Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationSat, 10 Dec 2016 10:55:51 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/10/t1481365573i6rwdyrta0aai7u.htm/, Retrieved Fri, 01 Nov 2024 03:44:52 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=298625, Retrieved Fri, 01 Nov 2024 03:44:52 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact152
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Multiple Regression] [Multiple regressi...] [2016-12-10 09:55:51] [ee2f08b6fcfe19fae25bd9410e008f6d] [Current]
Feedback Forum

Post a new message
Dataseries X:
2	2	3	4	10
4	2	1	4	13
4	2	5	4	14
4	3	4	4	12
3	4	3	3	12
4	3	2	5	13
1	4	4	4	13
4	2	5	4	13
3	3	5	2	13
4	4	3	4	14
2	2	2	4	14
4	2	2	3	12
4	5	4	3	12
5	4	4	4	11
4	2	4	4	12
1	3	5	4	14
2	1	2	5	12
4	3	2	4	11
5	4	4	4	13
5	5	4	4	13
4	5	4	4	12
1	1	5	4	13
4	4	3	4	12
2	2	4	4	13
4	4	3	4	11
5	4	3	3	12
3	3	3	3	12
5	4	5	5	13
3	2	4	4	13
5	2	4	4	10
2	4	3	4	12
1	2	3	4	13
4	4	5	1	13
4	2	3	3	10
4	4	3	4	14
3	3	3	4	12
5	3	5	5	10
4	4	3	4	10
2	2	3	4	14
4	3	3	4	12
2	2	4	3	14
3	4	3	4	10
1	2	1	5	13
3	2	4	4	12
3	3	4	3	12
3	3	3	3	13
4	4	4	5	12
4	4	4	4	10
4	4	4	4	14
4	4	4	4	15
2	4	3	4	14
5	2	2	4	8
3	2	4	3	11
3	1	3	4	10
4	3	3	3	12
4	4	3	4	14
4	3	4	2	12
3	3	4	4	12
4	2	3	4	14
4	3	4	4	13
4	2	5	3	13
4	4	2	4	13
4	3	3	3	12
2	2	3	4	10
4	4	3	3	14
4	5	4	4	11
4	4	3	4	10
4	3	4	4	13
4	2	3	4	12
5	3	1	3	12
3	4	4	3	11
2	4	3	2	10
4	4	2	4	14
5	5	3	5	12
4	4	3	4	13
5	4	4	5	11
5	4	5	2	10
2	3	3	4	14
4	2	4	4	13
4	4	2	4	7
4	4	2	4	13
3	4	2	5	13
4	2	3	4	13
2	2	4	4	15
5	1	3	4	13
3	3	5	4	14
4	4	4	1	12
2	4	4	4	13
4	4	3	4	11
3	3	4	3	12
3	4	3	4	14
4	4	5	4	13
4	4	4	3	14
4	2	4	3	12
3	4	3	4	12
4	4	4	5	13
3	1	1	3	14
3	4	4	4	13
4	3	4	4	13
3	3	4	5	12
3	4	4	3	10
5	3	3	4	12
5	4	5	4	13
4	4	3	3	12
5	4	5	5	13
4	4	4	4	12
4	5	4	4	12
4	5	4	5	12
4	2	4	3	11
3	1	3	3	12
4	3	4	3	9
3	3	3	4	14
4	1	3	4	12
2	4	3	4	13
1	4	3	4	13
5	2	2	4	13
4	4	4	4	11
3	3	3	3	12
4	4	2	4	11
4	4	4	5	12
4	2	4	4	12
4	2	3	3	13
2	4	4	4	12
4	4	5	4	13
4	2	4	3	13
4	2	2	3	12
4	2	4	4	12
3	2	4	2	8
4	5	4	4	12
5	2	5	3	13
2	2	2	4	10
5	2	4	4	8
4	4	4	4	12
3	5	5	4	13
2	4	4	2	12
2	3	5	5	15
2	3	2	3	14
4	1	4	4	10
4	4	5	4	11
5	5	3	4	12
3	4	4	5	10
3	4	4	4	14
4	5	3	4	10
4	4	5	3	15
4	5	5	1	11
4	5	3	4	12
4	3	2	5	9
4	5	4	4	12
4	1	5	4	13
2	3	3	4	12
5	2	3	5	9
4	2	4	4	12
4	4	3	4	14
4	4	2	4	11
4	2	3	4	12
4	5	3	4	14
2	4	4	3	12
3	5	1	5	15
3	3	4	3	11
4	2	3	4	12
4	4	3	4	12
4	2	2	5	10
4	3	3	4	12
3	3	3	4	11
3	2	5	2	11




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time8 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time8 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298625&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]8 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=298625&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298625&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time8 seconds
R ServerBig Analytics Cloud Computing Center







Multiple Linear Regression - Estimated Regression Equation
TVDCsum[t] = + 11.8177 -0.349609IVHB1[t] + 0.120691IVHB2[t] + 0.148376IVHB3[t] + 0.176208IVHB4[t] + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
TVDCsum[t] =  +  11.8177 -0.349609IVHB1[t] +  0.120691IVHB2[t] +  0.148376IVHB3[t] +  0.176208IVHB4[t]  + e[t] \tabularnewline
 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298625&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]TVDCsum[t] =  +  11.8177 -0.349609IVHB1[t] +  0.120691IVHB2[t] +  0.148376IVHB3[t] +  0.176208IVHB4[t]  + e[t][/C][/ROW]
[ROW][C][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298625&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298625&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
TVDCsum[t] = + 11.8177 -0.349609IVHB1[t] + 0.120691IVHB2[t] + 0.148376IVHB3[t] + 0.176208IVHB4[t] + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)+11.82 0.856+1.3810e+01 4.73e-29 2.365e-29
IVHB1-0.3496 0.1167-2.9960e+00 0.003173 0.001587
IVHB2+0.1207 0.1052+1.1470e+00 0.2529 0.1265
IVHB3+0.1484 0.12+1.2370e+00 0.218 0.109
IVHB4+0.1762 0.148+1.1900e+00 0.2357 0.1179

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & +11.82 &  0.856 & +1.3810e+01 &  4.73e-29 &  2.365e-29 \tabularnewline
IVHB1 & -0.3496 &  0.1167 & -2.9960e+00 &  0.003173 &  0.001587 \tabularnewline
IVHB2 & +0.1207 &  0.1052 & +1.1470e+00 &  0.2529 &  0.1265 \tabularnewline
IVHB3 & +0.1484 &  0.12 & +1.2370e+00 &  0.218 &  0.109 \tabularnewline
IVHB4 & +0.1762 &  0.148 & +1.1900e+00 &  0.2357 &  0.1179 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298625&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]+11.82[/C][C] 0.856[/C][C]+1.3810e+01[/C][C] 4.73e-29[/C][C] 2.365e-29[/C][/ROW]
[ROW][C]IVHB1[/C][C]-0.3496[/C][C] 0.1167[/C][C]-2.9960e+00[/C][C] 0.003173[/C][C] 0.001587[/C][/ROW]
[ROW][C]IVHB2[/C][C]+0.1207[/C][C] 0.1052[/C][C]+1.1470e+00[/C][C] 0.2529[/C][C] 0.1265[/C][/ROW]
[ROW][C]IVHB3[/C][C]+0.1484[/C][C] 0.12[/C][C]+1.2370e+00[/C][C] 0.218[/C][C] 0.109[/C][/ROW]
[ROW][C]IVHB4[/C][C]+0.1762[/C][C] 0.148[/C][C]+1.1900e+00[/C][C] 0.2357[/C][C] 0.1179[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298625&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298625&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)+11.82 0.856+1.3810e+01 4.73e-29 2.365e-29
IVHB1-0.3496 0.1167-2.9960e+00 0.003173 0.001587
IVHB2+0.1207 0.1052+1.1470e+00 0.2529 0.1265
IVHB3+0.1484 0.12+1.2370e+00 0.218 0.109
IVHB4+0.1762 0.148+1.1900e+00 0.2357 0.1179







Multiple Linear Regression - Regression Statistics
Multiple R 0.2597
R-squared 0.06743
Adjusted R-squared 0.04412
F-TEST (value) 2.892
F-TEST (DF numerator)4
F-TEST (DF denominator)160
p-value 0.024
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 1.456
Sum Squared Residuals 339.3

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R &  0.2597 \tabularnewline
R-squared &  0.06743 \tabularnewline
Adjusted R-squared &  0.04412 \tabularnewline
F-TEST (value) &  2.892 \tabularnewline
F-TEST (DF numerator) & 4 \tabularnewline
F-TEST (DF denominator) & 160 \tabularnewline
p-value &  0.024 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation &  1.456 \tabularnewline
Sum Squared Residuals &  339.3 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298625&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C] 0.2597[/C][/ROW]
[ROW][C]R-squared[/C][C] 0.06743[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C] 0.04412[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C] 2.892[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]4[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]160[/C][/ROW]
[ROW][C]p-value[/C][C] 0.024[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C] 1.456[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C] 339.3[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298625&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298625&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R 0.2597
R-squared 0.06743
Adjusted R-squared 0.04412
F-TEST (value) 2.892
F-TEST (DF numerator)4
F-TEST (DF denominator)160
p-value 0.024
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 1.456
Sum Squared Residuals 339.3







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 10 12.51-2.51
2 13 11.51 1.486
3 14 12.11 1.893
4 12 12.08-0.07972
5 12 12.23-0.2254
6 13 11.96 1.041
7 13 13.25-0.2492
8 13 12.11 0.8926
9 13 12.23 0.7747
10 14 12.05 1.948
11 14 12.36 1.639
12 12 11.49 0.5139
13 12 12.14-0.1449
14 11 11.85-0.8508
15 12 11.96 0.04098
16 14 13.28 0.7231
17 12 12.42-0.417
18 11 11.78-0.783
19 13 11.85 1.149
20 13 11.97 1.029
21 12 12.32-0.3211
22 13 13.04-0.03554
23 12 12.05-0.05203
24 13 12.66 0.3418
25 11 12.05-1.052
26 12 11.53 0.4738
27 12 12.1-0.1047
28 13 12.18 0.8246
29 13 12.31 0.6914
30 10 11.61-1.609
31 12 12.75-0.7512
32 13 12.86 0.1405
33 13 11.82 1.18
34 10 11.63-1.634
35 14 12.05 1.948
36 12 12.28-0.2809
37 10 12.05-2.055
38 10 12.05-2.052
39 14 12.51 1.49
40 12 11.93 0.06866
41 14 12.48 1.518
42 10 12.4-2.402
43 13 12.74 0.2611
44 12 12.31-0.3086
45 12 12.25-0.2531
46 13 12.1 0.8953
47 12 12.38-0.3766
48 10 12.2-2.2
49 14 12.2 1.8
50 15 12.2 2.8
51 14 12.75 1.249
52 8 11.31-3.313
53 11 12.13-1.132
54 10 12.04-2.04
55 12 11.76 0.2449
56 14 12.05 1.948
57 12 11.73 0.2727
58 12 12.43-0.4293
59 14 11.81 2.189
60 13 12.08 0.9203
61 13 11.93 1.069
62 13 11.9 1.096
63 12 11.76 0.2449
64 10 12.51-2.51
65 14 11.88 2.124
66 11 12.32-1.321
67 10 12.05-2.052
68 13 12.08 0.9203
69 12 11.81 0.1894
70 12 11.11 0.8912
71 11 12.37-1.374
72 10 12.4-2.399
73 14 11.9 2.096
74 12 12 0.0006782
75 13 12.05 0.948
76 11 12.03-1.027
77 10 11.65-1.647
78 14 12.63 1.369
79 13 11.96 1.041
80 7 11.9-4.904
81 13 11.9 1.096
82 13 12.43 0.5705
83 13 11.81 1.189
84 15 12.66 2.342
85 13 11.34 1.66
86 14 12.58 1.422
87 12 11.67 0.3282
88 13 12.9 0.1004
89 11 12.05-1.052
90 12 12.25-0.2531
91 14 12.4 1.598
92 13 12.35 0.6512
93 14 12.02 1.976
94 12 11.78 0.2172
95 12 12.4-0.4016
96 13 12.38 0.6234
97 14 11.57 2.433
98 13 12.55 0.45
99 13 12.08 0.9203
100 12 12.61-0.6055
101 10 12.37-2.374
102 12 11.58 0.4183
103 13 12 1.001
104 12 11.88 0.1242
105 13 12.18 0.8246
106 12 12.2-0.2004
107 12 12.32-0.3211
108 12 12.5-0.4973
109 11 11.78-0.7828
110 12 11.86 0.1366
111 9 11.9-2.904
112 14 12.28 1.719
113 12 11.69 0.31
114 13 12.75 0.2488
115 13 13.1-0.1009
116 13 11.31 1.687
117 11 12.2-1.2
118 12 12.1-0.1047
119 11 11.9-0.9037
120 12 12.38-0.3766
121 12 11.96 0.04098
122 13 11.63 1.366
123 12 12.9-0.8996
124 13 12.35 0.6512
125 13 11.78 1.217
126 12 11.49 0.5139
127 12 11.96 0.04098
128 8 11.96-3.956
129 12 12.32-0.3211
130 13 11.58 1.418
131 10 12.36-2.361
132 8 11.61-3.609
133 12 12.2-0.2004
134 13 12.82 0.1809
135 12 12.55-0.5472
136 15 13.1 1.896
137 14 12.31 1.694
138 10 11.84-1.838
139 11 12.35-1.349
140 12 11.82 0.1769
141 10 12.73-2.726
142 14 12.55 1.45
143 10 12.17-2.173
144 15 12.17 2.827
145 11 11.94-0.9408
146 12 12.17-0.1727
147 9 11.96-2.959
148 12 12.32-0.3211
149 13 11.99 1.013
150 12 12.63-0.6306
151 9 11.64-2.637
152 12 11.96 0.04098
153 14 12.05 1.948
154 11 11.9-0.9037
155 12 11.81 0.1894
156 14 12.17 1.827
157 12 12.72-0.7234
158 15 12.4 2.598
159 11 12.25-1.253
160 12 11.81 0.1894
161 12 12.05-0.05203
162 10 11.84-1.838
163 12 11.93 0.06866
164 11 12.28-1.281
165 11 12.1-1.105

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 &  10 &  12.51 & -2.51 \tabularnewline
2 &  13 &  11.51 &  1.486 \tabularnewline
3 &  14 &  12.11 &  1.893 \tabularnewline
4 &  12 &  12.08 & -0.07972 \tabularnewline
5 &  12 &  12.23 & -0.2254 \tabularnewline
6 &  13 &  11.96 &  1.041 \tabularnewline
7 &  13 &  13.25 & -0.2492 \tabularnewline
8 &  13 &  12.11 &  0.8926 \tabularnewline
9 &  13 &  12.23 &  0.7747 \tabularnewline
10 &  14 &  12.05 &  1.948 \tabularnewline
11 &  14 &  12.36 &  1.639 \tabularnewline
12 &  12 &  11.49 &  0.5139 \tabularnewline
13 &  12 &  12.14 & -0.1449 \tabularnewline
14 &  11 &  11.85 & -0.8508 \tabularnewline
15 &  12 &  11.96 &  0.04098 \tabularnewline
16 &  14 &  13.28 &  0.7231 \tabularnewline
17 &  12 &  12.42 & -0.417 \tabularnewline
18 &  11 &  11.78 & -0.783 \tabularnewline
19 &  13 &  11.85 &  1.149 \tabularnewline
20 &  13 &  11.97 &  1.029 \tabularnewline
21 &  12 &  12.32 & -0.3211 \tabularnewline
22 &  13 &  13.04 & -0.03554 \tabularnewline
23 &  12 &  12.05 & -0.05203 \tabularnewline
24 &  13 &  12.66 &  0.3418 \tabularnewline
25 &  11 &  12.05 & -1.052 \tabularnewline
26 &  12 &  11.53 &  0.4738 \tabularnewline
27 &  12 &  12.1 & -0.1047 \tabularnewline
28 &  13 &  12.18 &  0.8246 \tabularnewline
29 &  13 &  12.31 &  0.6914 \tabularnewline
30 &  10 &  11.61 & -1.609 \tabularnewline
31 &  12 &  12.75 & -0.7512 \tabularnewline
32 &  13 &  12.86 &  0.1405 \tabularnewline
33 &  13 &  11.82 &  1.18 \tabularnewline
34 &  10 &  11.63 & -1.634 \tabularnewline
35 &  14 &  12.05 &  1.948 \tabularnewline
36 &  12 &  12.28 & -0.2809 \tabularnewline
37 &  10 &  12.05 & -2.055 \tabularnewline
38 &  10 &  12.05 & -2.052 \tabularnewline
39 &  14 &  12.51 &  1.49 \tabularnewline
40 &  12 &  11.93 &  0.06866 \tabularnewline
41 &  14 &  12.48 &  1.518 \tabularnewline
42 &  10 &  12.4 & -2.402 \tabularnewline
43 &  13 &  12.74 &  0.2611 \tabularnewline
44 &  12 &  12.31 & -0.3086 \tabularnewline
45 &  12 &  12.25 & -0.2531 \tabularnewline
46 &  13 &  12.1 &  0.8953 \tabularnewline
47 &  12 &  12.38 & -0.3766 \tabularnewline
48 &  10 &  12.2 & -2.2 \tabularnewline
49 &  14 &  12.2 &  1.8 \tabularnewline
50 &  15 &  12.2 &  2.8 \tabularnewline
51 &  14 &  12.75 &  1.249 \tabularnewline
52 &  8 &  11.31 & -3.313 \tabularnewline
53 &  11 &  12.13 & -1.132 \tabularnewline
54 &  10 &  12.04 & -2.04 \tabularnewline
55 &  12 &  11.76 &  0.2449 \tabularnewline
56 &  14 &  12.05 &  1.948 \tabularnewline
57 &  12 &  11.73 &  0.2727 \tabularnewline
58 &  12 &  12.43 & -0.4293 \tabularnewline
59 &  14 &  11.81 &  2.189 \tabularnewline
60 &  13 &  12.08 &  0.9203 \tabularnewline
61 &  13 &  11.93 &  1.069 \tabularnewline
62 &  13 &  11.9 &  1.096 \tabularnewline
63 &  12 &  11.76 &  0.2449 \tabularnewline
64 &  10 &  12.51 & -2.51 \tabularnewline
65 &  14 &  11.88 &  2.124 \tabularnewline
66 &  11 &  12.32 & -1.321 \tabularnewline
67 &  10 &  12.05 & -2.052 \tabularnewline
68 &  13 &  12.08 &  0.9203 \tabularnewline
69 &  12 &  11.81 &  0.1894 \tabularnewline
70 &  12 &  11.11 &  0.8912 \tabularnewline
71 &  11 &  12.37 & -1.374 \tabularnewline
72 &  10 &  12.4 & -2.399 \tabularnewline
73 &  14 &  11.9 &  2.096 \tabularnewline
74 &  12 &  12 &  0.0006782 \tabularnewline
75 &  13 &  12.05 &  0.948 \tabularnewline
76 &  11 &  12.03 & -1.027 \tabularnewline
77 &  10 &  11.65 & -1.647 \tabularnewline
78 &  14 &  12.63 &  1.369 \tabularnewline
79 &  13 &  11.96 &  1.041 \tabularnewline
80 &  7 &  11.9 & -4.904 \tabularnewline
81 &  13 &  11.9 &  1.096 \tabularnewline
82 &  13 &  12.43 &  0.5705 \tabularnewline
83 &  13 &  11.81 &  1.189 \tabularnewline
84 &  15 &  12.66 &  2.342 \tabularnewline
85 &  13 &  11.34 &  1.66 \tabularnewline
86 &  14 &  12.58 &  1.422 \tabularnewline
87 &  12 &  11.67 &  0.3282 \tabularnewline
88 &  13 &  12.9 &  0.1004 \tabularnewline
89 &  11 &  12.05 & -1.052 \tabularnewline
90 &  12 &  12.25 & -0.2531 \tabularnewline
91 &  14 &  12.4 &  1.598 \tabularnewline
92 &  13 &  12.35 &  0.6512 \tabularnewline
93 &  14 &  12.02 &  1.976 \tabularnewline
94 &  12 &  11.78 &  0.2172 \tabularnewline
95 &  12 &  12.4 & -0.4016 \tabularnewline
96 &  13 &  12.38 &  0.6234 \tabularnewline
97 &  14 &  11.57 &  2.433 \tabularnewline
98 &  13 &  12.55 &  0.45 \tabularnewline
99 &  13 &  12.08 &  0.9203 \tabularnewline
100 &  12 &  12.61 & -0.6055 \tabularnewline
101 &  10 &  12.37 & -2.374 \tabularnewline
102 &  12 &  11.58 &  0.4183 \tabularnewline
103 &  13 &  12 &  1.001 \tabularnewline
104 &  12 &  11.88 &  0.1242 \tabularnewline
105 &  13 &  12.18 &  0.8246 \tabularnewline
106 &  12 &  12.2 & -0.2004 \tabularnewline
107 &  12 &  12.32 & -0.3211 \tabularnewline
108 &  12 &  12.5 & -0.4973 \tabularnewline
109 &  11 &  11.78 & -0.7828 \tabularnewline
110 &  12 &  11.86 &  0.1366 \tabularnewline
111 &  9 &  11.9 & -2.904 \tabularnewline
112 &  14 &  12.28 &  1.719 \tabularnewline
113 &  12 &  11.69 &  0.31 \tabularnewline
114 &  13 &  12.75 &  0.2488 \tabularnewline
115 &  13 &  13.1 & -0.1009 \tabularnewline
116 &  13 &  11.31 &  1.687 \tabularnewline
117 &  11 &  12.2 & -1.2 \tabularnewline
118 &  12 &  12.1 & -0.1047 \tabularnewline
119 &  11 &  11.9 & -0.9037 \tabularnewline
120 &  12 &  12.38 & -0.3766 \tabularnewline
121 &  12 &  11.96 &  0.04098 \tabularnewline
122 &  13 &  11.63 &  1.366 \tabularnewline
123 &  12 &  12.9 & -0.8996 \tabularnewline
124 &  13 &  12.35 &  0.6512 \tabularnewline
125 &  13 &  11.78 &  1.217 \tabularnewline
126 &  12 &  11.49 &  0.5139 \tabularnewline
127 &  12 &  11.96 &  0.04098 \tabularnewline
128 &  8 &  11.96 & -3.956 \tabularnewline
129 &  12 &  12.32 & -0.3211 \tabularnewline
130 &  13 &  11.58 &  1.418 \tabularnewline
131 &  10 &  12.36 & -2.361 \tabularnewline
132 &  8 &  11.61 & -3.609 \tabularnewline
133 &  12 &  12.2 & -0.2004 \tabularnewline
134 &  13 &  12.82 &  0.1809 \tabularnewline
135 &  12 &  12.55 & -0.5472 \tabularnewline
136 &  15 &  13.1 &  1.896 \tabularnewline
137 &  14 &  12.31 &  1.694 \tabularnewline
138 &  10 &  11.84 & -1.838 \tabularnewline
139 &  11 &  12.35 & -1.349 \tabularnewline
140 &  12 &  11.82 &  0.1769 \tabularnewline
141 &  10 &  12.73 & -2.726 \tabularnewline
142 &  14 &  12.55 &  1.45 \tabularnewline
143 &  10 &  12.17 & -2.173 \tabularnewline
144 &  15 &  12.17 &  2.827 \tabularnewline
145 &  11 &  11.94 & -0.9408 \tabularnewline
146 &  12 &  12.17 & -0.1727 \tabularnewline
147 &  9 &  11.96 & -2.959 \tabularnewline
148 &  12 &  12.32 & -0.3211 \tabularnewline
149 &  13 &  11.99 &  1.013 \tabularnewline
150 &  12 &  12.63 & -0.6306 \tabularnewline
151 &  9 &  11.64 & -2.637 \tabularnewline
152 &  12 &  11.96 &  0.04098 \tabularnewline
153 &  14 &  12.05 &  1.948 \tabularnewline
154 &  11 &  11.9 & -0.9037 \tabularnewline
155 &  12 &  11.81 &  0.1894 \tabularnewline
156 &  14 &  12.17 &  1.827 \tabularnewline
157 &  12 &  12.72 & -0.7234 \tabularnewline
158 &  15 &  12.4 &  2.598 \tabularnewline
159 &  11 &  12.25 & -1.253 \tabularnewline
160 &  12 &  11.81 &  0.1894 \tabularnewline
161 &  12 &  12.05 & -0.05203 \tabularnewline
162 &  10 &  11.84 & -1.838 \tabularnewline
163 &  12 &  11.93 &  0.06866 \tabularnewline
164 &  11 &  12.28 & -1.281 \tabularnewline
165 &  11 &  12.1 & -1.105 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298625&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C] 10[/C][C] 12.51[/C][C]-2.51[/C][/ROW]
[ROW][C]2[/C][C] 13[/C][C] 11.51[/C][C] 1.486[/C][/ROW]
[ROW][C]3[/C][C] 14[/C][C] 12.11[/C][C] 1.893[/C][/ROW]
[ROW][C]4[/C][C] 12[/C][C] 12.08[/C][C]-0.07972[/C][/ROW]
[ROW][C]5[/C][C] 12[/C][C] 12.23[/C][C]-0.2254[/C][/ROW]
[ROW][C]6[/C][C] 13[/C][C] 11.96[/C][C] 1.041[/C][/ROW]
[ROW][C]7[/C][C] 13[/C][C] 13.25[/C][C]-0.2492[/C][/ROW]
[ROW][C]8[/C][C] 13[/C][C] 12.11[/C][C] 0.8926[/C][/ROW]
[ROW][C]9[/C][C] 13[/C][C] 12.23[/C][C] 0.7747[/C][/ROW]
[ROW][C]10[/C][C] 14[/C][C] 12.05[/C][C] 1.948[/C][/ROW]
[ROW][C]11[/C][C] 14[/C][C] 12.36[/C][C] 1.639[/C][/ROW]
[ROW][C]12[/C][C] 12[/C][C] 11.49[/C][C] 0.5139[/C][/ROW]
[ROW][C]13[/C][C] 12[/C][C] 12.14[/C][C]-0.1449[/C][/ROW]
[ROW][C]14[/C][C] 11[/C][C] 11.85[/C][C]-0.8508[/C][/ROW]
[ROW][C]15[/C][C] 12[/C][C] 11.96[/C][C] 0.04098[/C][/ROW]
[ROW][C]16[/C][C] 14[/C][C] 13.28[/C][C] 0.7231[/C][/ROW]
[ROW][C]17[/C][C] 12[/C][C] 12.42[/C][C]-0.417[/C][/ROW]
[ROW][C]18[/C][C] 11[/C][C] 11.78[/C][C]-0.783[/C][/ROW]
[ROW][C]19[/C][C] 13[/C][C] 11.85[/C][C] 1.149[/C][/ROW]
[ROW][C]20[/C][C] 13[/C][C] 11.97[/C][C] 1.029[/C][/ROW]
[ROW][C]21[/C][C] 12[/C][C] 12.32[/C][C]-0.3211[/C][/ROW]
[ROW][C]22[/C][C] 13[/C][C] 13.04[/C][C]-0.03554[/C][/ROW]
[ROW][C]23[/C][C] 12[/C][C] 12.05[/C][C]-0.05203[/C][/ROW]
[ROW][C]24[/C][C] 13[/C][C] 12.66[/C][C] 0.3418[/C][/ROW]
[ROW][C]25[/C][C] 11[/C][C] 12.05[/C][C]-1.052[/C][/ROW]
[ROW][C]26[/C][C] 12[/C][C] 11.53[/C][C] 0.4738[/C][/ROW]
[ROW][C]27[/C][C] 12[/C][C] 12.1[/C][C]-0.1047[/C][/ROW]
[ROW][C]28[/C][C] 13[/C][C] 12.18[/C][C] 0.8246[/C][/ROW]
[ROW][C]29[/C][C] 13[/C][C] 12.31[/C][C] 0.6914[/C][/ROW]
[ROW][C]30[/C][C] 10[/C][C] 11.61[/C][C]-1.609[/C][/ROW]
[ROW][C]31[/C][C] 12[/C][C] 12.75[/C][C]-0.7512[/C][/ROW]
[ROW][C]32[/C][C] 13[/C][C] 12.86[/C][C] 0.1405[/C][/ROW]
[ROW][C]33[/C][C] 13[/C][C] 11.82[/C][C] 1.18[/C][/ROW]
[ROW][C]34[/C][C] 10[/C][C] 11.63[/C][C]-1.634[/C][/ROW]
[ROW][C]35[/C][C] 14[/C][C] 12.05[/C][C] 1.948[/C][/ROW]
[ROW][C]36[/C][C] 12[/C][C] 12.28[/C][C]-0.2809[/C][/ROW]
[ROW][C]37[/C][C] 10[/C][C] 12.05[/C][C]-2.055[/C][/ROW]
[ROW][C]38[/C][C] 10[/C][C] 12.05[/C][C]-2.052[/C][/ROW]
[ROW][C]39[/C][C] 14[/C][C] 12.51[/C][C] 1.49[/C][/ROW]
[ROW][C]40[/C][C] 12[/C][C] 11.93[/C][C] 0.06866[/C][/ROW]
[ROW][C]41[/C][C] 14[/C][C] 12.48[/C][C] 1.518[/C][/ROW]
[ROW][C]42[/C][C] 10[/C][C] 12.4[/C][C]-2.402[/C][/ROW]
[ROW][C]43[/C][C] 13[/C][C] 12.74[/C][C] 0.2611[/C][/ROW]
[ROW][C]44[/C][C] 12[/C][C] 12.31[/C][C]-0.3086[/C][/ROW]
[ROW][C]45[/C][C] 12[/C][C] 12.25[/C][C]-0.2531[/C][/ROW]
[ROW][C]46[/C][C] 13[/C][C] 12.1[/C][C] 0.8953[/C][/ROW]
[ROW][C]47[/C][C] 12[/C][C] 12.38[/C][C]-0.3766[/C][/ROW]
[ROW][C]48[/C][C] 10[/C][C] 12.2[/C][C]-2.2[/C][/ROW]
[ROW][C]49[/C][C] 14[/C][C] 12.2[/C][C] 1.8[/C][/ROW]
[ROW][C]50[/C][C] 15[/C][C] 12.2[/C][C] 2.8[/C][/ROW]
[ROW][C]51[/C][C] 14[/C][C] 12.75[/C][C] 1.249[/C][/ROW]
[ROW][C]52[/C][C] 8[/C][C] 11.31[/C][C]-3.313[/C][/ROW]
[ROW][C]53[/C][C] 11[/C][C] 12.13[/C][C]-1.132[/C][/ROW]
[ROW][C]54[/C][C] 10[/C][C] 12.04[/C][C]-2.04[/C][/ROW]
[ROW][C]55[/C][C] 12[/C][C] 11.76[/C][C] 0.2449[/C][/ROW]
[ROW][C]56[/C][C] 14[/C][C] 12.05[/C][C] 1.948[/C][/ROW]
[ROW][C]57[/C][C] 12[/C][C] 11.73[/C][C] 0.2727[/C][/ROW]
[ROW][C]58[/C][C] 12[/C][C] 12.43[/C][C]-0.4293[/C][/ROW]
[ROW][C]59[/C][C] 14[/C][C] 11.81[/C][C] 2.189[/C][/ROW]
[ROW][C]60[/C][C] 13[/C][C] 12.08[/C][C] 0.9203[/C][/ROW]
[ROW][C]61[/C][C] 13[/C][C] 11.93[/C][C] 1.069[/C][/ROW]
[ROW][C]62[/C][C] 13[/C][C] 11.9[/C][C] 1.096[/C][/ROW]
[ROW][C]63[/C][C] 12[/C][C] 11.76[/C][C] 0.2449[/C][/ROW]
[ROW][C]64[/C][C] 10[/C][C] 12.51[/C][C]-2.51[/C][/ROW]
[ROW][C]65[/C][C] 14[/C][C] 11.88[/C][C] 2.124[/C][/ROW]
[ROW][C]66[/C][C] 11[/C][C] 12.32[/C][C]-1.321[/C][/ROW]
[ROW][C]67[/C][C] 10[/C][C] 12.05[/C][C]-2.052[/C][/ROW]
[ROW][C]68[/C][C] 13[/C][C] 12.08[/C][C] 0.9203[/C][/ROW]
[ROW][C]69[/C][C] 12[/C][C] 11.81[/C][C] 0.1894[/C][/ROW]
[ROW][C]70[/C][C] 12[/C][C] 11.11[/C][C] 0.8912[/C][/ROW]
[ROW][C]71[/C][C] 11[/C][C] 12.37[/C][C]-1.374[/C][/ROW]
[ROW][C]72[/C][C] 10[/C][C] 12.4[/C][C]-2.399[/C][/ROW]
[ROW][C]73[/C][C] 14[/C][C] 11.9[/C][C] 2.096[/C][/ROW]
[ROW][C]74[/C][C] 12[/C][C] 12[/C][C] 0.0006782[/C][/ROW]
[ROW][C]75[/C][C] 13[/C][C] 12.05[/C][C] 0.948[/C][/ROW]
[ROW][C]76[/C][C] 11[/C][C] 12.03[/C][C]-1.027[/C][/ROW]
[ROW][C]77[/C][C] 10[/C][C] 11.65[/C][C]-1.647[/C][/ROW]
[ROW][C]78[/C][C] 14[/C][C] 12.63[/C][C] 1.369[/C][/ROW]
[ROW][C]79[/C][C] 13[/C][C] 11.96[/C][C] 1.041[/C][/ROW]
[ROW][C]80[/C][C] 7[/C][C] 11.9[/C][C]-4.904[/C][/ROW]
[ROW][C]81[/C][C] 13[/C][C] 11.9[/C][C] 1.096[/C][/ROW]
[ROW][C]82[/C][C] 13[/C][C] 12.43[/C][C] 0.5705[/C][/ROW]
[ROW][C]83[/C][C] 13[/C][C] 11.81[/C][C] 1.189[/C][/ROW]
[ROW][C]84[/C][C] 15[/C][C] 12.66[/C][C] 2.342[/C][/ROW]
[ROW][C]85[/C][C] 13[/C][C] 11.34[/C][C] 1.66[/C][/ROW]
[ROW][C]86[/C][C] 14[/C][C] 12.58[/C][C] 1.422[/C][/ROW]
[ROW][C]87[/C][C] 12[/C][C] 11.67[/C][C] 0.3282[/C][/ROW]
[ROW][C]88[/C][C] 13[/C][C] 12.9[/C][C] 0.1004[/C][/ROW]
[ROW][C]89[/C][C] 11[/C][C] 12.05[/C][C]-1.052[/C][/ROW]
[ROW][C]90[/C][C] 12[/C][C] 12.25[/C][C]-0.2531[/C][/ROW]
[ROW][C]91[/C][C] 14[/C][C] 12.4[/C][C] 1.598[/C][/ROW]
[ROW][C]92[/C][C] 13[/C][C] 12.35[/C][C] 0.6512[/C][/ROW]
[ROW][C]93[/C][C] 14[/C][C] 12.02[/C][C] 1.976[/C][/ROW]
[ROW][C]94[/C][C] 12[/C][C] 11.78[/C][C] 0.2172[/C][/ROW]
[ROW][C]95[/C][C] 12[/C][C] 12.4[/C][C]-0.4016[/C][/ROW]
[ROW][C]96[/C][C] 13[/C][C] 12.38[/C][C] 0.6234[/C][/ROW]
[ROW][C]97[/C][C] 14[/C][C] 11.57[/C][C] 2.433[/C][/ROW]
[ROW][C]98[/C][C] 13[/C][C] 12.55[/C][C] 0.45[/C][/ROW]
[ROW][C]99[/C][C] 13[/C][C] 12.08[/C][C] 0.9203[/C][/ROW]
[ROW][C]100[/C][C] 12[/C][C] 12.61[/C][C]-0.6055[/C][/ROW]
[ROW][C]101[/C][C] 10[/C][C] 12.37[/C][C]-2.374[/C][/ROW]
[ROW][C]102[/C][C] 12[/C][C] 11.58[/C][C] 0.4183[/C][/ROW]
[ROW][C]103[/C][C] 13[/C][C] 12[/C][C] 1.001[/C][/ROW]
[ROW][C]104[/C][C] 12[/C][C] 11.88[/C][C] 0.1242[/C][/ROW]
[ROW][C]105[/C][C] 13[/C][C] 12.18[/C][C] 0.8246[/C][/ROW]
[ROW][C]106[/C][C] 12[/C][C] 12.2[/C][C]-0.2004[/C][/ROW]
[ROW][C]107[/C][C] 12[/C][C] 12.32[/C][C]-0.3211[/C][/ROW]
[ROW][C]108[/C][C] 12[/C][C] 12.5[/C][C]-0.4973[/C][/ROW]
[ROW][C]109[/C][C] 11[/C][C] 11.78[/C][C]-0.7828[/C][/ROW]
[ROW][C]110[/C][C] 12[/C][C] 11.86[/C][C] 0.1366[/C][/ROW]
[ROW][C]111[/C][C] 9[/C][C] 11.9[/C][C]-2.904[/C][/ROW]
[ROW][C]112[/C][C] 14[/C][C] 12.28[/C][C] 1.719[/C][/ROW]
[ROW][C]113[/C][C] 12[/C][C] 11.69[/C][C] 0.31[/C][/ROW]
[ROW][C]114[/C][C] 13[/C][C] 12.75[/C][C] 0.2488[/C][/ROW]
[ROW][C]115[/C][C] 13[/C][C] 13.1[/C][C]-0.1009[/C][/ROW]
[ROW][C]116[/C][C] 13[/C][C] 11.31[/C][C] 1.687[/C][/ROW]
[ROW][C]117[/C][C] 11[/C][C] 12.2[/C][C]-1.2[/C][/ROW]
[ROW][C]118[/C][C] 12[/C][C] 12.1[/C][C]-0.1047[/C][/ROW]
[ROW][C]119[/C][C] 11[/C][C] 11.9[/C][C]-0.9037[/C][/ROW]
[ROW][C]120[/C][C] 12[/C][C] 12.38[/C][C]-0.3766[/C][/ROW]
[ROW][C]121[/C][C] 12[/C][C] 11.96[/C][C] 0.04098[/C][/ROW]
[ROW][C]122[/C][C] 13[/C][C] 11.63[/C][C] 1.366[/C][/ROW]
[ROW][C]123[/C][C] 12[/C][C] 12.9[/C][C]-0.8996[/C][/ROW]
[ROW][C]124[/C][C] 13[/C][C] 12.35[/C][C] 0.6512[/C][/ROW]
[ROW][C]125[/C][C] 13[/C][C] 11.78[/C][C] 1.217[/C][/ROW]
[ROW][C]126[/C][C] 12[/C][C] 11.49[/C][C] 0.5139[/C][/ROW]
[ROW][C]127[/C][C] 12[/C][C] 11.96[/C][C] 0.04098[/C][/ROW]
[ROW][C]128[/C][C] 8[/C][C] 11.96[/C][C]-3.956[/C][/ROW]
[ROW][C]129[/C][C] 12[/C][C] 12.32[/C][C]-0.3211[/C][/ROW]
[ROW][C]130[/C][C] 13[/C][C] 11.58[/C][C] 1.418[/C][/ROW]
[ROW][C]131[/C][C] 10[/C][C] 12.36[/C][C]-2.361[/C][/ROW]
[ROW][C]132[/C][C] 8[/C][C] 11.61[/C][C]-3.609[/C][/ROW]
[ROW][C]133[/C][C] 12[/C][C] 12.2[/C][C]-0.2004[/C][/ROW]
[ROW][C]134[/C][C] 13[/C][C] 12.82[/C][C] 0.1809[/C][/ROW]
[ROW][C]135[/C][C] 12[/C][C] 12.55[/C][C]-0.5472[/C][/ROW]
[ROW][C]136[/C][C] 15[/C][C] 13.1[/C][C] 1.896[/C][/ROW]
[ROW][C]137[/C][C] 14[/C][C] 12.31[/C][C] 1.694[/C][/ROW]
[ROW][C]138[/C][C] 10[/C][C] 11.84[/C][C]-1.838[/C][/ROW]
[ROW][C]139[/C][C] 11[/C][C] 12.35[/C][C]-1.349[/C][/ROW]
[ROW][C]140[/C][C] 12[/C][C] 11.82[/C][C] 0.1769[/C][/ROW]
[ROW][C]141[/C][C] 10[/C][C] 12.73[/C][C]-2.726[/C][/ROW]
[ROW][C]142[/C][C] 14[/C][C] 12.55[/C][C] 1.45[/C][/ROW]
[ROW][C]143[/C][C] 10[/C][C] 12.17[/C][C]-2.173[/C][/ROW]
[ROW][C]144[/C][C] 15[/C][C] 12.17[/C][C] 2.827[/C][/ROW]
[ROW][C]145[/C][C] 11[/C][C] 11.94[/C][C]-0.9408[/C][/ROW]
[ROW][C]146[/C][C] 12[/C][C] 12.17[/C][C]-0.1727[/C][/ROW]
[ROW][C]147[/C][C] 9[/C][C] 11.96[/C][C]-2.959[/C][/ROW]
[ROW][C]148[/C][C] 12[/C][C] 12.32[/C][C]-0.3211[/C][/ROW]
[ROW][C]149[/C][C] 13[/C][C] 11.99[/C][C] 1.013[/C][/ROW]
[ROW][C]150[/C][C] 12[/C][C] 12.63[/C][C]-0.6306[/C][/ROW]
[ROW][C]151[/C][C] 9[/C][C] 11.64[/C][C]-2.637[/C][/ROW]
[ROW][C]152[/C][C] 12[/C][C] 11.96[/C][C] 0.04098[/C][/ROW]
[ROW][C]153[/C][C] 14[/C][C] 12.05[/C][C] 1.948[/C][/ROW]
[ROW][C]154[/C][C] 11[/C][C] 11.9[/C][C]-0.9037[/C][/ROW]
[ROW][C]155[/C][C] 12[/C][C] 11.81[/C][C] 0.1894[/C][/ROW]
[ROW][C]156[/C][C] 14[/C][C] 12.17[/C][C] 1.827[/C][/ROW]
[ROW][C]157[/C][C] 12[/C][C] 12.72[/C][C]-0.7234[/C][/ROW]
[ROW][C]158[/C][C] 15[/C][C] 12.4[/C][C] 2.598[/C][/ROW]
[ROW][C]159[/C][C] 11[/C][C] 12.25[/C][C]-1.253[/C][/ROW]
[ROW][C]160[/C][C] 12[/C][C] 11.81[/C][C] 0.1894[/C][/ROW]
[ROW][C]161[/C][C] 12[/C][C] 12.05[/C][C]-0.05203[/C][/ROW]
[ROW][C]162[/C][C] 10[/C][C] 11.84[/C][C]-1.838[/C][/ROW]
[ROW][C]163[/C][C] 12[/C][C] 11.93[/C][C] 0.06866[/C][/ROW]
[ROW][C]164[/C][C] 11[/C][C] 12.28[/C][C]-1.281[/C][/ROW]
[ROW][C]165[/C][C] 11[/C][C] 12.1[/C][C]-1.105[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298625&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298625&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 10 12.51-2.51
2 13 11.51 1.486
3 14 12.11 1.893
4 12 12.08-0.07972
5 12 12.23-0.2254
6 13 11.96 1.041
7 13 13.25-0.2492
8 13 12.11 0.8926
9 13 12.23 0.7747
10 14 12.05 1.948
11 14 12.36 1.639
12 12 11.49 0.5139
13 12 12.14-0.1449
14 11 11.85-0.8508
15 12 11.96 0.04098
16 14 13.28 0.7231
17 12 12.42-0.417
18 11 11.78-0.783
19 13 11.85 1.149
20 13 11.97 1.029
21 12 12.32-0.3211
22 13 13.04-0.03554
23 12 12.05-0.05203
24 13 12.66 0.3418
25 11 12.05-1.052
26 12 11.53 0.4738
27 12 12.1-0.1047
28 13 12.18 0.8246
29 13 12.31 0.6914
30 10 11.61-1.609
31 12 12.75-0.7512
32 13 12.86 0.1405
33 13 11.82 1.18
34 10 11.63-1.634
35 14 12.05 1.948
36 12 12.28-0.2809
37 10 12.05-2.055
38 10 12.05-2.052
39 14 12.51 1.49
40 12 11.93 0.06866
41 14 12.48 1.518
42 10 12.4-2.402
43 13 12.74 0.2611
44 12 12.31-0.3086
45 12 12.25-0.2531
46 13 12.1 0.8953
47 12 12.38-0.3766
48 10 12.2-2.2
49 14 12.2 1.8
50 15 12.2 2.8
51 14 12.75 1.249
52 8 11.31-3.313
53 11 12.13-1.132
54 10 12.04-2.04
55 12 11.76 0.2449
56 14 12.05 1.948
57 12 11.73 0.2727
58 12 12.43-0.4293
59 14 11.81 2.189
60 13 12.08 0.9203
61 13 11.93 1.069
62 13 11.9 1.096
63 12 11.76 0.2449
64 10 12.51-2.51
65 14 11.88 2.124
66 11 12.32-1.321
67 10 12.05-2.052
68 13 12.08 0.9203
69 12 11.81 0.1894
70 12 11.11 0.8912
71 11 12.37-1.374
72 10 12.4-2.399
73 14 11.9 2.096
74 12 12 0.0006782
75 13 12.05 0.948
76 11 12.03-1.027
77 10 11.65-1.647
78 14 12.63 1.369
79 13 11.96 1.041
80 7 11.9-4.904
81 13 11.9 1.096
82 13 12.43 0.5705
83 13 11.81 1.189
84 15 12.66 2.342
85 13 11.34 1.66
86 14 12.58 1.422
87 12 11.67 0.3282
88 13 12.9 0.1004
89 11 12.05-1.052
90 12 12.25-0.2531
91 14 12.4 1.598
92 13 12.35 0.6512
93 14 12.02 1.976
94 12 11.78 0.2172
95 12 12.4-0.4016
96 13 12.38 0.6234
97 14 11.57 2.433
98 13 12.55 0.45
99 13 12.08 0.9203
100 12 12.61-0.6055
101 10 12.37-2.374
102 12 11.58 0.4183
103 13 12 1.001
104 12 11.88 0.1242
105 13 12.18 0.8246
106 12 12.2-0.2004
107 12 12.32-0.3211
108 12 12.5-0.4973
109 11 11.78-0.7828
110 12 11.86 0.1366
111 9 11.9-2.904
112 14 12.28 1.719
113 12 11.69 0.31
114 13 12.75 0.2488
115 13 13.1-0.1009
116 13 11.31 1.687
117 11 12.2-1.2
118 12 12.1-0.1047
119 11 11.9-0.9037
120 12 12.38-0.3766
121 12 11.96 0.04098
122 13 11.63 1.366
123 12 12.9-0.8996
124 13 12.35 0.6512
125 13 11.78 1.217
126 12 11.49 0.5139
127 12 11.96 0.04098
128 8 11.96-3.956
129 12 12.32-0.3211
130 13 11.58 1.418
131 10 12.36-2.361
132 8 11.61-3.609
133 12 12.2-0.2004
134 13 12.82 0.1809
135 12 12.55-0.5472
136 15 13.1 1.896
137 14 12.31 1.694
138 10 11.84-1.838
139 11 12.35-1.349
140 12 11.82 0.1769
141 10 12.73-2.726
142 14 12.55 1.45
143 10 12.17-2.173
144 15 12.17 2.827
145 11 11.94-0.9408
146 12 12.17-0.1727
147 9 11.96-2.959
148 12 12.32-0.3211
149 13 11.99 1.013
150 12 12.63-0.6306
151 9 11.64-2.637
152 12 11.96 0.04098
153 14 12.05 1.948
154 11 11.9-0.9037
155 12 11.81 0.1894
156 14 12.17 1.827
157 12 12.72-0.7234
158 15 12.4 2.598
159 11 12.25-1.253
160 12 11.81 0.1894
161 12 12.05-0.05203
162 10 11.84-1.838
163 12 11.93 0.06866
164 11 12.28-1.281
165 11 12.1-1.105







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
8 0.615 0.7699 0.385
9 0.4858 0.9717 0.5142
10 0.3598 0.7195 0.6402
11 0.553 0.8939 0.447
12 0.4518 0.9036 0.5482
13 0.3896 0.7791 0.6104
14 0.4432 0.8864 0.5568
15 0.3685 0.7371 0.6315
16 0.3198 0.6396 0.6802
17 0.2731 0.5462 0.7269
18 0.2546 0.5091 0.7454
19 0.2036 0.4073 0.7964
20 0.1564 0.3128 0.8436
21 0.1214 0.2428 0.8786
22 0.0859 0.1718 0.9141
23 0.06082 0.1216 0.9392
24 0.0412 0.0824 0.9588
25 0.04141 0.08281 0.9586
26 0.02759 0.05518 0.9724
27 0.01821 0.03642 0.9818
28 0.01187 0.02374 0.9881
29 0.007624 0.01525 0.9924
30 0.02051 0.04101 0.9795
31 0.01532 0.03064 0.9847
32 0.01008 0.02017 0.9899
33 0.007548 0.0151 0.9925
34 0.013 0.02601 0.987
35 0.01813 0.03625 0.9819
36 0.01273 0.02545 0.9873
37 0.02627 0.05254 0.9737
38 0.04453 0.08905 0.9555
39 0.04621 0.09241 0.9538
40 0.03381 0.06762 0.9662
41 0.03227 0.06454 0.9677
42 0.06022 0.1204 0.9398
43 0.04655 0.0931 0.9534
44 0.0357 0.07139 0.9643
45 0.02728 0.05456 0.9727
46 0.02154 0.04309 0.9785
47 0.01557 0.03114 0.9844
48 0.0251 0.0502 0.9749
49 0.03241 0.06483 0.9676
50 0.07316 0.1463 0.9268
51 0.06834 0.1367 0.9317
52 0.1657 0.3314 0.8343
53 0.1589 0.3179 0.8411
54 0.1799 0.3599 0.8201
55 0.1499 0.2999 0.8501
56 0.1722 0.3443 0.8278
57 0.1432 0.2864 0.8568
58 0.1204 0.2408 0.8796
59 0.1666 0.3331 0.8335
60 0.1487 0.2975 0.8513
61 0.1351 0.2701 0.8649
62 0.123 0.2459 0.877
63 0.1006 0.2012 0.8994
64 0.1507 0.3015 0.8493
65 0.1748 0.3497 0.8252
66 0.1795 0.3589 0.8205
67 0.2157 0.4314 0.7843
68 0.1955 0.3909 0.8045
69 0.1657 0.3315 0.8343
70 0.1478 0.2955 0.8522
71 0.1522 0.3044 0.8478
72 0.2137 0.4274 0.7863
73 0.2501 0.5001 0.7499
74 0.2154 0.4309 0.7846
75 0.1959 0.3918 0.8041
76 0.1806 0.3612 0.8194
77 0.1911 0.3823 0.8089
78 0.1857 0.3714 0.8143
79 0.1708 0.3416 0.8292
80 0.5751 0.8499 0.4249
81 0.5548 0.8905 0.4452
82 0.5162 0.9676 0.4838
83 0.4998 0.9996 0.5002
84 0.5709 0.8581 0.4291
85 0.5825 0.8349 0.4175
86 0.5833 0.8333 0.4167
87 0.5398 0.9204 0.4602
88 0.4952 0.9904 0.5048
89 0.4733 0.9466 0.5267
90 0.4295 0.8591 0.5705
91 0.4395 0.879 0.5605
92 0.4046 0.8092 0.5954
93 0.4408 0.8816 0.5592
94 0.399 0.7979 0.601
95 0.3579 0.7158 0.6421
96 0.3244 0.6487 0.6756
97 0.4124 0.8249 0.5876
98 0.3739 0.7478 0.6261
99 0.3511 0.7022 0.6489
100 0.3143 0.6287 0.6857
101 0.3757 0.7514 0.6243
102 0.3372 0.6745 0.6628
103 0.3157 0.6314 0.6843
104 0.2758 0.5517 0.7242
105 0.2527 0.5054 0.7473
106 0.2169 0.4338 0.7831
107 0.1845 0.3691 0.8155
108 0.1567 0.3134 0.8433
109 0.1362 0.2724 0.8638
110 0.1149 0.2298 0.8851
111 0.1851 0.3701 0.8149
112 0.205 0.41 0.795
113 0.1808 0.3616 0.8192
114 0.1525 0.3051 0.8475
115 0.1257 0.2514 0.8743
116 0.1479 0.2958 0.8521
117 0.136 0.2721 0.864
118 0.1112 0.2224 0.8888
119 0.09432 0.1886 0.9057
120 0.07553 0.151 0.9245
121 0.06092 0.1218 0.9391
122 0.06831 0.1366 0.9317
123 0.05775 0.1155 0.9422
124 0.04629 0.09258 0.9537
125 0.05079 0.1016 0.9492
126 0.05058 0.1012 0.9494
127 0.04127 0.08255 0.9587
128 0.1206 0.2412 0.8794
129 0.09696 0.1939 0.903
130 0.126 0.252 0.874
131 0.1587 0.3175 0.8413
132 0.2589 0.5178 0.7411
133 0.2138 0.4277 0.7862
134 0.1741 0.3482 0.8259
135 0.1519 0.3038 0.8481
136 0.1853 0.3705 0.8147
137 0.1915 0.3829 0.8085
138 0.1728 0.3457 0.8272
139 0.1601 0.3203 0.8399
140 0.1236 0.2473 0.8764
141 0.2787 0.5575 0.7212
142 0.2401 0.4801 0.7599
143 0.3588 0.7175 0.6412
144 0.4757 0.9513 0.5243
145 0.4307 0.8615 0.5693
146 0.3752 0.7505 0.6248
147 0.5609 0.8782 0.4391
148 0.6034 0.7933 0.3966
149 0.7173 0.5653 0.2827
150 0.6321 0.7359 0.3679
151 0.7973 0.4055 0.2027
152 0.7193 0.5613 0.2807
153 0.7052 0.5897 0.2948
154 0.9567 0.08666 0.04333
155 0.9485 0.103 0.05151
156 0.9154 0.1692 0.08458
157 0.8839 0.2323 0.1161

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
8 &  0.615 &  0.7699 &  0.385 \tabularnewline
9 &  0.4858 &  0.9717 &  0.5142 \tabularnewline
10 &  0.3598 &  0.7195 &  0.6402 \tabularnewline
11 &  0.553 &  0.8939 &  0.447 \tabularnewline
12 &  0.4518 &  0.9036 &  0.5482 \tabularnewline
13 &  0.3896 &  0.7791 &  0.6104 \tabularnewline
14 &  0.4432 &  0.8864 &  0.5568 \tabularnewline
15 &  0.3685 &  0.7371 &  0.6315 \tabularnewline
16 &  0.3198 &  0.6396 &  0.6802 \tabularnewline
17 &  0.2731 &  0.5462 &  0.7269 \tabularnewline
18 &  0.2546 &  0.5091 &  0.7454 \tabularnewline
19 &  0.2036 &  0.4073 &  0.7964 \tabularnewline
20 &  0.1564 &  0.3128 &  0.8436 \tabularnewline
21 &  0.1214 &  0.2428 &  0.8786 \tabularnewline
22 &  0.0859 &  0.1718 &  0.9141 \tabularnewline
23 &  0.06082 &  0.1216 &  0.9392 \tabularnewline
24 &  0.0412 &  0.0824 &  0.9588 \tabularnewline
25 &  0.04141 &  0.08281 &  0.9586 \tabularnewline
26 &  0.02759 &  0.05518 &  0.9724 \tabularnewline
27 &  0.01821 &  0.03642 &  0.9818 \tabularnewline
28 &  0.01187 &  0.02374 &  0.9881 \tabularnewline
29 &  0.007624 &  0.01525 &  0.9924 \tabularnewline
30 &  0.02051 &  0.04101 &  0.9795 \tabularnewline
31 &  0.01532 &  0.03064 &  0.9847 \tabularnewline
32 &  0.01008 &  0.02017 &  0.9899 \tabularnewline
33 &  0.007548 &  0.0151 &  0.9925 \tabularnewline
34 &  0.013 &  0.02601 &  0.987 \tabularnewline
35 &  0.01813 &  0.03625 &  0.9819 \tabularnewline
36 &  0.01273 &  0.02545 &  0.9873 \tabularnewline
37 &  0.02627 &  0.05254 &  0.9737 \tabularnewline
38 &  0.04453 &  0.08905 &  0.9555 \tabularnewline
39 &  0.04621 &  0.09241 &  0.9538 \tabularnewline
40 &  0.03381 &  0.06762 &  0.9662 \tabularnewline
41 &  0.03227 &  0.06454 &  0.9677 \tabularnewline
42 &  0.06022 &  0.1204 &  0.9398 \tabularnewline
43 &  0.04655 &  0.0931 &  0.9534 \tabularnewline
44 &  0.0357 &  0.07139 &  0.9643 \tabularnewline
45 &  0.02728 &  0.05456 &  0.9727 \tabularnewline
46 &  0.02154 &  0.04309 &  0.9785 \tabularnewline
47 &  0.01557 &  0.03114 &  0.9844 \tabularnewline
48 &  0.0251 &  0.0502 &  0.9749 \tabularnewline
49 &  0.03241 &  0.06483 &  0.9676 \tabularnewline
50 &  0.07316 &  0.1463 &  0.9268 \tabularnewline
51 &  0.06834 &  0.1367 &  0.9317 \tabularnewline
52 &  0.1657 &  0.3314 &  0.8343 \tabularnewline
53 &  0.1589 &  0.3179 &  0.8411 \tabularnewline
54 &  0.1799 &  0.3599 &  0.8201 \tabularnewline
55 &  0.1499 &  0.2999 &  0.8501 \tabularnewline
56 &  0.1722 &  0.3443 &  0.8278 \tabularnewline
57 &  0.1432 &  0.2864 &  0.8568 \tabularnewline
58 &  0.1204 &  0.2408 &  0.8796 \tabularnewline
59 &  0.1666 &  0.3331 &  0.8335 \tabularnewline
60 &  0.1487 &  0.2975 &  0.8513 \tabularnewline
61 &  0.1351 &  0.2701 &  0.8649 \tabularnewline
62 &  0.123 &  0.2459 &  0.877 \tabularnewline
63 &  0.1006 &  0.2012 &  0.8994 \tabularnewline
64 &  0.1507 &  0.3015 &  0.8493 \tabularnewline
65 &  0.1748 &  0.3497 &  0.8252 \tabularnewline
66 &  0.1795 &  0.3589 &  0.8205 \tabularnewline
67 &  0.2157 &  0.4314 &  0.7843 \tabularnewline
68 &  0.1955 &  0.3909 &  0.8045 \tabularnewline
69 &  0.1657 &  0.3315 &  0.8343 \tabularnewline
70 &  0.1478 &  0.2955 &  0.8522 \tabularnewline
71 &  0.1522 &  0.3044 &  0.8478 \tabularnewline
72 &  0.2137 &  0.4274 &  0.7863 \tabularnewline
73 &  0.2501 &  0.5001 &  0.7499 \tabularnewline
74 &  0.2154 &  0.4309 &  0.7846 \tabularnewline
75 &  0.1959 &  0.3918 &  0.8041 \tabularnewline
76 &  0.1806 &  0.3612 &  0.8194 \tabularnewline
77 &  0.1911 &  0.3823 &  0.8089 \tabularnewline
78 &  0.1857 &  0.3714 &  0.8143 \tabularnewline
79 &  0.1708 &  0.3416 &  0.8292 \tabularnewline
80 &  0.5751 &  0.8499 &  0.4249 \tabularnewline
81 &  0.5548 &  0.8905 &  0.4452 \tabularnewline
82 &  0.5162 &  0.9676 &  0.4838 \tabularnewline
83 &  0.4998 &  0.9996 &  0.5002 \tabularnewline
84 &  0.5709 &  0.8581 &  0.4291 \tabularnewline
85 &  0.5825 &  0.8349 &  0.4175 \tabularnewline
86 &  0.5833 &  0.8333 &  0.4167 \tabularnewline
87 &  0.5398 &  0.9204 &  0.4602 \tabularnewline
88 &  0.4952 &  0.9904 &  0.5048 \tabularnewline
89 &  0.4733 &  0.9466 &  0.5267 \tabularnewline
90 &  0.4295 &  0.8591 &  0.5705 \tabularnewline
91 &  0.4395 &  0.879 &  0.5605 \tabularnewline
92 &  0.4046 &  0.8092 &  0.5954 \tabularnewline
93 &  0.4408 &  0.8816 &  0.5592 \tabularnewline
94 &  0.399 &  0.7979 &  0.601 \tabularnewline
95 &  0.3579 &  0.7158 &  0.6421 \tabularnewline
96 &  0.3244 &  0.6487 &  0.6756 \tabularnewline
97 &  0.4124 &  0.8249 &  0.5876 \tabularnewline
98 &  0.3739 &  0.7478 &  0.6261 \tabularnewline
99 &  0.3511 &  0.7022 &  0.6489 \tabularnewline
100 &  0.3143 &  0.6287 &  0.6857 \tabularnewline
101 &  0.3757 &  0.7514 &  0.6243 \tabularnewline
102 &  0.3372 &  0.6745 &  0.6628 \tabularnewline
103 &  0.3157 &  0.6314 &  0.6843 \tabularnewline
104 &  0.2758 &  0.5517 &  0.7242 \tabularnewline
105 &  0.2527 &  0.5054 &  0.7473 \tabularnewline
106 &  0.2169 &  0.4338 &  0.7831 \tabularnewline
107 &  0.1845 &  0.3691 &  0.8155 \tabularnewline
108 &  0.1567 &  0.3134 &  0.8433 \tabularnewline
109 &  0.1362 &  0.2724 &  0.8638 \tabularnewline
110 &  0.1149 &  0.2298 &  0.8851 \tabularnewline
111 &  0.1851 &  0.3701 &  0.8149 \tabularnewline
112 &  0.205 &  0.41 &  0.795 \tabularnewline
113 &  0.1808 &  0.3616 &  0.8192 \tabularnewline
114 &  0.1525 &  0.3051 &  0.8475 \tabularnewline
115 &  0.1257 &  0.2514 &  0.8743 \tabularnewline
116 &  0.1479 &  0.2958 &  0.8521 \tabularnewline
117 &  0.136 &  0.2721 &  0.864 \tabularnewline
118 &  0.1112 &  0.2224 &  0.8888 \tabularnewline
119 &  0.09432 &  0.1886 &  0.9057 \tabularnewline
120 &  0.07553 &  0.151 &  0.9245 \tabularnewline
121 &  0.06092 &  0.1218 &  0.9391 \tabularnewline
122 &  0.06831 &  0.1366 &  0.9317 \tabularnewline
123 &  0.05775 &  0.1155 &  0.9422 \tabularnewline
124 &  0.04629 &  0.09258 &  0.9537 \tabularnewline
125 &  0.05079 &  0.1016 &  0.9492 \tabularnewline
126 &  0.05058 &  0.1012 &  0.9494 \tabularnewline
127 &  0.04127 &  0.08255 &  0.9587 \tabularnewline
128 &  0.1206 &  0.2412 &  0.8794 \tabularnewline
129 &  0.09696 &  0.1939 &  0.903 \tabularnewline
130 &  0.126 &  0.252 &  0.874 \tabularnewline
131 &  0.1587 &  0.3175 &  0.8413 \tabularnewline
132 &  0.2589 &  0.5178 &  0.7411 \tabularnewline
133 &  0.2138 &  0.4277 &  0.7862 \tabularnewline
134 &  0.1741 &  0.3482 &  0.8259 \tabularnewline
135 &  0.1519 &  0.3038 &  0.8481 \tabularnewline
136 &  0.1853 &  0.3705 &  0.8147 \tabularnewline
137 &  0.1915 &  0.3829 &  0.8085 \tabularnewline
138 &  0.1728 &  0.3457 &  0.8272 \tabularnewline
139 &  0.1601 &  0.3203 &  0.8399 \tabularnewline
140 &  0.1236 &  0.2473 &  0.8764 \tabularnewline
141 &  0.2787 &  0.5575 &  0.7212 \tabularnewline
142 &  0.2401 &  0.4801 &  0.7599 \tabularnewline
143 &  0.3588 &  0.7175 &  0.6412 \tabularnewline
144 &  0.4757 &  0.9513 &  0.5243 \tabularnewline
145 &  0.4307 &  0.8615 &  0.5693 \tabularnewline
146 &  0.3752 &  0.7505 &  0.6248 \tabularnewline
147 &  0.5609 &  0.8782 &  0.4391 \tabularnewline
148 &  0.6034 &  0.7933 &  0.3966 \tabularnewline
149 &  0.7173 &  0.5653 &  0.2827 \tabularnewline
150 &  0.6321 &  0.7359 &  0.3679 \tabularnewline
151 &  0.7973 &  0.4055 &  0.2027 \tabularnewline
152 &  0.7193 &  0.5613 &  0.2807 \tabularnewline
153 &  0.7052 &  0.5897 &  0.2948 \tabularnewline
154 &  0.9567 &  0.08666 &  0.04333 \tabularnewline
155 &  0.9485 &  0.103 &  0.05151 \tabularnewline
156 &  0.9154 &  0.1692 &  0.08458 \tabularnewline
157 &  0.8839 &  0.2323 &  0.1161 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298625&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]8[/C][C] 0.615[/C][C] 0.7699[/C][C] 0.385[/C][/ROW]
[ROW][C]9[/C][C] 0.4858[/C][C] 0.9717[/C][C] 0.5142[/C][/ROW]
[ROW][C]10[/C][C] 0.3598[/C][C] 0.7195[/C][C] 0.6402[/C][/ROW]
[ROW][C]11[/C][C] 0.553[/C][C] 0.8939[/C][C] 0.447[/C][/ROW]
[ROW][C]12[/C][C] 0.4518[/C][C] 0.9036[/C][C] 0.5482[/C][/ROW]
[ROW][C]13[/C][C] 0.3896[/C][C] 0.7791[/C][C] 0.6104[/C][/ROW]
[ROW][C]14[/C][C] 0.4432[/C][C] 0.8864[/C][C] 0.5568[/C][/ROW]
[ROW][C]15[/C][C] 0.3685[/C][C] 0.7371[/C][C] 0.6315[/C][/ROW]
[ROW][C]16[/C][C] 0.3198[/C][C] 0.6396[/C][C] 0.6802[/C][/ROW]
[ROW][C]17[/C][C] 0.2731[/C][C] 0.5462[/C][C] 0.7269[/C][/ROW]
[ROW][C]18[/C][C] 0.2546[/C][C] 0.5091[/C][C] 0.7454[/C][/ROW]
[ROW][C]19[/C][C] 0.2036[/C][C] 0.4073[/C][C] 0.7964[/C][/ROW]
[ROW][C]20[/C][C] 0.1564[/C][C] 0.3128[/C][C] 0.8436[/C][/ROW]
[ROW][C]21[/C][C] 0.1214[/C][C] 0.2428[/C][C] 0.8786[/C][/ROW]
[ROW][C]22[/C][C] 0.0859[/C][C] 0.1718[/C][C] 0.9141[/C][/ROW]
[ROW][C]23[/C][C] 0.06082[/C][C] 0.1216[/C][C] 0.9392[/C][/ROW]
[ROW][C]24[/C][C] 0.0412[/C][C] 0.0824[/C][C] 0.9588[/C][/ROW]
[ROW][C]25[/C][C] 0.04141[/C][C] 0.08281[/C][C] 0.9586[/C][/ROW]
[ROW][C]26[/C][C] 0.02759[/C][C] 0.05518[/C][C] 0.9724[/C][/ROW]
[ROW][C]27[/C][C] 0.01821[/C][C] 0.03642[/C][C] 0.9818[/C][/ROW]
[ROW][C]28[/C][C] 0.01187[/C][C] 0.02374[/C][C] 0.9881[/C][/ROW]
[ROW][C]29[/C][C] 0.007624[/C][C] 0.01525[/C][C] 0.9924[/C][/ROW]
[ROW][C]30[/C][C] 0.02051[/C][C] 0.04101[/C][C] 0.9795[/C][/ROW]
[ROW][C]31[/C][C] 0.01532[/C][C] 0.03064[/C][C] 0.9847[/C][/ROW]
[ROW][C]32[/C][C] 0.01008[/C][C] 0.02017[/C][C] 0.9899[/C][/ROW]
[ROW][C]33[/C][C] 0.007548[/C][C] 0.0151[/C][C] 0.9925[/C][/ROW]
[ROW][C]34[/C][C] 0.013[/C][C] 0.02601[/C][C] 0.987[/C][/ROW]
[ROW][C]35[/C][C] 0.01813[/C][C] 0.03625[/C][C] 0.9819[/C][/ROW]
[ROW][C]36[/C][C] 0.01273[/C][C] 0.02545[/C][C] 0.9873[/C][/ROW]
[ROW][C]37[/C][C] 0.02627[/C][C] 0.05254[/C][C] 0.9737[/C][/ROW]
[ROW][C]38[/C][C] 0.04453[/C][C] 0.08905[/C][C] 0.9555[/C][/ROW]
[ROW][C]39[/C][C] 0.04621[/C][C] 0.09241[/C][C] 0.9538[/C][/ROW]
[ROW][C]40[/C][C] 0.03381[/C][C] 0.06762[/C][C] 0.9662[/C][/ROW]
[ROW][C]41[/C][C] 0.03227[/C][C] 0.06454[/C][C] 0.9677[/C][/ROW]
[ROW][C]42[/C][C] 0.06022[/C][C] 0.1204[/C][C] 0.9398[/C][/ROW]
[ROW][C]43[/C][C] 0.04655[/C][C] 0.0931[/C][C] 0.9534[/C][/ROW]
[ROW][C]44[/C][C] 0.0357[/C][C] 0.07139[/C][C] 0.9643[/C][/ROW]
[ROW][C]45[/C][C] 0.02728[/C][C] 0.05456[/C][C] 0.9727[/C][/ROW]
[ROW][C]46[/C][C] 0.02154[/C][C] 0.04309[/C][C] 0.9785[/C][/ROW]
[ROW][C]47[/C][C] 0.01557[/C][C] 0.03114[/C][C] 0.9844[/C][/ROW]
[ROW][C]48[/C][C] 0.0251[/C][C] 0.0502[/C][C] 0.9749[/C][/ROW]
[ROW][C]49[/C][C] 0.03241[/C][C] 0.06483[/C][C] 0.9676[/C][/ROW]
[ROW][C]50[/C][C] 0.07316[/C][C] 0.1463[/C][C] 0.9268[/C][/ROW]
[ROW][C]51[/C][C] 0.06834[/C][C] 0.1367[/C][C] 0.9317[/C][/ROW]
[ROW][C]52[/C][C] 0.1657[/C][C] 0.3314[/C][C] 0.8343[/C][/ROW]
[ROW][C]53[/C][C] 0.1589[/C][C] 0.3179[/C][C] 0.8411[/C][/ROW]
[ROW][C]54[/C][C] 0.1799[/C][C] 0.3599[/C][C] 0.8201[/C][/ROW]
[ROW][C]55[/C][C] 0.1499[/C][C] 0.2999[/C][C] 0.8501[/C][/ROW]
[ROW][C]56[/C][C] 0.1722[/C][C] 0.3443[/C][C] 0.8278[/C][/ROW]
[ROW][C]57[/C][C] 0.1432[/C][C] 0.2864[/C][C] 0.8568[/C][/ROW]
[ROW][C]58[/C][C] 0.1204[/C][C] 0.2408[/C][C] 0.8796[/C][/ROW]
[ROW][C]59[/C][C] 0.1666[/C][C] 0.3331[/C][C] 0.8335[/C][/ROW]
[ROW][C]60[/C][C] 0.1487[/C][C] 0.2975[/C][C] 0.8513[/C][/ROW]
[ROW][C]61[/C][C] 0.1351[/C][C] 0.2701[/C][C] 0.8649[/C][/ROW]
[ROW][C]62[/C][C] 0.123[/C][C] 0.2459[/C][C] 0.877[/C][/ROW]
[ROW][C]63[/C][C] 0.1006[/C][C] 0.2012[/C][C] 0.8994[/C][/ROW]
[ROW][C]64[/C][C] 0.1507[/C][C] 0.3015[/C][C] 0.8493[/C][/ROW]
[ROW][C]65[/C][C] 0.1748[/C][C] 0.3497[/C][C] 0.8252[/C][/ROW]
[ROW][C]66[/C][C] 0.1795[/C][C] 0.3589[/C][C] 0.8205[/C][/ROW]
[ROW][C]67[/C][C] 0.2157[/C][C] 0.4314[/C][C] 0.7843[/C][/ROW]
[ROW][C]68[/C][C] 0.1955[/C][C] 0.3909[/C][C] 0.8045[/C][/ROW]
[ROW][C]69[/C][C] 0.1657[/C][C] 0.3315[/C][C] 0.8343[/C][/ROW]
[ROW][C]70[/C][C] 0.1478[/C][C] 0.2955[/C][C] 0.8522[/C][/ROW]
[ROW][C]71[/C][C] 0.1522[/C][C] 0.3044[/C][C] 0.8478[/C][/ROW]
[ROW][C]72[/C][C] 0.2137[/C][C] 0.4274[/C][C] 0.7863[/C][/ROW]
[ROW][C]73[/C][C] 0.2501[/C][C] 0.5001[/C][C] 0.7499[/C][/ROW]
[ROW][C]74[/C][C] 0.2154[/C][C] 0.4309[/C][C] 0.7846[/C][/ROW]
[ROW][C]75[/C][C] 0.1959[/C][C] 0.3918[/C][C] 0.8041[/C][/ROW]
[ROW][C]76[/C][C] 0.1806[/C][C] 0.3612[/C][C] 0.8194[/C][/ROW]
[ROW][C]77[/C][C] 0.1911[/C][C] 0.3823[/C][C] 0.8089[/C][/ROW]
[ROW][C]78[/C][C] 0.1857[/C][C] 0.3714[/C][C] 0.8143[/C][/ROW]
[ROW][C]79[/C][C] 0.1708[/C][C] 0.3416[/C][C] 0.8292[/C][/ROW]
[ROW][C]80[/C][C] 0.5751[/C][C] 0.8499[/C][C] 0.4249[/C][/ROW]
[ROW][C]81[/C][C] 0.5548[/C][C] 0.8905[/C][C] 0.4452[/C][/ROW]
[ROW][C]82[/C][C] 0.5162[/C][C] 0.9676[/C][C] 0.4838[/C][/ROW]
[ROW][C]83[/C][C] 0.4998[/C][C] 0.9996[/C][C] 0.5002[/C][/ROW]
[ROW][C]84[/C][C] 0.5709[/C][C] 0.8581[/C][C] 0.4291[/C][/ROW]
[ROW][C]85[/C][C] 0.5825[/C][C] 0.8349[/C][C] 0.4175[/C][/ROW]
[ROW][C]86[/C][C] 0.5833[/C][C] 0.8333[/C][C] 0.4167[/C][/ROW]
[ROW][C]87[/C][C] 0.5398[/C][C] 0.9204[/C][C] 0.4602[/C][/ROW]
[ROW][C]88[/C][C] 0.4952[/C][C] 0.9904[/C][C] 0.5048[/C][/ROW]
[ROW][C]89[/C][C] 0.4733[/C][C] 0.9466[/C][C] 0.5267[/C][/ROW]
[ROW][C]90[/C][C] 0.4295[/C][C] 0.8591[/C][C] 0.5705[/C][/ROW]
[ROW][C]91[/C][C] 0.4395[/C][C] 0.879[/C][C] 0.5605[/C][/ROW]
[ROW][C]92[/C][C] 0.4046[/C][C] 0.8092[/C][C] 0.5954[/C][/ROW]
[ROW][C]93[/C][C] 0.4408[/C][C] 0.8816[/C][C] 0.5592[/C][/ROW]
[ROW][C]94[/C][C] 0.399[/C][C] 0.7979[/C][C] 0.601[/C][/ROW]
[ROW][C]95[/C][C] 0.3579[/C][C] 0.7158[/C][C] 0.6421[/C][/ROW]
[ROW][C]96[/C][C] 0.3244[/C][C] 0.6487[/C][C] 0.6756[/C][/ROW]
[ROW][C]97[/C][C] 0.4124[/C][C] 0.8249[/C][C] 0.5876[/C][/ROW]
[ROW][C]98[/C][C] 0.3739[/C][C] 0.7478[/C][C] 0.6261[/C][/ROW]
[ROW][C]99[/C][C] 0.3511[/C][C] 0.7022[/C][C] 0.6489[/C][/ROW]
[ROW][C]100[/C][C] 0.3143[/C][C] 0.6287[/C][C] 0.6857[/C][/ROW]
[ROW][C]101[/C][C] 0.3757[/C][C] 0.7514[/C][C] 0.6243[/C][/ROW]
[ROW][C]102[/C][C] 0.3372[/C][C] 0.6745[/C][C] 0.6628[/C][/ROW]
[ROW][C]103[/C][C] 0.3157[/C][C] 0.6314[/C][C] 0.6843[/C][/ROW]
[ROW][C]104[/C][C] 0.2758[/C][C] 0.5517[/C][C] 0.7242[/C][/ROW]
[ROW][C]105[/C][C] 0.2527[/C][C] 0.5054[/C][C] 0.7473[/C][/ROW]
[ROW][C]106[/C][C] 0.2169[/C][C] 0.4338[/C][C] 0.7831[/C][/ROW]
[ROW][C]107[/C][C] 0.1845[/C][C] 0.3691[/C][C] 0.8155[/C][/ROW]
[ROW][C]108[/C][C] 0.1567[/C][C] 0.3134[/C][C] 0.8433[/C][/ROW]
[ROW][C]109[/C][C] 0.1362[/C][C] 0.2724[/C][C] 0.8638[/C][/ROW]
[ROW][C]110[/C][C] 0.1149[/C][C] 0.2298[/C][C] 0.8851[/C][/ROW]
[ROW][C]111[/C][C] 0.1851[/C][C] 0.3701[/C][C] 0.8149[/C][/ROW]
[ROW][C]112[/C][C] 0.205[/C][C] 0.41[/C][C] 0.795[/C][/ROW]
[ROW][C]113[/C][C] 0.1808[/C][C] 0.3616[/C][C] 0.8192[/C][/ROW]
[ROW][C]114[/C][C] 0.1525[/C][C] 0.3051[/C][C] 0.8475[/C][/ROW]
[ROW][C]115[/C][C] 0.1257[/C][C] 0.2514[/C][C] 0.8743[/C][/ROW]
[ROW][C]116[/C][C] 0.1479[/C][C] 0.2958[/C][C] 0.8521[/C][/ROW]
[ROW][C]117[/C][C] 0.136[/C][C] 0.2721[/C][C] 0.864[/C][/ROW]
[ROW][C]118[/C][C] 0.1112[/C][C] 0.2224[/C][C] 0.8888[/C][/ROW]
[ROW][C]119[/C][C] 0.09432[/C][C] 0.1886[/C][C] 0.9057[/C][/ROW]
[ROW][C]120[/C][C] 0.07553[/C][C] 0.151[/C][C] 0.9245[/C][/ROW]
[ROW][C]121[/C][C] 0.06092[/C][C] 0.1218[/C][C] 0.9391[/C][/ROW]
[ROW][C]122[/C][C] 0.06831[/C][C] 0.1366[/C][C] 0.9317[/C][/ROW]
[ROW][C]123[/C][C] 0.05775[/C][C] 0.1155[/C][C] 0.9422[/C][/ROW]
[ROW][C]124[/C][C] 0.04629[/C][C] 0.09258[/C][C] 0.9537[/C][/ROW]
[ROW][C]125[/C][C] 0.05079[/C][C] 0.1016[/C][C] 0.9492[/C][/ROW]
[ROW][C]126[/C][C] 0.05058[/C][C] 0.1012[/C][C] 0.9494[/C][/ROW]
[ROW][C]127[/C][C] 0.04127[/C][C] 0.08255[/C][C] 0.9587[/C][/ROW]
[ROW][C]128[/C][C] 0.1206[/C][C] 0.2412[/C][C] 0.8794[/C][/ROW]
[ROW][C]129[/C][C] 0.09696[/C][C] 0.1939[/C][C] 0.903[/C][/ROW]
[ROW][C]130[/C][C] 0.126[/C][C] 0.252[/C][C] 0.874[/C][/ROW]
[ROW][C]131[/C][C] 0.1587[/C][C] 0.3175[/C][C] 0.8413[/C][/ROW]
[ROW][C]132[/C][C] 0.2589[/C][C] 0.5178[/C][C] 0.7411[/C][/ROW]
[ROW][C]133[/C][C] 0.2138[/C][C] 0.4277[/C][C] 0.7862[/C][/ROW]
[ROW][C]134[/C][C] 0.1741[/C][C] 0.3482[/C][C] 0.8259[/C][/ROW]
[ROW][C]135[/C][C] 0.1519[/C][C] 0.3038[/C][C] 0.8481[/C][/ROW]
[ROW][C]136[/C][C] 0.1853[/C][C] 0.3705[/C][C] 0.8147[/C][/ROW]
[ROW][C]137[/C][C] 0.1915[/C][C] 0.3829[/C][C] 0.8085[/C][/ROW]
[ROW][C]138[/C][C] 0.1728[/C][C] 0.3457[/C][C] 0.8272[/C][/ROW]
[ROW][C]139[/C][C] 0.1601[/C][C] 0.3203[/C][C] 0.8399[/C][/ROW]
[ROW][C]140[/C][C] 0.1236[/C][C] 0.2473[/C][C] 0.8764[/C][/ROW]
[ROW][C]141[/C][C] 0.2787[/C][C] 0.5575[/C][C] 0.7212[/C][/ROW]
[ROW][C]142[/C][C] 0.2401[/C][C] 0.4801[/C][C] 0.7599[/C][/ROW]
[ROW][C]143[/C][C] 0.3588[/C][C] 0.7175[/C][C] 0.6412[/C][/ROW]
[ROW][C]144[/C][C] 0.4757[/C][C] 0.9513[/C][C] 0.5243[/C][/ROW]
[ROW][C]145[/C][C] 0.4307[/C][C] 0.8615[/C][C] 0.5693[/C][/ROW]
[ROW][C]146[/C][C] 0.3752[/C][C] 0.7505[/C][C] 0.6248[/C][/ROW]
[ROW][C]147[/C][C] 0.5609[/C][C] 0.8782[/C][C] 0.4391[/C][/ROW]
[ROW][C]148[/C][C] 0.6034[/C][C] 0.7933[/C][C] 0.3966[/C][/ROW]
[ROW][C]149[/C][C] 0.7173[/C][C] 0.5653[/C][C] 0.2827[/C][/ROW]
[ROW][C]150[/C][C] 0.6321[/C][C] 0.7359[/C][C] 0.3679[/C][/ROW]
[ROW][C]151[/C][C] 0.7973[/C][C] 0.4055[/C][C] 0.2027[/C][/ROW]
[ROW][C]152[/C][C] 0.7193[/C][C] 0.5613[/C][C] 0.2807[/C][/ROW]
[ROW][C]153[/C][C] 0.7052[/C][C] 0.5897[/C][C] 0.2948[/C][/ROW]
[ROW][C]154[/C][C] 0.9567[/C][C] 0.08666[/C][C] 0.04333[/C][/ROW]
[ROW][C]155[/C][C] 0.9485[/C][C] 0.103[/C][C] 0.05151[/C][/ROW]
[ROW][C]156[/C][C] 0.9154[/C][C] 0.1692[/C][C] 0.08458[/C][/ROW]
[ROW][C]157[/C][C] 0.8839[/C][C] 0.2323[/C][C] 0.1161[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298625&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298625&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
8 0.615 0.7699 0.385
9 0.4858 0.9717 0.5142
10 0.3598 0.7195 0.6402
11 0.553 0.8939 0.447
12 0.4518 0.9036 0.5482
13 0.3896 0.7791 0.6104
14 0.4432 0.8864 0.5568
15 0.3685 0.7371 0.6315
16 0.3198 0.6396 0.6802
17 0.2731 0.5462 0.7269
18 0.2546 0.5091 0.7454
19 0.2036 0.4073 0.7964
20 0.1564 0.3128 0.8436
21 0.1214 0.2428 0.8786
22 0.0859 0.1718 0.9141
23 0.06082 0.1216 0.9392
24 0.0412 0.0824 0.9588
25 0.04141 0.08281 0.9586
26 0.02759 0.05518 0.9724
27 0.01821 0.03642 0.9818
28 0.01187 0.02374 0.9881
29 0.007624 0.01525 0.9924
30 0.02051 0.04101 0.9795
31 0.01532 0.03064 0.9847
32 0.01008 0.02017 0.9899
33 0.007548 0.0151 0.9925
34 0.013 0.02601 0.987
35 0.01813 0.03625 0.9819
36 0.01273 0.02545 0.9873
37 0.02627 0.05254 0.9737
38 0.04453 0.08905 0.9555
39 0.04621 0.09241 0.9538
40 0.03381 0.06762 0.9662
41 0.03227 0.06454 0.9677
42 0.06022 0.1204 0.9398
43 0.04655 0.0931 0.9534
44 0.0357 0.07139 0.9643
45 0.02728 0.05456 0.9727
46 0.02154 0.04309 0.9785
47 0.01557 0.03114 0.9844
48 0.0251 0.0502 0.9749
49 0.03241 0.06483 0.9676
50 0.07316 0.1463 0.9268
51 0.06834 0.1367 0.9317
52 0.1657 0.3314 0.8343
53 0.1589 0.3179 0.8411
54 0.1799 0.3599 0.8201
55 0.1499 0.2999 0.8501
56 0.1722 0.3443 0.8278
57 0.1432 0.2864 0.8568
58 0.1204 0.2408 0.8796
59 0.1666 0.3331 0.8335
60 0.1487 0.2975 0.8513
61 0.1351 0.2701 0.8649
62 0.123 0.2459 0.877
63 0.1006 0.2012 0.8994
64 0.1507 0.3015 0.8493
65 0.1748 0.3497 0.8252
66 0.1795 0.3589 0.8205
67 0.2157 0.4314 0.7843
68 0.1955 0.3909 0.8045
69 0.1657 0.3315 0.8343
70 0.1478 0.2955 0.8522
71 0.1522 0.3044 0.8478
72 0.2137 0.4274 0.7863
73 0.2501 0.5001 0.7499
74 0.2154 0.4309 0.7846
75 0.1959 0.3918 0.8041
76 0.1806 0.3612 0.8194
77 0.1911 0.3823 0.8089
78 0.1857 0.3714 0.8143
79 0.1708 0.3416 0.8292
80 0.5751 0.8499 0.4249
81 0.5548 0.8905 0.4452
82 0.5162 0.9676 0.4838
83 0.4998 0.9996 0.5002
84 0.5709 0.8581 0.4291
85 0.5825 0.8349 0.4175
86 0.5833 0.8333 0.4167
87 0.5398 0.9204 0.4602
88 0.4952 0.9904 0.5048
89 0.4733 0.9466 0.5267
90 0.4295 0.8591 0.5705
91 0.4395 0.879 0.5605
92 0.4046 0.8092 0.5954
93 0.4408 0.8816 0.5592
94 0.399 0.7979 0.601
95 0.3579 0.7158 0.6421
96 0.3244 0.6487 0.6756
97 0.4124 0.8249 0.5876
98 0.3739 0.7478 0.6261
99 0.3511 0.7022 0.6489
100 0.3143 0.6287 0.6857
101 0.3757 0.7514 0.6243
102 0.3372 0.6745 0.6628
103 0.3157 0.6314 0.6843
104 0.2758 0.5517 0.7242
105 0.2527 0.5054 0.7473
106 0.2169 0.4338 0.7831
107 0.1845 0.3691 0.8155
108 0.1567 0.3134 0.8433
109 0.1362 0.2724 0.8638
110 0.1149 0.2298 0.8851
111 0.1851 0.3701 0.8149
112 0.205 0.41 0.795
113 0.1808 0.3616 0.8192
114 0.1525 0.3051 0.8475
115 0.1257 0.2514 0.8743
116 0.1479 0.2958 0.8521
117 0.136 0.2721 0.864
118 0.1112 0.2224 0.8888
119 0.09432 0.1886 0.9057
120 0.07553 0.151 0.9245
121 0.06092 0.1218 0.9391
122 0.06831 0.1366 0.9317
123 0.05775 0.1155 0.9422
124 0.04629 0.09258 0.9537
125 0.05079 0.1016 0.9492
126 0.05058 0.1012 0.9494
127 0.04127 0.08255 0.9587
128 0.1206 0.2412 0.8794
129 0.09696 0.1939 0.903
130 0.126 0.252 0.874
131 0.1587 0.3175 0.8413
132 0.2589 0.5178 0.7411
133 0.2138 0.4277 0.7862
134 0.1741 0.3482 0.8259
135 0.1519 0.3038 0.8481
136 0.1853 0.3705 0.8147
137 0.1915 0.3829 0.8085
138 0.1728 0.3457 0.8272
139 0.1601 0.3203 0.8399
140 0.1236 0.2473 0.8764
141 0.2787 0.5575 0.7212
142 0.2401 0.4801 0.7599
143 0.3588 0.7175 0.6412
144 0.4757 0.9513 0.5243
145 0.4307 0.8615 0.5693
146 0.3752 0.7505 0.6248
147 0.5609 0.8782 0.4391
148 0.6034 0.7933 0.3966
149 0.7173 0.5653 0.2827
150 0.6321 0.7359 0.3679
151 0.7973 0.4055 0.2027
152 0.7193 0.5613 0.2807
153 0.7052 0.5897 0.2948
154 0.9567 0.08666 0.04333
155 0.9485 0.103 0.05151
156 0.9154 0.1692 0.08458
157 0.8839 0.2323 0.1161







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level0 0OK
5% type I error level120.08NOK
10% type I error level280.186667NOK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 0 &  0 & OK \tabularnewline
5% type I error level & 12 & 0.08 & NOK \tabularnewline
10% type I error level & 28 & 0.186667 & NOK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298625&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]0[/C][C] 0[/C][C]OK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]12[/C][C]0.08[/C][C]NOK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]28[/C][C]0.186667[/C][C]NOK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298625&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298625&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level0 0OK
5% type I error level120.08NOK
10% type I error level280.186667NOK







Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 0.25369, df1 = 2, df2 = 158, p-value = 0.7762
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = 1.8619, df1 = 8, df2 = 152, p-value = 0.06993
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 0.14892, df1 = 2, df2 = 158, p-value = 0.8618

\begin{tabular}{lllllllll}
\hline
Ramsey RESET F-Test for powers (2 and 3) of fitted values \tabularnewline
> reset_test_fitted
	RESET test
data:  mylm
RESET = 0.25369, df1 = 2, df2 = 158, p-value = 0.7762
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of regressors \tabularnewline
> reset_test_regressors
	RESET test
data:  mylm
RESET = 1.8619, df1 = 8, df2 = 152, p-value = 0.06993
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of principal components \tabularnewline
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 0.14892, df1 = 2, df2 = 158, p-value = 0.8618
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=298625&T=7

[TABLE]
[ROW][C]Ramsey RESET F-Test for powers (2 and 3) of fitted values[/C][/ROW]
[ROW][C]
> reset_test_fitted
	RESET test
data:  mylm
RESET = 0.25369, df1 = 2, df2 = 158, p-value = 0.7762
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of regressors[/C][/ROW] [ROW][C]
> reset_test_regressors
	RESET test
data:  mylm
RESET = 1.8619, df1 = 8, df2 = 152, p-value = 0.06993
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of principal components[/C][/ROW] [ROW][C]
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 0.14892, df1 = 2, df2 = 158, p-value = 0.8618
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=298625&T=7

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298625&T=7

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 0.25369, df1 = 2, df2 = 158, p-value = 0.7762
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = 1.8619, df1 = 8, df2 = 152, p-value = 0.06993
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 0.14892, df1 = 2, df2 = 158, p-value = 0.8618







Variance Inflation Factors (Multicollinearity)
> vif
   IVHB1    IVHB2    IVHB3    IVHB4 
1.031368 1.038313 1.053205 1.041045 

\begin{tabular}{lllllllll}
\hline
Variance Inflation Factors (Multicollinearity) \tabularnewline
> vif
   IVHB1    IVHB2    IVHB3    IVHB4 
1.031368 1.038313 1.053205 1.041045 
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=298625&T=8

[TABLE]
[ROW][C]Variance Inflation Factors (Multicollinearity)[/C][/ROW]
[ROW][C]
> vif
   IVHB1    IVHB2    IVHB3    IVHB4 
1.031368 1.038313 1.053205 1.041045 
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=298625&T=8

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298625&T=8

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Variance Inflation Factors (Multicollinearity)
> vif
   IVHB1    IVHB2    IVHB3    IVHB4 
1.031368 1.038313 1.053205 1.041045 



Parameters (Session):
par1 = 5 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ; par4 = 0 ; par5 = 0 ;
Parameters (R input):
par1 = 5 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ; par4 = 0 ; par5 = 0 ;
R code (references can be found in the software module):
library(lattice)
library(lmtest)
library(car)
library(MASS)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
mywarning <- ''
par1 <- as.numeric(par1)
if(is.na(par1)) {
par1 <- 1
mywarning = 'Warning: you did not specify the column number of the endogenous series! The first column was selected by default.'
}
if (par4=='') par4 <- 0
par4 <- as.numeric(par4)
if (par5=='') par5 <- 0
par5 <- as.numeric(par5)
x <- na.omit(t(y))
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'Seasonal Differences (s=12)'){
(n <- n - 12)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+12,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'First and Seasonal Differences (s=12)'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
(n <- n - 12)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+12,j] - x[i,j]
}
}
x <- x2
}
if(par4 > 0) {
x2 <- array(0, dim=c(n-par4,par4), dimnames=list(1:(n-par4), paste(colnames(x)[par1],'(t-',1:par4,')',sep='')))
for (i in 1:(n-par4)) {
for (j in 1:par4) {
x2[i,j] <- x[i+par4-j,par1]
}
}
x <- cbind(x[(par4+1):n,], x2)
n <- n - par4
}
if(par5 > 0) {
x2 <- array(0, dim=c(n-par5*12,par5), dimnames=list(1:(n-par5*12), paste(colnames(x)[par1],'(t-',1:par5,'s)',sep='')))
for (i in 1:(n-par5*12)) {
for (j in 1:par5) {
x2[i,j] <- x[i+par5*12-j*12,par1]
}
}
x <- cbind(x[(par5*12+1):n,], x2)
n <- n - par5*12
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
(k <- length(x[n,]))
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
print(x)
(k <- length(x[n,]))
head(x)
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
sresid <- studres(mylm)
hist(sresid, freq=FALSE, main='Distribution of Studentized Residuals')
xfit<-seq(min(sresid),max(sresid),length=40)
yfit<-dnorm(xfit)
lines(xfit, yfit)
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqPlot(mylm, main='QQ Plot')
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
print(z)
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, signif(mysum$coefficients[i,1],6), sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, mywarning)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Multiple Linear Regression - Ordinary Least Squares', 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,formatC(signif(mysum$coefficients[i,1],5),format='g',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,2],5),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,3],4),format='e',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4],4),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4]/2,4),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a,formatC(signif(sqrt(mysum$r.squared),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$adj.r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a,formatC(signif(mysum$fstatistic[1],6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[2],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[3],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a,formatC(signif(1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a,formatC(signif(mysum$sigma,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a,formatC(signif(sum(myerror*myerror),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
myr <- as.numeric(mysum$resid)
myr
if(n < 200) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,formatC(signif(x[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(x[i]-mysum$resid[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$resid[i],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,1],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,2],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,3],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant1,6))
a<-table.element(a,formatC(signif(numsignificant1/numgqtests,6),format='g',flag=' '))
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant5,6))
a<-table.element(a,signif(numsignificant5/numgqtests,6))
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant10,6))
a<-table.element(a,signif(numsignificant10/numgqtests,6))
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}
}
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of fitted values',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_fitted <- resettest(mylm,power=2:3,type='fitted')
a<-table.element(a,paste('
',RC.texteval('reset_test_fitted'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of regressors',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_regressors <- resettest(mylm,power=2:3,type='regressor')
a<-table.element(a,paste('
',RC.texteval('reset_test_regressors'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of principal components',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_principal_components <- resettest(mylm,power=2:3,type='princomp')
a<-table.element(a,paste('
',RC.texteval('reset_test_principal_components'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable8.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Variance Inflation Factors (Multicollinearity)',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
vif <- vif(mylm)
a<-table.element(a,paste('
',RC.texteval('vif'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable9.tab')