Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_arimaforecasting.wasp
Title produced by softwareARIMA Forecasting
Date of computationSat, 10 Dec 2016 16:29:55 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/10/t1481383882sr9x5zti4t5wym3.htm/, Retrieved Fri, 01 Nov 2024 03:39:47 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=298701, Retrieved Fri, 01 Nov 2024 03:39:47 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact89
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [ARIMA Forecasting] [ARIMA] [2016-12-10 15:29:55] [f0fcaf0884a2ab8e55345d70fdb8db2d] [Current]
Feedback Forum

Post a new message
Dataseries X:
2888.9
2916.2
2939.5
2968.3
2986.7
3008.4
3035.3
3059
3078.4
3096.8
3125.2
3157.6
3186
3215.2
3257.8
3296
3330.6
3366.2
3402.9
3426.1
3461.3
3488
3509.5
3536
3561
3593.2
3620.4
3630.4
3643.1
3672.5
3692.2
3719.4
3744.1
3768.3
3803.5
3838.9
3860.4
3879.8
3905.5
3932.4
3959.7
3980.7
4012.8
4037.7
4065
4086.4
4106.9
4137.5
4166.3
4177.8
4176.4
4189.8
4218
4235.9
4237.9
4264.6
4295.5
4327.8
4340.1
4340.2
4375.3
4405.2
4433.3
4472
4507.4
4525.5
4562.5
4581.6
4591
4614
4643.3
4674.6
4687.4
4703.2
4728.3
4757.1
4765.2
4785.4
4810.1
4830.2
4843.3
4861.1
4875.6
4897.3
4901.5
4900.4
4914.6
4930.2
4917
4936.1
4942.3
4951.1
4975.6
4973.5
4963.4
4974.8
5001.8
5013.4
5007.9
4985.6
4967.1
4988.9
4999.8
4988.3
4975.5
4981.1
4993.4
4992.9
4994.1
5014.4
5028.6
5025.4
5021.7
5026.9
5026.6




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time1 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298701&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]1 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=298701&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298701&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center







Univariate ARIMA Extrapolation Forecast
timeY[t]F[t]95% LB95% UBp-value(H0: Y[t] = F[t])P(F[t]>Y[t-1])P(F[t]>Y[t-s])P(F[t]>Y[91])
904936.1-------
914942.3-------
924951.14952.40814936.7024968.06450.4350.89710.89710.8971
934975.64962.90914937.73994987.95120.16030.82230.82230.9466
944973.54973.43164939.75535006.88140.49840.44940.44940.9659
954963.44983.93644942.02985025.49370.16640.68870.68870.9752
964974.84994.41974944.30265044.03890.21920.88980.88980.9802
975001.85004.88114946.45825062.62990.45840.84640.84640.9832
985013.45015.32074948.43895081.32220.47730.6560.6560.9849
995007.95025.73854950.21455100.14440.31920.62740.62740.986
1004985.65036.13494951.76835119.11120.11630.74760.74760.9867
1014967.15046.50984953.09185138.22960.04490.90350.90350.987
1024988.95056.86344954.18095157.50190.09280.95980.95980.9872
1034999.85067.19594955.03455176.92770.11430.9190.9190.9872
1044988.35077.50734955.65315196.50480.07090.89970.89970.987
1054975.55087.79784956.03845216.23020.04330.93550.93550.9868
1064981.15098.06764956.19255236.10.04840.95910.95910.9865
1074993.45108.31674956.11825256.110.06380.95420.95420.9862
1084992.95118.54534955.81845276.25590.05920.94010.94010.9858
1094994.15128.75354955.29635296.53330.05790.94370.94370.9853
1105014.45138.94154954.55485316.93760.08510.94460.94460.9848
1115028.65149.10924953.5975337.46460.10490.91950.91950.9843
1125025.45159.2574952.4265358.10990.09350.90110.90110.9838
1135021.75169.38484951.04475378.86920.08350.9110.9110.9832
1145026.95179.49284949.45615399.73850.08720.91990.91990.9826
1155026.65189.58114947.66285420.71370.08350.91610.91610.982

\begin{tabular}{lllllllll}
\hline
Univariate ARIMA Extrapolation Forecast \tabularnewline
time & Y[t] & F[t] & 95% LB & 95% UB & p-value(H0: Y[t] = F[t]) & P(F[t]>Y[t-1]) & P(F[t]>Y[t-s]) & P(F[t]>Y[91]) \tabularnewline
90 & 4936.1 & - & - & - & - & - & - & - \tabularnewline
91 & 4942.3 & - & - & - & - & - & - & - \tabularnewline
92 & 4951.1 & 4952.4081 & 4936.702 & 4968.0645 & 0.435 & 0.8971 & 0.8971 & 0.8971 \tabularnewline
93 & 4975.6 & 4962.9091 & 4937.7399 & 4987.9512 & 0.1603 & 0.8223 & 0.8223 & 0.9466 \tabularnewline
94 & 4973.5 & 4973.4316 & 4939.7553 & 5006.8814 & 0.4984 & 0.4494 & 0.4494 & 0.9659 \tabularnewline
95 & 4963.4 & 4983.9364 & 4942.0298 & 5025.4937 & 0.1664 & 0.6887 & 0.6887 & 0.9752 \tabularnewline
96 & 4974.8 & 4994.4197 & 4944.3026 & 5044.0389 & 0.2192 & 0.8898 & 0.8898 & 0.9802 \tabularnewline
97 & 5001.8 & 5004.8811 & 4946.4582 & 5062.6299 & 0.4584 & 0.8464 & 0.8464 & 0.9832 \tabularnewline
98 & 5013.4 & 5015.3207 & 4948.4389 & 5081.3222 & 0.4773 & 0.656 & 0.656 & 0.9849 \tabularnewline
99 & 5007.9 & 5025.7385 & 4950.2145 & 5100.1444 & 0.3192 & 0.6274 & 0.6274 & 0.986 \tabularnewline
100 & 4985.6 & 5036.1349 & 4951.7683 & 5119.1112 & 0.1163 & 0.7476 & 0.7476 & 0.9867 \tabularnewline
101 & 4967.1 & 5046.5098 & 4953.0918 & 5138.2296 & 0.0449 & 0.9035 & 0.9035 & 0.987 \tabularnewline
102 & 4988.9 & 5056.8634 & 4954.1809 & 5157.5019 & 0.0928 & 0.9598 & 0.9598 & 0.9872 \tabularnewline
103 & 4999.8 & 5067.1959 & 4955.0345 & 5176.9277 & 0.1143 & 0.919 & 0.919 & 0.9872 \tabularnewline
104 & 4988.3 & 5077.5073 & 4955.6531 & 5196.5048 & 0.0709 & 0.8997 & 0.8997 & 0.987 \tabularnewline
105 & 4975.5 & 5087.7978 & 4956.0384 & 5216.2302 & 0.0433 & 0.9355 & 0.9355 & 0.9868 \tabularnewline
106 & 4981.1 & 5098.0676 & 4956.1925 & 5236.1 & 0.0484 & 0.9591 & 0.9591 & 0.9865 \tabularnewline
107 & 4993.4 & 5108.3167 & 4956.1182 & 5256.11 & 0.0638 & 0.9542 & 0.9542 & 0.9862 \tabularnewline
108 & 4992.9 & 5118.5453 & 4955.8184 & 5276.2559 & 0.0592 & 0.9401 & 0.9401 & 0.9858 \tabularnewline
109 & 4994.1 & 5128.7535 & 4955.2963 & 5296.5333 & 0.0579 & 0.9437 & 0.9437 & 0.9853 \tabularnewline
110 & 5014.4 & 5138.9415 & 4954.5548 & 5316.9376 & 0.0851 & 0.9446 & 0.9446 & 0.9848 \tabularnewline
111 & 5028.6 & 5149.1092 & 4953.597 & 5337.4646 & 0.1049 & 0.9195 & 0.9195 & 0.9843 \tabularnewline
112 & 5025.4 & 5159.257 & 4952.426 & 5358.1099 & 0.0935 & 0.9011 & 0.9011 & 0.9838 \tabularnewline
113 & 5021.7 & 5169.3848 & 4951.0447 & 5378.8692 & 0.0835 & 0.911 & 0.911 & 0.9832 \tabularnewline
114 & 5026.9 & 5179.4928 & 4949.4561 & 5399.7385 & 0.0872 & 0.9199 & 0.9199 & 0.9826 \tabularnewline
115 & 5026.6 & 5189.5811 & 4947.6628 & 5420.7137 & 0.0835 & 0.9161 & 0.9161 & 0.982 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298701&T=1

[TABLE]
[ROW][C]Univariate ARIMA Extrapolation Forecast[/C][/ROW]
[ROW][C]time[/C][C]Y[t][/C][C]F[t][/C][C]95% LB[/C][C]95% UB[/C][C]p-value(H0: Y[t] = F[t])[/C][C]P(F[t]>Y[t-1])[/C][C]P(F[t]>Y[t-s])[/C][C]P(F[t]>Y[91])[/C][/ROW]
[ROW][C]90[/C][C]4936.1[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]91[/C][C]4942.3[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]92[/C][C]4951.1[/C][C]4952.4081[/C][C]4936.702[/C][C]4968.0645[/C][C]0.435[/C][C]0.8971[/C][C]0.8971[/C][C]0.8971[/C][/ROW]
[ROW][C]93[/C][C]4975.6[/C][C]4962.9091[/C][C]4937.7399[/C][C]4987.9512[/C][C]0.1603[/C][C]0.8223[/C][C]0.8223[/C][C]0.9466[/C][/ROW]
[ROW][C]94[/C][C]4973.5[/C][C]4973.4316[/C][C]4939.7553[/C][C]5006.8814[/C][C]0.4984[/C][C]0.4494[/C][C]0.4494[/C][C]0.9659[/C][/ROW]
[ROW][C]95[/C][C]4963.4[/C][C]4983.9364[/C][C]4942.0298[/C][C]5025.4937[/C][C]0.1664[/C][C]0.6887[/C][C]0.6887[/C][C]0.9752[/C][/ROW]
[ROW][C]96[/C][C]4974.8[/C][C]4994.4197[/C][C]4944.3026[/C][C]5044.0389[/C][C]0.2192[/C][C]0.8898[/C][C]0.8898[/C][C]0.9802[/C][/ROW]
[ROW][C]97[/C][C]5001.8[/C][C]5004.8811[/C][C]4946.4582[/C][C]5062.6299[/C][C]0.4584[/C][C]0.8464[/C][C]0.8464[/C][C]0.9832[/C][/ROW]
[ROW][C]98[/C][C]5013.4[/C][C]5015.3207[/C][C]4948.4389[/C][C]5081.3222[/C][C]0.4773[/C][C]0.656[/C][C]0.656[/C][C]0.9849[/C][/ROW]
[ROW][C]99[/C][C]5007.9[/C][C]5025.7385[/C][C]4950.2145[/C][C]5100.1444[/C][C]0.3192[/C][C]0.6274[/C][C]0.6274[/C][C]0.986[/C][/ROW]
[ROW][C]100[/C][C]4985.6[/C][C]5036.1349[/C][C]4951.7683[/C][C]5119.1112[/C][C]0.1163[/C][C]0.7476[/C][C]0.7476[/C][C]0.9867[/C][/ROW]
[ROW][C]101[/C][C]4967.1[/C][C]5046.5098[/C][C]4953.0918[/C][C]5138.2296[/C][C]0.0449[/C][C]0.9035[/C][C]0.9035[/C][C]0.987[/C][/ROW]
[ROW][C]102[/C][C]4988.9[/C][C]5056.8634[/C][C]4954.1809[/C][C]5157.5019[/C][C]0.0928[/C][C]0.9598[/C][C]0.9598[/C][C]0.9872[/C][/ROW]
[ROW][C]103[/C][C]4999.8[/C][C]5067.1959[/C][C]4955.0345[/C][C]5176.9277[/C][C]0.1143[/C][C]0.919[/C][C]0.919[/C][C]0.9872[/C][/ROW]
[ROW][C]104[/C][C]4988.3[/C][C]5077.5073[/C][C]4955.6531[/C][C]5196.5048[/C][C]0.0709[/C][C]0.8997[/C][C]0.8997[/C][C]0.987[/C][/ROW]
[ROW][C]105[/C][C]4975.5[/C][C]5087.7978[/C][C]4956.0384[/C][C]5216.2302[/C][C]0.0433[/C][C]0.9355[/C][C]0.9355[/C][C]0.9868[/C][/ROW]
[ROW][C]106[/C][C]4981.1[/C][C]5098.0676[/C][C]4956.1925[/C][C]5236.1[/C][C]0.0484[/C][C]0.9591[/C][C]0.9591[/C][C]0.9865[/C][/ROW]
[ROW][C]107[/C][C]4993.4[/C][C]5108.3167[/C][C]4956.1182[/C][C]5256.11[/C][C]0.0638[/C][C]0.9542[/C][C]0.9542[/C][C]0.9862[/C][/ROW]
[ROW][C]108[/C][C]4992.9[/C][C]5118.5453[/C][C]4955.8184[/C][C]5276.2559[/C][C]0.0592[/C][C]0.9401[/C][C]0.9401[/C][C]0.9858[/C][/ROW]
[ROW][C]109[/C][C]4994.1[/C][C]5128.7535[/C][C]4955.2963[/C][C]5296.5333[/C][C]0.0579[/C][C]0.9437[/C][C]0.9437[/C][C]0.9853[/C][/ROW]
[ROW][C]110[/C][C]5014.4[/C][C]5138.9415[/C][C]4954.5548[/C][C]5316.9376[/C][C]0.0851[/C][C]0.9446[/C][C]0.9446[/C][C]0.9848[/C][/ROW]
[ROW][C]111[/C][C]5028.6[/C][C]5149.1092[/C][C]4953.597[/C][C]5337.4646[/C][C]0.1049[/C][C]0.9195[/C][C]0.9195[/C][C]0.9843[/C][/ROW]
[ROW][C]112[/C][C]5025.4[/C][C]5159.257[/C][C]4952.426[/C][C]5358.1099[/C][C]0.0935[/C][C]0.9011[/C][C]0.9011[/C][C]0.9838[/C][/ROW]
[ROW][C]113[/C][C]5021.7[/C][C]5169.3848[/C][C]4951.0447[/C][C]5378.8692[/C][C]0.0835[/C][C]0.911[/C][C]0.911[/C][C]0.9832[/C][/ROW]
[ROW][C]114[/C][C]5026.9[/C][C]5179.4928[/C][C]4949.4561[/C][C]5399.7385[/C][C]0.0872[/C][C]0.9199[/C][C]0.9199[/C][C]0.9826[/C][/ROW]
[ROW][C]115[/C][C]5026.6[/C][C]5189.5811[/C][C]4947.6628[/C][C]5420.7137[/C][C]0.0835[/C][C]0.9161[/C][C]0.9161[/C][C]0.982[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298701&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298701&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Univariate ARIMA Extrapolation Forecast
timeY[t]F[t]95% LB95% UBp-value(H0: Y[t] = F[t])P(F[t]>Y[t-1])P(F[t]>Y[t-s])P(F[t]>Y[91])
904936.1-------
914942.3-------
924951.14952.40814936.7024968.06450.4350.89710.89710.8971
934975.64962.90914937.73994987.95120.16030.82230.82230.9466
944973.54973.43164939.75535006.88140.49840.44940.44940.9659
954963.44983.93644942.02985025.49370.16640.68870.68870.9752
964974.84994.41974944.30265044.03890.21920.88980.88980.9802
975001.85004.88114946.45825062.62990.45840.84640.84640.9832
985013.45015.32074948.43895081.32220.47730.6560.6560.9849
995007.95025.73854950.21455100.14440.31920.62740.62740.986
1004985.65036.13494951.76835119.11120.11630.74760.74760.9867
1014967.15046.50984953.09185138.22960.04490.90350.90350.987
1024988.95056.86344954.18095157.50190.09280.95980.95980.9872
1034999.85067.19594955.03455176.92770.11430.9190.9190.9872
1044988.35077.50734955.65315196.50480.07090.89970.89970.987
1054975.55087.79784956.03845216.23020.04330.93550.93550.9868
1064981.15098.06764956.19255236.10.04840.95910.95910.9865
1074993.45108.31674956.11825256.110.06380.95420.95420.9862
1084992.95118.54534955.81845276.25590.05920.94010.94010.9858
1094994.15128.75354955.29635296.53330.05790.94370.94370.9853
1105014.45138.94154954.55485316.93760.08510.94460.94460.9848
1115028.65149.10924953.5975337.46460.10490.91950.91950.9843
1125025.45159.2574952.4265358.10990.09350.90110.90110.9838
1135021.75169.38484951.04475378.86920.08350.9110.9110.9832
1145026.95179.49284949.45615399.73850.08720.91990.91990.9826
1155026.65189.58114947.66285420.71370.08350.91610.91610.982







Univariate ARIMA Extrapolation Forecast Performance
time% S.E.PEMAPEsMAPESq.EMSERMSEScaledEMASE
920.0016-3e-043e-043e-041.711100-0.11730.1173
930.00260.00260.00140.0014161.059881.38549.02141.1380.6276
940.003409e-049e-040.004754.25857.3660.00610.4205
950.0043-0.00410.00170.0017421.7457146.130312.0884-1.84150.7757
960.0051-0.00390.00220.0022384.9338193.89113.9245-1.75930.9724
970.0059-6e-040.00190.00199.4932163.158112.7733-0.27630.8564
980.0067-4e-040.00170.00173.689140.376811.8481-0.17220.7587
990.0076-0.00360.00190.0019318.2136162.606412.7517-1.59960.8638
1000.0084-0.01010.00280.00282553.7727428.291520.6952-4.53141.2713
1010.0093-0.0160.00420.00416305.91211016.053631.8756-7.12061.8562
1020.0102-0.01360.0050.0054619.0231343.596236.6551-6.09422.2415
1030.011-0.01350.00570.00574542.20211610.146740.1266-6.04332.5583
1040.012-0.01790.00670.00667957.94272098.438745.8087-7.99912.9768
1050.0129-0.02260.00780.007712610.80572849.322153.379-10.06963.4835
1060.0138-0.02350.00880.008813681.42283571.462159.7617-10.48833.9504
1070.0148-0.0230.00970.009613205.85694173.611864.6035-10.30444.3476
1080.0157-0.02520.01060.010515786.75174856.737769.6903-11.26644.7546
1090.0167-0.0270.01150.011418131.57675594.228774.7946-12.07425.1612
1100.0177-0.02480.01220.012115510.57726116.141878.2058-11.16755.4773
1110.0187-0.0240.01280.012714522.47576536.458580.8484-10.80595.7438
1120.0197-0.02660.01350.013317917.68677078.421884.1334-12.00286.0418
1130.0207-0.02940.01420.014121810.79187748.074988.0232-13.24276.3691
1140.0217-0.03040.01490.014723284.55538423.574191.78-13.68286.6871
1150.0227-0.03240.01560.015526562.83679179.376795.8091-14.61437.0174

\begin{tabular}{lllllllll}
\hline
Univariate ARIMA Extrapolation Forecast Performance \tabularnewline
time & % S.E. & PE & MAPE & sMAPE & Sq.E & MSE & RMSE & ScaledE & MASE \tabularnewline
92 & 0.0016 & -3e-04 & 3e-04 & 3e-04 & 1.7111 & 0 & 0 & -0.1173 & 0.1173 \tabularnewline
93 & 0.0026 & 0.0026 & 0.0014 & 0.0014 & 161.0598 & 81.3854 & 9.0214 & 1.138 & 0.6276 \tabularnewline
94 & 0.0034 & 0 & 9e-04 & 9e-04 & 0.0047 & 54.2585 & 7.366 & 0.0061 & 0.4205 \tabularnewline
95 & 0.0043 & -0.0041 & 0.0017 & 0.0017 & 421.7457 & 146.1303 & 12.0884 & -1.8415 & 0.7757 \tabularnewline
96 & 0.0051 & -0.0039 & 0.0022 & 0.0022 & 384.9338 & 193.891 & 13.9245 & -1.7593 & 0.9724 \tabularnewline
97 & 0.0059 & -6e-04 & 0.0019 & 0.0019 & 9.4932 & 163.1581 & 12.7733 & -0.2763 & 0.8564 \tabularnewline
98 & 0.0067 & -4e-04 & 0.0017 & 0.0017 & 3.689 & 140.3768 & 11.8481 & -0.1722 & 0.7587 \tabularnewline
99 & 0.0076 & -0.0036 & 0.0019 & 0.0019 & 318.2136 & 162.6064 & 12.7517 & -1.5996 & 0.8638 \tabularnewline
100 & 0.0084 & -0.0101 & 0.0028 & 0.0028 & 2553.7727 & 428.2915 & 20.6952 & -4.5314 & 1.2713 \tabularnewline
101 & 0.0093 & -0.016 & 0.0042 & 0.0041 & 6305.9121 & 1016.0536 & 31.8756 & -7.1206 & 1.8562 \tabularnewline
102 & 0.0102 & -0.0136 & 0.005 & 0.005 & 4619.023 & 1343.5962 & 36.6551 & -6.0942 & 2.2415 \tabularnewline
103 & 0.011 & -0.0135 & 0.0057 & 0.0057 & 4542.2021 & 1610.1467 & 40.1266 & -6.0433 & 2.5583 \tabularnewline
104 & 0.012 & -0.0179 & 0.0067 & 0.0066 & 7957.9427 & 2098.4387 & 45.8087 & -7.9991 & 2.9768 \tabularnewline
105 & 0.0129 & -0.0226 & 0.0078 & 0.0077 & 12610.8057 & 2849.3221 & 53.379 & -10.0696 & 3.4835 \tabularnewline
106 & 0.0138 & -0.0235 & 0.0088 & 0.0088 & 13681.4228 & 3571.4621 & 59.7617 & -10.4883 & 3.9504 \tabularnewline
107 & 0.0148 & -0.023 & 0.0097 & 0.0096 & 13205.8569 & 4173.6118 & 64.6035 & -10.3044 & 4.3476 \tabularnewline
108 & 0.0157 & -0.0252 & 0.0106 & 0.0105 & 15786.7517 & 4856.7377 & 69.6903 & -11.2664 & 4.7546 \tabularnewline
109 & 0.0167 & -0.027 & 0.0115 & 0.0114 & 18131.5767 & 5594.2287 & 74.7946 & -12.0742 & 5.1612 \tabularnewline
110 & 0.0177 & -0.0248 & 0.0122 & 0.0121 & 15510.5772 & 6116.1418 & 78.2058 & -11.1675 & 5.4773 \tabularnewline
111 & 0.0187 & -0.024 & 0.0128 & 0.0127 & 14522.4757 & 6536.4585 & 80.8484 & -10.8059 & 5.7438 \tabularnewline
112 & 0.0197 & -0.0266 & 0.0135 & 0.0133 & 17917.6867 & 7078.4218 & 84.1334 & -12.0028 & 6.0418 \tabularnewline
113 & 0.0207 & -0.0294 & 0.0142 & 0.0141 & 21810.7918 & 7748.0749 & 88.0232 & -13.2427 & 6.3691 \tabularnewline
114 & 0.0217 & -0.0304 & 0.0149 & 0.0147 & 23284.5553 & 8423.5741 & 91.78 & -13.6828 & 6.6871 \tabularnewline
115 & 0.0227 & -0.0324 & 0.0156 & 0.0155 & 26562.8367 & 9179.3767 & 95.8091 & -14.6143 & 7.0174 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298701&T=2

[TABLE]
[ROW][C]Univariate ARIMA Extrapolation Forecast Performance[/C][/ROW]
[ROW][C]time[/C][C]% S.E.[/C][C]PE[/C][C]MAPE[/C][C]sMAPE[/C][C]Sq.E[/C][C]MSE[/C][C]RMSE[/C][C]ScaledE[/C][C]MASE[/C][/ROW]
[ROW][C]92[/C][C]0.0016[/C][C]-3e-04[/C][C]3e-04[/C][C]3e-04[/C][C]1.7111[/C][C]0[/C][C]0[/C][C]-0.1173[/C][C]0.1173[/C][/ROW]
[ROW][C]93[/C][C]0.0026[/C][C]0.0026[/C][C]0.0014[/C][C]0.0014[/C][C]161.0598[/C][C]81.3854[/C][C]9.0214[/C][C]1.138[/C][C]0.6276[/C][/ROW]
[ROW][C]94[/C][C]0.0034[/C][C]0[/C][C]9e-04[/C][C]9e-04[/C][C]0.0047[/C][C]54.2585[/C][C]7.366[/C][C]0.0061[/C][C]0.4205[/C][/ROW]
[ROW][C]95[/C][C]0.0043[/C][C]-0.0041[/C][C]0.0017[/C][C]0.0017[/C][C]421.7457[/C][C]146.1303[/C][C]12.0884[/C][C]-1.8415[/C][C]0.7757[/C][/ROW]
[ROW][C]96[/C][C]0.0051[/C][C]-0.0039[/C][C]0.0022[/C][C]0.0022[/C][C]384.9338[/C][C]193.891[/C][C]13.9245[/C][C]-1.7593[/C][C]0.9724[/C][/ROW]
[ROW][C]97[/C][C]0.0059[/C][C]-6e-04[/C][C]0.0019[/C][C]0.0019[/C][C]9.4932[/C][C]163.1581[/C][C]12.7733[/C][C]-0.2763[/C][C]0.8564[/C][/ROW]
[ROW][C]98[/C][C]0.0067[/C][C]-4e-04[/C][C]0.0017[/C][C]0.0017[/C][C]3.689[/C][C]140.3768[/C][C]11.8481[/C][C]-0.1722[/C][C]0.7587[/C][/ROW]
[ROW][C]99[/C][C]0.0076[/C][C]-0.0036[/C][C]0.0019[/C][C]0.0019[/C][C]318.2136[/C][C]162.6064[/C][C]12.7517[/C][C]-1.5996[/C][C]0.8638[/C][/ROW]
[ROW][C]100[/C][C]0.0084[/C][C]-0.0101[/C][C]0.0028[/C][C]0.0028[/C][C]2553.7727[/C][C]428.2915[/C][C]20.6952[/C][C]-4.5314[/C][C]1.2713[/C][/ROW]
[ROW][C]101[/C][C]0.0093[/C][C]-0.016[/C][C]0.0042[/C][C]0.0041[/C][C]6305.9121[/C][C]1016.0536[/C][C]31.8756[/C][C]-7.1206[/C][C]1.8562[/C][/ROW]
[ROW][C]102[/C][C]0.0102[/C][C]-0.0136[/C][C]0.005[/C][C]0.005[/C][C]4619.023[/C][C]1343.5962[/C][C]36.6551[/C][C]-6.0942[/C][C]2.2415[/C][/ROW]
[ROW][C]103[/C][C]0.011[/C][C]-0.0135[/C][C]0.0057[/C][C]0.0057[/C][C]4542.2021[/C][C]1610.1467[/C][C]40.1266[/C][C]-6.0433[/C][C]2.5583[/C][/ROW]
[ROW][C]104[/C][C]0.012[/C][C]-0.0179[/C][C]0.0067[/C][C]0.0066[/C][C]7957.9427[/C][C]2098.4387[/C][C]45.8087[/C][C]-7.9991[/C][C]2.9768[/C][/ROW]
[ROW][C]105[/C][C]0.0129[/C][C]-0.0226[/C][C]0.0078[/C][C]0.0077[/C][C]12610.8057[/C][C]2849.3221[/C][C]53.379[/C][C]-10.0696[/C][C]3.4835[/C][/ROW]
[ROW][C]106[/C][C]0.0138[/C][C]-0.0235[/C][C]0.0088[/C][C]0.0088[/C][C]13681.4228[/C][C]3571.4621[/C][C]59.7617[/C][C]-10.4883[/C][C]3.9504[/C][/ROW]
[ROW][C]107[/C][C]0.0148[/C][C]-0.023[/C][C]0.0097[/C][C]0.0096[/C][C]13205.8569[/C][C]4173.6118[/C][C]64.6035[/C][C]-10.3044[/C][C]4.3476[/C][/ROW]
[ROW][C]108[/C][C]0.0157[/C][C]-0.0252[/C][C]0.0106[/C][C]0.0105[/C][C]15786.7517[/C][C]4856.7377[/C][C]69.6903[/C][C]-11.2664[/C][C]4.7546[/C][/ROW]
[ROW][C]109[/C][C]0.0167[/C][C]-0.027[/C][C]0.0115[/C][C]0.0114[/C][C]18131.5767[/C][C]5594.2287[/C][C]74.7946[/C][C]-12.0742[/C][C]5.1612[/C][/ROW]
[ROW][C]110[/C][C]0.0177[/C][C]-0.0248[/C][C]0.0122[/C][C]0.0121[/C][C]15510.5772[/C][C]6116.1418[/C][C]78.2058[/C][C]-11.1675[/C][C]5.4773[/C][/ROW]
[ROW][C]111[/C][C]0.0187[/C][C]-0.024[/C][C]0.0128[/C][C]0.0127[/C][C]14522.4757[/C][C]6536.4585[/C][C]80.8484[/C][C]-10.8059[/C][C]5.7438[/C][/ROW]
[ROW][C]112[/C][C]0.0197[/C][C]-0.0266[/C][C]0.0135[/C][C]0.0133[/C][C]17917.6867[/C][C]7078.4218[/C][C]84.1334[/C][C]-12.0028[/C][C]6.0418[/C][/ROW]
[ROW][C]113[/C][C]0.0207[/C][C]-0.0294[/C][C]0.0142[/C][C]0.0141[/C][C]21810.7918[/C][C]7748.0749[/C][C]88.0232[/C][C]-13.2427[/C][C]6.3691[/C][/ROW]
[ROW][C]114[/C][C]0.0217[/C][C]-0.0304[/C][C]0.0149[/C][C]0.0147[/C][C]23284.5553[/C][C]8423.5741[/C][C]91.78[/C][C]-13.6828[/C][C]6.6871[/C][/ROW]
[ROW][C]115[/C][C]0.0227[/C][C]-0.0324[/C][C]0.0156[/C][C]0.0155[/C][C]26562.8367[/C][C]9179.3767[/C][C]95.8091[/C][C]-14.6143[/C][C]7.0174[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298701&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298701&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Univariate ARIMA Extrapolation Forecast Performance
time% S.E.PEMAPEsMAPESq.EMSERMSEScaledEMASE
920.0016-3e-043e-043e-041.711100-0.11730.1173
930.00260.00260.00140.0014161.059881.38549.02141.1380.6276
940.003409e-049e-040.004754.25857.3660.00610.4205
950.0043-0.00410.00170.0017421.7457146.130312.0884-1.84150.7757
960.0051-0.00390.00220.0022384.9338193.89113.9245-1.75930.9724
970.0059-6e-040.00190.00199.4932163.158112.7733-0.27630.8564
980.0067-4e-040.00170.00173.689140.376811.8481-0.17220.7587
990.0076-0.00360.00190.0019318.2136162.606412.7517-1.59960.8638
1000.0084-0.01010.00280.00282553.7727428.291520.6952-4.53141.2713
1010.0093-0.0160.00420.00416305.91211016.053631.8756-7.12061.8562
1020.0102-0.01360.0050.0054619.0231343.596236.6551-6.09422.2415
1030.011-0.01350.00570.00574542.20211610.146740.1266-6.04332.5583
1040.012-0.01790.00670.00667957.94272098.438745.8087-7.99912.9768
1050.0129-0.02260.00780.007712610.80572849.322153.379-10.06963.4835
1060.0138-0.02350.00880.008813681.42283571.462159.7617-10.48833.9504
1070.0148-0.0230.00970.009613205.85694173.611864.6035-10.30444.3476
1080.0157-0.02520.01060.010515786.75174856.737769.6903-11.26644.7546
1090.0167-0.0270.01150.011418131.57675594.228774.7946-12.07425.1612
1100.0177-0.02480.01220.012115510.57726116.141878.2058-11.16755.4773
1110.0187-0.0240.01280.012714522.47576536.458580.8484-10.80595.7438
1120.0197-0.02660.01350.013317917.68677078.421884.1334-12.00286.0418
1130.0207-0.02940.01420.014121810.79187748.074988.0232-13.24276.3691
1140.0217-0.03040.01490.014723284.55538423.574191.78-13.68286.6871
1150.0227-0.03240.01560.015526562.83679179.376795.8091-14.61437.0174



Parameters (Session):
par1 = FALSE ; par2 = 2.0 ; par3 = 2 ; par4 = 0 ; par5 = 1 ; par6 = 2 ; par7 = 1 ; par8 = 1 ; par9 = 0 ;
Parameters (R input):
par1 = 24 ; par2 = 2.0 ; par3 = 2 ; par4 = 0 ; par5 = 1 ; par6 = 1 ; par7 = 1 ; par8 = 0 ; par9 = 0 ; par10 = FALSE ;
R code (references can be found in the software module):
par10 <- 'FALSE'
par9 <- '0'
par8 <- '0'
par7 <- '1'
par6 <- '1'
par5 <- '1'
par4 <- '0'
par3 <- '2'
par2 <- '2.0'
par1 <- '14'
par1 <- as.numeric(par1) #cut off periods
par2 <- as.numeric(par2) #lambda
par3 <- as.numeric(par3) #degree of non-seasonal differencing
par4 <- as.numeric(par4) #degree of seasonal differencing
par5 <- as.numeric(par5) #seasonal period
par6 <- as.numeric(par6) #p
par7 <- as.numeric(par7) #q
par8 <- as.numeric(par8) #P
par9 <- as.numeric(par9) #Q
if (par10 == 'TRUE') par10 <- TRUE
if (par10 == 'FALSE') par10 <- FALSE
if (par2 == 0) x <- log(x)
if (par2 != 0) x <- x^par2
lx <- length(x)
first <- lx - 2*par1
nx <- lx - par1
nx1 <- nx + 1
fx <- lx - nx
if (fx < 1) {
fx <- par5*2
nx1 <- lx + fx - 1
first <- lx - 2*fx
}
first <- 1
if (fx < 3) fx <- round(lx/10,0)
(arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML'))
(forecast <- predict(arima.out,fx))
(lb <- forecast$pred - 1.96 * forecast$se)
(ub <- forecast$pred + 1.96 * forecast$se)
if (par2 == 0) {
x <- exp(x)
forecast$pred <- exp(forecast$pred)
lb <- exp(lb)
ub <- exp(ub)
}
if (par2 != 0) {
x <- x^(1/par2)
forecast$pred <- forecast$pred^(1/par2)
lb <- lb^(1/par2)
ub <- ub^(1/par2)
}
if (par2 < 0) {
olb <- lb
lb <- ub
ub <- olb
}
(actandfor <- c(x[1:nx], forecast$pred))
(perc.se <- (ub-forecast$pred)/1.96/forecast$pred)
bitmap(file='test1.png')
opar <- par(mar=c(4,4,2,2),las=1)
ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub))
plot(x,ylim=ylim,type='n',xlim=c(first,lx))
usr <- par('usr')
rect(usr[1],usr[3],nx+1,usr[4],border=NA,col='lemonchiffon')
rect(nx1,usr[3],usr[2],usr[4],border=NA,col='lavender')
abline(h= (-3:3)*2 , col ='gray', lty =3)
polygon( c(nx1:lx,lx:nx1), c(lb,rev(ub)), col = 'orange', lty=2,border=NA)
lines(nx1:lx, lb , lty=2)
lines(nx1:lx, ub , lty=2)
lines(x, lwd=2)
lines(nx1:lx, forecast$pred , lwd=2 , col ='white')
box()
par(opar)
dev.off()
prob.dec <- array(NA, dim=fx)
prob.sdec <- array(NA, dim=fx)
prob.ldec <- array(NA, dim=fx)
prob.pval <- array(NA, dim=fx)
perf.pe <- array(0, dim=fx)
perf.spe <- array(0, dim=fx)
perf.scalederr <- array(0, dim=fx)
perf.mase <- array(0, dim=fx)
perf.mase1 <- array(0, dim=fx)
perf.mape <- array(0, dim=fx)
perf.smape <- array(0, dim=fx)
perf.mape1 <- array(0, dim=fx)
perf.smape1 <- array(0,dim=fx)
perf.se <- array(0, dim=fx)
perf.mse <- array(0, dim=fx)
perf.mse1 <- array(0, dim=fx)
perf.rmse <- array(0, dim=fx)
perf.scaleddenom <- 0
for (i in 2:fx) {
perf.scaleddenom = perf.scaleddenom + abs(x[nx+i] - x[nx+i-1])
}
perf.scaleddenom = perf.scaleddenom / (fx-1)
for (i in 1:fx) {
locSD <- (ub[i] - forecast$pred[i]) / 1.96
perf.scalederr[i] = (x[nx+i] - forecast$pred[i]) / perf.scaleddenom
perf.pe[i] = (x[nx+i] - forecast$pred[i]) / x[nx+i]
perf.spe[i] = 2*(x[nx+i] - forecast$pred[i]) / (x[nx+i] + forecast$pred[i])
perf.se[i] = (x[nx+i] - forecast$pred[i])^2
prob.dec[i] = pnorm((x[nx+i-1] - forecast$pred[i]) / locSD)
prob.sdec[i] = pnorm((x[nx+i-par5] - forecast$pred[i]) / locSD)
prob.ldec[i] = pnorm((x[nx] - forecast$pred[i]) / locSD)
prob.pval[i] = pnorm(abs(x[nx+i] - forecast$pred[i]) / locSD)
}
perf.mape[1] = abs(perf.pe[1])
perf.smape[1] = abs(perf.spe[1])
perf.mape1[1] = perf.mape[1]
perf.smape1[1] = perf.smape[1]
perf.mse[1] = perf.se[1]
perf.mase[1] = abs(perf.scalederr[1])
perf.mase1[1] = perf.mase[1]
for (i in 2:fx) {
perf.mape[i] = perf.mape[i-1] + abs(perf.pe[i])
perf.mape1[i] = perf.mape[i] / i
perf.smape[i] = perf.smape[i-1] + abs(perf.spe[i])
perf.smape1[i] = perf.smape[i] / i
perf.mse[i] = perf.mse[i-1] + perf.se[i]
perf.mse1[i] = perf.mse[i] / i
perf.mase[i] = perf.mase[i-1] + abs(perf.scalederr[i])
perf.mase1[i] = perf.mase[i] / i
}
perf.rmse = sqrt(perf.mse1)
bitmap(file='test2.png')
plot(forecast$pred, pch=19, type='b',main='ARIMA Extrapolation Forecast', ylab='Forecast and 95% CI', xlab='time',ylim=c(min(lb),max(ub)))
dum <- forecast$pred
dum[1:par1] <- x[(nx+1):lx]
lines(dum, lty=1)
lines(ub,lty=3)
lines(lb,lty=3)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Univariate ARIMA Extrapolation Forecast',9,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'time',1,header=TRUE)
a<-table.element(a,'Y[t]',1,header=TRUE)
a<-table.element(a,'F[t]',1,header=TRUE)
a<-table.element(a,'95% LB',1,header=TRUE)
a<-table.element(a,'95% UB',1,header=TRUE)
a<-table.element(a,'p-value
(H0: Y[t] = F[t])',1,header=TRUE)
a<-table.element(a,'P(F[t]>Y[t-1])',1,header=TRUE)
a<-table.element(a,'P(F[t]>Y[t-s])',1,header=TRUE)
mylab <- paste('P(F[t]>Y[',nx,sep='')
mylab <- paste(mylab,'])',sep='')
a<-table.element(a,mylab,1,header=TRUE)
a<-table.row.end(a)
for (i in (nx-par5):nx) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.row.end(a)
}
for (i in 1:fx) {
a<-table.row.start(a)
a<-table.element(a,nx+i,header=TRUE)
a<-table.element(a,round(x[nx+i],4))
a<-table.element(a,round(forecast$pred[i],4))
a<-table.element(a,round(lb[i],4))
a<-table.element(a,round(ub[i],4))
a<-table.element(a,round((1-prob.pval[i]),4))
a<-table.element(a,round((1-prob.dec[i]),4))
a<-table.element(a,round((1-prob.sdec[i]),4))
a<-table.element(a,round((1-prob.ldec[i]),4))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Univariate ARIMA Extrapolation Forecast Performance',10,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'time',1,header=TRUE)
a<-table.element(a,'% S.E.',1,header=TRUE)
a<-table.element(a,'PE',1,header=TRUE)
a<-table.element(a,'MAPE',1,header=TRUE)
a<-table.element(a,'sMAPE',1,header=TRUE)
a<-table.element(a,'Sq.E',1,header=TRUE)
a<-table.element(a,'MSE',1,header=TRUE)
a<-table.element(a,'RMSE',1,header=TRUE)
a<-table.element(a,'ScaledE',1,header=TRUE)
a<-table.element(a,'MASE',1,header=TRUE)
a<-table.row.end(a)
for (i in 1:fx) {
a<-table.row.start(a)
a<-table.element(a,nx+i,header=TRUE)
a<-table.element(a,round(perc.se[i],4))
a<-table.element(a,round(perf.pe[i],4))
a<-table.element(a,round(perf.mape1[i],4))
a<-table.element(a,round(perf.smape1[i],4))
a<-table.element(a,round(perf.se[i],4))
a<-table.element(a,round(perf.mse1[i],4))
a<-table.element(a,round(perf.rmse[i],4))
a<-table.element(a,round(perf.scalederr[i],4))
a<-table.element(a,round(perf.mase1[i],4))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')