Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationSat, 10 Dec 2016 11:25:19 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/10/t14813673485z81negtujjkh1i.htm/, Retrieved Fri, 01 Nov 2024 03:28:59 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=298637, Retrieved Fri, 01 Nov 2024 03:28:59 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact146
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Multiple Regression] [techn] [2016-12-10 10:25:19] [037fdaa34a77b5f63489b3bcd360a80c] [Current]
Feedback Forum

Post a new message
Dataseries X:
13	2	2	3	4
16	4	2	1	4
17	4	2	5	4
NA	4	3	4	4
NA	3	4	3	3
16	4	3	2	5
NA	1	4	4	4
NA	4	2	5	4
NA	3	NA	5	2
17	4	4	3	4
17	2	2	2	4
15	4	2	2	3
16	4	5	4	3
14	5	4	4	4
16	4	2	4	4
17	1	3	5	4
NA	2	1	2	5
NA	4	1	NA	NA
NA	4	3	2	4
NA	5	4	4	4
16	5	5	4	4
NA	4	5	4	4
16	1	1	5	4
NA	4	4	3	4
NA	2	2	4	4
NA	4	4	3	4
16	5	4	3	3
15	3	3	3	3
16	5	4	5	5
16	3	2	4	4
13	5	2	4	4
15	2	4	3	4
17	1	2	3	4
NA	NA	4	5	1
13	4	2	3	3
17	4	4	3	4
NA	3	3	3	4
14	5	3	5	5
14	4	4	3	4
18	NA	2	3	4
NA	4	3	3	4
17	2	2	4	3
13	3	4	3	4
16	1	2	1	5
15	3	2	4	4
15	3	3	4	3
NA	3	3	3	3
15	4	NA	4	5
13	4	4	4	4
NA	4	5	5	1
17	4	4	4	4
NA	4	4	4	4
NA	2	4	3	4
11	5	2	2	4
14	3	2	4	3
13	3	1	3	4
NA	4	3	3	3
17	4	4	3	4
16	4	3	4	2
NA	3	3	4	4
17	4	2	3	4
16	4	3	4	4
16	4	2	5	3
16	4	4	2	4
15	4	3	3	3
12	2	2	3	4
17	4	4	3	3
14	4	5	4	4
14	4	4	3	4
16	4	3	4	4
NA	4	2	3	4
NA	5	3	1	3
NA	3	4	4	3
NA	2	4	3	2
NA	4	4	2	4
15	5	5	3	5
16	4	4	3	4
14	5	4	4	5
15	5	4	5	2
17	2	3	3	4
NA	4	2	4	4
10	4	4	2	4
NA	4	4	2	4
17	3	4	2	5
NA	4	2	3	4
20	2	2	4	4
17	5	1	3	4
18	3	NA	5	4
NA	4	4	4	1
17	2	4	4	4
14	4	4	3	4
NA	3	3	4	3
17	3	4	3	4
NA	4	4	5	4
17	4	4	4	3
NA	4	2	4	3
16	3	4	3	4
18	4	4	4	5
18	3	1	1	3
16	3	4	4	4
NA	1	2	4	3
NA	4	3	4	4
15	3	3	4	5
13	3	4	4	3
NA	5	3	3	4
NA	5	4	5	4
NA	4	4	3	NA
NA	5	4	5	5
NA	4	4	4	4
16	4	5	4	4
NA	4	5	4	5
NA	4	2	4	3
NA	3	1	3	3
12	4	3	4	3
NA	3	3	3	4
16	4	1	3	4
16	2	4	3	4
NA	1	4	3	4
16	5	2	2	4
14	4	4	4	4
15	3	3	3	3
14	4	4	2	4
NA	4	4	4	5
15	4	2	4	4
NA	4	2	3	3
15	2	4	4	4
16	4	4	5	4
NA	4	2	4	3
NA	4	2	NA	3
NA	4	2	4	4
11	3	2	4	2
NA	4	5	4	4
18	5	2	5	3
NA	2	NA	2	4
11	5	2	4	4
NA	4	4	4	4
18	3	5	5	4
NA	NA	4	4	3
15	2	4	4	2
19	2	3	5	5
17	2	3	2	3
NA	4	1	4	4
14	4	4	5	4
NA	5	5	3	4
13	3	4	4	5
17	3	4	4	4
14	4	5	3	4
19	4	4	5	3
14	4	5	5	1
NA	4	5	3	4
NA	4	3	2	5
16	4	5	4	4
16	4	1	5	4
15	2	3	3	4
12	5	2	3	5
NA	4	2	4	4
17	4	NA	3	4
NA	4	4	2	4
NA	4	2	3	4
18	4	5	3	4
15	2	4	4	3
18	3	5	1	5
15	3	3	4	3
NA	4	2	3	4
NA	4	4	3	4
NA	4	2	2	5
16	4	3	3	4
NA	3	3	3	4
16	3	2	5	2





Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time7 seconds
R ServerBig Analytics Cloud Computing Center
R Framework error message
Warning: there are blank lines in the 'Data X' field.
Please, use NA for missing data - blank lines are simply
 deleted and are NOT treated as missing values.

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time7 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
R Framework error message & 
Warning: there are blank lines in the 'Data X' field.
Please, use NA for missing data - blank lines are simply
 deleted and are NOT treated as missing values.
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=298637&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]7 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [ROW]R Framework error message[/C][C]
Warning: there are blank lines in the 'Data X' field.
Please, use NA for missing data - blank lines are simply
 deleted and are NOT treated as missing values.
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=298637&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298637&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time7 seconds
R ServerBig Analytics Cloud Computing Center
R Framework error message
Warning: there are blank lines in the 'Data X' field.
Please, use NA for missing data - blank lines are simply
 deleted and are NOT treated as missing values.







Multiple Linear Regression - Estimated Regression Equation
TVDCSUM[t] = + 14.9975 -0.416161IVHB1[t] + 0.141125IVHB2[t] + 0.15563IVHB3[t] + 0.230593IVHB4[t] + e[t]
Warning: you did not specify the column number of the endogenous series! The first column was selected by default.

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
TVDCSUM[t] =  +  14.9975 -0.416161IVHB1[t] +  0.141125IVHB2[t] +  0.15563IVHB3[t] +  0.230593IVHB4[t]  + e[t] \tabularnewline
Warning: you did not specify the column number of the endogenous series! The first column was selected by default. \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298637&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]TVDCSUM[t] =  +  14.9975 -0.416161IVHB1[t] +  0.141125IVHB2[t] +  0.15563IVHB3[t] +  0.230593IVHB4[t]  + e[t][/C][/ROW]
[ROW][C]Warning: you did not specify the column number of the endogenous series! The first column was selected by default.[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298637&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298637&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
TVDCSUM[t] = + 14.9975 -0.416161IVHB1[t] + 0.141125IVHB2[t] + 0.15563IVHB3[t] + 0.230593IVHB4[t] + e[t]
Warning: you did not specify the column number of the endogenous series! The first column was selected by default.







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)+15 1.401+1.0700e+01 5.905e-18 2.952e-18
IVHB1-0.4162 0.1796-2.3180e+00 0.02265 0.01132
IVHB2+0.1411 0.1666+8.4710e-01 0.3991 0.1995
IVHB3+0.1556 0.1893+8.2200e-01 0.4131 0.2066
IVHB4+0.2306 0.2475+9.3180e-01 0.3538 0.1769

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & +15 &  1.401 & +1.0700e+01 &  5.905e-18 &  2.952e-18 \tabularnewline
IVHB1 & -0.4162 &  0.1796 & -2.3180e+00 &  0.02265 &  0.01132 \tabularnewline
IVHB2 & +0.1411 &  0.1666 & +8.4710e-01 &  0.3991 &  0.1995 \tabularnewline
IVHB3 & +0.1556 &  0.1893 & +8.2200e-01 &  0.4131 &  0.2066 \tabularnewline
IVHB4 & +0.2306 &  0.2475 & +9.3180e-01 &  0.3538 &  0.1769 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298637&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]+15[/C][C] 1.401[/C][C]+1.0700e+01[/C][C] 5.905e-18[/C][C] 2.952e-18[/C][/ROW]
[ROW][C]IVHB1[/C][C]-0.4162[/C][C] 0.1796[/C][C]-2.3180e+00[/C][C] 0.02265[/C][C] 0.01132[/C][/ROW]
[ROW][C]IVHB2[/C][C]+0.1411[/C][C] 0.1666[/C][C]+8.4710e-01[/C][C] 0.3991[/C][C] 0.1995[/C][/ROW]
[ROW][C]IVHB3[/C][C]+0.1556[/C][C] 0.1893[/C][C]+8.2200e-01[/C][C] 0.4131[/C][C] 0.2066[/C][/ROW]
[ROW][C]IVHB4[/C][C]+0.2306[/C][C] 0.2475[/C][C]+9.3180e-01[/C][C] 0.3538[/C][C] 0.1769[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298637&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298637&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)+15 1.401+1.0700e+01 5.905e-18 2.952e-18
IVHB1-0.4162 0.1796-2.3180e+00 0.02265 0.01132
IVHB2+0.1411 0.1666+8.4710e-01 0.3991 0.1995
IVHB3+0.1556 0.1893+8.2200e-01 0.4131 0.2066
IVHB4+0.2306 0.2475+9.3180e-01 0.3538 0.1769







Multiple Linear Regression - Regression Statistics
Multiple R 0.258
R-squared 0.06656
Adjusted R-squared 0.02684
F-TEST (value) 1.676
F-TEST (DF numerator)4
F-TEST (DF denominator)94
p-value 0.1621
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 1.843
Sum Squared Residuals 319.3

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R &  0.258 \tabularnewline
R-squared &  0.06656 \tabularnewline
Adjusted R-squared &  0.02684 \tabularnewline
F-TEST (value) &  1.676 \tabularnewline
F-TEST (DF numerator) & 4 \tabularnewline
F-TEST (DF denominator) & 94 \tabularnewline
p-value &  0.1621 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation &  1.843 \tabularnewline
Sum Squared Residuals &  319.3 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298637&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C] 0.258[/C][/ROW]
[ROW][C]R-squared[/C][C] 0.06656[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C] 0.02684[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C] 1.676[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]4[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]94[/C][/ROW]
[ROW][C]p-value[/C][C] 0.1621[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C] 1.843[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C] 319.3[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298637&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298637&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R 0.258
R-squared 0.06656
Adjusted R-squared 0.02684
F-TEST (value) 1.676
F-TEST (DF numerator)4
F-TEST (DF denominator)94
p-value 0.1621
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 1.843
Sum Squared Residuals 319.3







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 13 15.84-2.837
2 16 14.69 1.307
3 17 15.32 1.684
4 16 15.22 0.7795
5 17 15.29 1.713
6 17 15.68 1.319
7 15 14.62 0.3818
8 16 15.35 0.6472
9 14 15.03-1.026
10 16 15.16 0.84
11 17 16.71 0.2947
12 16 15.17 0.8327
13 16 16.42-0.423
14 16 14.64 1.36
15 15 15.33-0.3311
16 16 15.41 0.5876
17 16 15.58 0.4238
18 13 14.74-1.744
19 15 16.12-1.119
20 17 16.25 0.7471
21 13 14.77-1.774
22 17 15.29 1.713
23 14 15.27-1.271
24 14 15.29-1.287
25 17 15.76 1.238
26 13 15.7-2.703
27 16 16.17-0.1722
28 15 15.58-0.5762
29 15 15.49-0.4867
30 13 15.44-2.442
31 17 15.44 1.558
32 11 14.43-3.433
33 14 15.35-1.346
34 13 15.28-2.279
35 17 15.29 1.713
36 16 14.84 1.16
37 17 15 1.996
38 16 15.3 0.6988
39 16 15.09 0.9149
40 16 15.13 0.869
41 15 14.91 0.08505
42 12 15.84-3.837
43 17 15.06 1.944
44 14 15.58-1.583
45 14 15.29-1.287
46 16 15.3 0.6988
47 15 15.24-0.2422
48 16 15.29 0.7133
49 14 15.26-1.257
50 15 14.72 0.2794
51 17 15.98 1.022
52 10 15.13-5.131
53 17 15.78 1.222
54 20 15.99 4.008
55 17 14.45 2.553
56 17 16.27 0.7254
57 14 15.29-1.287
58 17 15.7 1.297
59 17 15.21 1.788
60 16 15.7 0.2972
61 18 15.67 2.327
62 18 14.74 3.262
63 16 15.86 0.1415
64 15 15.95-0.9479
65 13 15.63-2.628
66 16 15.58 0.4166
67 12 15.07-3.071
68 16 14.86 1.137
69 16 16.12-0.119
70 16 14.43 1.567
71 14 15.44-1.442
72 15 15.33-0.3311
73 14 15.13-1.131
74 15 15.16-0.16
75 15 16.27-1.275
76 16 15.6 0.4021
77 11 15.12-4.115
78 18 14.67 3.331
79 11 14.74-3.744
80 18 16.16 1.845
81 15 15.81-0.8134
82 19 16.52 2.48
83 17 15.59 1.408
84 14 15.6-1.598
85 13 16.09-3.089
86 17 15.86 1.142
87 14 15.43-1.428
88 19 15.37 3.633
89 14 15.05-1.047
90 16 15.58 0.4166
91 16 15.17 0.8254
92 15 15.98-0.9779
93 12 14.82-2.819
94 18 15.43 2.572
95 15 16.04-1.044
96 18 15.76 2.237
97 15 15.49-0.4867
98 16 15.15 0.8545
99 16 15.27 0.7293

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 &  13 &  15.84 & -2.837 \tabularnewline
2 &  16 &  14.69 &  1.307 \tabularnewline
3 &  17 &  15.32 &  1.684 \tabularnewline
4 &  16 &  15.22 &  0.7795 \tabularnewline
5 &  17 &  15.29 &  1.713 \tabularnewline
6 &  17 &  15.68 &  1.319 \tabularnewline
7 &  15 &  14.62 &  0.3818 \tabularnewline
8 &  16 &  15.35 &  0.6472 \tabularnewline
9 &  14 &  15.03 & -1.026 \tabularnewline
10 &  16 &  15.16 &  0.84 \tabularnewline
11 &  17 &  16.71 &  0.2947 \tabularnewline
12 &  16 &  15.17 &  0.8327 \tabularnewline
13 &  16 &  16.42 & -0.423 \tabularnewline
14 &  16 &  14.64 &  1.36 \tabularnewline
15 &  15 &  15.33 & -0.3311 \tabularnewline
16 &  16 &  15.41 &  0.5876 \tabularnewline
17 &  16 &  15.58 &  0.4238 \tabularnewline
18 &  13 &  14.74 & -1.744 \tabularnewline
19 &  15 &  16.12 & -1.119 \tabularnewline
20 &  17 &  16.25 &  0.7471 \tabularnewline
21 &  13 &  14.77 & -1.774 \tabularnewline
22 &  17 &  15.29 &  1.713 \tabularnewline
23 &  14 &  15.27 & -1.271 \tabularnewline
24 &  14 &  15.29 & -1.287 \tabularnewline
25 &  17 &  15.76 &  1.238 \tabularnewline
26 &  13 &  15.7 & -2.703 \tabularnewline
27 &  16 &  16.17 & -0.1722 \tabularnewline
28 &  15 &  15.58 & -0.5762 \tabularnewline
29 &  15 &  15.49 & -0.4867 \tabularnewline
30 &  13 &  15.44 & -2.442 \tabularnewline
31 &  17 &  15.44 &  1.558 \tabularnewline
32 &  11 &  14.43 & -3.433 \tabularnewline
33 &  14 &  15.35 & -1.346 \tabularnewline
34 &  13 &  15.28 & -2.279 \tabularnewline
35 &  17 &  15.29 &  1.713 \tabularnewline
36 &  16 &  14.84 &  1.16 \tabularnewline
37 &  17 &  15 &  1.996 \tabularnewline
38 &  16 &  15.3 &  0.6988 \tabularnewline
39 &  16 &  15.09 &  0.9149 \tabularnewline
40 &  16 &  15.13 &  0.869 \tabularnewline
41 &  15 &  14.91 &  0.08505 \tabularnewline
42 &  12 &  15.84 & -3.837 \tabularnewline
43 &  17 &  15.06 &  1.944 \tabularnewline
44 &  14 &  15.58 & -1.583 \tabularnewline
45 &  14 &  15.29 & -1.287 \tabularnewline
46 &  16 &  15.3 &  0.6988 \tabularnewline
47 &  15 &  15.24 & -0.2422 \tabularnewline
48 &  16 &  15.29 &  0.7133 \tabularnewline
49 &  14 &  15.26 & -1.257 \tabularnewline
50 &  15 &  14.72 &  0.2794 \tabularnewline
51 &  17 &  15.98 &  1.022 \tabularnewline
52 &  10 &  15.13 & -5.131 \tabularnewline
53 &  17 &  15.78 &  1.222 \tabularnewline
54 &  20 &  15.99 &  4.008 \tabularnewline
55 &  17 &  14.45 &  2.553 \tabularnewline
56 &  17 &  16.27 &  0.7254 \tabularnewline
57 &  14 &  15.29 & -1.287 \tabularnewline
58 &  17 &  15.7 &  1.297 \tabularnewline
59 &  17 &  15.21 &  1.788 \tabularnewline
60 &  16 &  15.7 &  0.2972 \tabularnewline
61 &  18 &  15.67 &  2.327 \tabularnewline
62 &  18 &  14.74 &  3.262 \tabularnewline
63 &  16 &  15.86 &  0.1415 \tabularnewline
64 &  15 &  15.95 & -0.9479 \tabularnewline
65 &  13 &  15.63 & -2.628 \tabularnewline
66 &  16 &  15.58 &  0.4166 \tabularnewline
67 &  12 &  15.07 & -3.071 \tabularnewline
68 &  16 &  14.86 &  1.137 \tabularnewline
69 &  16 &  16.12 & -0.119 \tabularnewline
70 &  16 &  14.43 &  1.567 \tabularnewline
71 &  14 &  15.44 & -1.442 \tabularnewline
72 &  15 &  15.33 & -0.3311 \tabularnewline
73 &  14 &  15.13 & -1.131 \tabularnewline
74 &  15 &  15.16 & -0.16 \tabularnewline
75 &  15 &  16.27 & -1.275 \tabularnewline
76 &  16 &  15.6 &  0.4021 \tabularnewline
77 &  11 &  15.12 & -4.115 \tabularnewline
78 &  18 &  14.67 &  3.331 \tabularnewline
79 &  11 &  14.74 & -3.744 \tabularnewline
80 &  18 &  16.16 &  1.845 \tabularnewline
81 &  15 &  15.81 & -0.8134 \tabularnewline
82 &  19 &  16.52 &  2.48 \tabularnewline
83 &  17 &  15.59 &  1.408 \tabularnewline
84 &  14 &  15.6 & -1.598 \tabularnewline
85 &  13 &  16.09 & -3.089 \tabularnewline
86 &  17 &  15.86 &  1.142 \tabularnewline
87 &  14 &  15.43 & -1.428 \tabularnewline
88 &  19 &  15.37 &  3.633 \tabularnewline
89 &  14 &  15.05 & -1.047 \tabularnewline
90 &  16 &  15.58 &  0.4166 \tabularnewline
91 &  16 &  15.17 &  0.8254 \tabularnewline
92 &  15 &  15.98 & -0.9779 \tabularnewline
93 &  12 &  14.82 & -2.819 \tabularnewline
94 &  18 &  15.43 &  2.572 \tabularnewline
95 &  15 &  16.04 & -1.044 \tabularnewline
96 &  18 &  15.76 &  2.237 \tabularnewline
97 &  15 &  15.49 & -0.4867 \tabularnewline
98 &  16 &  15.15 &  0.8545 \tabularnewline
99 &  16 &  15.27 &  0.7293 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298637&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C] 13[/C][C] 15.84[/C][C]-2.837[/C][/ROW]
[ROW][C]2[/C][C] 16[/C][C] 14.69[/C][C] 1.307[/C][/ROW]
[ROW][C]3[/C][C] 17[/C][C] 15.32[/C][C] 1.684[/C][/ROW]
[ROW][C]4[/C][C] 16[/C][C] 15.22[/C][C] 0.7795[/C][/ROW]
[ROW][C]5[/C][C] 17[/C][C] 15.29[/C][C] 1.713[/C][/ROW]
[ROW][C]6[/C][C] 17[/C][C] 15.68[/C][C] 1.319[/C][/ROW]
[ROW][C]7[/C][C] 15[/C][C] 14.62[/C][C] 0.3818[/C][/ROW]
[ROW][C]8[/C][C] 16[/C][C] 15.35[/C][C] 0.6472[/C][/ROW]
[ROW][C]9[/C][C] 14[/C][C] 15.03[/C][C]-1.026[/C][/ROW]
[ROW][C]10[/C][C] 16[/C][C] 15.16[/C][C] 0.84[/C][/ROW]
[ROW][C]11[/C][C] 17[/C][C] 16.71[/C][C] 0.2947[/C][/ROW]
[ROW][C]12[/C][C] 16[/C][C] 15.17[/C][C] 0.8327[/C][/ROW]
[ROW][C]13[/C][C] 16[/C][C] 16.42[/C][C]-0.423[/C][/ROW]
[ROW][C]14[/C][C] 16[/C][C] 14.64[/C][C] 1.36[/C][/ROW]
[ROW][C]15[/C][C] 15[/C][C] 15.33[/C][C]-0.3311[/C][/ROW]
[ROW][C]16[/C][C] 16[/C][C] 15.41[/C][C] 0.5876[/C][/ROW]
[ROW][C]17[/C][C] 16[/C][C] 15.58[/C][C] 0.4238[/C][/ROW]
[ROW][C]18[/C][C] 13[/C][C] 14.74[/C][C]-1.744[/C][/ROW]
[ROW][C]19[/C][C] 15[/C][C] 16.12[/C][C]-1.119[/C][/ROW]
[ROW][C]20[/C][C] 17[/C][C] 16.25[/C][C] 0.7471[/C][/ROW]
[ROW][C]21[/C][C] 13[/C][C] 14.77[/C][C]-1.774[/C][/ROW]
[ROW][C]22[/C][C] 17[/C][C] 15.29[/C][C] 1.713[/C][/ROW]
[ROW][C]23[/C][C] 14[/C][C] 15.27[/C][C]-1.271[/C][/ROW]
[ROW][C]24[/C][C] 14[/C][C] 15.29[/C][C]-1.287[/C][/ROW]
[ROW][C]25[/C][C] 17[/C][C] 15.76[/C][C] 1.238[/C][/ROW]
[ROW][C]26[/C][C] 13[/C][C] 15.7[/C][C]-2.703[/C][/ROW]
[ROW][C]27[/C][C] 16[/C][C] 16.17[/C][C]-0.1722[/C][/ROW]
[ROW][C]28[/C][C] 15[/C][C] 15.58[/C][C]-0.5762[/C][/ROW]
[ROW][C]29[/C][C] 15[/C][C] 15.49[/C][C]-0.4867[/C][/ROW]
[ROW][C]30[/C][C] 13[/C][C] 15.44[/C][C]-2.442[/C][/ROW]
[ROW][C]31[/C][C] 17[/C][C] 15.44[/C][C] 1.558[/C][/ROW]
[ROW][C]32[/C][C] 11[/C][C] 14.43[/C][C]-3.433[/C][/ROW]
[ROW][C]33[/C][C] 14[/C][C] 15.35[/C][C]-1.346[/C][/ROW]
[ROW][C]34[/C][C] 13[/C][C] 15.28[/C][C]-2.279[/C][/ROW]
[ROW][C]35[/C][C] 17[/C][C] 15.29[/C][C] 1.713[/C][/ROW]
[ROW][C]36[/C][C] 16[/C][C] 14.84[/C][C] 1.16[/C][/ROW]
[ROW][C]37[/C][C] 17[/C][C] 15[/C][C] 1.996[/C][/ROW]
[ROW][C]38[/C][C] 16[/C][C] 15.3[/C][C] 0.6988[/C][/ROW]
[ROW][C]39[/C][C] 16[/C][C] 15.09[/C][C] 0.9149[/C][/ROW]
[ROW][C]40[/C][C] 16[/C][C] 15.13[/C][C] 0.869[/C][/ROW]
[ROW][C]41[/C][C] 15[/C][C] 14.91[/C][C] 0.08505[/C][/ROW]
[ROW][C]42[/C][C] 12[/C][C] 15.84[/C][C]-3.837[/C][/ROW]
[ROW][C]43[/C][C] 17[/C][C] 15.06[/C][C] 1.944[/C][/ROW]
[ROW][C]44[/C][C] 14[/C][C] 15.58[/C][C]-1.583[/C][/ROW]
[ROW][C]45[/C][C] 14[/C][C] 15.29[/C][C]-1.287[/C][/ROW]
[ROW][C]46[/C][C] 16[/C][C] 15.3[/C][C] 0.6988[/C][/ROW]
[ROW][C]47[/C][C] 15[/C][C] 15.24[/C][C]-0.2422[/C][/ROW]
[ROW][C]48[/C][C] 16[/C][C] 15.29[/C][C] 0.7133[/C][/ROW]
[ROW][C]49[/C][C] 14[/C][C] 15.26[/C][C]-1.257[/C][/ROW]
[ROW][C]50[/C][C] 15[/C][C] 14.72[/C][C] 0.2794[/C][/ROW]
[ROW][C]51[/C][C] 17[/C][C] 15.98[/C][C] 1.022[/C][/ROW]
[ROW][C]52[/C][C] 10[/C][C] 15.13[/C][C]-5.131[/C][/ROW]
[ROW][C]53[/C][C] 17[/C][C] 15.78[/C][C] 1.222[/C][/ROW]
[ROW][C]54[/C][C] 20[/C][C] 15.99[/C][C] 4.008[/C][/ROW]
[ROW][C]55[/C][C] 17[/C][C] 14.45[/C][C] 2.553[/C][/ROW]
[ROW][C]56[/C][C] 17[/C][C] 16.27[/C][C] 0.7254[/C][/ROW]
[ROW][C]57[/C][C] 14[/C][C] 15.29[/C][C]-1.287[/C][/ROW]
[ROW][C]58[/C][C] 17[/C][C] 15.7[/C][C] 1.297[/C][/ROW]
[ROW][C]59[/C][C] 17[/C][C] 15.21[/C][C] 1.788[/C][/ROW]
[ROW][C]60[/C][C] 16[/C][C] 15.7[/C][C] 0.2972[/C][/ROW]
[ROW][C]61[/C][C] 18[/C][C] 15.67[/C][C] 2.327[/C][/ROW]
[ROW][C]62[/C][C] 18[/C][C] 14.74[/C][C] 3.262[/C][/ROW]
[ROW][C]63[/C][C] 16[/C][C] 15.86[/C][C] 0.1415[/C][/ROW]
[ROW][C]64[/C][C] 15[/C][C] 15.95[/C][C]-0.9479[/C][/ROW]
[ROW][C]65[/C][C] 13[/C][C] 15.63[/C][C]-2.628[/C][/ROW]
[ROW][C]66[/C][C] 16[/C][C] 15.58[/C][C] 0.4166[/C][/ROW]
[ROW][C]67[/C][C] 12[/C][C] 15.07[/C][C]-3.071[/C][/ROW]
[ROW][C]68[/C][C] 16[/C][C] 14.86[/C][C] 1.137[/C][/ROW]
[ROW][C]69[/C][C] 16[/C][C] 16.12[/C][C]-0.119[/C][/ROW]
[ROW][C]70[/C][C] 16[/C][C] 14.43[/C][C] 1.567[/C][/ROW]
[ROW][C]71[/C][C] 14[/C][C] 15.44[/C][C]-1.442[/C][/ROW]
[ROW][C]72[/C][C] 15[/C][C] 15.33[/C][C]-0.3311[/C][/ROW]
[ROW][C]73[/C][C] 14[/C][C] 15.13[/C][C]-1.131[/C][/ROW]
[ROW][C]74[/C][C] 15[/C][C] 15.16[/C][C]-0.16[/C][/ROW]
[ROW][C]75[/C][C] 15[/C][C] 16.27[/C][C]-1.275[/C][/ROW]
[ROW][C]76[/C][C] 16[/C][C] 15.6[/C][C] 0.4021[/C][/ROW]
[ROW][C]77[/C][C] 11[/C][C] 15.12[/C][C]-4.115[/C][/ROW]
[ROW][C]78[/C][C] 18[/C][C] 14.67[/C][C] 3.331[/C][/ROW]
[ROW][C]79[/C][C] 11[/C][C] 14.74[/C][C]-3.744[/C][/ROW]
[ROW][C]80[/C][C] 18[/C][C] 16.16[/C][C] 1.845[/C][/ROW]
[ROW][C]81[/C][C] 15[/C][C] 15.81[/C][C]-0.8134[/C][/ROW]
[ROW][C]82[/C][C] 19[/C][C] 16.52[/C][C] 2.48[/C][/ROW]
[ROW][C]83[/C][C] 17[/C][C] 15.59[/C][C] 1.408[/C][/ROW]
[ROW][C]84[/C][C] 14[/C][C] 15.6[/C][C]-1.598[/C][/ROW]
[ROW][C]85[/C][C] 13[/C][C] 16.09[/C][C]-3.089[/C][/ROW]
[ROW][C]86[/C][C] 17[/C][C] 15.86[/C][C] 1.142[/C][/ROW]
[ROW][C]87[/C][C] 14[/C][C] 15.43[/C][C]-1.428[/C][/ROW]
[ROW][C]88[/C][C] 19[/C][C] 15.37[/C][C] 3.633[/C][/ROW]
[ROW][C]89[/C][C] 14[/C][C] 15.05[/C][C]-1.047[/C][/ROW]
[ROW][C]90[/C][C] 16[/C][C] 15.58[/C][C] 0.4166[/C][/ROW]
[ROW][C]91[/C][C] 16[/C][C] 15.17[/C][C] 0.8254[/C][/ROW]
[ROW][C]92[/C][C] 15[/C][C] 15.98[/C][C]-0.9779[/C][/ROW]
[ROW][C]93[/C][C] 12[/C][C] 14.82[/C][C]-2.819[/C][/ROW]
[ROW][C]94[/C][C] 18[/C][C] 15.43[/C][C] 2.572[/C][/ROW]
[ROW][C]95[/C][C] 15[/C][C] 16.04[/C][C]-1.044[/C][/ROW]
[ROW][C]96[/C][C] 18[/C][C] 15.76[/C][C] 2.237[/C][/ROW]
[ROW][C]97[/C][C] 15[/C][C] 15.49[/C][C]-0.4867[/C][/ROW]
[ROW][C]98[/C][C] 16[/C][C] 15.15[/C][C] 0.8545[/C][/ROW]
[ROW][C]99[/C][C] 16[/C][C] 15.27[/C][C] 0.7293[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298637&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298637&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 13 15.84-2.837
2 16 14.69 1.307
3 17 15.32 1.684
4 16 15.22 0.7795
5 17 15.29 1.713
6 17 15.68 1.319
7 15 14.62 0.3818
8 16 15.35 0.6472
9 14 15.03-1.026
10 16 15.16 0.84
11 17 16.71 0.2947
12 16 15.17 0.8327
13 16 16.42-0.423
14 16 14.64 1.36
15 15 15.33-0.3311
16 16 15.41 0.5876
17 16 15.58 0.4238
18 13 14.74-1.744
19 15 16.12-1.119
20 17 16.25 0.7471
21 13 14.77-1.774
22 17 15.29 1.713
23 14 15.27-1.271
24 14 15.29-1.287
25 17 15.76 1.238
26 13 15.7-2.703
27 16 16.17-0.1722
28 15 15.58-0.5762
29 15 15.49-0.4867
30 13 15.44-2.442
31 17 15.44 1.558
32 11 14.43-3.433
33 14 15.35-1.346
34 13 15.28-2.279
35 17 15.29 1.713
36 16 14.84 1.16
37 17 15 1.996
38 16 15.3 0.6988
39 16 15.09 0.9149
40 16 15.13 0.869
41 15 14.91 0.08505
42 12 15.84-3.837
43 17 15.06 1.944
44 14 15.58-1.583
45 14 15.29-1.287
46 16 15.3 0.6988
47 15 15.24-0.2422
48 16 15.29 0.7133
49 14 15.26-1.257
50 15 14.72 0.2794
51 17 15.98 1.022
52 10 15.13-5.131
53 17 15.78 1.222
54 20 15.99 4.008
55 17 14.45 2.553
56 17 16.27 0.7254
57 14 15.29-1.287
58 17 15.7 1.297
59 17 15.21 1.788
60 16 15.7 0.2972
61 18 15.67 2.327
62 18 14.74 3.262
63 16 15.86 0.1415
64 15 15.95-0.9479
65 13 15.63-2.628
66 16 15.58 0.4166
67 12 15.07-3.071
68 16 14.86 1.137
69 16 16.12-0.119
70 16 14.43 1.567
71 14 15.44-1.442
72 15 15.33-0.3311
73 14 15.13-1.131
74 15 15.16-0.16
75 15 16.27-1.275
76 16 15.6 0.4021
77 11 15.12-4.115
78 18 14.67 3.331
79 11 14.74-3.744
80 18 16.16 1.845
81 15 15.81-0.8134
82 19 16.52 2.48
83 17 15.59 1.408
84 14 15.6-1.598
85 13 16.09-3.089
86 17 15.86 1.142
87 14 15.43-1.428
88 19 15.37 3.633
89 14 15.05-1.047
90 16 15.58 0.4166
91 16 15.17 0.8254
92 15 15.98-0.9779
93 12 14.82-2.819
94 18 15.43 2.572
95 15 16.04-1.044
96 18 15.76 2.237
97 15 15.49-0.4867
98 16 15.15 0.8545
99 16 15.27 0.7293







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
8 0.5804 0.8393 0.4196
9 0.6439 0.7121 0.3561
10 0.5066 0.9867 0.4934
11 0.4098 0.8197 0.5902
12 0.295 0.5901 0.705
13 0.2021 0.4042 0.7979
14 0.1391 0.2782 0.8609
15 0.09315 0.1863 0.9068
16 0.05773 0.1155 0.9423
17 0.03383 0.06765 0.9662
18 0.05557 0.1111 0.9444
19 0.04977 0.09954 0.9502
20 0.03554 0.07107 0.9645
21 0.04043 0.08085 0.9596
22 0.03267 0.06534 0.9673
23 0.03002 0.06004 0.97
24 0.03194 0.06389 0.9681
25 0.02746 0.05492 0.9725
26 0.0615 0.123 0.9385
27 0.04183 0.08367 0.9582
28 0.02885 0.0577 0.9711
29 0.01954 0.03907 0.9805
30 0.02955 0.05909 0.9705
31 0.02846 0.05692 0.9715
32 0.07344 0.1469 0.9266
33 0.06185 0.1237 0.9382
34 0.06601 0.132 0.934
35 0.06315 0.1263 0.9369
36 0.05172 0.1034 0.9483
37 0.06362 0.1272 0.9364
38 0.04862 0.09723 0.9514
39 0.03815 0.07629 0.9619
40 0.02852 0.05705 0.9715
41 0.01963 0.03926 0.9804
42 0.06465 0.1293 0.9354
43 0.06354 0.1271 0.9365
44 0.06355 0.1271 0.9365
45 0.05479 0.1096 0.9452
46 0.04204 0.08408 0.958
47 0.03011 0.06021 0.9699
48 0.02235 0.04471 0.9776
49 0.01748 0.03496 0.9825
50 0.01278 0.02555 0.9872
51 0.009733 0.01947 0.9903
52 0.09388 0.1878 0.9061
53 0.08297 0.1659 0.917
54 0.1904 0.3809 0.8096
55 0.2271 0.4542 0.7729
56 0.1895 0.379 0.8105
57 0.1697 0.3394 0.8303
58 0.1487 0.2973 0.8513
59 0.1428 0.2857 0.8572
60 0.1115 0.2229 0.8885
61 0.1264 0.2528 0.8736
62 0.2041 0.4082 0.7959
63 0.1629 0.3258 0.8371
64 0.1351 0.2703 0.8649
65 0.1661 0.3322 0.8339
66 0.1306 0.2611 0.8694
67 0.1845 0.3691 0.8155
68 0.1645 0.3291 0.8355
69 0.1272 0.2543 0.8728
70 0.1321 0.2642 0.8679
71 0.1179 0.2358 0.8821
72 0.08845 0.1769 0.9115
73 0.0686 0.1372 0.9314
74 0.04904 0.09809 0.951
75 0.04186 0.08372 0.9581
76 0.02858 0.05717 0.9714
77 0.07687 0.1537 0.9231
78 0.1823 0.3647 0.8177
79 0.2682 0.5364 0.7318
80 0.242 0.4841 0.758
81 0.2072 0.4144 0.7928
82 0.2789 0.5578 0.7211
83 0.22 0.44 0.78
84 0.1834 0.3668 0.8166
85 0.3409 0.6817 0.6591
86 0.2563 0.5127 0.7437
87 0.2819 0.5638 0.7181
88 0.4251 0.8501 0.5749
89 0.428 0.856 0.572
90 0.3277 0.6554 0.6723
91 0.8573 0.2855 0.1427

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
8 &  0.5804 &  0.8393 &  0.4196 \tabularnewline
9 &  0.6439 &  0.7121 &  0.3561 \tabularnewline
10 &  0.5066 &  0.9867 &  0.4934 \tabularnewline
11 &  0.4098 &  0.8197 &  0.5902 \tabularnewline
12 &  0.295 &  0.5901 &  0.705 \tabularnewline
13 &  0.2021 &  0.4042 &  0.7979 \tabularnewline
14 &  0.1391 &  0.2782 &  0.8609 \tabularnewline
15 &  0.09315 &  0.1863 &  0.9068 \tabularnewline
16 &  0.05773 &  0.1155 &  0.9423 \tabularnewline
17 &  0.03383 &  0.06765 &  0.9662 \tabularnewline
18 &  0.05557 &  0.1111 &  0.9444 \tabularnewline
19 &  0.04977 &  0.09954 &  0.9502 \tabularnewline
20 &  0.03554 &  0.07107 &  0.9645 \tabularnewline
21 &  0.04043 &  0.08085 &  0.9596 \tabularnewline
22 &  0.03267 &  0.06534 &  0.9673 \tabularnewline
23 &  0.03002 &  0.06004 &  0.97 \tabularnewline
24 &  0.03194 &  0.06389 &  0.9681 \tabularnewline
25 &  0.02746 &  0.05492 &  0.9725 \tabularnewline
26 &  0.0615 &  0.123 &  0.9385 \tabularnewline
27 &  0.04183 &  0.08367 &  0.9582 \tabularnewline
28 &  0.02885 &  0.0577 &  0.9711 \tabularnewline
29 &  0.01954 &  0.03907 &  0.9805 \tabularnewline
30 &  0.02955 &  0.05909 &  0.9705 \tabularnewline
31 &  0.02846 &  0.05692 &  0.9715 \tabularnewline
32 &  0.07344 &  0.1469 &  0.9266 \tabularnewline
33 &  0.06185 &  0.1237 &  0.9382 \tabularnewline
34 &  0.06601 &  0.132 &  0.934 \tabularnewline
35 &  0.06315 &  0.1263 &  0.9369 \tabularnewline
36 &  0.05172 &  0.1034 &  0.9483 \tabularnewline
37 &  0.06362 &  0.1272 &  0.9364 \tabularnewline
38 &  0.04862 &  0.09723 &  0.9514 \tabularnewline
39 &  0.03815 &  0.07629 &  0.9619 \tabularnewline
40 &  0.02852 &  0.05705 &  0.9715 \tabularnewline
41 &  0.01963 &  0.03926 &  0.9804 \tabularnewline
42 &  0.06465 &  0.1293 &  0.9354 \tabularnewline
43 &  0.06354 &  0.1271 &  0.9365 \tabularnewline
44 &  0.06355 &  0.1271 &  0.9365 \tabularnewline
45 &  0.05479 &  0.1096 &  0.9452 \tabularnewline
46 &  0.04204 &  0.08408 &  0.958 \tabularnewline
47 &  0.03011 &  0.06021 &  0.9699 \tabularnewline
48 &  0.02235 &  0.04471 &  0.9776 \tabularnewline
49 &  0.01748 &  0.03496 &  0.9825 \tabularnewline
50 &  0.01278 &  0.02555 &  0.9872 \tabularnewline
51 &  0.009733 &  0.01947 &  0.9903 \tabularnewline
52 &  0.09388 &  0.1878 &  0.9061 \tabularnewline
53 &  0.08297 &  0.1659 &  0.917 \tabularnewline
54 &  0.1904 &  0.3809 &  0.8096 \tabularnewline
55 &  0.2271 &  0.4542 &  0.7729 \tabularnewline
56 &  0.1895 &  0.379 &  0.8105 \tabularnewline
57 &  0.1697 &  0.3394 &  0.8303 \tabularnewline
58 &  0.1487 &  0.2973 &  0.8513 \tabularnewline
59 &  0.1428 &  0.2857 &  0.8572 \tabularnewline
60 &  0.1115 &  0.2229 &  0.8885 \tabularnewline
61 &  0.1264 &  0.2528 &  0.8736 \tabularnewline
62 &  0.2041 &  0.4082 &  0.7959 \tabularnewline
63 &  0.1629 &  0.3258 &  0.8371 \tabularnewline
64 &  0.1351 &  0.2703 &  0.8649 \tabularnewline
65 &  0.1661 &  0.3322 &  0.8339 \tabularnewline
66 &  0.1306 &  0.2611 &  0.8694 \tabularnewline
67 &  0.1845 &  0.3691 &  0.8155 \tabularnewline
68 &  0.1645 &  0.3291 &  0.8355 \tabularnewline
69 &  0.1272 &  0.2543 &  0.8728 \tabularnewline
70 &  0.1321 &  0.2642 &  0.8679 \tabularnewline
71 &  0.1179 &  0.2358 &  0.8821 \tabularnewline
72 &  0.08845 &  0.1769 &  0.9115 \tabularnewline
73 &  0.0686 &  0.1372 &  0.9314 \tabularnewline
74 &  0.04904 &  0.09809 &  0.951 \tabularnewline
75 &  0.04186 &  0.08372 &  0.9581 \tabularnewline
76 &  0.02858 &  0.05717 &  0.9714 \tabularnewline
77 &  0.07687 &  0.1537 &  0.9231 \tabularnewline
78 &  0.1823 &  0.3647 &  0.8177 \tabularnewline
79 &  0.2682 &  0.5364 &  0.7318 \tabularnewline
80 &  0.242 &  0.4841 &  0.758 \tabularnewline
81 &  0.2072 &  0.4144 &  0.7928 \tabularnewline
82 &  0.2789 &  0.5578 &  0.7211 \tabularnewline
83 &  0.22 &  0.44 &  0.78 \tabularnewline
84 &  0.1834 &  0.3668 &  0.8166 \tabularnewline
85 &  0.3409 &  0.6817 &  0.6591 \tabularnewline
86 &  0.2563 &  0.5127 &  0.7437 \tabularnewline
87 &  0.2819 &  0.5638 &  0.7181 \tabularnewline
88 &  0.4251 &  0.8501 &  0.5749 \tabularnewline
89 &  0.428 &  0.856 &  0.572 \tabularnewline
90 &  0.3277 &  0.6554 &  0.6723 \tabularnewline
91 &  0.8573 &  0.2855 &  0.1427 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298637&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]8[/C][C] 0.5804[/C][C] 0.8393[/C][C] 0.4196[/C][/ROW]
[ROW][C]9[/C][C] 0.6439[/C][C] 0.7121[/C][C] 0.3561[/C][/ROW]
[ROW][C]10[/C][C] 0.5066[/C][C] 0.9867[/C][C] 0.4934[/C][/ROW]
[ROW][C]11[/C][C] 0.4098[/C][C] 0.8197[/C][C] 0.5902[/C][/ROW]
[ROW][C]12[/C][C] 0.295[/C][C] 0.5901[/C][C] 0.705[/C][/ROW]
[ROW][C]13[/C][C] 0.2021[/C][C] 0.4042[/C][C] 0.7979[/C][/ROW]
[ROW][C]14[/C][C] 0.1391[/C][C] 0.2782[/C][C] 0.8609[/C][/ROW]
[ROW][C]15[/C][C] 0.09315[/C][C] 0.1863[/C][C] 0.9068[/C][/ROW]
[ROW][C]16[/C][C] 0.05773[/C][C] 0.1155[/C][C] 0.9423[/C][/ROW]
[ROW][C]17[/C][C] 0.03383[/C][C] 0.06765[/C][C] 0.9662[/C][/ROW]
[ROW][C]18[/C][C] 0.05557[/C][C] 0.1111[/C][C] 0.9444[/C][/ROW]
[ROW][C]19[/C][C] 0.04977[/C][C] 0.09954[/C][C] 0.9502[/C][/ROW]
[ROW][C]20[/C][C] 0.03554[/C][C] 0.07107[/C][C] 0.9645[/C][/ROW]
[ROW][C]21[/C][C] 0.04043[/C][C] 0.08085[/C][C] 0.9596[/C][/ROW]
[ROW][C]22[/C][C] 0.03267[/C][C] 0.06534[/C][C] 0.9673[/C][/ROW]
[ROW][C]23[/C][C] 0.03002[/C][C] 0.06004[/C][C] 0.97[/C][/ROW]
[ROW][C]24[/C][C] 0.03194[/C][C] 0.06389[/C][C] 0.9681[/C][/ROW]
[ROW][C]25[/C][C] 0.02746[/C][C] 0.05492[/C][C] 0.9725[/C][/ROW]
[ROW][C]26[/C][C] 0.0615[/C][C] 0.123[/C][C] 0.9385[/C][/ROW]
[ROW][C]27[/C][C] 0.04183[/C][C] 0.08367[/C][C] 0.9582[/C][/ROW]
[ROW][C]28[/C][C] 0.02885[/C][C] 0.0577[/C][C] 0.9711[/C][/ROW]
[ROW][C]29[/C][C] 0.01954[/C][C] 0.03907[/C][C] 0.9805[/C][/ROW]
[ROW][C]30[/C][C] 0.02955[/C][C] 0.05909[/C][C] 0.9705[/C][/ROW]
[ROW][C]31[/C][C] 0.02846[/C][C] 0.05692[/C][C] 0.9715[/C][/ROW]
[ROW][C]32[/C][C] 0.07344[/C][C] 0.1469[/C][C] 0.9266[/C][/ROW]
[ROW][C]33[/C][C] 0.06185[/C][C] 0.1237[/C][C] 0.9382[/C][/ROW]
[ROW][C]34[/C][C] 0.06601[/C][C] 0.132[/C][C] 0.934[/C][/ROW]
[ROW][C]35[/C][C] 0.06315[/C][C] 0.1263[/C][C] 0.9369[/C][/ROW]
[ROW][C]36[/C][C] 0.05172[/C][C] 0.1034[/C][C] 0.9483[/C][/ROW]
[ROW][C]37[/C][C] 0.06362[/C][C] 0.1272[/C][C] 0.9364[/C][/ROW]
[ROW][C]38[/C][C] 0.04862[/C][C] 0.09723[/C][C] 0.9514[/C][/ROW]
[ROW][C]39[/C][C] 0.03815[/C][C] 0.07629[/C][C] 0.9619[/C][/ROW]
[ROW][C]40[/C][C] 0.02852[/C][C] 0.05705[/C][C] 0.9715[/C][/ROW]
[ROW][C]41[/C][C] 0.01963[/C][C] 0.03926[/C][C] 0.9804[/C][/ROW]
[ROW][C]42[/C][C] 0.06465[/C][C] 0.1293[/C][C] 0.9354[/C][/ROW]
[ROW][C]43[/C][C] 0.06354[/C][C] 0.1271[/C][C] 0.9365[/C][/ROW]
[ROW][C]44[/C][C] 0.06355[/C][C] 0.1271[/C][C] 0.9365[/C][/ROW]
[ROW][C]45[/C][C] 0.05479[/C][C] 0.1096[/C][C] 0.9452[/C][/ROW]
[ROW][C]46[/C][C] 0.04204[/C][C] 0.08408[/C][C] 0.958[/C][/ROW]
[ROW][C]47[/C][C] 0.03011[/C][C] 0.06021[/C][C] 0.9699[/C][/ROW]
[ROW][C]48[/C][C] 0.02235[/C][C] 0.04471[/C][C] 0.9776[/C][/ROW]
[ROW][C]49[/C][C] 0.01748[/C][C] 0.03496[/C][C] 0.9825[/C][/ROW]
[ROW][C]50[/C][C] 0.01278[/C][C] 0.02555[/C][C] 0.9872[/C][/ROW]
[ROW][C]51[/C][C] 0.009733[/C][C] 0.01947[/C][C] 0.9903[/C][/ROW]
[ROW][C]52[/C][C] 0.09388[/C][C] 0.1878[/C][C] 0.9061[/C][/ROW]
[ROW][C]53[/C][C] 0.08297[/C][C] 0.1659[/C][C] 0.917[/C][/ROW]
[ROW][C]54[/C][C] 0.1904[/C][C] 0.3809[/C][C] 0.8096[/C][/ROW]
[ROW][C]55[/C][C] 0.2271[/C][C] 0.4542[/C][C] 0.7729[/C][/ROW]
[ROW][C]56[/C][C] 0.1895[/C][C] 0.379[/C][C] 0.8105[/C][/ROW]
[ROW][C]57[/C][C] 0.1697[/C][C] 0.3394[/C][C] 0.8303[/C][/ROW]
[ROW][C]58[/C][C] 0.1487[/C][C] 0.2973[/C][C] 0.8513[/C][/ROW]
[ROW][C]59[/C][C] 0.1428[/C][C] 0.2857[/C][C] 0.8572[/C][/ROW]
[ROW][C]60[/C][C] 0.1115[/C][C] 0.2229[/C][C] 0.8885[/C][/ROW]
[ROW][C]61[/C][C] 0.1264[/C][C] 0.2528[/C][C] 0.8736[/C][/ROW]
[ROW][C]62[/C][C] 0.2041[/C][C] 0.4082[/C][C] 0.7959[/C][/ROW]
[ROW][C]63[/C][C] 0.1629[/C][C] 0.3258[/C][C] 0.8371[/C][/ROW]
[ROW][C]64[/C][C] 0.1351[/C][C] 0.2703[/C][C] 0.8649[/C][/ROW]
[ROW][C]65[/C][C] 0.1661[/C][C] 0.3322[/C][C] 0.8339[/C][/ROW]
[ROW][C]66[/C][C] 0.1306[/C][C] 0.2611[/C][C] 0.8694[/C][/ROW]
[ROW][C]67[/C][C] 0.1845[/C][C] 0.3691[/C][C] 0.8155[/C][/ROW]
[ROW][C]68[/C][C] 0.1645[/C][C] 0.3291[/C][C] 0.8355[/C][/ROW]
[ROW][C]69[/C][C] 0.1272[/C][C] 0.2543[/C][C] 0.8728[/C][/ROW]
[ROW][C]70[/C][C] 0.1321[/C][C] 0.2642[/C][C] 0.8679[/C][/ROW]
[ROW][C]71[/C][C] 0.1179[/C][C] 0.2358[/C][C] 0.8821[/C][/ROW]
[ROW][C]72[/C][C] 0.08845[/C][C] 0.1769[/C][C] 0.9115[/C][/ROW]
[ROW][C]73[/C][C] 0.0686[/C][C] 0.1372[/C][C] 0.9314[/C][/ROW]
[ROW][C]74[/C][C] 0.04904[/C][C] 0.09809[/C][C] 0.951[/C][/ROW]
[ROW][C]75[/C][C] 0.04186[/C][C] 0.08372[/C][C] 0.9581[/C][/ROW]
[ROW][C]76[/C][C] 0.02858[/C][C] 0.05717[/C][C] 0.9714[/C][/ROW]
[ROW][C]77[/C][C] 0.07687[/C][C] 0.1537[/C][C] 0.9231[/C][/ROW]
[ROW][C]78[/C][C] 0.1823[/C][C] 0.3647[/C][C] 0.8177[/C][/ROW]
[ROW][C]79[/C][C] 0.2682[/C][C] 0.5364[/C][C] 0.7318[/C][/ROW]
[ROW][C]80[/C][C] 0.242[/C][C] 0.4841[/C][C] 0.758[/C][/ROW]
[ROW][C]81[/C][C] 0.2072[/C][C] 0.4144[/C][C] 0.7928[/C][/ROW]
[ROW][C]82[/C][C] 0.2789[/C][C] 0.5578[/C][C] 0.7211[/C][/ROW]
[ROW][C]83[/C][C] 0.22[/C][C] 0.44[/C][C] 0.78[/C][/ROW]
[ROW][C]84[/C][C] 0.1834[/C][C] 0.3668[/C][C] 0.8166[/C][/ROW]
[ROW][C]85[/C][C] 0.3409[/C][C] 0.6817[/C][C] 0.6591[/C][/ROW]
[ROW][C]86[/C][C] 0.2563[/C][C] 0.5127[/C][C] 0.7437[/C][/ROW]
[ROW][C]87[/C][C] 0.2819[/C][C] 0.5638[/C][C] 0.7181[/C][/ROW]
[ROW][C]88[/C][C] 0.4251[/C][C] 0.8501[/C][C] 0.5749[/C][/ROW]
[ROW][C]89[/C][C] 0.428[/C][C] 0.856[/C][C] 0.572[/C][/ROW]
[ROW][C]90[/C][C] 0.3277[/C][C] 0.6554[/C][C] 0.6723[/C][/ROW]
[ROW][C]91[/C][C] 0.8573[/C][C] 0.2855[/C][C] 0.1427[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298637&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298637&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
8 0.5804 0.8393 0.4196
9 0.6439 0.7121 0.3561
10 0.5066 0.9867 0.4934
11 0.4098 0.8197 0.5902
12 0.295 0.5901 0.705
13 0.2021 0.4042 0.7979
14 0.1391 0.2782 0.8609
15 0.09315 0.1863 0.9068
16 0.05773 0.1155 0.9423
17 0.03383 0.06765 0.9662
18 0.05557 0.1111 0.9444
19 0.04977 0.09954 0.9502
20 0.03554 0.07107 0.9645
21 0.04043 0.08085 0.9596
22 0.03267 0.06534 0.9673
23 0.03002 0.06004 0.97
24 0.03194 0.06389 0.9681
25 0.02746 0.05492 0.9725
26 0.0615 0.123 0.9385
27 0.04183 0.08367 0.9582
28 0.02885 0.0577 0.9711
29 0.01954 0.03907 0.9805
30 0.02955 0.05909 0.9705
31 0.02846 0.05692 0.9715
32 0.07344 0.1469 0.9266
33 0.06185 0.1237 0.9382
34 0.06601 0.132 0.934
35 0.06315 0.1263 0.9369
36 0.05172 0.1034 0.9483
37 0.06362 0.1272 0.9364
38 0.04862 0.09723 0.9514
39 0.03815 0.07629 0.9619
40 0.02852 0.05705 0.9715
41 0.01963 0.03926 0.9804
42 0.06465 0.1293 0.9354
43 0.06354 0.1271 0.9365
44 0.06355 0.1271 0.9365
45 0.05479 0.1096 0.9452
46 0.04204 0.08408 0.958
47 0.03011 0.06021 0.9699
48 0.02235 0.04471 0.9776
49 0.01748 0.03496 0.9825
50 0.01278 0.02555 0.9872
51 0.009733 0.01947 0.9903
52 0.09388 0.1878 0.9061
53 0.08297 0.1659 0.917
54 0.1904 0.3809 0.8096
55 0.2271 0.4542 0.7729
56 0.1895 0.379 0.8105
57 0.1697 0.3394 0.8303
58 0.1487 0.2973 0.8513
59 0.1428 0.2857 0.8572
60 0.1115 0.2229 0.8885
61 0.1264 0.2528 0.8736
62 0.2041 0.4082 0.7959
63 0.1629 0.3258 0.8371
64 0.1351 0.2703 0.8649
65 0.1661 0.3322 0.8339
66 0.1306 0.2611 0.8694
67 0.1845 0.3691 0.8155
68 0.1645 0.3291 0.8355
69 0.1272 0.2543 0.8728
70 0.1321 0.2642 0.8679
71 0.1179 0.2358 0.8821
72 0.08845 0.1769 0.9115
73 0.0686 0.1372 0.9314
74 0.04904 0.09809 0.951
75 0.04186 0.08372 0.9581
76 0.02858 0.05717 0.9714
77 0.07687 0.1537 0.9231
78 0.1823 0.3647 0.8177
79 0.2682 0.5364 0.7318
80 0.242 0.4841 0.758
81 0.2072 0.4144 0.7928
82 0.2789 0.5578 0.7211
83 0.22 0.44 0.78
84 0.1834 0.3668 0.8166
85 0.3409 0.6817 0.6591
86 0.2563 0.5127 0.7437
87 0.2819 0.5638 0.7181
88 0.4251 0.8501 0.5749
89 0.428 0.856 0.572
90 0.3277 0.6554 0.6723
91 0.8573 0.2855 0.1427







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level0 0OK
5% type I error level60.0714286NOK
10% type I error level260.309524NOK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 0 &  0 & OK \tabularnewline
5% type I error level & 6 & 0.0714286 & NOK \tabularnewline
10% type I error level & 26 & 0.309524 & NOK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298637&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]0[/C][C] 0[/C][C]OK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]6[/C][C]0.0714286[/C][C]NOK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]26[/C][C]0.309524[/C][C]NOK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298637&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298637&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level0 0OK
5% type I error level60.0714286NOK
10% type I error level260.309524NOK







Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 0.31852, df1 = 2, df2 = 92, p-value = 0.728
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = 1.4997, df1 = 8, df2 = 86, p-value = 0.1692
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 0.38035, df1 = 2, df2 = 92, p-value = 0.6847

\begin{tabular}{lllllllll}
\hline
Ramsey RESET F-Test for powers (2 and 3) of fitted values \tabularnewline
> reset_test_fitted
	RESET test
data:  mylm
RESET = 0.31852, df1 = 2, df2 = 92, p-value = 0.728
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of regressors \tabularnewline
> reset_test_regressors
	RESET test
data:  mylm
RESET = 1.4997, df1 = 8, df2 = 86, p-value = 0.1692
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of principal components \tabularnewline
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 0.38035, df1 = 2, df2 = 92, p-value = 0.6847
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=298637&T=7

[TABLE]
[ROW][C]Ramsey RESET F-Test for powers (2 and 3) of fitted values[/C][/ROW]
[ROW][C]
> reset_test_fitted
	RESET test
data:  mylm
RESET = 0.31852, df1 = 2, df2 = 92, p-value = 0.728
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of regressors[/C][/ROW] [ROW][C]
> reset_test_regressors
	RESET test
data:  mylm
RESET = 1.4997, df1 = 8, df2 = 86, p-value = 0.1692
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of principal components[/C][/ROW] [ROW][C]
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 0.38035, df1 = 2, df2 = 92, p-value = 0.6847
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=298637&T=7

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298637&T=7

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 0.31852, df1 = 2, df2 = 92, p-value = 0.728
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = 1.4997, df1 = 8, df2 = 86, p-value = 0.1692
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 0.38035, df1 = 2, df2 = 92, p-value = 0.6847







Variance Inflation Factors (Multicollinearity)
> vif
   IVHB1    IVHB2    IVHB3    IVHB4 
1.032480 1.038649 1.063048 1.055761 

\begin{tabular}{lllllllll}
\hline
Variance Inflation Factors (Multicollinearity) \tabularnewline
> vif
   IVHB1    IVHB2    IVHB3    IVHB4 
1.032480 1.038649 1.063048 1.055761 
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=298637&T=8

[TABLE]
[ROW][C]Variance Inflation Factors (Multicollinearity)[/C][/ROW]
[ROW][C]
> vif
   IVHB1    IVHB2    IVHB3    IVHB4 
1.032480 1.038649 1.063048 1.055761 
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=298637&T=8

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298637&T=8

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Variance Inflation Factors (Multicollinearity)
> vif
   IVHB1    IVHB2    IVHB3    IVHB4 
1.032480 1.038649 1.063048 1.055761 



Parameters (Session):
par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ;
Parameters (R input):
par1 = ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ; par4 = ; par5 = ;
R code (references can be found in the software module):
par5 <- ''
par4 <- ''
par3 <- 'No Linear Trend'
par2 <- 'Do not include Seasonal Dummies'
par1 <- ''
library(lattice)
library(lmtest)
library(car)
library(MASS)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
mywarning <- ''
par1 <- as.numeric(par1)
if(is.na(par1)) {
par1 <- 1
mywarning = 'Warning: you did not specify the column number of the endogenous series! The first column was selected by default.'
}
if (par4=='') par4 <- 0
par4 <- as.numeric(par4)
if (par5=='') par5 <- 0
par5 <- as.numeric(par5)
x <- na.omit(t(y))
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'Seasonal Differences (s=12)'){
(n <- n - 12)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+12,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'First and Seasonal Differences (s=12)'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
(n <- n - 12)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+12,j] - x[i,j]
}
}
x <- x2
}
if(par4 > 0) {
x2 <- array(0, dim=c(n-par4,par4), dimnames=list(1:(n-par4), paste(colnames(x)[par1],'(t-',1:par4,')',sep='')))
for (i in 1:(n-par4)) {
for (j in 1:par4) {
x2[i,j] <- x[i+par4-j,par1]
}
}
x <- cbind(x[(par4+1):n,], x2)
n <- n - par4
}
if(par5 > 0) {
x2 <- array(0, dim=c(n-par5*12,par5), dimnames=list(1:(n-par5*12), paste(colnames(x)[par1],'(t-',1:par5,'s)',sep='')))
for (i in 1:(n-par5*12)) {
for (j in 1:par5) {
x2[i,j] <- x[i+par5*12-j*12,par1]
}
}
x <- cbind(x[(par5*12+1):n,], x2)
n <- n - par5*12
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
(k <- length(x[n,]))
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
print(x)
(k <- length(x[n,]))
head(x)
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
sresid <- studres(mylm)
hist(sresid, freq=FALSE, main='Distribution of Studentized Residuals')
xfit<-seq(min(sresid),max(sresid),length=40)
yfit<-dnorm(xfit)
lines(xfit, yfit)
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqPlot(mylm, main='QQ Plot')
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
print(z)
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, signif(mysum$coefficients[i,1],6), sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, mywarning)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Multiple Linear Regression - Ordinary Least Squares', 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,formatC(signif(mysum$coefficients[i,1],5),format='g',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,2],5),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,3],4),format='e',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4],4),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4]/2,4),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a,formatC(signif(sqrt(mysum$r.squared),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$adj.r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a,formatC(signif(mysum$fstatistic[1],6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[2],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[3],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a,formatC(signif(1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a,formatC(signif(mysum$sigma,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a,formatC(signif(sum(myerror*myerror),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
myr <- as.numeric(mysum$resid)
myr
if(n < 200) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,formatC(signif(x[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(x[i]-mysum$resid[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$resid[i],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,1],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,2],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,3],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant1,6))
a<-table.element(a,formatC(signif(numsignificant1/numgqtests,6),format='g',flag=' '))
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant5,6))
a<-table.element(a,signif(numsignificant5/numgqtests,6))
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant10,6))
a<-table.element(a,signif(numsignificant10/numgqtests,6))
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}
}
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of fitted values',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_fitted <- resettest(mylm,power=2:3,type='fitted')
a<-table.element(a,paste('
',RC.texteval('reset_test_fitted'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of regressors',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_regressors <- resettest(mylm,power=2:3,type='regressor')
a<-table.element(a,paste('
',RC.texteval('reset_test_regressors'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of principal components',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_principal_components <- resettest(mylm,power=2:3,type='princomp')
a<-table.element(a,paste('
',RC.texteval('reset_test_principal_components'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable8.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Variance Inflation Factors (Multicollinearity)',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
vif <- vif(mylm)
a<-table.element(a,paste('
',RC.texteval('vif'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable9.tab')