:
-2.344
2.984
1.134
6.216
2.984
2.984
2.261
7.043
1.134
1.048
2.167
9.963
6.562
-1.702
7.043
1.511
6.562
-6.535
1.261
2.984
1.407
6.562
-2.957
1.048
-8.523
-1.166
-454
4.915
4.915
-1.918
-2.385
1.298
-3.813
-2.702
1.048
-2.957
-1.654
-1.296
2.742
-2.957
1.704
-1.833
3.839
-4.888
-2.957
7.043
4.552
-2.296
1.298
2.704
2.491
-4.702
-1.508
-2.509
-454
1.182
7.043
-4.032
1.492
6.562
6.562
5.487
-7.016
-3.21
2.38
-1.344
-1.296
9.546
-3.438
-3.438
-1.043
-2.702
2.491
-6.161
2.984
-1.594
-9.519
1.298
6.562
-5.296
7.043
1.917
1.048
4.742
1.704
2.048
-9.519
1.656
-1.983
1.674
1.704
8.974
1.656
-9.519
4.809
2.656
2.048
1.312
-2.509
-9.519
-1.688
-2.957
1.048
2.984
2.412
-5.085
4.915
2.609
-1.045
-4.888
-3.083
3.704
7.043
4.809
1.134
4.809
-1.451
-5.085
-1.739
6.562
-7.016
9.315
-8.663
4.915
7.043
-7.016
-8.663
-4.508
1.337
2.704
-2.952
-3.833
2.695
-5.085
3.656
1.704
-2.509
-1.702
1.337
-1.986
1.742
-1.508
3.384
-1.508
4.809
-2.688
4.809
2.984
2.644
-3.702
-5.085
1.298
-1.952
-7.391
2.298
-2.582
2.511
-1.233
-5.085
6.562
-1.881
4.915
-1.045
5.487




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time3 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298708&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]3 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=298708&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298708&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R ServerBig Analytics Cloud Computing Center







ARIMA Parameter Estimation and Backward Selection
Iterationar1ar2ar3ma1
Estimates ( 1 )-0.0099-0.00880.0032-0.9913
(p-val)(0.901 )(0.9114 )(0.9672 )(0 )
Estimates ( 2 )-0.0101-0.00910-0.9911
(p-val)(0.899 )(0.909 )(NA )(0 )
Estimates ( 3 )-0.009600-0.9916
(p-val)(0.9034 )(NA )(NA )(0 )
Estimates ( 4 )000-1.0079
(p-val)(NA )(NA )(NA )(0 )
Estimates ( 5 )NANANANA
(p-val)(NA )(NA )(NA )(NA )
Estimates ( 6 )NANANANA
(p-val)(NA )(NA )(NA )(NA )
Estimates ( 7 )NANANANA
(p-val)(NA )(NA )(NA )(NA )

\begin{tabular}{lllllllll}
\hline
ARIMA Parameter Estimation and Backward Selection \tabularnewline
Iteration & ar1 & ar2 & ar3 & ma1 \tabularnewline
Estimates ( 1 ) & -0.0099 & -0.0088 & 0.0032 & -0.9913 \tabularnewline
(p-val) & (0.901 ) & (0.9114 ) & (0.9672 ) & (0 ) \tabularnewline
Estimates ( 2 ) & -0.0101 & -0.0091 & 0 & -0.9911 \tabularnewline
(p-val) & (0.899 ) & (0.909 ) & (NA ) & (0 ) \tabularnewline
Estimates ( 3 ) & -0.0096 & 0 & 0 & -0.9916 \tabularnewline
(p-val) & (0.9034 ) & (NA ) & (NA ) & (0 ) \tabularnewline
Estimates ( 4 ) & 0 & 0 & 0 & -1.0079 \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (0 ) \tabularnewline
Estimates ( 5 ) & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 6 ) & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 7 ) & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298708&T=1

[TABLE]
[ROW][C]ARIMA Parameter Estimation and Backward Selection[/C][/ROW]
[ROW][C]Iteration[/C][C]ar1[/C][C]ar2[/C][C]ar3[/C][C]ma1[/C][/ROW]
[ROW][C]Estimates ( 1 )[/C][C]-0.0099[/C][C]-0.0088[/C][C]0.0032[/C][C]-0.9913[/C][/ROW]
[ROW][C](p-val)[/C][C](0.901 )[/C][C](0.9114 )[/C][C](0.9672 )[/C][C](0 )[/C][/ROW]
[ROW][C]Estimates ( 2 )[/C][C]-0.0101[/C][C]-0.0091[/C][C]0[/C][C]-0.9911[/C][/ROW]
[ROW][C](p-val)[/C][C](0.899 )[/C][C](0.909 )[/C][C](NA )[/C][C](0 )[/C][/ROW]
[ROW][C]Estimates ( 3 )[/C][C]-0.0096[/C][C]0[/C][C]0[/C][C]-0.9916[/C][/ROW]
[ROW][C](p-val)[/C][C](0.9034 )[/C][C](NA )[/C][C](NA )[/C][C](0 )[/C][/ROW]
[ROW][C]Estimates ( 4 )[/C][C]0[/C][C]0[/C][C]0[/C][C]-1.0079[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](0 )[/C][/ROW]
[ROW][C]Estimates ( 5 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 6 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 7 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298708&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298708&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

ARIMA Parameter Estimation and Backward Selection
Iterationar1ar2ar3ma1
Estimates ( 1 )-0.0099-0.00880.0032-0.9913
(p-val)(0.901 )(0.9114 )(0.9672 )(0 )
Estimates ( 2 )-0.0101-0.00910-0.9911
(p-val)(0.899 )(0.909 )(NA )(0 )
Estimates ( 3 )-0.009600-0.9916
(p-val)(0.9034 )(NA )(NA )(0 )
Estimates ( 4 )000-1.0079
(p-val)(NA )(NA )(NA )(0 )
Estimates ( 5 )NANANANA
(p-val)(NA )(NA )(NA )(NA )
Estimates ( 6 )NANANANA
(p-val)(NA )(NA )(NA )(NA )
Estimates ( 7 )NANANANA
(p-val)(NA )(NA )(NA )(NA )







Estimated ARIMA Residuals
Value
-0.00234399765297672
3.7650341110951
0.687267777249347
4.88529010947268
0.921429554891796
0.723136428264338
-0.0612461415728016
4.43131158919402
-1.64354715098187
-1.60547872983747
-0.381179785386481
7.15657083492871
3.3720827051331
-4.9063502325688
3.8394878598039
-1.70594280409214
3.26612008217933
-9.65331780402026
-1.63173907233055
0.21225885910066
-1.32703024696464
3.7768551186577
-5.69075518422084
-1.59935918739774
-10.9095258717012
-3.32348028976001
-449.224885707355
15.4987198936101
19.3034833983059
11.8917119715141
10.9672061623036
14.2454680140574
8.77923338220784
9.5604003736084
12.9963478965173
8.6913826272032
9.69789822822404
9.79793290860512
13.5390605187465
7.57414720702161
11.9466935728941
8.18429976735358
13.5764472510675
4.64580317614442
6.36973934819248
16.16867705364
13.4259786338215
6.30384720579281
9.67148808709455
10.8964800530814
10.4699302019835
3.10305029993681
6.14649036857577
5.05943278822604
-444.017878940554
12.9289919323454
22.873433073398
11.4837949469591
16.6624240919568
21.4580325551265
21.1224065207332
19.6793817554462
6.87959897290654
10.4307462853893
15.856300271916
11.9357893412929
11.7503798969079
22.3576992522898
9.16689514321441
8.89600280660324
11.1417687554046
9.33785603123541
14.3525465103001
5.56096329204729
14.5082346499758
9.81609112795996
1.72724740425709
12.4090209966739
17.5807089101864
5.55602074369231
17.6660233545341
12.4239435871982
11.3344781456116
14.8530065532856
11.65459661223
11.8098143457058
0.116206138668735
11.1506043203983
7.47971886816341
10.9944268822126
10.9157119703716
18.0276690822453
10.5637427829697
-0.792074584580809
13.4077755959848
11.2280056705644
10.4600451304246
9.58966986542662
5.65075676595564
-1.45168775058872
6.31476289566086
5.04692816145548
8.97170574436936
10.8354548090076
10.1542664962027
2.544631376935
12.4258716065308
10.0746616168835
6.28737170559044
2.34269525710983
4.0810358144697
10.8284420317904
14.1046344174242
11.7464961922094
7.92311065004379
11.4689066333889
5.12508804633475
1.37897140098658
4.67037646892347
12.9414721023417
-0.680910306321326
15.5065160799434
-2.46044552317248
10.9548763781334
13.0932475603901
-1.06912303658707
-2.83808504388381
1.32656875073182
7.19112552447489
8.53715851132722
2.81070218650559
1.84683125694435
8.34051620255256
0.544521116184296
9.19652428448948
7.23575137050773
2.93365492438958
3.66936806967061
6.67596814951463
3.31731144938829
6.97648651922698
3.6946879217628
8.51411671843909
3.58777518656354
9.81669514798765
2.28850551827832
9.6847574408369
7.83723508781478
7.40241750758837
0.984822866991743
-0.467924115503936
5.90181322595082
2.65776190520122
-2.83471427956358
6.82300863915077
1.97322542907315
6.99684130653567
3.23663442598009
-0.680179863841289
10.9291204539557
2.49844397108544
9.18523690609472
3.20637572144227
9.64671410806601

\begin{tabular}{lllllllll}
\hline
Estimated ARIMA Residuals \tabularnewline
Value \tabularnewline
-0.00234399765297672 \tabularnewline
3.7650341110951 \tabularnewline
0.687267777249347 \tabularnewline
4.88529010947268 \tabularnewline
0.921429554891796 \tabularnewline
0.723136428264338 \tabularnewline
-0.0612461415728016 \tabularnewline
4.43131158919402 \tabularnewline
-1.64354715098187 \tabularnewline
-1.60547872983747 \tabularnewline
-0.381179785386481 \tabularnewline
7.15657083492871 \tabularnewline
3.3720827051331 \tabularnewline
-4.9063502325688 \tabularnewline
3.8394878598039 \tabularnewline
-1.70594280409214 \tabularnewline
3.26612008217933 \tabularnewline
-9.65331780402026 \tabularnewline
-1.63173907233055 \tabularnewline
0.21225885910066 \tabularnewline
-1.32703024696464 \tabularnewline
3.7768551186577 \tabularnewline
-5.69075518422084 \tabularnewline
-1.59935918739774 \tabularnewline
-10.9095258717012 \tabularnewline
-3.32348028976001 \tabularnewline
-449.224885707355 \tabularnewline
15.4987198936101 \tabularnewline
19.3034833983059 \tabularnewline
11.8917119715141 \tabularnewline
10.9672061623036 \tabularnewline
14.2454680140574 \tabularnewline
8.77923338220784 \tabularnewline
9.5604003736084 \tabularnewline
12.9963478965173 \tabularnewline
8.6913826272032 \tabularnewline
9.69789822822404 \tabularnewline
9.79793290860512 \tabularnewline
13.5390605187465 \tabularnewline
7.57414720702161 \tabularnewline
11.9466935728941 \tabularnewline
8.18429976735358 \tabularnewline
13.5764472510675 \tabularnewline
4.64580317614442 \tabularnewline
6.36973934819248 \tabularnewline
16.16867705364 \tabularnewline
13.4259786338215 \tabularnewline
6.30384720579281 \tabularnewline
9.67148808709455 \tabularnewline
10.8964800530814 \tabularnewline
10.4699302019835 \tabularnewline
3.10305029993681 \tabularnewline
6.14649036857577 \tabularnewline
5.05943278822604 \tabularnewline
-444.017878940554 \tabularnewline
12.9289919323454 \tabularnewline
22.873433073398 \tabularnewline
11.4837949469591 \tabularnewline
16.6624240919568 \tabularnewline
21.4580325551265 \tabularnewline
21.1224065207332 \tabularnewline
19.6793817554462 \tabularnewline
6.87959897290654 \tabularnewline
10.4307462853893 \tabularnewline
15.856300271916 \tabularnewline
11.9357893412929 \tabularnewline
11.7503798969079 \tabularnewline
22.3576992522898 \tabularnewline
9.16689514321441 \tabularnewline
8.89600280660324 \tabularnewline
11.1417687554046 \tabularnewline
9.33785603123541 \tabularnewline
14.3525465103001 \tabularnewline
5.56096329204729 \tabularnewline
14.5082346499758 \tabularnewline
9.81609112795996 \tabularnewline
1.72724740425709 \tabularnewline
12.4090209966739 \tabularnewline
17.5807089101864 \tabularnewline
5.55602074369231 \tabularnewline
17.6660233545341 \tabularnewline
12.4239435871982 \tabularnewline
11.3344781456116 \tabularnewline
14.8530065532856 \tabularnewline
11.65459661223 \tabularnewline
11.8098143457058 \tabularnewline
0.116206138668735 \tabularnewline
11.1506043203983 \tabularnewline
7.47971886816341 \tabularnewline
10.9944268822126 \tabularnewline
10.9157119703716 \tabularnewline
18.0276690822453 \tabularnewline
10.5637427829697 \tabularnewline
-0.792074584580809 \tabularnewline
13.4077755959848 \tabularnewline
11.2280056705644 \tabularnewline
10.4600451304246 \tabularnewline
9.58966986542662 \tabularnewline
5.65075676595564 \tabularnewline
-1.45168775058872 \tabularnewline
6.31476289566086 \tabularnewline
5.04692816145548 \tabularnewline
8.97170574436936 \tabularnewline
10.8354548090076 \tabularnewline
10.1542664962027 \tabularnewline
2.544631376935 \tabularnewline
12.4258716065308 \tabularnewline
10.0746616168835 \tabularnewline
6.28737170559044 \tabularnewline
2.34269525710983 \tabularnewline
4.0810358144697 \tabularnewline
10.8284420317904 \tabularnewline
14.1046344174242 \tabularnewline
11.7464961922094 \tabularnewline
7.92311065004379 \tabularnewline
11.4689066333889 \tabularnewline
5.12508804633475 \tabularnewline
1.37897140098658 \tabularnewline
4.67037646892347 \tabularnewline
12.9414721023417 \tabularnewline
-0.680910306321326 \tabularnewline
15.5065160799434 \tabularnewline
-2.46044552317248 \tabularnewline
10.9548763781334 \tabularnewline
13.0932475603901 \tabularnewline
-1.06912303658707 \tabularnewline
-2.83808504388381 \tabularnewline
1.32656875073182 \tabularnewline
7.19112552447489 \tabularnewline
8.53715851132722 \tabularnewline
2.81070218650559 \tabularnewline
1.84683125694435 \tabularnewline
8.34051620255256 \tabularnewline
0.544521116184296 \tabularnewline
9.19652428448948 \tabularnewline
7.23575137050773 \tabularnewline
2.93365492438958 \tabularnewline
3.66936806967061 \tabularnewline
6.67596814951463 \tabularnewline
3.31731144938829 \tabularnewline
6.97648651922698 \tabularnewline
3.6946879217628 \tabularnewline
8.51411671843909 \tabularnewline
3.58777518656354 \tabularnewline
9.81669514798765 \tabularnewline
2.28850551827832 \tabularnewline
9.6847574408369 \tabularnewline
7.83723508781478 \tabularnewline
7.40241750758837 \tabularnewline
0.984822866991743 \tabularnewline
-0.467924115503936 \tabularnewline
5.90181322595082 \tabularnewline
2.65776190520122 \tabularnewline
-2.83471427956358 \tabularnewline
6.82300863915077 \tabularnewline
1.97322542907315 \tabularnewline
6.99684130653567 \tabularnewline
3.23663442598009 \tabularnewline
-0.680179863841289 \tabularnewline
10.9291204539557 \tabularnewline
2.49844397108544 \tabularnewline
9.18523690609472 \tabularnewline
3.20637572144227 \tabularnewline
9.64671410806601 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298708&T=2

[TABLE]
[ROW][C]Estimated ARIMA Residuals[/C][/ROW]
[ROW][C]Value[/C][/ROW]
[ROW][C]-0.00234399765297672[/C][/ROW]
[ROW][C]3.7650341110951[/C][/ROW]
[ROW][C]0.687267777249347[/C][/ROW]
[ROW][C]4.88529010947268[/C][/ROW]
[ROW][C]0.921429554891796[/C][/ROW]
[ROW][C]0.723136428264338[/C][/ROW]
[ROW][C]-0.0612461415728016[/C][/ROW]
[ROW][C]4.43131158919402[/C][/ROW]
[ROW][C]-1.64354715098187[/C][/ROW]
[ROW][C]-1.60547872983747[/C][/ROW]
[ROW][C]-0.381179785386481[/C][/ROW]
[ROW][C]7.15657083492871[/C][/ROW]
[ROW][C]3.3720827051331[/C][/ROW]
[ROW][C]-4.9063502325688[/C][/ROW]
[ROW][C]3.8394878598039[/C][/ROW]
[ROW][C]-1.70594280409214[/C][/ROW]
[ROW][C]3.26612008217933[/C][/ROW]
[ROW][C]-9.65331780402026[/C][/ROW]
[ROW][C]-1.63173907233055[/C][/ROW]
[ROW][C]0.21225885910066[/C][/ROW]
[ROW][C]-1.32703024696464[/C][/ROW]
[ROW][C]3.7768551186577[/C][/ROW]
[ROW][C]-5.69075518422084[/C][/ROW]
[ROW][C]-1.59935918739774[/C][/ROW]
[ROW][C]-10.9095258717012[/C][/ROW]
[ROW][C]-3.32348028976001[/C][/ROW]
[ROW][C]-449.224885707355[/C][/ROW]
[ROW][C]15.4987198936101[/C][/ROW]
[ROW][C]19.3034833983059[/C][/ROW]
[ROW][C]11.8917119715141[/C][/ROW]
[ROW][C]10.9672061623036[/C][/ROW]
[ROW][C]14.2454680140574[/C][/ROW]
[ROW][C]8.77923338220784[/C][/ROW]
[ROW][C]9.5604003736084[/C][/ROW]
[ROW][C]12.9963478965173[/C][/ROW]
[ROW][C]8.6913826272032[/C][/ROW]
[ROW][C]9.69789822822404[/C][/ROW]
[ROW][C]9.79793290860512[/C][/ROW]
[ROW][C]13.5390605187465[/C][/ROW]
[ROW][C]7.57414720702161[/C][/ROW]
[ROW][C]11.9466935728941[/C][/ROW]
[ROW][C]8.18429976735358[/C][/ROW]
[ROW][C]13.5764472510675[/C][/ROW]
[ROW][C]4.64580317614442[/C][/ROW]
[ROW][C]6.36973934819248[/C][/ROW]
[ROW][C]16.16867705364[/C][/ROW]
[ROW][C]13.4259786338215[/C][/ROW]
[ROW][C]6.30384720579281[/C][/ROW]
[ROW][C]9.67148808709455[/C][/ROW]
[ROW][C]10.8964800530814[/C][/ROW]
[ROW][C]10.4699302019835[/C][/ROW]
[ROW][C]3.10305029993681[/C][/ROW]
[ROW][C]6.14649036857577[/C][/ROW]
[ROW][C]5.05943278822604[/C][/ROW]
[ROW][C]-444.017878940554[/C][/ROW]
[ROW][C]12.9289919323454[/C][/ROW]
[ROW][C]22.873433073398[/C][/ROW]
[ROW][C]11.4837949469591[/C][/ROW]
[ROW][C]16.6624240919568[/C][/ROW]
[ROW][C]21.4580325551265[/C][/ROW]
[ROW][C]21.1224065207332[/C][/ROW]
[ROW][C]19.6793817554462[/C][/ROW]
[ROW][C]6.87959897290654[/C][/ROW]
[ROW][C]10.4307462853893[/C][/ROW]
[ROW][C]15.856300271916[/C][/ROW]
[ROW][C]11.9357893412929[/C][/ROW]
[ROW][C]11.7503798969079[/C][/ROW]
[ROW][C]22.3576992522898[/C][/ROW]
[ROW][C]9.16689514321441[/C][/ROW]
[ROW][C]8.89600280660324[/C][/ROW]
[ROW][C]11.1417687554046[/C][/ROW]
[ROW][C]9.33785603123541[/C][/ROW]
[ROW][C]14.3525465103001[/C][/ROW]
[ROW][C]5.56096329204729[/C][/ROW]
[ROW][C]14.5082346499758[/C][/ROW]
[ROW][C]9.81609112795996[/C][/ROW]
[ROW][C]1.72724740425709[/C][/ROW]
[ROW][C]12.4090209966739[/C][/ROW]
[ROW][C]17.5807089101864[/C][/ROW]
[ROW][C]5.55602074369231[/C][/ROW]
[ROW][C]17.6660233545341[/C][/ROW]
[ROW][C]12.4239435871982[/C][/ROW]
[ROW][C]11.3344781456116[/C][/ROW]
[ROW][C]14.8530065532856[/C][/ROW]
[ROW][C]11.65459661223[/C][/ROW]
[ROW][C]11.8098143457058[/C][/ROW]
[ROW][C]0.116206138668735[/C][/ROW]
[ROW][C]11.1506043203983[/C][/ROW]
[ROW][C]7.47971886816341[/C][/ROW]
[ROW][C]10.9944268822126[/C][/ROW]
[ROW][C]10.9157119703716[/C][/ROW]
[ROW][C]18.0276690822453[/C][/ROW]
[ROW][C]10.5637427829697[/C][/ROW]
[ROW][C]-0.792074584580809[/C][/ROW]
[ROW][C]13.4077755959848[/C][/ROW]
[ROW][C]11.2280056705644[/C][/ROW]
[ROW][C]10.4600451304246[/C][/ROW]
[ROW][C]9.58966986542662[/C][/ROW]
[ROW][C]5.65075676595564[/C][/ROW]
[ROW][C]-1.45168775058872[/C][/ROW]
[ROW][C]6.31476289566086[/C][/ROW]
[ROW][C]5.04692816145548[/C][/ROW]
[ROW][C]8.97170574436936[/C][/ROW]
[ROW][C]10.8354548090076[/C][/ROW]
[ROW][C]10.1542664962027[/C][/ROW]
[ROW][C]2.544631376935[/C][/ROW]
[ROW][C]12.4258716065308[/C][/ROW]
[ROW][C]10.0746616168835[/C][/ROW]
[ROW][C]6.28737170559044[/C][/ROW]
[ROW][C]2.34269525710983[/C][/ROW]
[ROW][C]4.0810358144697[/C][/ROW]
[ROW][C]10.8284420317904[/C][/ROW]
[ROW][C]14.1046344174242[/C][/ROW]
[ROW][C]11.7464961922094[/C][/ROW]
[ROW][C]7.92311065004379[/C][/ROW]
[ROW][C]11.4689066333889[/C][/ROW]
[ROW][C]5.12508804633475[/C][/ROW]
[ROW][C]1.37897140098658[/C][/ROW]
[ROW][C]4.67037646892347[/C][/ROW]
[ROW][C]12.9414721023417[/C][/ROW]
[ROW][C]-0.680910306321326[/C][/ROW]
[ROW][C]15.5065160799434[/C][/ROW]
[ROW][C]-2.46044552317248[/C][/ROW]
[ROW][C]10.9548763781334[/C][/ROW]
[ROW][C]13.0932475603901[/C][/ROW]
[ROW][C]-1.06912303658707[/C][/ROW]
[ROW][C]-2.83808504388381[/C][/ROW]
[ROW][C]1.32656875073182[/C][/ROW]
[ROW][C]7.19112552447489[/C][/ROW]
[ROW][C]8.53715851132722[/C][/ROW]
[ROW][C]2.81070218650559[/C][/ROW]
[ROW][C]1.84683125694435[/C][/ROW]
[ROW][C]8.34051620255256[/C][/ROW]
[ROW][C]0.544521116184296[/C][/ROW]
[ROW][C]9.19652428448948[/C][/ROW]
[ROW][C]7.23575137050773[/C][/ROW]
[ROW][C]2.93365492438958[/C][/ROW]
[ROW][C]3.66936806967061[/C][/ROW]
[ROW][C]6.67596814951463[/C][/ROW]
[ROW][C]3.31731144938829[/C][/ROW]
[ROW][C]6.97648651922698[/C][/ROW]
[ROW][C]3.6946879217628[/C][/ROW]
[ROW][C]8.51411671843909[/C][/ROW]
[ROW][C]3.58777518656354[/C][/ROW]
[ROW][C]9.81669514798765[/C][/ROW]
[ROW][C]2.28850551827832[/C][/ROW]
[ROW][C]9.6847574408369[/C][/ROW]
[ROW][C]7.83723508781478[/C][/ROW]
[ROW][C]7.40241750758837[/C][/ROW]
[ROW][C]0.984822866991743[/C][/ROW]
[ROW][C]-0.467924115503936[/C][/ROW]
[ROW][C]5.90181322595082[/C][/ROW]
[ROW][C]2.65776190520122[/C][/ROW]
[ROW][C]-2.83471427956358[/C][/ROW]
[ROW][C]6.82300863915077[/C][/ROW]
[ROW][C]1.97322542907315[/C][/ROW]
[ROW][C]6.99684130653567[/C][/ROW]
[ROW][C]3.23663442598009[/C][/ROW]
[ROW][C]-0.680179863841289[/C][/ROW]
[ROW][C]10.9291204539557[/C][/ROW]
[ROW][C]2.49844397108544[/C][/ROW]
[ROW][C]9.18523690609472[/C][/ROW]
[ROW][C]3.20637572144227[/C][/ROW]
[ROW][C]9.64671410806601[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298708&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298708&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Estimated ARIMA Residuals
Value
-0.00234399765297672
3.7650341110951
0.687267777249347
4.88529010947268
0.921429554891796
0.723136428264338
-0.0612461415728016
4.43131158919402
-1.64354715098187
-1.60547872983747
-0.381179785386481
7.15657083492871
3.3720827051331
-4.9063502325688
3.8394878598039
-1.70594280409214
3.26612008217933
-9.65331780402026
-1.63173907233055
0.21225885910066
-1.32703024696464
3.7768551186577
-5.69075518422084
-1.59935918739774
-10.9095258717012
-3.32348028976001
-449.224885707355
15.4987198936101
19.3034833983059
11.8917119715141
10.9672061623036
14.2454680140574
8.77923338220784
9.5604003736084
12.9963478965173
8.6913826272032
9.69789822822404
9.79793290860512
13.5390605187465
7.57414720702161
11.9466935728941
8.18429976735358
13.5764472510675
4.64580317614442
6.36973934819248
16.16867705364
13.4259786338215
6.30384720579281
9.67148808709455
10.8964800530814
10.4699302019835
3.10305029993681
6.14649036857577
5.05943278822604
-444.017878940554
12.9289919323454
22.873433073398
11.4837949469591
16.6624240919568
21.4580325551265
21.1224065207332
19.6793817554462
6.87959897290654
10.4307462853893
15.856300271916
11.9357893412929
11.7503798969079
22.3576992522898
9.16689514321441
8.89600280660324
11.1417687554046
9.33785603123541
14.3525465103001
5.56096329204729
14.5082346499758
9.81609112795996
1.72724740425709
12.4090209966739
17.5807089101864
5.55602074369231
17.6660233545341
12.4239435871982
11.3344781456116
14.8530065532856
11.65459661223
11.8098143457058
0.116206138668735
11.1506043203983
7.47971886816341
10.9944268822126
10.9157119703716
18.0276690822453
10.5637427829697
-0.792074584580809
13.4077755959848
11.2280056705644
10.4600451304246
9.58966986542662
5.65075676595564
-1.45168775058872
6.31476289566086
5.04692816145548
8.97170574436936
10.8354548090076
10.1542664962027
2.544631376935
12.4258716065308
10.0746616168835
6.28737170559044
2.34269525710983
4.0810358144697
10.8284420317904
14.1046344174242
11.7464961922094
7.92311065004379
11.4689066333889
5.12508804633475
1.37897140098658
4.67037646892347
12.9414721023417
-0.680910306321326
15.5065160799434
-2.46044552317248
10.9548763781334
13.0932475603901
-1.06912303658707
-2.83808504388381
1.32656875073182
7.19112552447489
8.53715851132722
2.81070218650559
1.84683125694435
8.34051620255256
0.544521116184296
9.19652428448948
7.23575137050773
2.93365492438958
3.66936806967061
6.67596814951463
3.31731144938829
6.97648651922698
3.6946879217628
8.51411671843909
3.58777518656354
9.81669514798765
2.28850551827832
9.6847574408369
7.83723508781478
7.40241750758837
0.984822866991743
-0.467924115503936
5.90181322595082
2.65776190520122
-2.83471427956358
6.82300863915077
1.97322542907315
6.99684130653567
3.23663442598009
-0.680179863841289
10.9291204539557
2.49844397108544
9.18523690609472
3.20637572144227
9.64671410806601



Parameters (Session):
par1 = additive ; par2 = 7 ;
Parameters (R input):
par1 = FALSE ; par2 = 1 ; par3 = 1 ; par4 = 0 ; par5 = 1 ; par6 = 3 ; par7 = 1 ; par8 = 0 ; par9 = 0 ;
R code (references can be found in the software module):
library(lattice)
if (par1 == 'TRUE') par1 <- TRUE
if (par1 == 'FALSE') par1 <- FALSE
par2 <- as.numeric(par2) #Box-Cox lambda transformation parameter
par3 <- as.numeric(par3) #degree of non-seasonal differencing
par4 <- as.numeric(par4) #degree of seasonal differencing
par5 <- as.numeric(par5) #seasonal period
par6 <- as.numeric(par6) #degree (p) of the non-seasonal AR(p) polynomial
par7 <- as.numeric(par7) #degree (q) of the non-seasonal MA(q) polynomial
par8 <- as.numeric(par8) #degree (P) of the seasonal AR(P) polynomial
par9 <- as.numeric(par9) #degree (Q) of the seasonal MA(Q) polynomial
armaGR <- function(arima.out, names, n){
try1 <- arima.out$coef
try2 <- sqrt(diag(arima.out$var.coef))
try.data.frame <- data.frame(matrix(NA,ncol=4,nrow=length(names)))
dimnames(try.data.frame) <- list(names,c('coef','std','tstat','pv'))
try.data.frame[,1] <- try1
for(i in 1:length(try2)) try.data.frame[which(rownames(try.data.frame)==names(try2)[i]),2] <- try2[i]
try.data.frame[,3] <- try.data.frame[,1] / try.data.frame[,2]
try.data.frame[,4] <- round((1-pt(abs(try.data.frame[,3]),df=n-(length(try2)+1)))*2,5)
vector <- rep(NA,length(names))
vector[is.na(try.data.frame[,4])] <- 0
maxi <- which.max(try.data.frame[,4])
continue <- max(try.data.frame[,4],na.rm=TRUE) > .05
vector[maxi] <- 0
list(summary=try.data.frame,next.vector=vector,continue=continue)
}
arimaSelect <- function(series, order=c(13,0,0), seasonal=list(order=c(2,0,0),period=12), include.mean=F){
nrc <- order[1]+order[3]+seasonal$order[1]+seasonal$order[3]
coeff <- matrix(NA, nrow=nrc*2, ncol=nrc)
pval <- matrix(NA, nrow=nrc*2, ncol=nrc)
mylist <- rep(list(NULL), nrc)
names <- NULL
if(order[1] > 0) names <- paste('ar',1:order[1],sep='')
if(order[3] > 0) names <- c( names , paste('ma',1:order[3],sep='') )
if(seasonal$order[1] > 0) names <- c(names, paste('sar',1:seasonal$order[1],sep=''))
if(seasonal$order[3] > 0) names <- c(names, paste('sma',1:seasonal$order[3],sep=''))
arima.out <- arima(series, order=order, seasonal=seasonal, include.mean=include.mean, method='ML')
mylist[[1]] <- arima.out
last.arma <- armaGR(arima.out, names, length(series))
mystop <- FALSE
i <- 1
coeff[i,] <- last.arma[[1]][,1]
pval [i,] <- last.arma[[1]][,4]
i <- 2
aic <- arima.out$aic
while(!mystop){
mylist[[i]] <- arima.out
arima.out <- arima(series, order=order, seasonal=seasonal, include.mean=include.mean, method='ML', fixed=last.arma$next.vector)
aic <- c(aic, arima.out$aic)
last.arma <- armaGR(arima.out, names, length(series))
mystop <- !last.arma$continue
coeff[i,] <- last.arma[[1]][,1]
pval [i,] <- last.arma[[1]][,4]
i <- i+1
}
list(coeff, pval, mylist, aic=aic)
}
arimaSelectplot <- function(arimaSelect.out,noms,choix){
noms <- names(arimaSelect.out[[3]][[1]]$coef)
coeff <- arimaSelect.out[[1]]
k <- min(which(is.na(coeff[,1])))-1
coeff <- coeff[1:k,]
pval <- arimaSelect.out[[2]][1:k,]
aic <- arimaSelect.out$aic[1:k]
coeff[coeff==0] <- NA
n <- ncol(coeff)
if(missing(choix)) choix <- k
layout(matrix(c(1,1,1,2,
3,3,3,2,
3,3,3,4,
5,6,7,7),nr=4),
widths=c(10,35,45,15),
heights=c(30,30,15,15))
couleurs <- rainbow(75)[1:50]#(50)
ticks <- pretty(coeff)
par(mar=c(1,1,3,1))
plot(aic,k:1-.5,type='o',pch=21,bg='blue',cex=2,axes=F,lty=2,xpd=NA)
points(aic[choix],k-choix+.5,pch=21,cex=4,bg=2,xpd=NA)
title('aic',line=2)
par(mar=c(3,0,0,0))
plot(0,axes=F,xlab='',ylab='',xlim=range(ticks),ylim=c(.1,1))
rect(xleft = min(ticks) + (0:49)/50*(max(ticks)-min(ticks)),
xright = min(ticks) + (1:50)/50*(max(ticks)-min(ticks)),
ytop = rep(1,50),
ybottom= rep(0,50),col=couleurs,border=NA)
axis(1,ticks)
rect(xleft=min(ticks),xright=max(ticks),ytop=1,ybottom=0)
text(mean(coeff,na.rm=T),.5,'coefficients',cex=2,font=2)
par(mar=c(1,1,3,1))
image(1:n,1:k,t(coeff[k:1,]),axes=F,col=couleurs,zlim=range(ticks))
for(i in 1:n) for(j in 1:k) if(!is.na(coeff[j,i])) {
if(pval[j,i]<.01) symb = 'green'
else if( (pval[j,i]<.05) & (pval[j,i]>=.01)) symb = 'orange'
else if( (pval[j,i]<.1) & (pval[j,i]>=.05)) symb = 'red'
else symb = 'black'
polygon(c(i+.5 ,i+.2 ,i+.5 ,i+.5),
c(k-j+0.5,k-j+0.5,k-j+0.8,k-j+0.5),
col=symb)
if(j==choix) {
rect(xleft=i-.5,
xright=i+.5,
ybottom=k-j+1.5,
ytop=k-j+.5,
lwd=4)
text(i,
k-j+1,
round(coeff[j,i],2),
cex=1.2,
font=2)
}
else{
rect(xleft=i-.5,xright=i+.5,ybottom=k-j+1.5,ytop=k-j+.5)
text(i,k-j+1,round(coeff[j,i],2),cex=1.2,font=1)
}
}
axis(3,1:n,noms)
par(mar=c(0.5,0,0,0.5))
plot(0,axes=F,xlab='',ylab='',type='n',xlim=c(0,8),ylim=c(-.2,.8))
cols <- c('green','orange','red','black')
niv <- c('0','0.01','0.05','0.1')
for(i in 0:3){
polygon(c(1+2*i ,1+2*i ,1+2*i-.5 ,1+2*i),
c(.4 ,.7 , .4 , .4),
col=cols[i+1])
text(2*i,0.5,niv[i+1],cex=1.5)
}
text(8,.5,1,cex=1.5)
text(4,0,'p-value',cex=2)
box()
residus <- arimaSelect.out[[3]][[choix]]$res
par(mar=c(1,2,4,1))
acf(residus,main='')
title('acf',line=.5)
par(mar=c(1,2,4,1))
pacf(residus,main='')
title('pacf',line=.5)
par(mar=c(2,2,4,1))
qqnorm(residus,main='')
title('qq-norm',line=.5)
qqline(residus)
residus
}
if (par2 == 0) x <- log(x)
if (par2 != 0) x <- x^par2
(selection <- arimaSelect(x, order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5)))
bitmap(file='test1.png')
resid <- arimaSelectplot(selection)
dev.off()
resid
bitmap(file='test2.png')
acf(resid,length(resid)/2, main='Residual Autocorrelation Function')
dev.off()
bitmap(file='test3.png')
pacf(resid,length(resid)/2, main='Residual Partial Autocorrelation Function')
dev.off()
bitmap(file='test4.png')
cpgram(resid, main='Residual Cumulative Periodogram')
dev.off()
bitmap(file='test5.png')
hist(resid, main='Residual Histogram', xlab='values of Residuals')
dev.off()
bitmap(file='test6.png')
densityplot(~resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test7.png')
qqnorm(resid, main='Residual Normal Q-Q Plot')
qqline(resid)
dev.off()
ncols <- length(selection[[1]][1,])
nrows <- length(selection[[2]][,1])-1
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'ARIMA Parameter Estimation and Backward Selection', ncols+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Iteration', header=TRUE)
for (i in 1:ncols) {
a<-table.element(a,names(selection[[3]][[1]]$coef)[i],header=TRUE)
}
a<-table.row.end(a)
for (j in 1:nrows) {
a<-table.row.start(a)
mydum <- 'Estimates ('
mydum <- paste(mydum,j)
mydum <- paste(mydum,')')
a<-table.element(a,mydum, header=TRUE)
for (i in 1:ncols) {
a<-table.element(a,round(selection[[1]][j,i],4))
}
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'(p-val)', header=TRUE)
for (i in 1:ncols) {
mydum <- '('
mydum <- paste(mydum,round(selection[[2]][j,i],4),sep='')
mydum <- paste(mydum,')')
a<-table.element(a,mydum)
}
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Estimated ARIMA Residuals', 1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Value', 1,TRUE)
a<-table.row.end(a)
for (i in (par4*par5+par3):length(resid)) {
a<-table.row.start(a)
a<-table.element(a,resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')