Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_decompose.wasp
Title produced by softwareClassical Decomposition
Date of computationSat, 10 Dec 2016 13:34:55 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/10/t1481373320ny201o194rxh4qw.htm/, Retrieved Fri, 01 Nov 2024 03:32:37 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=298668, Retrieved Fri, 01 Nov 2024 03:32:37 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact90
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Classical Decomposition] [Classical decompo...] [2016-12-10 12:34:55] [2a4be59ea15844c348dc523b08af79fc] [Current]
Feedback Forum

Post a new message
Dataseries X:
6151.2
5847.6
5662.8
5807.7
5907
6036.3
5668.2
5578.5
5760.6
5918.1
6030
6242.4
6425.1
6610.8
6943.5
5316.3
4356.6
4073.1
4239.9
4401.3
4590.6
4671
4772.1
4875.3
4601.7
4482.3
4455.6
4487.7
4606.8
4727.7
4617.9
4507.8
4398.6
4334.7
4272.9
4209.6
3963.3
3717
3469.5
3587.1
3703.5
3819.6
3777
3732.9
3687.6
3756.3
3824.7
3893.7
4039.2
4184.7
4329.9
4867.8
5405.7
5943.6
6440.7
6938.4
7435.8
6696.3
5957.1
5217.9
4781.7
4345.2
3909
3944.7
3980.1
4015.5
3983.7
3951.6
3919.8
3992.1
4064.4
4136.7
3950.1
3763.2
3577.2
3690.3
3804
3917.7
3900.9
3884.1
3867
3915
3962.4
4009.5
3820.2
3631.2
3441.9
3557.7
3674.1
3789.9
3886.2
3981.9
4078.2
4181.4
4284.9
4388.4
4190.1
3991.8
3793.5
3734.7
3675.9
3617.4
3557.7
3498
3438.6
3478.5
3518.7
3558.9
3401.1
3230.7
3060.3
3043.5
3026.4
3009.6
3159
3308.1
3457.5
3327.6
3198
3068.1
3108
3147.6
3187.5




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time2 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298668&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]2 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=298668&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298668&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center







Classical Decomposition by Moving Averages
tObservationsFitTrendSeasonalRandom
16151.2NANA39.8716NA
25847.6NANA-73.0673NA
35662.8NANA-160.394NA
45807.7NANA-221.138NA
55907NANA-195.667NA
66036.3NANA-92.1937NA
75668.25882.165895.61-13.4495-213.963
85578.56004.455938.8265.6205-425.945
95760.66196.346023.99172.354-435.742
105918.16214.46056.88157.527-296.302
1160306126.995971.8155.194-96.9938
126242.45990.745825.4165.342251.658
136425.15723.965684.0939.8716701.141
146610.85502.465575.52-73.06731108.34
156943.55317.335477.72-160.3941626.17
165316.35155.875377.01-221.138160.426
174356.65076.975272.64-195.667-720.37
184073.15071.075163.26-92.1937-997.969
194239.95016.885030.32-13.4495-776.975
204401.34931.284865.6665.6205-529.983
214590.64845.674673.31172.354-255.067
2246714692.654535.12157.527-21.6521
234772.14666.224511.02155.194105.881
244875.34714.074548.73165.342161.233
254601.74631.624591.7539.8716-29.9216
264482.34538.874611.94-73.0673-56.5702
274455.64447.984608.38-160.3947.61869
284487.74365.224586.36-221.138122.476
294606.84355.884551.55-195.667250.917
304727.74410.824503.01-92.1937316.881
314617.94435.234448.68-13.4495182.675
324507.84455.814390.1965.620551.992
334398.64489.574317.21172.354-90.9667
344334.74396.134238.6157.527-61.4271
354272.94318.634163.44155.194-45.7313
364209.64253.34087.96165.342-43.7049
373963.34054.964015.0939.8716-91.6591
3837173874.73947.76-73.0673-157.695
393469.53725.463885.85-160.394-255.956
403587.13610.993832.12-221.138-23.8869
413703.53593.683789.35-195.667109.817
423819.63665.323757.51-92.1937154.281
4337773734.063747.51-13.449542.937
443732.93835.783770.1665.6205-102.883
453687.63997.853825.5172.354-310.254
463756.34072.243914.71157.527-315.94
473824.74194.194039155.194-369.494
483893.74363.774198.42165.342-470.067
494039.24437.784397.9139.8716-398.584
504184.74569.44642.46-73.0673-384.695
514329.94771.814932.2-160.394-441.906
524867.84989.745210.88-221.138-121.937
535405.75226.565422.23-195.667179.142
545943.65474.065566.25-92.1937469.544
556440.75638.915652.36-13.4495801.787
566938.45755.615689.9965.62051182.79
577435.85851.495679.14172.3541584.31
586696.35780.665623.14157.527915.635
595957.15680.475525.28155.194276.631
605217.95550.885385.54165.342-332.98
614781.75242.75202.8239.8716-460.997
624345.24902.934976-73.0673-557.733
6339094544.664705.05-160.394-635.656
643944.74224.744445.87-221.138-280.037
653980.14058.674254.34-195.667-78.5702
664015.54038.234130.42-92.1937-22.7313
673983.74037.284050.73-13.4495-53.5755
683951.64057.453991.8265.6205-105.845
693919.84126.13953.75172.354-206.304
703992.14086.853929.32157.527-94.7521
714064.44066.583911.39155.194-2.18131
724136.74065.323899.97165.34271.3826
733950.13932.323892.4539.871617.7784
743763.23813.123886.19-73.0673-49.9202
753577.23720.783881.17-160.394-143.581
763690.33654.623875.76-221.13835.6756
7738043672.633868.3-195.667131.367
783917.73766.563858.75-92.1937151.144
793900.93834.593848.04-13.449566.312
803884.13902.753837.1265.6205-18.6455
8138673998.343825.99172.354-131.342
8239153972.353814.82157.527-57.3521
833962.43959.083803.89155.1943.31869
844009.53958.493793.15165.34251.0076
853820.23827.083787.2139.8716-6.88409
863631.23717.613790.68-73.0673-86.4077
873441.93643.163803.55-160.394-201.256
883557.73602.313823.45-221.138-44.6119
893674.13652.323847.99-195.66721.7798
903789.93785.023877.21-92.19374.88119
913886.23894.963908.41-13.4495-8.76297
923981.94004.473938.8565.6205-22.5705
934078.24140.883968.52172.354-62.6792
944181.44148.083990.55157.52733.3229
954284.94153.193998155.194131.706
964388.44156.233990.89165.342232.17
974190.14009.883970.0139.8716180.216
983991.83863.13936.16-73.0673128.705
993793.53728.963889.35-160.39464.5437
1003734.73612.273833.41-221.138122.426
1013675.93576.533772.2-195.66799.3673
1023617.43613.523705.71-92.19373.88119
1033557.73624.833638.27-13.4495-67.1255
10434983639.313573.6965.6205-141.308
1053438.63683.783511.42172.354-245.179
1063478.53609.63452.07157.527-131.102
1073518.73551.413396.21155.194-32.7063
1083558.93509.173343.82165.34249.7326
1093401.13341.763301.8939.871659.3409
1103230.73204.33277.36-73.067326.4048
1113060.33109.843270.24-160.394-49.5438
1123043.53043.63264.74-221.138-0.0993634
1133026.43049.423245.09-195.667-23.0202
1143009.63119.083211.28-92.1937-109.481
11531593165.163178.61-13.4495-6.16297
1163308.13228.563162.9465.620579.542
1173457.53337.133164.77172.354120.371
1183327.6NANA157.527NA
1193198NANA155.194NA
1203068.1NANA165.342NA
1213108NANA39.8716NA
1223147.6NANA-73.0673NA
1233187.5NANA-160.394NA

\begin{tabular}{lllllllll}
\hline
Classical Decomposition by Moving Averages \tabularnewline
t & Observations & Fit & Trend & Seasonal & Random \tabularnewline
1 & 6151.2 & NA & NA & 39.8716 & NA \tabularnewline
2 & 5847.6 & NA & NA & -73.0673 & NA \tabularnewline
3 & 5662.8 & NA & NA & -160.394 & NA \tabularnewline
4 & 5807.7 & NA & NA & -221.138 & NA \tabularnewline
5 & 5907 & NA & NA & -195.667 & NA \tabularnewline
6 & 6036.3 & NA & NA & -92.1937 & NA \tabularnewline
7 & 5668.2 & 5882.16 & 5895.61 & -13.4495 & -213.963 \tabularnewline
8 & 5578.5 & 6004.45 & 5938.82 & 65.6205 & -425.945 \tabularnewline
9 & 5760.6 & 6196.34 & 6023.99 & 172.354 & -435.742 \tabularnewline
10 & 5918.1 & 6214.4 & 6056.88 & 157.527 & -296.302 \tabularnewline
11 & 6030 & 6126.99 & 5971.8 & 155.194 & -96.9938 \tabularnewline
12 & 6242.4 & 5990.74 & 5825.4 & 165.342 & 251.658 \tabularnewline
13 & 6425.1 & 5723.96 & 5684.09 & 39.8716 & 701.141 \tabularnewline
14 & 6610.8 & 5502.46 & 5575.52 & -73.0673 & 1108.34 \tabularnewline
15 & 6943.5 & 5317.33 & 5477.72 & -160.394 & 1626.17 \tabularnewline
16 & 5316.3 & 5155.87 & 5377.01 & -221.138 & 160.426 \tabularnewline
17 & 4356.6 & 5076.97 & 5272.64 & -195.667 & -720.37 \tabularnewline
18 & 4073.1 & 5071.07 & 5163.26 & -92.1937 & -997.969 \tabularnewline
19 & 4239.9 & 5016.88 & 5030.32 & -13.4495 & -776.975 \tabularnewline
20 & 4401.3 & 4931.28 & 4865.66 & 65.6205 & -529.983 \tabularnewline
21 & 4590.6 & 4845.67 & 4673.31 & 172.354 & -255.067 \tabularnewline
22 & 4671 & 4692.65 & 4535.12 & 157.527 & -21.6521 \tabularnewline
23 & 4772.1 & 4666.22 & 4511.02 & 155.194 & 105.881 \tabularnewline
24 & 4875.3 & 4714.07 & 4548.73 & 165.342 & 161.233 \tabularnewline
25 & 4601.7 & 4631.62 & 4591.75 & 39.8716 & -29.9216 \tabularnewline
26 & 4482.3 & 4538.87 & 4611.94 & -73.0673 & -56.5702 \tabularnewline
27 & 4455.6 & 4447.98 & 4608.38 & -160.394 & 7.61869 \tabularnewline
28 & 4487.7 & 4365.22 & 4586.36 & -221.138 & 122.476 \tabularnewline
29 & 4606.8 & 4355.88 & 4551.55 & -195.667 & 250.917 \tabularnewline
30 & 4727.7 & 4410.82 & 4503.01 & -92.1937 & 316.881 \tabularnewline
31 & 4617.9 & 4435.23 & 4448.68 & -13.4495 & 182.675 \tabularnewline
32 & 4507.8 & 4455.81 & 4390.19 & 65.6205 & 51.992 \tabularnewline
33 & 4398.6 & 4489.57 & 4317.21 & 172.354 & -90.9667 \tabularnewline
34 & 4334.7 & 4396.13 & 4238.6 & 157.527 & -61.4271 \tabularnewline
35 & 4272.9 & 4318.63 & 4163.44 & 155.194 & -45.7313 \tabularnewline
36 & 4209.6 & 4253.3 & 4087.96 & 165.342 & -43.7049 \tabularnewline
37 & 3963.3 & 4054.96 & 4015.09 & 39.8716 & -91.6591 \tabularnewline
38 & 3717 & 3874.7 & 3947.76 & -73.0673 & -157.695 \tabularnewline
39 & 3469.5 & 3725.46 & 3885.85 & -160.394 & -255.956 \tabularnewline
40 & 3587.1 & 3610.99 & 3832.12 & -221.138 & -23.8869 \tabularnewline
41 & 3703.5 & 3593.68 & 3789.35 & -195.667 & 109.817 \tabularnewline
42 & 3819.6 & 3665.32 & 3757.51 & -92.1937 & 154.281 \tabularnewline
43 & 3777 & 3734.06 & 3747.51 & -13.4495 & 42.937 \tabularnewline
44 & 3732.9 & 3835.78 & 3770.16 & 65.6205 & -102.883 \tabularnewline
45 & 3687.6 & 3997.85 & 3825.5 & 172.354 & -310.254 \tabularnewline
46 & 3756.3 & 4072.24 & 3914.71 & 157.527 & -315.94 \tabularnewline
47 & 3824.7 & 4194.19 & 4039 & 155.194 & -369.494 \tabularnewline
48 & 3893.7 & 4363.77 & 4198.42 & 165.342 & -470.067 \tabularnewline
49 & 4039.2 & 4437.78 & 4397.91 & 39.8716 & -398.584 \tabularnewline
50 & 4184.7 & 4569.4 & 4642.46 & -73.0673 & -384.695 \tabularnewline
51 & 4329.9 & 4771.81 & 4932.2 & -160.394 & -441.906 \tabularnewline
52 & 4867.8 & 4989.74 & 5210.88 & -221.138 & -121.937 \tabularnewline
53 & 5405.7 & 5226.56 & 5422.23 & -195.667 & 179.142 \tabularnewline
54 & 5943.6 & 5474.06 & 5566.25 & -92.1937 & 469.544 \tabularnewline
55 & 6440.7 & 5638.91 & 5652.36 & -13.4495 & 801.787 \tabularnewline
56 & 6938.4 & 5755.61 & 5689.99 & 65.6205 & 1182.79 \tabularnewline
57 & 7435.8 & 5851.49 & 5679.14 & 172.354 & 1584.31 \tabularnewline
58 & 6696.3 & 5780.66 & 5623.14 & 157.527 & 915.635 \tabularnewline
59 & 5957.1 & 5680.47 & 5525.28 & 155.194 & 276.631 \tabularnewline
60 & 5217.9 & 5550.88 & 5385.54 & 165.342 & -332.98 \tabularnewline
61 & 4781.7 & 5242.7 & 5202.82 & 39.8716 & -460.997 \tabularnewline
62 & 4345.2 & 4902.93 & 4976 & -73.0673 & -557.733 \tabularnewline
63 & 3909 & 4544.66 & 4705.05 & -160.394 & -635.656 \tabularnewline
64 & 3944.7 & 4224.74 & 4445.87 & -221.138 & -280.037 \tabularnewline
65 & 3980.1 & 4058.67 & 4254.34 & -195.667 & -78.5702 \tabularnewline
66 & 4015.5 & 4038.23 & 4130.42 & -92.1937 & -22.7313 \tabularnewline
67 & 3983.7 & 4037.28 & 4050.73 & -13.4495 & -53.5755 \tabularnewline
68 & 3951.6 & 4057.45 & 3991.82 & 65.6205 & -105.845 \tabularnewline
69 & 3919.8 & 4126.1 & 3953.75 & 172.354 & -206.304 \tabularnewline
70 & 3992.1 & 4086.85 & 3929.32 & 157.527 & -94.7521 \tabularnewline
71 & 4064.4 & 4066.58 & 3911.39 & 155.194 & -2.18131 \tabularnewline
72 & 4136.7 & 4065.32 & 3899.97 & 165.342 & 71.3826 \tabularnewline
73 & 3950.1 & 3932.32 & 3892.45 & 39.8716 & 17.7784 \tabularnewline
74 & 3763.2 & 3813.12 & 3886.19 & -73.0673 & -49.9202 \tabularnewline
75 & 3577.2 & 3720.78 & 3881.17 & -160.394 & -143.581 \tabularnewline
76 & 3690.3 & 3654.62 & 3875.76 & -221.138 & 35.6756 \tabularnewline
77 & 3804 & 3672.63 & 3868.3 & -195.667 & 131.367 \tabularnewline
78 & 3917.7 & 3766.56 & 3858.75 & -92.1937 & 151.144 \tabularnewline
79 & 3900.9 & 3834.59 & 3848.04 & -13.4495 & 66.312 \tabularnewline
80 & 3884.1 & 3902.75 & 3837.12 & 65.6205 & -18.6455 \tabularnewline
81 & 3867 & 3998.34 & 3825.99 & 172.354 & -131.342 \tabularnewline
82 & 3915 & 3972.35 & 3814.82 & 157.527 & -57.3521 \tabularnewline
83 & 3962.4 & 3959.08 & 3803.89 & 155.194 & 3.31869 \tabularnewline
84 & 4009.5 & 3958.49 & 3793.15 & 165.342 & 51.0076 \tabularnewline
85 & 3820.2 & 3827.08 & 3787.21 & 39.8716 & -6.88409 \tabularnewline
86 & 3631.2 & 3717.61 & 3790.68 & -73.0673 & -86.4077 \tabularnewline
87 & 3441.9 & 3643.16 & 3803.55 & -160.394 & -201.256 \tabularnewline
88 & 3557.7 & 3602.31 & 3823.45 & -221.138 & -44.6119 \tabularnewline
89 & 3674.1 & 3652.32 & 3847.99 & -195.667 & 21.7798 \tabularnewline
90 & 3789.9 & 3785.02 & 3877.21 & -92.1937 & 4.88119 \tabularnewline
91 & 3886.2 & 3894.96 & 3908.41 & -13.4495 & -8.76297 \tabularnewline
92 & 3981.9 & 4004.47 & 3938.85 & 65.6205 & -22.5705 \tabularnewline
93 & 4078.2 & 4140.88 & 3968.52 & 172.354 & -62.6792 \tabularnewline
94 & 4181.4 & 4148.08 & 3990.55 & 157.527 & 33.3229 \tabularnewline
95 & 4284.9 & 4153.19 & 3998 & 155.194 & 131.706 \tabularnewline
96 & 4388.4 & 4156.23 & 3990.89 & 165.342 & 232.17 \tabularnewline
97 & 4190.1 & 4009.88 & 3970.01 & 39.8716 & 180.216 \tabularnewline
98 & 3991.8 & 3863.1 & 3936.16 & -73.0673 & 128.705 \tabularnewline
99 & 3793.5 & 3728.96 & 3889.35 & -160.394 & 64.5437 \tabularnewline
100 & 3734.7 & 3612.27 & 3833.41 & -221.138 & 122.426 \tabularnewline
101 & 3675.9 & 3576.53 & 3772.2 & -195.667 & 99.3673 \tabularnewline
102 & 3617.4 & 3613.52 & 3705.71 & -92.1937 & 3.88119 \tabularnewline
103 & 3557.7 & 3624.83 & 3638.27 & -13.4495 & -67.1255 \tabularnewline
104 & 3498 & 3639.31 & 3573.69 & 65.6205 & -141.308 \tabularnewline
105 & 3438.6 & 3683.78 & 3511.42 & 172.354 & -245.179 \tabularnewline
106 & 3478.5 & 3609.6 & 3452.07 & 157.527 & -131.102 \tabularnewline
107 & 3518.7 & 3551.41 & 3396.21 & 155.194 & -32.7063 \tabularnewline
108 & 3558.9 & 3509.17 & 3343.82 & 165.342 & 49.7326 \tabularnewline
109 & 3401.1 & 3341.76 & 3301.89 & 39.8716 & 59.3409 \tabularnewline
110 & 3230.7 & 3204.3 & 3277.36 & -73.0673 & 26.4048 \tabularnewline
111 & 3060.3 & 3109.84 & 3270.24 & -160.394 & -49.5438 \tabularnewline
112 & 3043.5 & 3043.6 & 3264.74 & -221.138 & -0.0993634 \tabularnewline
113 & 3026.4 & 3049.42 & 3245.09 & -195.667 & -23.0202 \tabularnewline
114 & 3009.6 & 3119.08 & 3211.28 & -92.1937 & -109.481 \tabularnewline
115 & 3159 & 3165.16 & 3178.61 & -13.4495 & -6.16297 \tabularnewline
116 & 3308.1 & 3228.56 & 3162.94 & 65.6205 & 79.542 \tabularnewline
117 & 3457.5 & 3337.13 & 3164.77 & 172.354 & 120.371 \tabularnewline
118 & 3327.6 & NA & NA & 157.527 & NA \tabularnewline
119 & 3198 & NA & NA & 155.194 & NA \tabularnewline
120 & 3068.1 & NA & NA & 165.342 & NA \tabularnewline
121 & 3108 & NA & NA & 39.8716 & NA \tabularnewline
122 & 3147.6 & NA & NA & -73.0673 & NA \tabularnewline
123 & 3187.5 & NA & NA & -160.394 & NA \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298668&T=1

[TABLE]
[ROW][C]Classical Decomposition by Moving Averages[/C][/ROW]
[ROW][C]t[/C][C]Observations[/C][C]Fit[/C][C]Trend[/C][C]Seasonal[/C][C]Random[/C][/ROW]
[ROW][C]1[/C][C]6151.2[/C][C]NA[/C][C]NA[/C][C]39.8716[/C][C]NA[/C][/ROW]
[ROW][C]2[/C][C]5847.6[/C][C]NA[/C][C]NA[/C][C]-73.0673[/C][C]NA[/C][/ROW]
[ROW][C]3[/C][C]5662.8[/C][C]NA[/C][C]NA[/C][C]-160.394[/C][C]NA[/C][/ROW]
[ROW][C]4[/C][C]5807.7[/C][C]NA[/C][C]NA[/C][C]-221.138[/C][C]NA[/C][/ROW]
[ROW][C]5[/C][C]5907[/C][C]NA[/C][C]NA[/C][C]-195.667[/C][C]NA[/C][/ROW]
[ROW][C]6[/C][C]6036.3[/C][C]NA[/C][C]NA[/C][C]-92.1937[/C][C]NA[/C][/ROW]
[ROW][C]7[/C][C]5668.2[/C][C]5882.16[/C][C]5895.61[/C][C]-13.4495[/C][C]-213.963[/C][/ROW]
[ROW][C]8[/C][C]5578.5[/C][C]6004.45[/C][C]5938.82[/C][C]65.6205[/C][C]-425.945[/C][/ROW]
[ROW][C]9[/C][C]5760.6[/C][C]6196.34[/C][C]6023.99[/C][C]172.354[/C][C]-435.742[/C][/ROW]
[ROW][C]10[/C][C]5918.1[/C][C]6214.4[/C][C]6056.88[/C][C]157.527[/C][C]-296.302[/C][/ROW]
[ROW][C]11[/C][C]6030[/C][C]6126.99[/C][C]5971.8[/C][C]155.194[/C][C]-96.9938[/C][/ROW]
[ROW][C]12[/C][C]6242.4[/C][C]5990.74[/C][C]5825.4[/C][C]165.342[/C][C]251.658[/C][/ROW]
[ROW][C]13[/C][C]6425.1[/C][C]5723.96[/C][C]5684.09[/C][C]39.8716[/C][C]701.141[/C][/ROW]
[ROW][C]14[/C][C]6610.8[/C][C]5502.46[/C][C]5575.52[/C][C]-73.0673[/C][C]1108.34[/C][/ROW]
[ROW][C]15[/C][C]6943.5[/C][C]5317.33[/C][C]5477.72[/C][C]-160.394[/C][C]1626.17[/C][/ROW]
[ROW][C]16[/C][C]5316.3[/C][C]5155.87[/C][C]5377.01[/C][C]-221.138[/C][C]160.426[/C][/ROW]
[ROW][C]17[/C][C]4356.6[/C][C]5076.97[/C][C]5272.64[/C][C]-195.667[/C][C]-720.37[/C][/ROW]
[ROW][C]18[/C][C]4073.1[/C][C]5071.07[/C][C]5163.26[/C][C]-92.1937[/C][C]-997.969[/C][/ROW]
[ROW][C]19[/C][C]4239.9[/C][C]5016.88[/C][C]5030.32[/C][C]-13.4495[/C][C]-776.975[/C][/ROW]
[ROW][C]20[/C][C]4401.3[/C][C]4931.28[/C][C]4865.66[/C][C]65.6205[/C][C]-529.983[/C][/ROW]
[ROW][C]21[/C][C]4590.6[/C][C]4845.67[/C][C]4673.31[/C][C]172.354[/C][C]-255.067[/C][/ROW]
[ROW][C]22[/C][C]4671[/C][C]4692.65[/C][C]4535.12[/C][C]157.527[/C][C]-21.6521[/C][/ROW]
[ROW][C]23[/C][C]4772.1[/C][C]4666.22[/C][C]4511.02[/C][C]155.194[/C][C]105.881[/C][/ROW]
[ROW][C]24[/C][C]4875.3[/C][C]4714.07[/C][C]4548.73[/C][C]165.342[/C][C]161.233[/C][/ROW]
[ROW][C]25[/C][C]4601.7[/C][C]4631.62[/C][C]4591.75[/C][C]39.8716[/C][C]-29.9216[/C][/ROW]
[ROW][C]26[/C][C]4482.3[/C][C]4538.87[/C][C]4611.94[/C][C]-73.0673[/C][C]-56.5702[/C][/ROW]
[ROW][C]27[/C][C]4455.6[/C][C]4447.98[/C][C]4608.38[/C][C]-160.394[/C][C]7.61869[/C][/ROW]
[ROW][C]28[/C][C]4487.7[/C][C]4365.22[/C][C]4586.36[/C][C]-221.138[/C][C]122.476[/C][/ROW]
[ROW][C]29[/C][C]4606.8[/C][C]4355.88[/C][C]4551.55[/C][C]-195.667[/C][C]250.917[/C][/ROW]
[ROW][C]30[/C][C]4727.7[/C][C]4410.82[/C][C]4503.01[/C][C]-92.1937[/C][C]316.881[/C][/ROW]
[ROW][C]31[/C][C]4617.9[/C][C]4435.23[/C][C]4448.68[/C][C]-13.4495[/C][C]182.675[/C][/ROW]
[ROW][C]32[/C][C]4507.8[/C][C]4455.81[/C][C]4390.19[/C][C]65.6205[/C][C]51.992[/C][/ROW]
[ROW][C]33[/C][C]4398.6[/C][C]4489.57[/C][C]4317.21[/C][C]172.354[/C][C]-90.9667[/C][/ROW]
[ROW][C]34[/C][C]4334.7[/C][C]4396.13[/C][C]4238.6[/C][C]157.527[/C][C]-61.4271[/C][/ROW]
[ROW][C]35[/C][C]4272.9[/C][C]4318.63[/C][C]4163.44[/C][C]155.194[/C][C]-45.7313[/C][/ROW]
[ROW][C]36[/C][C]4209.6[/C][C]4253.3[/C][C]4087.96[/C][C]165.342[/C][C]-43.7049[/C][/ROW]
[ROW][C]37[/C][C]3963.3[/C][C]4054.96[/C][C]4015.09[/C][C]39.8716[/C][C]-91.6591[/C][/ROW]
[ROW][C]38[/C][C]3717[/C][C]3874.7[/C][C]3947.76[/C][C]-73.0673[/C][C]-157.695[/C][/ROW]
[ROW][C]39[/C][C]3469.5[/C][C]3725.46[/C][C]3885.85[/C][C]-160.394[/C][C]-255.956[/C][/ROW]
[ROW][C]40[/C][C]3587.1[/C][C]3610.99[/C][C]3832.12[/C][C]-221.138[/C][C]-23.8869[/C][/ROW]
[ROW][C]41[/C][C]3703.5[/C][C]3593.68[/C][C]3789.35[/C][C]-195.667[/C][C]109.817[/C][/ROW]
[ROW][C]42[/C][C]3819.6[/C][C]3665.32[/C][C]3757.51[/C][C]-92.1937[/C][C]154.281[/C][/ROW]
[ROW][C]43[/C][C]3777[/C][C]3734.06[/C][C]3747.51[/C][C]-13.4495[/C][C]42.937[/C][/ROW]
[ROW][C]44[/C][C]3732.9[/C][C]3835.78[/C][C]3770.16[/C][C]65.6205[/C][C]-102.883[/C][/ROW]
[ROW][C]45[/C][C]3687.6[/C][C]3997.85[/C][C]3825.5[/C][C]172.354[/C][C]-310.254[/C][/ROW]
[ROW][C]46[/C][C]3756.3[/C][C]4072.24[/C][C]3914.71[/C][C]157.527[/C][C]-315.94[/C][/ROW]
[ROW][C]47[/C][C]3824.7[/C][C]4194.19[/C][C]4039[/C][C]155.194[/C][C]-369.494[/C][/ROW]
[ROW][C]48[/C][C]3893.7[/C][C]4363.77[/C][C]4198.42[/C][C]165.342[/C][C]-470.067[/C][/ROW]
[ROW][C]49[/C][C]4039.2[/C][C]4437.78[/C][C]4397.91[/C][C]39.8716[/C][C]-398.584[/C][/ROW]
[ROW][C]50[/C][C]4184.7[/C][C]4569.4[/C][C]4642.46[/C][C]-73.0673[/C][C]-384.695[/C][/ROW]
[ROW][C]51[/C][C]4329.9[/C][C]4771.81[/C][C]4932.2[/C][C]-160.394[/C][C]-441.906[/C][/ROW]
[ROW][C]52[/C][C]4867.8[/C][C]4989.74[/C][C]5210.88[/C][C]-221.138[/C][C]-121.937[/C][/ROW]
[ROW][C]53[/C][C]5405.7[/C][C]5226.56[/C][C]5422.23[/C][C]-195.667[/C][C]179.142[/C][/ROW]
[ROW][C]54[/C][C]5943.6[/C][C]5474.06[/C][C]5566.25[/C][C]-92.1937[/C][C]469.544[/C][/ROW]
[ROW][C]55[/C][C]6440.7[/C][C]5638.91[/C][C]5652.36[/C][C]-13.4495[/C][C]801.787[/C][/ROW]
[ROW][C]56[/C][C]6938.4[/C][C]5755.61[/C][C]5689.99[/C][C]65.6205[/C][C]1182.79[/C][/ROW]
[ROW][C]57[/C][C]7435.8[/C][C]5851.49[/C][C]5679.14[/C][C]172.354[/C][C]1584.31[/C][/ROW]
[ROW][C]58[/C][C]6696.3[/C][C]5780.66[/C][C]5623.14[/C][C]157.527[/C][C]915.635[/C][/ROW]
[ROW][C]59[/C][C]5957.1[/C][C]5680.47[/C][C]5525.28[/C][C]155.194[/C][C]276.631[/C][/ROW]
[ROW][C]60[/C][C]5217.9[/C][C]5550.88[/C][C]5385.54[/C][C]165.342[/C][C]-332.98[/C][/ROW]
[ROW][C]61[/C][C]4781.7[/C][C]5242.7[/C][C]5202.82[/C][C]39.8716[/C][C]-460.997[/C][/ROW]
[ROW][C]62[/C][C]4345.2[/C][C]4902.93[/C][C]4976[/C][C]-73.0673[/C][C]-557.733[/C][/ROW]
[ROW][C]63[/C][C]3909[/C][C]4544.66[/C][C]4705.05[/C][C]-160.394[/C][C]-635.656[/C][/ROW]
[ROW][C]64[/C][C]3944.7[/C][C]4224.74[/C][C]4445.87[/C][C]-221.138[/C][C]-280.037[/C][/ROW]
[ROW][C]65[/C][C]3980.1[/C][C]4058.67[/C][C]4254.34[/C][C]-195.667[/C][C]-78.5702[/C][/ROW]
[ROW][C]66[/C][C]4015.5[/C][C]4038.23[/C][C]4130.42[/C][C]-92.1937[/C][C]-22.7313[/C][/ROW]
[ROW][C]67[/C][C]3983.7[/C][C]4037.28[/C][C]4050.73[/C][C]-13.4495[/C][C]-53.5755[/C][/ROW]
[ROW][C]68[/C][C]3951.6[/C][C]4057.45[/C][C]3991.82[/C][C]65.6205[/C][C]-105.845[/C][/ROW]
[ROW][C]69[/C][C]3919.8[/C][C]4126.1[/C][C]3953.75[/C][C]172.354[/C][C]-206.304[/C][/ROW]
[ROW][C]70[/C][C]3992.1[/C][C]4086.85[/C][C]3929.32[/C][C]157.527[/C][C]-94.7521[/C][/ROW]
[ROW][C]71[/C][C]4064.4[/C][C]4066.58[/C][C]3911.39[/C][C]155.194[/C][C]-2.18131[/C][/ROW]
[ROW][C]72[/C][C]4136.7[/C][C]4065.32[/C][C]3899.97[/C][C]165.342[/C][C]71.3826[/C][/ROW]
[ROW][C]73[/C][C]3950.1[/C][C]3932.32[/C][C]3892.45[/C][C]39.8716[/C][C]17.7784[/C][/ROW]
[ROW][C]74[/C][C]3763.2[/C][C]3813.12[/C][C]3886.19[/C][C]-73.0673[/C][C]-49.9202[/C][/ROW]
[ROW][C]75[/C][C]3577.2[/C][C]3720.78[/C][C]3881.17[/C][C]-160.394[/C][C]-143.581[/C][/ROW]
[ROW][C]76[/C][C]3690.3[/C][C]3654.62[/C][C]3875.76[/C][C]-221.138[/C][C]35.6756[/C][/ROW]
[ROW][C]77[/C][C]3804[/C][C]3672.63[/C][C]3868.3[/C][C]-195.667[/C][C]131.367[/C][/ROW]
[ROW][C]78[/C][C]3917.7[/C][C]3766.56[/C][C]3858.75[/C][C]-92.1937[/C][C]151.144[/C][/ROW]
[ROW][C]79[/C][C]3900.9[/C][C]3834.59[/C][C]3848.04[/C][C]-13.4495[/C][C]66.312[/C][/ROW]
[ROW][C]80[/C][C]3884.1[/C][C]3902.75[/C][C]3837.12[/C][C]65.6205[/C][C]-18.6455[/C][/ROW]
[ROW][C]81[/C][C]3867[/C][C]3998.34[/C][C]3825.99[/C][C]172.354[/C][C]-131.342[/C][/ROW]
[ROW][C]82[/C][C]3915[/C][C]3972.35[/C][C]3814.82[/C][C]157.527[/C][C]-57.3521[/C][/ROW]
[ROW][C]83[/C][C]3962.4[/C][C]3959.08[/C][C]3803.89[/C][C]155.194[/C][C]3.31869[/C][/ROW]
[ROW][C]84[/C][C]4009.5[/C][C]3958.49[/C][C]3793.15[/C][C]165.342[/C][C]51.0076[/C][/ROW]
[ROW][C]85[/C][C]3820.2[/C][C]3827.08[/C][C]3787.21[/C][C]39.8716[/C][C]-6.88409[/C][/ROW]
[ROW][C]86[/C][C]3631.2[/C][C]3717.61[/C][C]3790.68[/C][C]-73.0673[/C][C]-86.4077[/C][/ROW]
[ROW][C]87[/C][C]3441.9[/C][C]3643.16[/C][C]3803.55[/C][C]-160.394[/C][C]-201.256[/C][/ROW]
[ROW][C]88[/C][C]3557.7[/C][C]3602.31[/C][C]3823.45[/C][C]-221.138[/C][C]-44.6119[/C][/ROW]
[ROW][C]89[/C][C]3674.1[/C][C]3652.32[/C][C]3847.99[/C][C]-195.667[/C][C]21.7798[/C][/ROW]
[ROW][C]90[/C][C]3789.9[/C][C]3785.02[/C][C]3877.21[/C][C]-92.1937[/C][C]4.88119[/C][/ROW]
[ROW][C]91[/C][C]3886.2[/C][C]3894.96[/C][C]3908.41[/C][C]-13.4495[/C][C]-8.76297[/C][/ROW]
[ROW][C]92[/C][C]3981.9[/C][C]4004.47[/C][C]3938.85[/C][C]65.6205[/C][C]-22.5705[/C][/ROW]
[ROW][C]93[/C][C]4078.2[/C][C]4140.88[/C][C]3968.52[/C][C]172.354[/C][C]-62.6792[/C][/ROW]
[ROW][C]94[/C][C]4181.4[/C][C]4148.08[/C][C]3990.55[/C][C]157.527[/C][C]33.3229[/C][/ROW]
[ROW][C]95[/C][C]4284.9[/C][C]4153.19[/C][C]3998[/C][C]155.194[/C][C]131.706[/C][/ROW]
[ROW][C]96[/C][C]4388.4[/C][C]4156.23[/C][C]3990.89[/C][C]165.342[/C][C]232.17[/C][/ROW]
[ROW][C]97[/C][C]4190.1[/C][C]4009.88[/C][C]3970.01[/C][C]39.8716[/C][C]180.216[/C][/ROW]
[ROW][C]98[/C][C]3991.8[/C][C]3863.1[/C][C]3936.16[/C][C]-73.0673[/C][C]128.705[/C][/ROW]
[ROW][C]99[/C][C]3793.5[/C][C]3728.96[/C][C]3889.35[/C][C]-160.394[/C][C]64.5437[/C][/ROW]
[ROW][C]100[/C][C]3734.7[/C][C]3612.27[/C][C]3833.41[/C][C]-221.138[/C][C]122.426[/C][/ROW]
[ROW][C]101[/C][C]3675.9[/C][C]3576.53[/C][C]3772.2[/C][C]-195.667[/C][C]99.3673[/C][/ROW]
[ROW][C]102[/C][C]3617.4[/C][C]3613.52[/C][C]3705.71[/C][C]-92.1937[/C][C]3.88119[/C][/ROW]
[ROW][C]103[/C][C]3557.7[/C][C]3624.83[/C][C]3638.27[/C][C]-13.4495[/C][C]-67.1255[/C][/ROW]
[ROW][C]104[/C][C]3498[/C][C]3639.31[/C][C]3573.69[/C][C]65.6205[/C][C]-141.308[/C][/ROW]
[ROW][C]105[/C][C]3438.6[/C][C]3683.78[/C][C]3511.42[/C][C]172.354[/C][C]-245.179[/C][/ROW]
[ROW][C]106[/C][C]3478.5[/C][C]3609.6[/C][C]3452.07[/C][C]157.527[/C][C]-131.102[/C][/ROW]
[ROW][C]107[/C][C]3518.7[/C][C]3551.41[/C][C]3396.21[/C][C]155.194[/C][C]-32.7063[/C][/ROW]
[ROW][C]108[/C][C]3558.9[/C][C]3509.17[/C][C]3343.82[/C][C]165.342[/C][C]49.7326[/C][/ROW]
[ROW][C]109[/C][C]3401.1[/C][C]3341.76[/C][C]3301.89[/C][C]39.8716[/C][C]59.3409[/C][/ROW]
[ROW][C]110[/C][C]3230.7[/C][C]3204.3[/C][C]3277.36[/C][C]-73.0673[/C][C]26.4048[/C][/ROW]
[ROW][C]111[/C][C]3060.3[/C][C]3109.84[/C][C]3270.24[/C][C]-160.394[/C][C]-49.5438[/C][/ROW]
[ROW][C]112[/C][C]3043.5[/C][C]3043.6[/C][C]3264.74[/C][C]-221.138[/C][C]-0.0993634[/C][/ROW]
[ROW][C]113[/C][C]3026.4[/C][C]3049.42[/C][C]3245.09[/C][C]-195.667[/C][C]-23.0202[/C][/ROW]
[ROW][C]114[/C][C]3009.6[/C][C]3119.08[/C][C]3211.28[/C][C]-92.1937[/C][C]-109.481[/C][/ROW]
[ROW][C]115[/C][C]3159[/C][C]3165.16[/C][C]3178.61[/C][C]-13.4495[/C][C]-6.16297[/C][/ROW]
[ROW][C]116[/C][C]3308.1[/C][C]3228.56[/C][C]3162.94[/C][C]65.6205[/C][C]79.542[/C][/ROW]
[ROW][C]117[/C][C]3457.5[/C][C]3337.13[/C][C]3164.77[/C][C]172.354[/C][C]120.371[/C][/ROW]
[ROW][C]118[/C][C]3327.6[/C][C]NA[/C][C]NA[/C][C]157.527[/C][C]NA[/C][/ROW]
[ROW][C]119[/C][C]3198[/C][C]NA[/C][C]NA[/C][C]155.194[/C][C]NA[/C][/ROW]
[ROW][C]120[/C][C]3068.1[/C][C]NA[/C][C]NA[/C][C]165.342[/C][C]NA[/C][/ROW]
[ROW][C]121[/C][C]3108[/C][C]NA[/C][C]NA[/C][C]39.8716[/C][C]NA[/C][/ROW]
[ROW][C]122[/C][C]3147.6[/C][C]NA[/C][C]NA[/C][C]-73.0673[/C][C]NA[/C][/ROW]
[ROW][C]123[/C][C]3187.5[/C][C]NA[/C][C]NA[/C][C]-160.394[/C][C]NA[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298668&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298668&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Classical Decomposition by Moving Averages
tObservationsFitTrendSeasonalRandom
16151.2NANA39.8716NA
25847.6NANA-73.0673NA
35662.8NANA-160.394NA
45807.7NANA-221.138NA
55907NANA-195.667NA
66036.3NANA-92.1937NA
75668.25882.165895.61-13.4495-213.963
85578.56004.455938.8265.6205-425.945
95760.66196.346023.99172.354-435.742
105918.16214.46056.88157.527-296.302
1160306126.995971.8155.194-96.9938
126242.45990.745825.4165.342251.658
136425.15723.965684.0939.8716701.141
146610.85502.465575.52-73.06731108.34
156943.55317.335477.72-160.3941626.17
165316.35155.875377.01-221.138160.426
174356.65076.975272.64-195.667-720.37
184073.15071.075163.26-92.1937-997.969
194239.95016.885030.32-13.4495-776.975
204401.34931.284865.6665.6205-529.983
214590.64845.674673.31172.354-255.067
2246714692.654535.12157.527-21.6521
234772.14666.224511.02155.194105.881
244875.34714.074548.73165.342161.233
254601.74631.624591.7539.8716-29.9216
264482.34538.874611.94-73.0673-56.5702
274455.64447.984608.38-160.3947.61869
284487.74365.224586.36-221.138122.476
294606.84355.884551.55-195.667250.917
304727.74410.824503.01-92.1937316.881
314617.94435.234448.68-13.4495182.675
324507.84455.814390.1965.620551.992
334398.64489.574317.21172.354-90.9667
344334.74396.134238.6157.527-61.4271
354272.94318.634163.44155.194-45.7313
364209.64253.34087.96165.342-43.7049
373963.34054.964015.0939.8716-91.6591
3837173874.73947.76-73.0673-157.695
393469.53725.463885.85-160.394-255.956
403587.13610.993832.12-221.138-23.8869
413703.53593.683789.35-195.667109.817
423819.63665.323757.51-92.1937154.281
4337773734.063747.51-13.449542.937
443732.93835.783770.1665.6205-102.883
453687.63997.853825.5172.354-310.254
463756.34072.243914.71157.527-315.94
473824.74194.194039155.194-369.494
483893.74363.774198.42165.342-470.067
494039.24437.784397.9139.8716-398.584
504184.74569.44642.46-73.0673-384.695
514329.94771.814932.2-160.394-441.906
524867.84989.745210.88-221.138-121.937
535405.75226.565422.23-195.667179.142
545943.65474.065566.25-92.1937469.544
556440.75638.915652.36-13.4495801.787
566938.45755.615689.9965.62051182.79
577435.85851.495679.14172.3541584.31
586696.35780.665623.14157.527915.635
595957.15680.475525.28155.194276.631
605217.95550.885385.54165.342-332.98
614781.75242.75202.8239.8716-460.997
624345.24902.934976-73.0673-557.733
6339094544.664705.05-160.394-635.656
643944.74224.744445.87-221.138-280.037
653980.14058.674254.34-195.667-78.5702
664015.54038.234130.42-92.1937-22.7313
673983.74037.284050.73-13.4495-53.5755
683951.64057.453991.8265.6205-105.845
693919.84126.13953.75172.354-206.304
703992.14086.853929.32157.527-94.7521
714064.44066.583911.39155.194-2.18131
724136.74065.323899.97165.34271.3826
733950.13932.323892.4539.871617.7784
743763.23813.123886.19-73.0673-49.9202
753577.23720.783881.17-160.394-143.581
763690.33654.623875.76-221.13835.6756
7738043672.633868.3-195.667131.367
783917.73766.563858.75-92.1937151.144
793900.93834.593848.04-13.449566.312
803884.13902.753837.1265.6205-18.6455
8138673998.343825.99172.354-131.342
8239153972.353814.82157.527-57.3521
833962.43959.083803.89155.1943.31869
844009.53958.493793.15165.34251.0076
853820.23827.083787.2139.8716-6.88409
863631.23717.613790.68-73.0673-86.4077
873441.93643.163803.55-160.394-201.256
883557.73602.313823.45-221.138-44.6119
893674.13652.323847.99-195.66721.7798
903789.93785.023877.21-92.19374.88119
913886.23894.963908.41-13.4495-8.76297
923981.94004.473938.8565.6205-22.5705
934078.24140.883968.52172.354-62.6792
944181.44148.083990.55157.52733.3229
954284.94153.193998155.194131.706
964388.44156.233990.89165.342232.17
974190.14009.883970.0139.8716180.216
983991.83863.13936.16-73.0673128.705
993793.53728.963889.35-160.39464.5437
1003734.73612.273833.41-221.138122.426
1013675.93576.533772.2-195.66799.3673
1023617.43613.523705.71-92.19373.88119
1033557.73624.833638.27-13.4495-67.1255
10434983639.313573.6965.6205-141.308
1053438.63683.783511.42172.354-245.179
1063478.53609.63452.07157.527-131.102
1073518.73551.413396.21155.194-32.7063
1083558.93509.173343.82165.34249.7326
1093401.13341.763301.8939.871659.3409
1103230.73204.33277.36-73.067326.4048
1113060.33109.843270.24-160.394-49.5438
1123043.53043.63264.74-221.138-0.0993634
1133026.43049.423245.09-195.667-23.0202
1143009.63119.083211.28-92.1937-109.481
11531593165.163178.61-13.4495-6.16297
1163308.13228.563162.9465.620579.542
1173457.53337.133164.77172.354120.371
1183327.6NANA157.527NA
1193198NANA155.194NA
1203068.1NANA165.342NA
1213108NANA39.8716NA
1223147.6NANA-73.0673NA
1233187.5NANA-160.394NA



Parameters (Session):
par1 = additive ; par2 = 12 ;
Parameters (R input):
par1 = additive ; par2 = 12 ;
R code (references can be found in the software module):
par2 <- as.numeric(par2)
x <- ts(x,freq=par2)
m <- decompose(x,type=par1)
m$figure
bitmap(file='test1.png')
plot(m)
dev.off()
mylagmax <- length(x)/2
bitmap(file='test2.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(x),lag.max = mylagmax,main='Observed')
acf(as.numeric(m$trend),na.action=na.pass,lag.max = mylagmax,main='Trend')
acf(as.numeric(m$seasonal),na.action=na.pass,lag.max = mylagmax,main='Seasonal')
acf(as.numeric(m$random),na.action=na.pass,lag.max = mylagmax,main='Random')
par(op)
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
spectrum(as.numeric(x),main='Observed')
spectrum(as.numeric(m$trend[!is.na(m$trend)]),main='Trend')
spectrum(as.numeric(m$seasonal[!is.na(m$seasonal)]),main='Seasonal')
spectrum(as.numeric(m$random[!is.na(m$random)]),main='Random')
par(op)
dev.off()
bitmap(file='test4.png')
op <- par(mfrow = c(2,2))
cpgram(as.numeric(x),main='Observed')
cpgram(as.numeric(m$trend[!is.na(m$trend)]),main='Trend')
cpgram(as.numeric(m$seasonal[!is.na(m$seasonal)]),main='Seasonal')
cpgram(as.numeric(m$random[!is.na(m$random)]),main='Random')
par(op)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Classical Decomposition by Moving Averages',6,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observations',header=TRUE)
a<-table.element(a,'Fit',header=TRUE)
a<-table.element(a,'Trend',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,'Random',header=TRUE)
a<-table.row.end(a)
for (i in 1:length(m$trend)) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
if (par1 == 'additive') a<-table.element(a,signif(m$trend[i]+m$seasonal[i],6)) else a<-table.element(a,signif(m$trend[i]*m$seasonal[i],6))
a<-table.element(a,signif(m$trend[i],6))
a<-table.element(a,signif(m$seasonal[i],6))
a<-table.element(a,signif(m$random[i],6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')