Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationSat, 10 Dec 2016 10:47:53 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/10/t1481363381wha1og8x2hqf2y5.htm/, Retrieved Fri, 01 Nov 2024 03:34:08 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=298618, Retrieved Fri, 01 Nov 2024 03:34:08 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact137
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Multiple Regression] [V3] [2016-12-10 09:47:53] [ca14e1566745fb922befb698831e7d61] [Current]
Feedback Forum

Post a new message
Dataseries X:
4	2	3	5	13
5	3	4	5	16
4	4	4	5	17
3	4	3	4	15
4	4	4	5	16
3	4	4	5	16
3	4	3	3	16
3	4	4	4	16
4	5	4	5	17
4	5	4	5	17
4	4	4	5	17
4	4	3	5	15
4	4	3	4	16
3	3	4	4	14
4	4	4	2	16
3	4	4	4	17
3	4	4	4	16
5	5	3	4	14
4	4	4	5	17
3	4	3	4	16
4	4	4	5	15
4	4	4	4	16
4	4	4	4	15
4	4	4	4	17
3	4	4	4	14
3	4	3	5	16
4	4	4	4	15
2	4	4	5	16
5	4	4	4	16
4	3	4	4	13
4	5	4	5	15
5	4	4	4	17
4	3	4	5	15
2	3	4	5	13
4	5	4	4	17
3	4	4	4	15
4	3	3	4	14
4	3	4	4	14
4	4	4	4	18
5	4	4	4	15
4	5	4	5	17
3	3	4	4	13
5	5	3	5	16
5	4	3	4	15
4	4	3	4	15
4	4	4	4	16
3	5	3	3	15
4	4	4	5	13
2	3	2	5	12
4	5	4	4	17
5	5	4	5	18
5	5	4	4	17
4	3	4	5	11
4	3	3	4	14
4	4	4	4	13
3	4	3	3	15
3	4	4	4	17
4	4	3	5	16
4	4	4	5	15
5	5	4	5	17
2	4	4	5	16
4	4	4	5	16
3	4	4	2	16
4	4	4	5	15
4	2	4	4	12
4	4	3	5	17
4	4	3	5	14
5	4	3	3	14
3	4	3	5	16
3	4	3	4	15
4	5	5	5	15
4	4	4	4	13
4	4	4	4	13
4	4	5	5	17
3	4	4	4	15
4	4	4	5	16
3	4	3	5	14
3	3	4	4	15
4	3	4	4	17
4	4	4	4	16
3	3	4	4	10
4	4	4	5	16
4	4	4	5	17
4	4	4	5	17
5	4	4	4	20
5	4	5	4	17
4	4	4	5	18
3	4	4	4	15
3	4	4	4	17
4	2	3	4	14
4	4	4	4	15
4	4	4	4	17
4	4	4	5	16
4	5	4	5	17
3	4	3	5	15
4	4	4	4	16
5	4	4	4	18
5	4	5	4	18
4	5	4	5	16
3	4	4	4	16
5	3	4	5	17
4	4	4	4	15
5	4	4	4	13
3	4	3	4	15
5	4	5	5	17
4	4	3	4	16
4	4	3	4	16
4	4	4	4	15
4	4	4	4	16
3	4	4	5	16
4	4	4	4	13
4	4	3	4	15
3	3	3	5	12
4	4	3	4	18
3	4	4	4	16
4	4	4	3	16
5	4	1	5	17
5	4	4	5	16
4	4	4	4	14
4	4	3	4	15
3	4	3	4	14
4	4	4	4	16
4	4	4	5	15
4	5	4	4	17
3	4	4	4	15
4	4	3	4	16
4	4	4	4	16
3	4	3	4	15
4	4	3	4	15
3	2	2	4	11
4	4	3	5	16
5	4	3	5	18
2	4	3	3	13
3	3	4	4	11
4	4	3	4	16
5	5	4	5	18
4	5	4	4	15
5	5	5	5	19
4	5	4	5	17
4	4	3	4	13
3	4	4	5	14
4	4	4	4	16
4	4	4	4	13
4	4	4	5	17
4	4	4	5	14
5	4	3	5	19
4	3	4	4	14
4	4	4	4	16
3	3	3	4	12
4	5	4	4	16
4	4	3	4	16
4	4	4	4	15
3	4	3	5	12
4	4	4	4	15
5	4	4	5	17
4	4	4	3	13
2	3	4	4	15
4	4	4	4	18
4	3	3	5	15
4	4	4	4	18
4	5	5	4	15
5	4	4	4	15
5	4	3	4	16
3	3	4	5	13
4	4	4	4	16
4	4	4	5	13
2	3	5	5	16




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time9 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time9 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298618&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]9 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=298618&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298618&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time9 seconds
R ServerBig Analytics Cloud Computing Center







Multiple Linear Regression - Estimated Regression Equation
TVDC[t] = + 6.57523 + 0.553463V1[t] + 1.13983V2[t] + 0.320176V4[t] + 0.236839V5[t] + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
TVDC[t] =  +  6.57523 +  0.553463V1[t] +  1.13983V2[t] +  0.320176V4[t] +  0.236839V5[t]  + e[t] \tabularnewline
 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298618&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]TVDC[t] =  +  6.57523 +  0.553463V1[t] +  1.13983V2[t] +  0.320176V4[t] +  0.236839V5[t]  + e[t][/C][/ROW]
[ROW][C][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298618&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298618&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
TVDC[t] = + 6.57523 + 0.553463V1[t] + 1.13983V2[t] + 0.320176V4[t] + 0.236839V5[t] + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)+6.575 1.194+5.5040e+00 1.424e-07 7.118e-08
V1+0.5535 0.1561+3.5450e+00 0.0005127 0.0002564
V2+1.14 0.1918+5.9420e+00 1.671e-08 8.356e-09
V4+0.3202 0.1884+1.7000e+00 0.09108 0.04554
V5+0.2368 0.1797+1.3180e+00 0.1894 0.09471

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & +6.575 &  1.194 & +5.5040e+00 &  1.424e-07 &  7.118e-08 \tabularnewline
V1 & +0.5535 &  0.1561 & +3.5450e+00 &  0.0005127 &  0.0002564 \tabularnewline
V2 & +1.14 &  0.1918 & +5.9420e+00 &  1.671e-08 &  8.356e-09 \tabularnewline
V4 & +0.3202 &  0.1884 & +1.7000e+00 &  0.09108 &  0.04554 \tabularnewline
V5 & +0.2368 &  0.1797 & +1.3180e+00 &  0.1894 &  0.09471 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298618&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]+6.575[/C][C] 1.194[/C][C]+5.5040e+00[/C][C] 1.424e-07[/C][C] 7.118e-08[/C][/ROW]
[ROW][C]V1[/C][C]+0.5535[/C][C] 0.1561[/C][C]+3.5450e+00[/C][C] 0.0005127[/C][C] 0.0002564[/C][/ROW]
[ROW][C]V2[/C][C]+1.14[/C][C] 0.1918[/C][C]+5.9420e+00[/C][C] 1.671e-08[/C][C] 8.356e-09[/C][/ROW]
[ROW][C]V4[/C][C]+0.3202[/C][C] 0.1884[/C][C]+1.7000e+00[/C][C] 0.09108[/C][C] 0.04554[/C][/ROW]
[ROW][C]V5[/C][C]+0.2368[/C][C] 0.1797[/C][C]+1.3180e+00[/C][C] 0.1894[/C][C] 0.09471[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298618&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298618&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)+6.575 1.194+5.5040e+00 1.424e-07 7.118e-08
V1+0.5535 0.1561+3.5450e+00 0.0005127 0.0002564
V2+1.14 0.1918+5.9420e+00 1.671e-08 8.356e-09
V4+0.3202 0.1884+1.7000e+00 0.09108 0.04554
V5+0.2368 0.1797+1.3180e+00 0.1894 0.09471







Multiple Linear Regression - Regression Statistics
Multiple R 0.5722
R-squared 0.3275
Adjusted R-squared 0.3109
F-TEST (value) 19.72
F-TEST (DF numerator)4
F-TEST (DF denominator)162
p-value 3.054e-13
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 1.413
Sum Squared Residuals 323.3

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R &  0.5722 \tabularnewline
R-squared &  0.3275 \tabularnewline
Adjusted R-squared &  0.3109 \tabularnewline
F-TEST (value) &  19.72 \tabularnewline
F-TEST (DF numerator) & 4 \tabularnewline
F-TEST (DF denominator) & 162 \tabularnewline
p-value &  3.054e-13 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation &  1.413 \tabularnewline
Sum Squared Residuals &  323.3 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298618&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C] 0.5722[/C][/ROW]
[ROW][C]R-squared[/C][C] 0.3275[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C] 0.3109[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C] 19.72[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]4[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]162[/C][/ROW]
[ROW][C]p-value[/C][C] 3.054e-13[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C] 1.413[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C] 323.3[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298618&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298618&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R 0.5722
R-squared 0.3275
Adjusted R-squared 0.3109
F-TEST (value) 19.72
F-TEST (DF numerator)4
F-TEST (DF denominator)162
p-value 3.054e-13
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 1.413
Sum Squared Residuals 323.3







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 13 13.21-0.2135
2 16 15.23 0.7731
3 17 15.81 1.187
4 15 14.7 0.2972
5 16 15.81 0.1867
6 16 15.26 0.7402
7 16 14.47 1.534
8 16 15.02 0.977
9 17 16.95 0.04689
10 17 16.95 0.04689
11 17 15.81 1.187
12 15 15.49-0.4931
13 16 15.26 0.7437
14 14 13.88 0.1168
15 16 15.1 0.8972
16 17 15.02 1.977
17 16 15.02 0.977
18 14 16.95-2.95
19 17 15.81 1.187
20 16 14.7 1.297
21 15 15.81-0.8133
22 16 15.58 0.4235
23 15 15.58-0.5765
24 17 15.58 1.424
25 14 15.02-1.023
26 16 14.94 1.06
27 15 15.58-0.5765
28 16 14.71 1.294
29 16 16.13-0.1299
30 13 14.44-1.437
31 15 16.95-1.953
32 17 16.13 0.8701
33 15 14.67 0.3265
34 13 13.57-0.5665
35 17 16.72 0.2837
36 15 15.02-0.02299
37 14 14.12-0.1164
38 14 14.44-0.4366
39 18 15.58 2.424
40 15 16.13-1.13
41 17 16.95 0.04689
42 13 13.88-0.8832
43 16 17.19-1.186
44 15 15.81-0.8097
45 15 15.26-0.2563
46 16 15.58 0.4235
47 15 15.61-0.6058
48 13 15.81-2.813
49 12 12.93-0.9262
50 17 16.72 0.2837
51 18 17.51 0.4934
52 17 17.27-0.2697
53 11 14.67-3.673
54 14 14.12-0.1164
55 13 15.58-2.576
56 15 14.47 0.534
57 17 15.02 1.977
58 16 15.49 0.5069
59 15 15.81-0.8133
60 17 17.51-0.5066
61 16 14.71 1.294
62 16 15.81 0.1867
63 16 14.55 1.451
64 15 15.81-0.8133
65 12 13.3-1.297
66 17 15.49 1.507
67 14 15.49-1.493
68 14 15.57-1.573
69 16 14.94 1.06
70 15 14.7 0.2972
71 15 17.27-2.273
72 13 15.58-2.576
73 13 15.58-2.576
74 17 16.13 0.8665
75 15 15.02-0.02299
76 16 15.81 0.1867
77 14 14.94-0.9396
78 15 13.88 1.117
79 17 14.44 2.563
80 16 15.58 0.4235
81 10 13.88-3.883
82 16 15.81 0.1867
83 17 15.81 1.187
84 17 15.81 1.187
85 20 16.13 3.87
86 17 16.45 0.5499
87 18 15.81 2.187
88 15 15.02-0.02299
89 17 15.02 1.977
90 14 12.98 1.023
91 15 15.58-0.5765
92 17 15.58 1.424
93 16 15.81 0.1867
94 17 16.95 0.04689
95 15 14.94 0.06035
96 16 15.58 0.4235
97 18 16.13 1.87
98 18 16.45 1.55
99 16 16.95-0.9531
100 16 15.02 0.977
101 17 15.23 1.773
102 15 15.58-0.5765
103 13 16.13-3.13
104 15 14.7 0.2972
105 17 16.69 0.3131
106 16 15.26 0.7437
107 16 15.26 0.7437
108 15 15.58-0.5765
109 16 15.58 0.4235
110 16 15.26 0.7402
111 13 15.58-2.576
112 15 15.26-0.2563
113 12 13.8-1.8
114 18 15.26 2.744
115 16 15.02 0.977
116 16 15.34 0.6604
117 17 15.41 1.594
118 16 16.37-0.3668
119 14 15.58-1.576
120 15 15.26-0.2563
121 14 14.7-0.7028
122 16 15.58 0.4235
123 15 15.81-0.8133
124 17 16.72 0.2837
125 15 15.02-0.02299
126 16 15.26 0.7437
127 16 15.58 0.4235
128 15 14.7 0.2972
129 15 15.26-0.2563
130 11 12.1-1.103
131 16 15.49 0.5069
132 18 16.05 1.953
133 13 13.91-0.9125
134 11 13.88-2.883
135 16 15.26 0.7437
136 18 17.51 0.4934
137 15 16.72-1.716
138 19 17.83 1.173
139 17 16.95 0.04689
140 13 15.26-2.256
141 14 15.26-1.26
142 16 15.58 0.4235
143 13 15.58-2.576
144 17 15.81 1.187
145 14 15.81-1.813
146 19 16.05 2.953
147 14 14.44-0.4366
148 16 15.58 0.4235
149 12 13.56-1.563
150 16 16.72-0.7163
151 16 15.26 0.7437
152 15 15.58-0.5765
153 12 14.94-2.94
154 15 15.58-0.5765
155 17 16.37 0.6332
156 13 15.34-2.34
157 15 13.33 1.67
158 18 15.58 2.424
159 15 14.35 0.6467
160 18 15.58 2.424
161 15 17.04-2.036
162 15 16.13-1.13
163 16 15.81 0.1903
164 13 14.12-1.12
165 16 15.58 0.4235
166 13 15.81-2.813
167 16 13.89 2.113

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 &  13 &  13.21 & -0.2135 \tabularnewline
2 &  16 &  15.23 &  0.7731 \tabularnewline
3 &  17 &  15.81 &  1.187 \tabularnewline
4 &  15 &  14.7 &  0.2972 \tabularnewline
5 &  16 &  15.81 &  0.1867 \tabularnewline
6 &  16 &  15.26 &  0.7402 \tabularnewline
7 &  16 &  14.47 &  1.534 \tabularnewline
8 &  16 &  15.02 &  0.977 \tabularnewline
9 &  17 &  16.95 &  0.04689 \tabularnewline
10 &  17 &  16.95 &  0.04689 \tabularnewline
11 &  17 &  15.81 &  1.187 \tabularnewline
12 &  15 &  15.49 & -0.4931 \tabularnewline
13 &  16 &  15.26 &  0.7437 \tabularnewline
14 &  14 &  13.88 &  0.1168 \tabularnewline
15 &  16 &  15.1 &  0.8972 \tabularnewline
16 &  17 &  15.02 &  1.977 \tabularnewline
17 &  16 &  15.02 &  0.977 \tabularnewline
18 &  14 &  16.95 & -2.95 \tabularnewline
19 &  17 &  15.81 &  1.187 \tabularnewline
20 &  16 &  14.7 &  1.297 \tabularnewline
21 &  15 &  15.81 & -0.8133 \tabularnewline
22 &  16 &  15.58 &  0.4235 \tabularnewline
23 &  15 &  15.58 & -0.5765 \tabularnewline
24 &  17 &  15.58 &  1.424 \tabularnewline
25 &  14 &  15.02 & -1.023 \tabularnewline
26 &  16 &  14.94 &  1.06 \tabularnewline
27 &  15 &  15.58 & -0.5765 \tabularnewline
28 &  16 &  14.71 &  1.294 \tabularnewline
29 &  16 &  16.13 & -0.1299 \tabularnewline
30 &  13 &  14.44 & -1.437 \tabularnewline
31 &  15 &  16.95 & -1.953 \tabularnewline
32 &  17 &  16.13 &  0.8701 \tabularnewline
33 &  15 &  14.67 &  0.3265 \tabularnewline
34 &  13 &  13.57 & -0.5665 \tabularnewline
35 &  17 &  16.72 &  0.2837 \tabularnewline
36 &  15 &  15.02 & -0.02299 \tabularnewline
37 &  14 &  14.12 & -0.1164 \tabularnewline
38 &  14 &  14.44 & -0.4366 \tabularnewline
39 &  18 &  15.58 &  2.424 \tabularnewline
40 &  15 &  16.13 & -1.13 \tabularnewline
41 &  17 &  16.95 &  0.04689 \tabularnewline
42 &  13 &  13.88 & -0.8832 \tabularnewline
43 &  16 &  17.19 & -1.186 \tabularnewline
44 &  15 &  15.81 & -0.8097 \tabularnewline
45 &  15 &  15.26 & -0.2563 \tabularnewline
46 &  16 &  15.58 &  0.4235 \tabularnewline
47 &  15 &  15.61 & -0.6058 \tabularnewline
48 &  13 &  15.81 & -2.813 \tabularnewline
49 &  12 &  12.93 & -0.9262 \tabularnewline
50 &  17 &  16.72 &  0.2837 \tabularnewline
51 &  18 &  17.51 &  0.4934 \tabularnewline
52 &  17 &  17.27 & -0.2697 \tabularnewline
53 &  11 &  14.67 & -3.673 \tabularnewline
54 &  14 &  14.12 & -0.1164 \tabularnewline
55 &  13 &  15.58 & -2.576 \tabularnewline
56 &  15 &  14.47 &  0.534 \tabularnewline
57 &  17 &  15.02 &  1.977 \tabularnewline
58 &  16 &  15.49 &  0.5069 \tabularnewline
59 &  15 &  15.81 & -0.8133 \tabularnewline
60 &  17 &  17.51 & -0.5066 \tabularnewline
61 &  16 &  14.71 &  1.294 \tabularnewline
62 &  16 &  15.81 &  0.1867 \tabularnewline
63 &  16 &  14.55 &  1.451 \tabularnewline
64 &  15 &  15.81 & -0.8133 \tabularnewline
65 &  12 &  13.3 & -1.297 \tabularnewline
66 &  17 &  15.49 &  1.507 \tabularnewline
67 &  14 &  15.49 & -1.493 \tabularnewline
68 &  14 &  15.57 & -1.573 \tabularnewline
69 &  16 &  14.94 &  1.06 \tabularnewline
70 &  15 &  14.7 &  0.2972 \tabularnewline
71 &  15 &  17.27 & -2.273 \tabularnewline
72 &  13 &  15.58 & -2.576 \tabularnewline
73 &  13 &  15.58 & -2.576 \tabularnewline
74 &  17 &  16.13 &  0.8665 \tabularnewline
75 &  15 &  15.02 & -0.02299 \tabularnewline
76 &  16 &  15.81 &  0.1867 \tabularnewline
77 &  14 &  14.94 & -0.9396 \tabularnewline
78 &  15 &  13.88 &  1.117 \tabularnewline
79 &  17 &  14.44 &  2.563 \tabularnewline
80 &  16 &  15.58 &  0.4235 \tabularnewline
81 &  10 &  13.88 & -3.883 \tabularnewline
82 &  16 &  15.81 &  0.1867 \tabularnewline
83 &  17 &  15.81 &  1.187 \tabularnewline
84 &  17 &  15.81 &  1.187 \tabularnewline
85 &  20 &  16.13 &  3.87 \tabularnewline
86 &  17 &  16.45 &  0.5499 \tabularnewline
87 &  18 &  15.81 &  2.187 \tabularnewline
88 &  15 &  15.02 & -0.02299 \tabularnewline
89 &  17 &  15.02 &  1.977 \tabularnewline
90 &  14 &  12.98 &  1.023 \tabularnewline
91 &  15 &  15.58 & -0.5765 \tabularnewline
92 &  17 &  15.58 &  1.424 \tabularnewline
93 &  16 &  15.81 &  0.1867 \tabularnewline
94 &  17 &  16.95 &  0.04689 \tabularnewline
95 &  15 &  14.94 &  0.06035 \tabularnewline
96 &  16 &  15.58 &  0.4235 \tabularnewline
97 &  18 &  16.13 &  1.87 \tabularnewline
98 &  18 &  16.45 &  1.55 \tabularnewline
99 &  16 &  16.95 & -0.9531 \tabularnewline
100 &  16 &  15.02 &  0.977 \tabularnewline
101 &  17 &  15.23 &  1.773 \tabularnewline
102 &  15 &  15.58 & -0.5765 \tabularnewline
103 &  13 &  16.13 & -3.13 \tabularnewline
104 &  15 &  14.7 &  0.2972 \tabularnewline
105 &  17 &  16.69 &  0.3131 \tabularnewline
106 &  16 &  15.26 &  0.7437 \tabularnewline
107 &  16 &  15.26 &  0.7437 \tabularnewline
108 &  15 &  15.58 & -0.5765 \tabularnewline
109 &  16 &  15.58 &  0.4235 \tabularnewline
110 &  16 &  15.26 &  0.7402 \tabularnewline
111 &  13 &  15.58 & -2.576 \tabularnewline
112 &  15 &  15.26 & -0.2563 \tabularnewline
113 &  12 &  13.8 & -1.8 \tabularnewline
114 &  18 &  15.26 &  2.744 \tabularnewline
115 &  16 &  15.02 &  0.977 \tabularnewline
116 &  16 &  15.34 &  0.6604 \tabularnewline
117 &  17 &  15.41 &  1.594 \tabularnewline
118 &  16 &  16.37 & -0.3668 \tabularnewline
119 &  14 &  15.58 & -1.576 \tabularnewline
120 &  15 &  15.26 & -0.2563 \tabularnewline
121 &  14 &  14.7 & -0.7028 \tabularnewline
122 &  16 &  15.58 &  0.4235 \tabularnewline
123 &  15 &  15.81 & -0.8133 \tabularnewline
124 &  17 &  16.72 &  0.2837 \tabularnewline
125 &  15 &  15.02 & -0.02299 \tabularnewline
126 &  16 &  15.26 &  0.7437 \tabularnewline
127 &  16 &  15.58 &  0.4235 \tabularnewline
128 &  15 &  14.7 &  0.2972 \tabularnewline
129 &  15 &  15.26 & -0.2563 \tabularnewline
130 &  11 &  12.1 & -1.103 \tabularnewline
131 &  16 &  15.49 &  0.5069 \tabularnewline
132 &  18 &  16.05 &  1.953 \tabularnewline
133 &  13 &  13.91 & -0.9125 \tabularnewline
134 &  11 &  13.88 & -2.883 \tabularnewline
135 &  16 &  15.26 &  0.7437 \tabularnewline
136 &  18 &  17.51 &  0.4934 \tabularnewline
137 &  15 &  16.72 & -1.716 \tabularnewline
138 &  19 &  17.83 &  1.173 \tabularnewline
139 &  17 &  16.95 &  0.04689 \tabularnewline
140 &  13 &  15.26 & -2.256 \tabularnewline
141 &  14 &  15.26 & -1.26 \tabularnewline
142 &  16 &  15.58 &  0.4235 \tabularnewline
143 &  13 &  15.58 & -2.576 \tabularnewline
144 &  17 &  15.81 &  1.187 \tabularnewline
145 &  14 &  15.81 & -1.813 \tabularnewline
146 &  19 &  16.05 &  2.953 \tabularnewline
147 &  14 &  14.44 & -0.4366 \tabularnewline
148 &  16 &  15.58 &  0.4235 \tabularnewline
149 &  12 &  13.56 & -1.563 \tabularnewline
150 &  16 &  16.72 & -0.7163 \tabularnewline
151 &  16 &  15.26 &  0.7437 \tabularnewline
152 &  15 &  15.58 & -0.5765 \tabularnewline
153 &  12 &  14.94 & -2.94 \tabularnewline
154 &  15 &  15.58 & -0.5765 \tabularnewline
155 &  17 &  16.37 &  0.6332 \tabularnewline
156 &  13 &  15.34 & -2.34 \tabularnewline
157 &  15 &  13.33 &  1.67 \tabularnewline
158 &  18 &  15.58 &  2.424 \tabularnewline
159 &  15 &  14.35 &  0.6467 \tabularnewline
160 &  18 &  15.58 &  2.424 \tabularnewline
161 &  15 &  17.04 & -2.036 \tabularnewline
162 &  15 &  16.13 & -1.13 \tabularnewline
163 &  16 &  15.81 &  0.1903 \tabularnewline
164 &  13 &  14.12 & -1.12 \tabularnewline
165 &  16 &  15.58 &  0.4235 \tabularnewline
166 &  13 &  15.81 & -2.813 \tabularnewline
167 &  16 &  13.89 &  2.113 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298618&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C] 13[/C][C] 13.21[/C][C]-0.2135[/C][/ROW]
[ROW][C]2[/C][C] 16[/C][C] 15.23[/C][C] 0.7731[/C][/ROW]
[ROW][C]3[/C][C] 17[/C][C] 15.81[/C][C] 1.187[/C][/ROW]
[ROW][C]4[/C][C] 15[/C][C] 14.7[/C][C] 0.2972[/C][/ROW]
[ROW][C]5[/C][C] 16[/C][C] 15.81[/C][C] 0.1867[/C][/ROW]
[ROW][C]6[/C][C] 16[/C][C] 15.26[/C][C] 0.7402[/C][/ROW]
[ROW][C]7[/C][C] 16[/C][C] 14.47[/C][C] 1.534[/C][/ROW]
[ROW][C]8[/C][C] 16[/C][C] 15.02[/C][C] 0.977[/C][/ROW]
[ROW][C]9[/C][C] 17[/C][C] 16.95[/C][C] 0.04689[/C][/ROW]
[ROW][C]10[/C][C] 17[/C][C] 16.95[/C][C] 0.04689[/C][/ROW]
[ROW][C]11[/C][C] 17[/C][C] 15.81[/C][C] 1.187[/C][/ROW]
[ROW][C]12[/C][C] 15[/C][C] 15.49[/C][C]-0.4931[/C][/ROW]
[ROW][C]13[/C][C] 16[/C][C] 15.26[/C][C] 0.7437[/C][/ROW]
[ROW][C]14[/C][C] 14[/C][C] 13.88[/C][C] 0.1168[/C][/ROW]
[ROW][C]15[/C][C] 16[/C][C] 15.1[/C][C] 0.8972[/C][/ROW]
[ROW][C]16[/C][C] 17[/C][C] 15.02[/C][C] 1.977[/C][/ROW]
[ROW][C]17[/C][C] 16[/C][C] 15.02[/C][C] 0.977[/C][/ROW]
[ROW][C]18[/C][C] 14[/C][C] 16.95[/C][C]-2.95[/C][/ROW]
[ROW][C]19[/C][C] 17[/C][C] 15.81[/C][C] 1.187[/C][/ROW]
[ROW][C]20[/C][C] 16[/C][C] 14.7[/C][C] 1.297[/C][/ROW]
[ROW][C]21[/C][C] 15[/C][C] 15.81[/C][C]-0.8133[/C][/ROW]
[ROW][C]22[/C][C] 16[/C][C] 15.58[/C][C] 0.4235[/C][/ROW]
[ROW][C]23[/C][C] 15[/C][C] 15.58[/C][C]-0.5765[/C][/ROW]
[ROW][C]24[/C][C] 17[/C][C] 15.58[/C][C] 1.424[/C][/ROW]
[ROW][C]25[/C][C] 14[/C][C] 15.02[/C][C]-1.023[/C][/ROW]
[ROW][C]26[/C][C] 16[/C][C] 14.94[/C][C] 1.06[/C][/ROW]
[ROW][C]27[/C][C] 15[/C][C] 15.58[/C][C]-0.5765[/C][/ROW]
[ROW][C]28[/C][C] 16[/C][C] 14.71[/C][C] 1.294[/C][/ROW]
[ROW][C]29[/C][C] 16[/C][C] 16.13[/C][C]-0.1299[/C][/ROW]
[ROW][C]30[/C][C] 13[/C][C] 14.44[/C][C]-1.437[/C][/ROW]
[ROW][C]31[/C][C] 15[/C][C] 16.95[/C][C]-1.953[/C][/ROW]
[ROW][C]32[/C][C] 17[/C][C] 16.13[/C][C] 0.8701[/C][/ROW]
[ROW][C]33[/C][C] 15[/C][C] 14.67[/C][C] 0.3265[/C][/ROW]
[ROW][C]34[/C][C] 13[/C][C] 13.57[/C][C]-0.5665[/C][/ROW]
[ROW][C]35[/C][C] 17[/C][C] 16.72[/C][C] 0.2837[/C][/ROW]
[ROW][C]36[/C][C] 15[/C][C] 15.02[/C][C]-0.02299[/C][/ROW]
[ROW][C]37[/C][C] 14[/C][C] 14.12[/C][C]-0.1164[/C][/ROW]
[ROW][C]38[/C][C] 14[/C][C] 14.44[/C][C]-0.4366[/C][/ROW]
[ROW][C]39[/C][C] 18[/C][C] 15.58[/C][C] 2.424[/C][/ROW]
[ROW][C]40[/C][C] 15[/C][C] 16.13[/C][C]-1.13[/C][/ROW]
[ROW][C]41[/C][C] 17[/C][C] 16.95[/C][C] 0.04689[/C][/ROW]
[ROW][C]42[/C][C] 13[/C][C] 13.88[/C][C]-0.8832[/C][/ROW]
[ROW][C]43[/C][C] 16[/C][C] 17.19[/C][C]-1.186[/C][/ROW]
[ROW][C]44[/C][C] 15[/C][C] 15.81[/C][C]-0.8097[/C][/ROW]
[ROW][C]45[/C][C] 15[/C][C] 15.26[/C][C]-0.2563[/C][/ROW]
[ROW][C]46[/C][C] 16[/C][C] 15.58[/C][C] 0.4235[/C][/ROW]
[ROW][C]47[/C][C] 15[/C][C] 15.61[/C][C]-0.6058[/C][/ROW]
[ROW][C]48[/C][C] 13[/C][C] 15.81[/C][C]-2.813[/C][/ROW]
[ROW][C]49[/C][C] 12[/C][C] 12.93[/C][C]-0.9262[/C][/ROW]
[ROW][C]50[/C][C] 17[/C][C] 16.72[/C][C] 0.2837[/C][/ROW]
[ROW][C]51[/C][C] 18[/C][C] 17.51[/C][C] 0.4934[/C][/ROW]
[ROW][C]52[/C][C] 17[/C][C] 17.27[/C][C]-0.2697[/C][/ROW]
[ROW][C]53[/C][C] 11[/C][C] 14.67[/C][C]-3.673[/C][/ROW]
[ROW][C]54[/C][C] 14[/C][C] 14.12[/C][C]-0.1164[/C][/ROW]
[ROW][C]55[/C][C] 13[/C][C] 15.58[/C][C]-2.576[/C][/ROW]
[ROW][C]56[/C][C] 15[/C][C] 14.47[/C][C] 0.534[/C][/ROW]
[ROW][C]57[/C][C] 17[/C][C] 15.02[/C][C] 1.977[/C][/ROW]
[ROW][C]58[/C][C] 16[/C][C] 15.49[/C][C] 0.5069[/C][/ROW]
[ROW][C]59[/C][C] 15[/C][C] 15.81[/C][C]-0.8133[/C][/ROW]
[ROW][C]60[/C][C] 17[/C][C] 17.51[/C][C]-0.5066[/C][/ROW]
[ROW][C]61[/C][C] 16[/C][C] 14.71[/C][C] 1.294[/C][/ROW]
[ROW][C]62[/C][C] 16[/C][C] 15.81[/C][C] 0.1867[/C][/ROW]
[ROW][C]63[/C][C] 16[/C][C] 14.55[/C][C] 1.451[/C][/ROW]
[ROW][C]64[/C][C] 15[/C][C] 15.81[/C][C]-0.8133[/C][/ROW]
[ROW][C]65[/C][C] 12[/C][C] 13.3[/C][C]-1.297[/C][/ROW]
[ROW][C]66[/C][C] 17[/C][C] 15.49[/C][C] 1.507[/C][/ROW]
[ROW][C]67[/C][C] 14[/C][C] 15.49[/C][C]-1.493[/C][/ROW]
[ROW][C]68[/C][C] 14[/C][C] 15.57[/C][C]-1.573[/C][/ROW]
[ROW][C]69[/C][C] 16[/C][C] 14.94[/C][C] 1.06[/C][/ROW]
[ROW][C]70[/C][C] 15[/C][C] 14.7[/C][C] 0.2972[/C][/ROW]
[ROW][C]71[/C][C] 15[/C][C] 17.27[/C][C]-2.273[/C][/ROW]
[ROW][C]72[/C][C] 13[/C][C] 15.58[/C][C]-2.576[/C][/ROW]
[ROW][C]73[/C][C] 13[/C][C] 15.58[/C][C]-2.576[/C][/ROW]
[ROW][C]74[/C][C] 17[/C][C] 16.13[/C][C] 0.8665[/C][/ROW]
[ROW][C]75[/C][C] 15[/C][C] 15.02[/C][C]-0.02299[/C][/ROW]
[ROW][C]76[/C][C] 16[/C][C] 15.81[/C][C] 0.1867[/C][/ROW]
[ROW][C]77[/C][C] 14[/C][C] 14.94[/C][C]-0.9396[/C][/ROW]
[ROW][C]78[/C][C] 15[/C][C] 13.88[/C][C] 1.117[/C][/ROW]
[ROW][C]79[/C][C] 17[/C][C] 14.44[/C][C] 2.563[/C][/ROW]
[ROW][C]80[/C][C] 16[/C][C] 15.58[/C][C] 0.4235[/C][/ROW]
[ROW][C]81[/C][C] 10[/C][C] 13.88[/C][C]-3.883[/C][/ROW]
[ROW][C]82[/C][C] 16[/C][C] 15.81[/C][C] 0.1867[/C][/ROW]
[ROW][C]83[/C][C] 17[/C][C] 15.81[/C][C] 1.187[/C][/ROW]
[ROW][C]84[/C][C] 17[/C][C] 15.81[/C][C] 1.187[/C][/ROW]
[ROW][C]85[/C][C] 20[/C][C] 16.13[/C][C] 3.87[/C][/ROW]
[ROW][C]86[/C][C] 17[/C][C] 16.45[/C][C] 0.5499[/C][/ROW]
[ROW][C]87[/C][C] 18[/C][C] 15.81[/C][C] 2.187[/C][/ROW]
[ROW][C]88[/C][C] 15[/C][C] 15.02[/C][C]-0.02299[/C][/ROW]
[ROW][C]89[/C][C] 17[/C][C] 15.02[/C][C] 1.977[/C][/ROW]
[ROW][C]90[/C][C] 14[/C][C] 12.98[/C][C] 1.023[/C][/ROW]
[ROW][C]91[/C][C] 15[/C][C] 15.58[/C][C]-0.5765[/C][/ROW]
[ROW][C]92[/C][C] 17[/C][C] 15.58[/C][C] 1.424[/C][/ROW]
[ROW][C]93[/C][C] 16[/C][C] 15.81[/C][C] 0.1867[/C][/ROW]
[ROW][C]94[/C][C] 17[/C][C] 16.95[/C][C] 0.04689[/C][/ROW]
[ROW][C]95[/C][C] 15[/C][C] 14.94[/C][C] 0.06035[/C][/ROW]
[ROW][C]96[/C][C] 16[/C][C] 15.58[/C][C] 0.4235[/C][/ROW]
[ROW][C]97[/C][C] 18[/C][C] 16.13[/C][C] 1.87[/C][/ROW]
[ROW][C]98[/C][C] 18[/C][C] 16.45[/C][C] 1.55[/C][/ROW]
[ROW][C]99[/C][C] 16[/C][C] 16.95[/C][C]-0.9531[/C][/ROW]
[ROW][C]100[/C][C] 16[/C][C] 15.02[/C][C] 0.977[/C][/ROW]
[ROW][C]101[/C][C] 17[/C][C] 15.23[/C][C] 1.773[/C][/ROW]
[ROW][C]102[/C][C] 15[/C][C] 15.58[/C][C]-0.5765[/C][/ROW]
[ROW][C]103[/C][C] 13[/C][C] 16.13[/C][C]-3.13[/C][/ROW]
[ROW][C]104[/C][C] 15[/C][C] 14.7[/C][C] 0.2972[/C][/ROW]
[ROW][C]105[/C][C] 17[/C][C] 16.69[/C][C] 0.3131[/C][/ROW]
[ROW][C]106[/C][C] 16[/C][C] 15.26[/C][C] 0.7437[/C][/ROW]
[ROW][C]107[/C][C] 16[/C][C] 15.26[/C][C] 0.7437[/C][/ROW]
[ROW][C]108[/C][C] 15[/C][C] 15.58[/C][C]-0.5765[/C][/ROW]
[ROW][C]109[/C][C] 16[/C][C] 15.58[/C][C] 0.4235[/C][/ROW]
[ROW][C]110[/C][C] 16[/C][C] 15.26[/C][C] 0.7402[/C][/ROW]
[ROW][C]111[/C][C] 13[/C][C] 15.58[/C][C]-2.576[/C][/ROW]
[ROW][C]112[/C][C] 15[/C][C] 15.26[/C][C]-0.2563[/C][/ROW]
[ROW][C]113[/C][C] 12[/C][C] 13.8[/C][C]-1.8[/C][/ROW]
[ROW][C]114[/C][C] 18[/C][C] 15.26[/C][C] 2.744[/C][/ROW]
[ROW][C]115[/C][C] 16[/C][C] 15.02[/C][C] 0.977[/C][/ROW]
[ROW][C]116[/C][C] 16[/C][C] 15.34[/C][C] 0.6604[/C][/ROW]
[ROW][C]117[/C][C] 17[/C][C] 15.41[/C][C] 1.594[/C][/ROW]
[ROW][C]118[/C][C] 16[/C][C] 16.37[/C][C]-0.3668[/C][/ROW]
[ROW][C]119[/C][C] 14[/C][C] 15.58[/C][C]-1.576[/C][/ROW]
[ROW][C]120[/C][C] 15[/C][C] 15.26[/C][C]-0.2563[/C][/ROW]
[ROW][C]121[/C][C] 14[/C][C] 14.7[/C][C]-0.7028[/C][/ROW]
[ROW][C]122[/C][C] 16[/C][C] 15.58[/C][C] 0.4235[/C][/ROW]
[ROW][C]123[/C][C] 15[/C][C] 15.81[/C][C]-0.8133[/C][/ROW]
[ROW][C]124[/C][C] 17[/C][C] 16.72[/C][C] 0.2837[/C][/ROW]
[ROW][C]125[/C][C] 15[/C][C] 15.02[/C][C]-0.02299[/C][/ROW]
[ROW][C]126[/C][C] 16[/C][C] 15.26[/C][C] 0.7437[/C][/ROW]
[ROW][C]127[/C][C] 16[/C][C] 15.58[/C][C] 0.4235[/C][/ROW]
[ROW][C]128[/C][C] 15[/C][C] 14.7[/C][C] 0.2972[/C][/ROW]
[ROW][C]129[/C][C] 15[/C][C] 15.26[/C][C]-0.2563[/C][/ROW]
[ROW][C]130[/C][C] 11[/C][C] 12.1[/C][C]-1.103[/C][/ROW]
[ROW][C]131[/C][C] 16[/C][C] 15.49[/C][C] 0.5069[/C][/ROW]
[ROW][C]132[/C][C] 18[/C][C] 16.05[/C][C] 1.953[/C][/ROW]
[ROW][C]133[/C][C] 13[/C][C] 13.91[/C][C]-0.9125[/C][/ROW]
[ROW][C]134[/C][C] 11[/C][C] 13.88[/C][C]-2.883[/C][/ROW]
[ROW][C]135[/C][C] 16[/C][C] 15.26[/C][C] 0.7437[/C][/ROW]
[ROW][C]136[/C][C] 18[/C][C] 17.51[/C][C] 0.4934[/C][/ROW]
[ROW][C]137[/C][C] 15[/C][C] 16.72[/C][C]-1.716[/C][/ROW]
[ROW][C]138[/C][C] 19[/C][C] 17.83[/C][C] 1.173[/C][/ROW]
[ROW][C]139[/C][C] 17[/C][C] 16.95[/C][C] 0.04689[/C][/ROW]
[ROW][C]140[/C][C] 13[/C][C] 15.26[/C][C]-2.256[/C][/ROW]
[ROW][C]141[/C][C] 14[/C][C] 15.26[/C][C]-1.26[/C][/ROW]
[ROW][C]142[/C][C] 16[/C][C] 15.58[/C][C] 0.4235[/C][/ROW]
[ROW][C]143[/C][C] 13[/C][C] 15.58[/C][C]-2.576[/C][/ROW]
[ROW][C]144[/C][C] 17[/C][C] 15.81[/C][C] 1.187[/C][/ROW]
[ROW][C]145[/C][C] 14[/C][C] 15.81[/C][C]-1.813[/C][/ROW]
[ROW][C]146[/C][C] 19[/C][C] 16.05[/C][C] 2.953[/C][/ROW]
[ROW][C]147[/C][C] 14[/C][C] 14.44[/C][C]-0.4366[/C][/ROW]
[ROW][C]148[/C][C] 16[/C][C] 15.58[/C][C] 0.4235[/C][/ROW]
[ROW][C]149[/C][C] 12[/C][C] 13.56[/C][C]-1.563[/C][/ROW]
[ROW][C]150[/C][C] 16[/C][C] 16.72[/C][C]-0.7163[/C][/ROW]
[ROW][C]151[/C][C] 16[/C][C] 15.26[/C][C] 0.7437[/C][/ROW]
[ROW][C]152[/C][C] 15[/C][C] 15.58[/C][C]-0.5765[/C][/ROW]
[ROW][C]153[/C][C] 12[/C][C] 14.94[/C][C]-2.94[/C][/ROW]
[ROW][C]154[/C][C] 15[/C][C] 15.58[/C][C]-0.5765[/C][/ROW]
[ROW][C]155[/C][C] 17[/C][C] 16.37[/C][C] 0.6332[/C][/ROW]
[ROW][C]156[/C][C] 13[/C][C] 15.34[/C][C]-2.34[/C][/ROW]
[ROW][C]157[/C][C] 15[/C][C] 13.33[/C][C] 1.67[/C][/ROW]
[ROW][C]158[/C][C] 18[/C][C] 15.58[/C][C] 2.424[/C][/ROW]
[ROW][C]159[/C][C] 15[/C][C] 14.35[/C][C] 0.6467[/C][/ROW]
[ROW][C]160[/C][C] 18[/C][C] 15.58[/C][C] 2.424[/C][/ROW]
[ROW][C]161[/C][C] 15[/C][C] 17.04[/C][C]-2.036[/C][/ROW]
[ROW][C]162[/C][C] 15[/C][C] 16.13[/C][C]-1.13[/C][/ROW]
[ROW][C]163[/C][C] 16[/C][C] 15.81[/C][C] 0.1903[/C][/ROW]
[ROW][C]164[/C][C] 13[/C][C] 14.12[/C][C]-1.12[/C][/ROW]
[ROW][C]165[/C][C] 16[/C][C] 15.58[/C][C] 0.4235[/C][/ROW]
[ROW][C]166[/C][C] 13[/C][C] 15.81[/C][C]-2.813[/C][/ROW]
[ROW][C]167[/C][C] 16[/C][C] 13.89[/C][C] 2.113[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298618&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298618&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 13 13.21-0.2135
2 16 15.23 0.7731
3 17 15.81 1.187
4 15 14.7 0.2972
5 16 15.81 0.1867
6 16 15.26 0.7402
7 16 14.47 1.534
8 16 15.02 0.977
9 17 16.95 0.04689
10 17 16.95 0.04689
11 17 15.81 1.187
12 15 15.49-0.4931
13 16 15.26 0.7437
14 14 13.88 0.1168
15 16 15.1 0.8972
16 17 15.02 1.977
17 16 15.02 0.977
18 14 16.95-2.95
19 17 15.81 1.187
20 16 14.7 1.297
21 15 15.81-0.8133
22 16 15.58 0.4235
23 15 15.58-0.5765
24 17 15.58 1.424
25 14 15.02-1.023
26 16 14.94 1.06
27 15 15.58-0.5765
28 16 14.71 1.294
29 16 16.13-0.1299
30 13 14.44-1.437
31 15 16.95-1.953
32 17 16.13 0.8701
33 15 14.67 0.3265
34 13 13.57-0.5665
35 17 16.72 0.2837
36 15 15.02-0.02299
37 14 14.12-0.1164
38 14 14.44-0.4366
39 18 15.58 2.424
40 15 16.13-1.13
41 17 16.95 0.04689
42 13 13.88-0.8832
43 16 17.19-1.186
44 15 15.81-0.8097
45 15 15.26-0.2563
46 16 15.58 0.4235
47 15 15.61-0.6058
48 13 15.81-2.813
49 12 12.93-0.9262
50 17 16.72 0.2837
51 18 17.51 0.4934
52 17 17.27-0.2697
53 11 14.67-3.673
54 14 14.12-0.1164
55 13 15.58-2.576
56 15 14.47 0.534
57 17 15.02 1.977
58 16 15.49 0.5069
59 15 15.81-0.8133
60 17 17.51-0.5066
61 16 14.71 1.294
62 16 15.81 0.1867
63 16 14.55 1.451
64 15 15.81-0.8133
65 12 13.3-1.297
66 17 15.49 1.507
67 14 15.49-1.493
68 14 15.57-1.573
69 16 14.94 1.06
70 15 14.7 0.2972
71 15 17.27-2.273
72 13 15.58-2.576
73 13 15.58-2.576
74 17 16.13 0.8665
75 15 15.02-0.02299
76 16 15.81 0.1867
77 14 14.94-0.9396
78 15 13.88 1.117
79 17 14.44 2.563
80 16 15.58 0.4235
81 10 13.88-3.883
82 16 15.81 0.1867
83 17 15.81 1.187
84 17 15.81 1.187
85 20 16.13 3.87
86 17 16.45 0.5499
87 18 15.81 2.187
88 15 15.02-0.02299
89 17 15.02 1.977
90 14 12.98 1.023
91 15 15.58-0.5765
92 17 15.58 1.424
93 16 15.81 0.1867
94 17 16.95 0.04689
95 15 14.94 0.06035
96 16 15.58 0.4235
97 18 16.13 1.87
98 18 16.45 1.55
99 16 16.95-0.9531
100 16 15.02 0.977
101 17 15.23 1.773
102 15 15.58-0.5765
103 13 16.13-3.13
104 15 14.7 0.2972
105 17 16.69 0.3131
106 16 15.26 0.7437
107 16 15.26 0.7437
108 15 15.58-0.5765
109 16 15.58 0.4235
110 16 15.26 0.7402
111 13 15.58-2.576
112 15 15.26-0.2563
113 12 13.8-1.8
114 18 15.26 2.744
115 16 15.02 0.977
116 16 15.34 0.6604
117 17 15.41 1.594
118 16 16.37-0.3668
119 14 15.58-1.576
120 15 15.26-0.2563
121 14 14.7-0.7028
122 16 15.58 0.4235
123 15 15.81-0.8133
124 17 16.72 0.2837
125 15 15.02-0.02299
126 16 15.26 0.7437
127 16 15.58 0.4235
128 15 14.7 0.2972
129 15 15.26-0.2563
130 11 12.1-1.103
131 16 15.49 0.5069
132 18 16.05 1.953
133 13 13.91-0.9125
134 11 13.88-2.883
135 16 15.26 0.7437
136 18 17.51 0.4934
137 15 16.72-1.716
138 19 17.83 1.173
139 17 16.95 0.04689
140 13 15.26-2.256
141 14 15.26-1.26
142 16 15.58 0.4235
143 13 15.58-2.576
144 17 15.81 1.187
145 14 15.81-1.813
146 19 16.05 2.953
147 14 14.44-0.4366
148 16 15.58 0.4235
149 12 13.56-1.563
150 16 16.72-0.7163
151 16 15.26 0.7437
152 15 15.58-0.5765
153 12 14.94-2.94
154 15 15.58-0.5765
155 17 16.37 0.6332
156 13 15.34-2.34
157 15 13.33 1.67
158 18 15.58 2.424
159 15 14.35 0.6467
160 18 15.58 2.424
161 15 17.04-2.036
162 15 16.13-1.13
163 16 15.81 0.1903
164 13 14.12-1.12
165 16 15.58 0.4235
166 13 15.81-2.813
167 16 13.89 2.113







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
8 0.05265 0.1053 0.9474
9 0.02273 0.04545 0.9773
10 0.007129 0.01426 0.9929
11 0.005396 0.01079 0.9946
12 0.001614 0.003228 0.9984
13 0.0005592 0.001118 0.9994
14 0.001826 0.003652 0.9982
15 0.001892 0.003785 0.9981
16 0.002724 0.005447 0.9973
17 0.001151 0.002302 0.9988
18 0.0195 0.039 0.9805
19 0.01404 0.02808 0.986
20 0.01127 0.02254 0.9887
21 0.01291 0.02583 0.9871
22 0.007365 0.01473 0.9926
23 0.006795 0.01359 0.9932
24 0.006077 0.01215 0.9939
25 0.02112 0.04224 0.9789
26 0.0155 0.031 0.9845
27 0.01267 0.02534 0.9873
28 0.008694 0.01739 0.9913
29 0.005372 0.01074 0.9946
30 0.01126 0.02253 0.9887
31 0.02039 0.04077 0.9796
32 0.02118 0.04235 0.9788
33 0.01427 0.02853 0.9857
34 0.02186 0.04372 0.9781
35 0.01504 0.03008 0.985
36 0.01122 0.02244 0.9888
37 0.007568 0.01514 0.9924
38 0.005734 0.01147 0.9943
39 0.01378 0.02756 0.9862
40 0.012 0.024 0.988
41 0.008151 0.0163 0.9918
42 0.009407 0.01881 0.9906
43 0.007305 0.01461 0.9927
44 0.005191 0.01038 0.9948
45 0.003472 0.006943 0.9965
46 0.002315 0.004631 0.9977
47 0.001898 0.003796 0.9981
48 0.009201 0.0184 0.9908
49 0.007746 0.01549 0.9923
50 0.005378 0.01076 0.9946
51 0.004329 0.008658 0.9957
52 0.002945 0.005889 0.9971
53 0.02808 0.05616 0.9719
54 0.02105 0.04209 0.979
55 0.04805 0.0961 0.952
56 0.03775 0.07551 0.9622
57 0.04429 0.08858 0.9557
58 0.03816 0.07632 0.9618
59 0.03141 0.06281 0.9686
60 0.02425 0.0485 0.9757
61 0.02147 0.04294 0.9785
62 0.01621 0.03243 0.9838
63 0.01545 0.03089 0.9846
64 0.01253 0.02507 0.9875
65 0.01191 0.02381 0.9881
66 0.01522 0.03044 0.9848
67 0.01522 0.03045 0.9848
68 0.01512 0.03023 0.9849
69 0.0135 0.027 0.9865
70 0.01022 0.02044 0.9898
71 0.01926 0.03851 0.9807
72 0.03835 0.0767 0.9616
73 0.06873 0.1375 0.9313
74 0.06206 0.1241 0.9379
75 0.05035 0.1007 0.9496
76 0.04029 0.08059 0.9597
77 0.03582 0.07164 0.9642
78 0.03249 0.06499 0.9675
79 0.0628 0.1256 0.9372
80 0.05124 0.1025 0.9488
81 0.2094 0.4188 0.7906
82 0.1801 0.3602 0.8199
83 0.1742 0.3484 0.8258
84 0.1678 0.3356 0.8322
85 0.4246 0.8491 0.5754
86 0.3866 0.7731 0.6134
87 0.4458 0.8916 0.5542
88 0.4044 0.8087 0.5956
89 0.4553 0.9107 0.5447
90 0.435 0.87 0.565
91 0.3976 0.7952 0.6024
92 0.4002 0.8005 0.5998
93 0.3576 0.7152 0.6424
94 0.316 0.6321 0.6839
95 0.2771 0.5542 0.7229
96 0.2441 0.4883 0.7559
97 0.2704 0.5408 0.7296
98 0.2788 0.5577 0.7212
99 0.2593 0.5187 0.7407
100 0.2482 0.4963 0.7518
101 0.269 0.5379 0.731
102 0.2372 0.4743 0.7628
103 0.3892 0.7784 0.6108
104 0.3505 0.7011 0.6495
105 0.3092 0.6183 0.6908
106 0.2816 0.5632 0.7184
107 0.2553 0.5107 0.7447
108 0.2235 0.4471 0.7765
109 0.1946 0.3892 0.8054
110 0.1757 0.3515 0.8243
111 0.2458 0.4916 0.7542
112 0.2102 0.4204 0.7898
113 0.2259 0.4518 0.7741
114 0.3441 0.6883 0.6559
115 0.3404 0.6808 0.6596
116 0.3234 0.6469 0.6766
117 0.3204 0.6408 0.6796
118 0.2872 0.5743 0.7128
119 0.2874 0.5748 0.7126
120 0.2466 0.4932 0.7534
121 0.213 0.426 0.787
122 0.1834 0.3669 0.8166
123 0.1636 0.3272 0.8364
124 0.1396 0.2792 0.8604
125 0.1169 0.2338 0.8831
126 0.1034 0.2069 0.8966
127 0.08575 0.1715 0.9143
128 0.0753 0.1506 0.9247
129 0.05856 0.1171 0.9414
130 0.05026 0.1005 0.9497
131 0.03885 0.07769 0.9612
132 0.04251 0.08502 0.9575
133 0.03864 0.07729 0.9614
134 0.07558 0.1512 0.9244
135 0.07286 0.1457 0.9271
136 0.05755 0.1151 0.9425
137 0.04866 0.09731 0.9513
138 0.04047 0.08095 0.9595
139 0.03352 0.06705 0.9665
140 0.03682 0.07363 0.9632
141 0.02874 0.05748 0.9713
142 0.02124 0.04247 0.9788
143 0.03429 0.06858 0.9657
144 0.0305 0.061 0.9695
145 0.03267 0.06535 0.9673
146 0.1008 0.2016 0.8992
147 0.09377 0.1875 0.9062
148 0.06926 0.1385 0.9307
149 0.08456 0.1691 0.9154
150 0.07227 0.1445 0.9277
151 0.07318 0.1464 0.9268
152 0.049 0.098 0.951
153 0.04669 0.09339 0.9533
154 0.02928 0.05855 0.9707
155 0.02521 0.05043 0.9748
156 0.192 0.384 0.808
157 0.5489 0.9021 0.4511
158 0.5041 0.9917 0.4959
159 0.4295 0.8589 0.5705

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
8 &  0.05265 &  0.1053 &  0.9474 \tabularnewline
9 &  0.02273 &  0.04545 &  0.9773 \tabularnewline
10 &  0.007129 &  0.01426 &  0.9929 \tabularnewline
11 &  0.005396 &  0.01079 &  0.9946 \tabularnewline
12 &  0.001614 &  0.003228 &  0.9984 \tabularnewline
13 &  0.0005592 &  0.001118 &  0.9994 \tabularnewline
14 &  0.001826 &  0.003652 &  0.9982 \tabularnewline
15 &  0.001892 &  0.003785 &  0.9981 \tabularnewline
16 &  0.002724 &  0.005447 &  0.9973 \tabularnewline
17 &  0.001151 &  0.002302 &  0.9988 \tabularnewline
18 &  0.0195 &  0.039 &  0.9805 \tabularnewline
19 &  0.01404 &  0.02808 &  0.986 \tabularnewline
20 &  0.01127 &  0.02254 &  0.9887 \tabularnewline
21 &  0.01291 &  0.02583 &  0.9871 \tabularnewline
22 &  0.007365 &  0.01473 &  0.9926 \tabularnewline
23 &  0.006795 &  0.01359 &  0.9932 \tabularnewline
24 &  0.006077 &  0.01215 &  0.9939 \tabularnewline
25 &  0.02112 &  0.04224 &  0.9789 \tabularnewline
26 &  0.0155 &  0.031 &  0.9845 \tabularnewline
27 &  0.01267 &  0.02534 &  0.9873 \tabularnewline
28 &  0.008694 &  0.01739 &  0.9913 \tabularnewline
29 &  0.005372 &  0.01074 &  0.9946 \tabularnewline
30 &  0.01126 &  0.02253 &  0.9887 \tabularnewline
31 &  0.02039 &  0.04077 &  0.9796 \tabularnewline
32 &  0.02118 &  0.04235 &  0.9788 \tabularnewline
33 &  0.01427 &  0.02853 &  0.9857 \tabularnewline
34 &  0.02186 &  0.04372 &  0.9781 \tabularnewline
35 &  0.01504 &  0.03008 &  0.985 \tabularnewline
36 &  0.01122 &  0.02244 &  0.9888 \tabularnewline
37 &  0.007568 &  0.01514 &  0.9924 \tabularnewline
38 &  0.005734 &  0.01147 &  0.9943 \tabularnewline
39 &  0.01378 &  0.02756 &  0.9862 \tabularnewline
40 &  0.012 &  0.024 &  0.988 \tabularnewline
41 &  0.008151 &  0.0163 &  0.9918 \tabularnewline
42 &  0.009407 &  0.01881 &  0.9906 \tabularnewline
43 &  0.007305 &  0.01461 &  0.9927 \tabularnewline
44 &  0.005191 &  0.01038 &  0.9948 \tabularnewline
45 &  0.003472 &  0.006943 &  0.9965 \tabularnewline
46 &  0.002315 &  0.004631 &  0.9977 \tabularnewline
47 &  0.001898 &  0.003796 &  0.9981 \tabularnewline
48 &  0.009201 &  0.0184 &  0.9908 \tabularnewline
49 &  0.007746 &  0.01549 &  0.9923 \tabularnewline
50 &  0.005378 &  0.01076 &  0.9946 \tabularnewline
51 &  0.004329 &  0.008658 &  0.9957 \tabularnewline
52 &  0.002945 &  0.005889 &  0.9971 \tabularnewline
53 &  0.02808 &  0.05616 &  0.9719 \tabularnewline
54 &  0.02105 &  0.04209 &  0.979 \tabularnewline
55 &  0.04805 &  0.0961 &  0.952 \tabularnewline
56 &  0.03775 &  0.07551 &  0.9622 \tabularnewline
57 &  0.04429 &  0.08858 &  0.9557 \tabularnewline
58 &  0.03816 &  0.07632 &  0.9618 \tabularnewline
59 &  0.03141 &  0.06281 &  0.9686 \tabularnewline
60 &  0.02425 &  0.0485 &  0.9757 \tabularnewline
61 &  0.02147 &  0.04294 &  0.9785 \tabularnewline
62 &  0.01621 &  0.03243 &  0.9838 \tabularnewline
63 &  0.01545 &  0.03089 &  0.9846 \tabularnewline
64 &  0.01253 &  0.02507 &  0.9875 \tabularnewline
65 &  0.01191 &  0.02381 &  0.9881 \tabularnewline
66 &  0.01522 &  0.03044 &  0.9848 \tabularnewline
67 &  0.01522 &  0.03045 &  0.9848 \tabularnewline
68 &  0.01512 &  0.03023 &  0.9849 \tabularnewline
69 &  0.0135 &  0.027 &  0.9865 \tabularnewline
70 &  0.01022 &  0.02044 &  0.9898 \tabularnewline
71 &  0.01926 &  0.03851 &  0.9807 \tabularnewline
72 &  0.03835 &  0.0767 &  0.9616 \tabularnewline
73 &  0.06873 &  0.1375 &  0.9313 \tabularnewline
74 &  0.06206 &  0.1241 &  0.9379 \tabularnewline
75 &  0.05035 &  0.1007 &  0.9496 \tabularnewline
76 &  0.04029 &  0.08059 &  0.9597 \tabularnewline
77 &  0.03582 &  0.07164 &  0.9642 \tabularnewline
78 &  0.03249 &  0.06499 &  0.9675 \tabularnewline
79 &  0.0628 &  0.1256 &  0.9372 \tabularnewline
80 &  0.05124 &  0.1025 &  0.9488 \tabularnewline
81 &  0.2094 &  0.4188 &  0.7906 \tabularnewline
82 &  0.1801 &  0.3602 &  0.8199 \tabularnewline
83 &  0.1742 &  0.3484 &  0.8258 \tabularnewline
84 &  0.1678 &  0.3356 &  0.8322 \tabularnewline
85 &  0.4246 &  0.8491 &  0.5754 \tabularnewline
86 &  0.3866 &  0.7731 &  0.6134 \tabularnewline
87 &  0.4458 &  0.8916 &  0.5542 \tabularnewline
88 &  0.4044 &  0.8087 &  0.5956 \tabularnewline
89 &  0.4553 &  0.9107 &  0.5447 \tabularnewline
90 &  0.435 &  0.87 &  0.565 \tabularnewline
91 &  0.3976 &  0.7952 &  0.6024 \tabularnewline
92 &  0.4002 &  0.8005 &  0.5998 \tabularnewline
93 &  0.3576 &  0.7152 &  0.6424 \tabularnewline
94 &  0.316 &  0.6321 &  0.6839 \tabularnewline
95 &  0.2771 &  0.5542 &  0.7229 \tabularnewline
96 &  0.2441 &  0.4883 &  0.7559 \tabularnewline
97 &  0.2704 &  0.5408 &  0.7296 \tabularnewline
98 &  0.2788 &  0.5577 &  0.7212 \tabularnewline
99 &  0.2593 &  0.5187 &  0.7407 \tabularnewline
100 &  0.2482 &  0.4963 &  0.7518 \tabularnewline
101 &  0.269 &  0.5379 &  0.731 \tabularnewline
102 &  0.2372 &  0.4743 &  0.7628 \tabularnewline
103 &  0.3892 &  0.7784 &  0.6108 \tabularnewline
104 &  0.3505 &  0.7011 &  0.6495 \tabularnewline
105 &  0.3092 &  0.6183 &  0.6908 \tabularnewline
106 &  0.2816 &  0.5632 &  0.7184 \tabularnewline
107 &  0.2553 &  0.5107 &  0.7447 \tabularnewline
108 &  0.2235 &  0.4471 &  0.7765 \tabularnewline
109 &  0.1946 &  0.3892 &  0.8054 \tabularnewline
110 &  0.1757 &  0.3515 &  0.8243 \tabularnewline
111 &  0.2458 &  0.4916 &  0.7542 \tabularnewline
112 &  0.2102 &  0.4204 &  0.7898 \tabularnewline
113 &  0.2259 &  0.4518 &  0.7741 \tabularnewline
114 &  0.3441 &  0.6883 &  0.6559 \tabularnewline
115 &  0.3404 &  0.6808 &  0.6596 \tabularnewline
116 &  0.3234 &  0.6469 &  0.6766 \tabularnewline
117 &  0.3204 &  0.6408 &  0.6796 \tabularnewline
118 &  0.2872 &  0.5743 &  0.7128 \tabularnewline
119 &  0.2874 &  0.5748 &  0.7126 \tabularnewline
120 &  0.2466 &  0.4932 &  0.7534 \tabularnewline
121 &  0.213 &  0.426 &  0.787 \tabularnewline
122 &  0.1834 &  0.3669 &  0.8166 \tabularnewline
123 &  0.1636 &  0.3272 &  0.8364 \tabularnewline
124 &  0.1396 &  0.2792 &  0.8604 \tabularnewline
125 &  0.1169 &  0.2338 &  0.8831 \tabularnewline
126 &  0.1034 &  0.2069 &  0.8966 \tabularnewline
127 &  0.08575 &  0.1715 &  0.9143 \tabularnewline
128 &  0.0753 &  0.1506 &  0.9247 \tabularnewline
129 &  0.05856 &  0.1171 &  0.9414 \tabularnewline
130 &  0.05026 &  0.1005 &  0.9497 \tabularnewline
131 &  0.03885 &  0.07769 &  0.9612 \tabularnewline
132 &  0.04251 &  0.08502 &  0.9575 \tabularnewline
133 &  0.03864 &  0.07729 &  0.9614 \tabularnewline
134 &  0.07558 &  0.1512 &  0.9244 \tabularnewline
135 &  0.07286 &  0.1457 &  0.9271 \tabularnewline
136 &  0.05755 &  0.1151 &  0.9425 \tabularnewline
137 &  0.04866 &  0.09731 &  0.9513 \tabularnewline
138 &  0.04047 &  0.08095 &  0.9595 \tabularnewline
139 &  0.03352 &  0.06705 &  0.9665 \tabularnewline
140 &  0.03682 &  0.07363 &  0.9632 \tabularnewline
141 &  0.02874 &  0.05748 &  0.9713 \tabularnewline
142 &  0.02124 &  0.04247 &  0.9788 \tabularnewline
143 &  0.03429 &  0.06858 &  0.9657 \tabularnewline
144 &  0.0305 &  0.061 &  0.9695 \tabularnewline
145 &  0.03267 &  0.06535 &  0.9673 \tabularnewline
146 &  0.1008 &  0.2016 &  0.8992 \tabularnewline
147 &  0.09377 &  0.1875 &  0.9062 \tabularnewline
148 &  0.06926 &  0.1385 &  0.9307 \tabularnewline
149 &  0.08456 &  0.1691 &  0.9154 \tabularnewline
150 &  0.07227 &  0.1445 &  0.9277 \tabularnewline
151 &  0.07318 &  0.1464 &  0.9268 \tabularnewline
152 &  0.049 &  0.098 &  0.951 \tabularnewline
153 &  0.04669 &  0.09339 &  0.9533 \tabularnewline
154 &  0.02928 &  0.05855 &  0.9707 \tabularnewline
155 &  0.02521 &  0.05043 &  0.9748 \tabularnewline
156 &  0.192 &  0.384 &  0.808 \tabularnewline
157 &  0.5489 &  0.9021 &  0.4511 \tabularnewline
158 &  0.5041 &  0.9917 &  0.4959 \tabularnewline
159 &  0.4295 &  0.8589 &  0.5705 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298618&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]8[/C][C] 0.05265[/C][C] 0.1053[/C][C] 0.9474[/C][/ROW]
[ROW][C]9[/C][C] 0.02273[/C][C] 0.04545[/C][C] 0.9773[/C][/ROW]
[ROW][C]10[/C][C] 0.007129[/C][C] 0.01426[/C][C] 0.9929[/C][/ROW]
[ROW][C]11[/C][C] 0.005396[/C][C] 0.01079[/C][C] 0.9946[/C][/ROW]
[ROW][C]12[/C][C] 0.001614[/C][C] 0.003228[/C][C] 0.9984[/C][/ROW]
[ROW][C]13[/C][C] 0.0005592[/C][C] 0.001118[/C][C] 0.9994[/C][/ROW]
[ROW][C]14[/C][C] 0.001826[/C][C] 0.003652[/C][C] 0.9982[/C][/ROW]
[ROW][C]15[/C][C] 0.001892[/C][C] 0.003785[/C][C] 0.9981[/C][/ROW]
[ROW][C]16[/C][C] 0.002724[/C][C] 0.005447[/C][C] 0.9973[/C][/ROW]
[ROW][C]17[/C][C] 0.001151[/C][C] 0.002302[/C][C] 0.9988[/C][/ROW]
[ROW][C]18[/C][C] 0.0195[/C][C] 0.039[/C][C] 0.9805[/C][/ROW]
[ROW][C]19[/C][C] 0.01404[/C][C] 0.02808[/C][C] 0.986[/C][/ROW]
[ROW][C]20[/C][C] 0.01127[/C][C] 0.02254[/C][C] 0.9887[/C][/ROW]
[ROW][C]21[/C][C] 0.01291[/C][C] 0.02583[/C][C] 0.9871[/C][/ROW]
[ROW][C]22[/C][C] 0.007365[/C][C] 0.01473[/C][C] 0.9926[/C][/ROW]
[ROW][C]23[/C][C] 0.006795[/C][C] 0.01359[/C][C] 0.9932[/C][/ROW]
[ROW][C]24[/C][C] 0.006077[/C][C] 0.01215[/C][C] 0.9939[/C][/ROW]
[ROW][C]25[/C][C] 0.02112[/C][C] 0.04224[/C][C] 0.9789[/C][/ROW]
[ROW][C]26[/C][C] 0.0155[/C][C] 0.031[/C][C] 0.9845[/C][/ROW]
[ROW][C]27[/C][C] 0.01267[/C][C] 0.02534[/C][C] 0.9873[/C][/ROW]
[ROW][C]28[/C][C] 0.008694[/C][C] 0.01739[/C][C] 0.9913[/C][/ROW]
[ROW][C]29[/C][C] 0.005372[/C][C] 0.01074[/C][C] 0.9946[/C][/ROW]
[ROW][C]30[/C][C] 0.01126[/C][C] 0.02253[/C][C] 0.9887[/C][/ROW]
[ROW][C]31[/C][C] 0.02039[/C][C] 0.04077[/C][C] 0.9796[/C][/ROW]
[ROW][C]32[/C][C] 0.02118[/C][C] 0.04235[/C][C] 0.9788[/C][/ROW]
[ROW][C]33[/C][C] 0.01427[/C][C] 0.02853[/C][C] 0.9857[/C][/ROW]
[ROW][C]34[/C][C] 0.02186[/C][C] 0.04372[/C][C] 0.9781[/C][/ROW]
[ROW][C]35[/C][C] 0.01504[/C][C] 0.03008[/C][C] 0.985[/C][/ROW]
[ROW][C]36[/C][C] 0.01122[/C][C] 0.02244[/C][C] 0.9888[/C][/ROW]
[ROW][C]37[/C][C] 0.007568[/C][C] 0.01514[/C][C] 0.9924[/C][/ROW]
[ROW][C]38[/C][C] 0.005734[/C][C] 0.01147[/C][C] 0.9943[/C][/ROW]
[ROW][C]39[/C][C] 0.01378[/C][C] 0.02756[/C][C] 0.9862[/C][/ROW]
[ROW][C]40[/C][C] 0.012[/C][C] 0.024[/C][C] 0.988[/C][/ROW]
[ROW][C]41[/C][C] 0.008151[/C][C] 0.0163[/C][C] 0.9918[/C][/ROW]
[ROW][C]42[/C][C] 0.009407[/C][C] 0.01881[/C][C] 0.9906[/C][/ROW]
[ROW][C]43[/C][C] 0.007305[/C][C] 0.01461[/C][C] 0.9927[/C][/ROW]
[ROW][C]44[/C][C] 0.005191[/C][C] 0.01038[/C][C] 0.9948[/C][/ROW]
[ROW][C]45[/C][C] 0.003472[/C][C] 0.006943[/C][C] 0.9965[/C][/ROW]
[ROW][C]46[/C][C] 0.002315[/C][C] 0.004631[/C][C] 0.9977[/C][/ROW]
[ROW][C]47[/C][C] 0.001898[/C][C] 0.003796[/C][C] 0.9981[/C][/ROW]
[ROW][C]48[/C][C] 0.009201[/C][C] 0.0184[/C][C] 0.9908[/C][/ROW]
[ROW][C]49[/C][C] 0.007746[/C][C] 0.01549[/C][C] 0.9923[/C][/ROW]
[ROW][C]50[/C][C] 0.005378[/C][C] 0.01076[/C][C] 0.9946[/C][/ROW]
[ROW][C]51[/C][C] 0.004329[/C][C] 0.008658[/C][C] 0.9957[/C][/ROW]
[ROW][C]52[/C][C] 0.002945[/C][C] 0.005889[/C][C] 0.9971[/C][/ROW]
[ROW][C]53[/C][C] 0.02808[/C][C] 0.05616[/C][C] 0.9719[/C][/ROW]
[ROW][C]54[/C][C] 0.02105[/C][C] 0.04209[/C][C] 0.979[/C][/ROW]
[ROW][C]55[/C][C] 0.04805[/C][C] 0.0961[/C][C] 0.952[/C][/ROW]
[ROW][C]56[/C][C] 0.03775[/C][C] 0.07551[/C][C] 0.9622[/C][/ROW]
[ROW][C]57[/C][C] 0.04429[/C][C] 0.08858[/C][C] 0.9557[/C][/ROW]
[ROW][C]58[/C][C] 0.03816[/C][C] 0.07632[/C][C] 0.9618[/C][/ROW]
[ROW][C]59[/C][C] 0.03141[/C][C] 0.06281[/C][C] 0.9686[/C][/ROW]
[ROW][C]60[/C][C] 0.02425[/C][C] 0.0485[/C][C] 0.9757[/C][/ROW]
[ROW][C]61[/C][C] 0.02147[/C][C] 0.04294[/C][C] 0.9785[/C][/ROW]
[ROW][C]62[/C][C] 0.01621[/C][C] 0.03243[/C][C] 0.9838[/C][/ROW]
[ROW][C]63[/C][C] 0.01545[/C][C] 0.03089[/C][C] 0.9846[/C][/ROW]
[ROW][C]64[/C][C] 0.01253[/C][C] 0.02507[/C][C] 0.9875[/C][/ROW]
[ROW][C]65[/C][C] 0.01191[/C][C] 0.02381[/C][C] 0.9881[/C][/ROW]
[ROW][C]66[/C][C] 0.01522[/C][C] 0.03044[/C][C] 0.9848[/C][/ROW]
[ROW][C]67[/C][C] 0.01522[/C][C] 0.03045[/C][C] 0.9848[/C][/ROW]
[ROW][C]68[/C][C] 0.01512[/C][C] 0.03023[/C][C] 0.9849[/C][/ROW]
[ROW][C]69[/C][C] 0.0135[/C][C] 0.027[/C][C] 0.9865[/C][/ROW]
[ROW][C]70[/C][C] 0.01022[/C][C] 0.02044[/C][C] 0.9898[/C][/ROW]
[ROW][C]71[/C][C] 0.01926[/C][C] 0.03851[/C][C] 0.9807[/C][/ROW]
[ROW][C]72[/C][C] 0.03835[/C][C] 0.0767[/C][C] 0.9616[/C][/ROW]
[ROW][C]73[/C][C] 0.06873[/C][C] 0.1375[/C][C] 0.9313[/C][/ROW]
[ROW][C]74[/C][C] 0.06206[/C][C] 0.1241[/C][C] 0.9379[/C][/ROW]
[ROW][C]75[/C][C] 0.05035[/C][C] 0.1007[/C][C] 0.9496[/C][/ROW]
[ROW][C]76[/C][C] 0.04029[/C][C] 0.08059[/C][C] 0.9597[/C][/ROW]
[ROW][C]77[/C][C] 0.03582[/C][C] 0.07164[/C][C] 0.9642[/C][/ROW]
[ROW][C]78[/C][C] 0.03249[/C][C] 0.06499[/C][C] 0.9675[/C][/ROW]
[ROW][C]79[/C][C] 0.0628[/C][C] 0.1256[/C][C] 0.9372[/C][/ROW]
[ROW][C]80[/C][C] 0.05124[/C][C] 0.1025[/C][C] 0.9488[/C][/ROW]
[ROW][C]81[/C][C] 0.2094[/C][C] 0.4188[/C][C] 0.7906[/C][/ROW]
[ROW][C]82[/C][C] 0.1801[/C][C] 0.3602[/C][C] 0.8199[/C][/ROW]
[ROW][C]83[/C][C] 0.1742[/C][C] 0.3484[/C][C] 0.8258[/C][/ROW]
[ROW][C]84[/C][C] 0.1678[/C][C] 0.3356[/C][C] 0.8322[/C][/ROW]
[ROW][C]85[/C][C] 0.4246[/C][C] 0.8491[/C][C] 0.5754[/C][/ROW]
[ROW][C]86[/C][C] 0.3866[/C][C] 0.7731[/C][C] 0.6134[/C][/ROW]
[ROW][C]87[/C][C] 0.4458[/C][C] 0.8916[/C][C] 0.5542[/C][/ROW]
[ROW][C]88[/C][C] 0.4044[/C][C] 0.8087[/C][C] 0.5956[/C][/ROW]
[ROW][C]89[/C][C] 0.4553[/C][C] 0.9107[/C][C] 0.5447[/C][/ROW]
[ROW][C]90[/C][C] 0.435[/C][C] 0.87[/C][C] 0.565[/C][/ROW]
[ROW][C]91[/C][C] 0.3976[/C][C] 0.7952[/C][C] 0.6024[/C][/ROW]
[ROW][C]92[/C][C] 0.4002[/C][C] 0.8005[/C][C] 0.5998[/C][/ROW]
[ROW][C]93[/C][C] 0.3576[/C][C] 0.7152[/C][C] 0.6424[/C][/ROW]
[ROW][C]94[/C][C] 0.316[/C][C] 0.6321[/C][C] 0.6839[/C][/ROW]
[ROW][C]95[/C][C] 0.2771[/C][C] 0.5542[/C][C] 0.7229[/C][/ROW]
[ROW][C]96[/C][C] 0.2441[/C][C] 0.4883[/C][C] 0.7559[/C][/ROW]
[ROW][C]97[/C][C] 0.2704[/C][C] 0.5408[/C][C] 0.7296[/C][/ROW]
[ROW][C]98[/C][C] 0.2788[/C][C] 0.5577[/C][C] 0.7212[/C][/ROW]
[ROW][C]99[/C][C] 0.2593[/C][C] 0.5187[/C][C] 0.7407[/C][/ROW]
[ROW][C]100[/C][C] 0.2482[/C][C] 0.4963[/C][C] 0.7518[/C][/ROW]
[ROW][C]101[/C][C] 0.269[/C][C] 0.5379[/C][C] 0.731[/C][/ROW]
[ROW][C]102[/C][C] 0.2372[/C][C] 0.4743[/C][C] 0.7628[/C][/ROW]
[ROW][C]103[/C][C] 0.3892[/C][C] 0.7784[/C][C] 0.6108[/C][/ROW]
[ROW][C]104[/C][C] 0.3505[/C][C] 0.7011[/C][C] 0.6495[/C][/ROW]
[ROW][C]105[/C][C] 0.3092[/C][C] 0.6183[/C][C] 0.6908[/C][/ROW]
[ROW][C]106[/C][C] 0.2816[/C][C] 0.5632[/C][C] 0.7184[/C][/ROW]
[ROW][C]107[/C][C] 0.2553[/C][C] 0.5107[/C][C] 0.7447[/C][/ROW]
[ROW][C]108[/C][C] 0.2235[/C][C] 0.4471[/C][C] 0.7765[/C][/ROW]
[ROW][C]109[/C][C] 0.1946[/C][C] 0.3892[/C][C] 0.8054[/C][/ROW]
[ROW][C]110[/C][C] 0.1757[/C][C] 0.3515[/C][C] 0.8243[/C][/ROW]
[ROW][C]111[/C][C] 0.2458[/C][C] 0.4916[/C][C] 0.7542[/C][/ROW]
[ROW][C]112[/C][C] 0.2102[/C][C] 0.4204[/C][C] 0.7898[/C][/ROW]
[ROW][C]113[/C][C] 0.2259[/C][C] 0.4518[/C][C] 0.7741[/C][/ROW]
[ROW][C]114[/C][C] 0.3441[/C][C] 0.6883[/C][C] 0.6559[/C][/ROW]
[ROW][C]115[/C][C] 0.3404[/C][C] 0.6808[/C][C] 0.6596[/C][/ROW]
[ROW][C]116[/C][C] 0.3234[/C][C] 0.6469[/C][C] 0.6766[/C][/ROW]
[ROW][C]117[/C][C] 0.3204[/C][C] 0.6408[/C][C] 0.6796[/C][/ROW]
[ROW][C]118[/C][C] 0.2872[/C][C] 0.5743[/C][C] 0.7128[/C][/ROW]
[ROW][C]119[/C][C] 0.2874[/C][C] 0.5748[/C][C] 0.7126[/C][/ROW]
[ROW][C]120[/C][C] 0.2466[/C][C] 0.4932[/C][C] 0.7534[/C][/ROW]
[ROW][C]121[/C][C] 0.213[/C][C] 0.426[/C][C] 0.787[/C][/ROW]
[ROW][C]122[/C][C] 0.1834[/C][C] 0.3669[/C][C] 0.8166[/C][/ROW]
[ROW][C]123[/C][C] 0.1636[/C][C] 0.3272[/C][C] 0.8364[/C][/ROW]
[ROW][C]124[/C][C] 0.1396[/C][C] 0.2792[/C][C] 0.8604[/C][/ROW]
[ROW][C]125[/C][C] 0.1169[/C][C] 0.2338[/C][C] 0.8831[/C][/ROW]
[ROW][C]126[/C][C] 0.1034[/C][C] 0.2069[/C][C] 0.8966[/C][/ROW]
[ROW][C]127[/C][C] 0.08575[/C][C] 0.1715[/C][C] 0.9143[/C][/ROW]
[ROW][C]128[/C][C] 0.0753[/C][C] 0.1506[/C][C] 0.9247[/C][/ROW]
[ROW][C]129[/C][C] 0.05856[/C][C] 0.1171[/C][C] 0.9414[/C][/ROW]
[ROW][C]130[/C][C] 0.05026[/C][C] 0.1005[/C][C] 0.9497[/C][/ROW]
[ROW][C]131[/C][C] 0.03885[/C][C] 0.07769[/C][C] 0.9612[/C][/ROW]
[ROW][C]132[/C][C] 0.04251[/C][C] 0.08502[/C][C] 0.9575[/C][/ROW]
[ROW][C]133[/C][C] 0.03864[/C][C] 0.07729[/C][C] 0.9614[/C][/ROW]
[ROW][C]134[/C][C] 0.07558[/C][C] 0.1512[/C][C] 0.9244[/C][/ROW]
[ROW][C]135[/C][C] 0.07286[/C][C] 0.1457[/C][C] 0.9271[/C][/ROW]
[ROW][C]136[/C][C] 0.05755[/C][C] 0.1151[/C][C] 0.9425[/C][/ROW]
[ROW][C]137[/C][C] 0.04866[/C][C] 0.09731[/C][C] 0.9513[/C][/ROW]
[ROW][C]138[/C][C] 0.04047[/C][C] 0.08095[/C][C] 0.9595[/C][/ROW]
[ROW][C]139[/C][C] 0.03352[/C][C] 0.06705[/C][C] 0.9665[/C][/ROW]
[ROW][C]140[/C][C] 0.03682[/C][C] 0.07363[/C][C] 0.9632[/C][/ROW]
[ROW][C]141[/C][C] 0.02874[/C][C] 0.05748[/C][C] 0.9713[/C][/ROW]
[ROW][C]142[/C][C] 0.02124[/C][C] 0.04247[/C][C] 0.9788[/C][/ROW]
[ROW][C]143[/C][C] 0.03429[/C][C] 0.06858[/C][C] 0.9657[/C][/ROW]
[ROW][C]144[/C][C] 0.0305[/C][C] 0.061[/C][C] 0.9695[/C][/ROW]
[ROW][C]145[/C][C] 0.03267[/C][C] 0.06535[/C][C] 0.9673[/C][/ROW]
[ROW][C]146[/C][C] 0.1008[/C][C] 0.2016[/C][C] 0.8992[/C][/ROW]
[ROW][C]147[/C][C] 0.09377[/C][C] 0.1875[/C][C] 0.9062[/C][/ROW]
[ROW][C]148[/C][C] 0.06926[/C][C] 0.1385[/C][C] 0.9307[/C][/ROW]
[ROW][C]149[/C][C] 0.08456[/C][C] 0.1691[/C][C] 0.9154[/C][/ROW]
[ROW][C]150[/C][C] 0.07227[/C][C] 0.1445[/C][C] 0.9277[/C][/ROW]
[ROW][C]151[/C][C] 0.07318[/C][C] 0.1464[/C][C] 0.9268[/C][/ROW]
[ROW][C]152[/C][C] 0.049[/C][C] 0.098[/C][C] 0.951[/C][/ROW]
[ROW][C]153[/C][C] 0.04669[/C][C] 0.09339[/C][C] 0.9533[/C][/ROW]
[ROW][C]154[/C][C] 0.02928[/C][C] 0.05855[/C][C] 0.9707[/C][/ROW]
[ROW][C]155[/C][C] 0.02521[/C][C] 0.05043[/C][C] 0.9748[/C][/ROW]
[ROW][C]156[/C][C] 0.192[/C][C] 0.384[/C][C] 0.808[/C][/ROW]
[ROW][C]157[/C][C] 0.5489[/C][C] 0.9021[/C][C] 0.4511[/C][/ROW]
[ROW][C]158[/C][C] 0.5041[/C][C] 0.9917[/C][C] 0.4959[/C][/ROW]
[ROW][C]159[/C][C] 0.4295[/C][C] 0.8589[/C][C] 0.5705[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298618&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298618&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
8 0.05265 0.1053 0.9474
9 0.02273 0.04545 0.9773
10 0.007129 0.01426 0.9929
11 0.005396 0.01079 0.9946
12 0.001614 0.003228 0.9984
13 0.0005592 0.001118 0.9994
14 0.001826 0.003652 0.9982
15 0.001892 0.003785 0.9981
16 0.002724 0.005447 0.9973
17 0.001151 0.002302 0.9988
18 0.0195 0.039 0.9805
19 0.01404 0.02808 0.986
20 0.01127 0.02254 0.9887
21 0.01291 0.02583 0.9871
22 0.007365 0.01473 0.9926
23 0.006795 0.01359 0.9932
24 0.006077 0.01215 0.9939
25 0.02112 0.04224 0.9789
26 0.0155 0.031 0.9845
27 0.01267 0.02534 0.9873
28 0.008694 0.01739 0.9913
29 0.005372 0.01074 0.9946
30 0.01126 0.02253 0.9887
31 0.02039 0.04077 0.9796
32 0.02118 0.04235 0.9788
33 0.01427 0.02853 0.9857
34 0.02186 0.04372 0.9781
35 0.01504 0.03008 0.985
36 0.01122 0.02244 0.9888
37 0.007568 0.01514 0.9924
38 0.005734 0.01147 0.9943
39 0.01378 0.02756 0.9862
40 0.012 0.024 0.988
41 0.008151 0.0163 0.9918
42 0.009407 0.01881 0.9906
43 0.007305 0.01461 0.9927
44 0.005191 0.01038 0.9948
45 0.003472 0.006943 0.9965
46 0.002315 0.004631 0.9977
47 0.001898 0.003796 0.9981
48 0.009201 0.0184 0.9908
49 0.007746 0.01549 0.9923
50 0.005378 0.01076 0.9946
51 0.004329 0.008658 0.9957
52 0.002945 0.005889 0.9971
53 0.02808 0.05616 0.9719
54 0.02105 0.04209 0.979
55 0.04805 0.0961 0.952
56 0.03775 0.07551 0.9622
57 0.04429 0.08858 0.9557
58 0.03816 0.07632 0.9618
59 0.03141 0.06281 0.9686
60 0.02425 0.0485 0.9757
61 0.02147 0.04294 0.9785
62 0.01621 0.03243 0.9838
63 0.01545 0.03089 0.9846
64 0.01253 0.02507 0.9875
65 0.01191 0.02381 0.9881
66 0.01522 0.03044 0.9848
67 0.01522 0.03045 0.9848
68 0.01512 0.03023 0.9849
69 0.0135 0.027 0.9865
70 0.01022 0.02044 0.9898
71 0.01926 0.03851 0.9807
72 0.03835 0.0767 0.9616
73 0.06873 0.1375 0.9313
74 0.06206 0.1241 0.9379
75 0.05035 0.1007 0.9496
76 0.04029 0.08059 0.9597
77 0.03582 0.07164 0.9642
78 0.03249 0.06499 0.9675
79 0.0628 0.1256 0.9372
80 0.05124 0.1025 0.9488
81 0.2094 0.4188 0.7906
82 0.1801 0.3602 0.8199
83 0.1742 0.3484 0.8258
84 0.1678 0.3356 0.8322
85 0.4246 0.8491 0.5754
86 0.3866 0.7731 0.6134
87 0.4458 0.8916 0.5542
88 0.4044 0.8087 0.5956
89 0.4553 0.9107 0.5447
90 0.435 0.87 0.565
91 0.3976 0.7952 0.6024
92 0.4002 0.8005 0.5998
93 0.3576 0.7152 0.6424
94 0.316 0.6321 0.6839
95 0.2771 0.5542 0.7229
96 0.2441 0.4883 0.7559
97 0.2704 0.5408 0.7296
98 0.2788 0.5577 0.7212
99 0.2593 0.5187 0.7407
100 0.2482 0.4963 0.7518
101 0.269 0.5379 0.731
102 0.2372 0.4743 0.7628
103 0.3892 0.7784 0.6108
104 0.3505 0.7011 0.6495
105 0.3092 0.6183 0.6908
106 0.2816 0.5632 0.7184
107 0.2553 0.5107 0.7447
108 0.2235 0.4471 0.7765
109 0.1946 0.3892 0.8054
110 0.1757 0.3515 0.8243
111 0.2458 0.4916 0.7542
112 0.2102 0.4204 0.7898
113 0.2259 0.4518 0.7741
114 0.3441 0.6883 0.6559
115 0.3404 0.6808 0.6596
116 0.3234 0.6469 0.6766
117 0.3204 0.6408 0.6796
118 0.2872 0.5743 0.7128
119 0.2874 0.5748 0.7126
120 0.2466 0.4932 0.7534
121 0.213 0.426 0.787
122 0.1834 0.3669 0.8166
123 0.1636 0.3272 0.8364
124 0.1396 0.2792 0.8604
125 0.1169 0.2338 0.8831
126 0.1034 0.2069 0.8966
127 0.08575 0.1715 0.9143
128 0.0753 0.1506 0.9247
129 0.05856 0.1171 0.9414
130 0.05026 0.1005 0.9497
131 0.03885 0.07769 0.9612
132 0.04251 0.08502 0.9575
133 0.03864 0.07729 0.9614
134 0.07558 0.1512 0.9244
135 0.07286 0.1457 0.9271
136 0.05755 0.1151 0.9425
137 0.04866 0.09731 0.9513
138 0.04047 0.08095 0.9595
139 0.03352 0.06705 0.9665
140 0.03682 0.07363 0.9632
141 0.02874 0.05748 0.9713
142 0.02124 0.04247 0.9788
143 0.03429 0.06858 0.9657
144 0.0305 0.061 0.9695
145 0.03267 0.06535 0.9673
146 0.1008 0.2016 0.8992
147 0.09377 0.1875 0.9062
148 0.06926 0.1385 0.9307
149 0.08456 0.1691 0.9154
150 0.07227 0.1445 0.9277
151 0.07318 0.1464 0.9268
152 0.049 0.098 0.951
153 0.04669 0.09339 0.9533
154 0.02928 0.05855 0.9707
155 0.02521 0.05043 0.9748
156 0.192 0.384 0.808
157 0.5489 0.9021 0.4511
158 0.5041 0.9917 0.4959
159 0.4295 0.8589 0.5705







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level11 0.07237NOK
5% type I error level580.381579NOK
10% type I error level830.546053NOK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 11 &  0.07237 & NOK \tabularnewline
5% type I error level & 58 & 0.381579 & NOK \tabularnewline
10% type I error level & 83 & 0.546053 & NOK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298618&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]11[/C][C] 0.07237[/C][C]NOK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]58[/C][C]0.381579[/C][C]NOK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]83[/C][C]0.546053[/C][C]NOK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298618&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298618&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level11 0.07237NOK
5% type I error level580.381579NOK
10% type I error level830.546053NOK







Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 1.8309, df1 = 2, df2 = 160, p-value = 0.1636
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = 1.8511, df1 = 8, df2 = 154, p-value = 0.07166
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 0.68144, df1 = 2, df2 = 160, p-value = 0.5074

\begin{tabular}{lllllllll}
\hline
Ramsey RESET F-Test for powers (2 and 3) of fitted values \tabularnewline
> reset_test_fitted
	RESET test
data:  mylm
RESET = 1.8309, df1 = 2, df2 = 160, p-value = 0.1636
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of regressors \tabularnewline
> reset_test_regressors
	RESET test
data:  mylm
RESET = 1.8511, df1 = 8, df2 = 154, p-value = 0.07166
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of principal components \tabularnewline
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 0.68144, df1 = 2, df2 = 160, p-value = 0.5074
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=298618&T=7

[TABLE]
[ROW][C]Ramsey RESET F-Test for powers (2 and 3) of fitted values[/C][/ROW]
[ROW][C]
> reset_test_fitted
	RESET test
data:  mylm
RESET = 1.8309, df1 = 2, df2 = 160, p-value = 0.1636
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of regressors[/C][/ROW] [ROW][C]
> reset_test_regressors
	RESET test
data:  mylm
RESET = 1.8511, df1 = 8, df2 = 154, p-value = 0.07166
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of principal components[/C][/ROW] [ROW][C]
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 0.68144, df1 = 2, df2 = 160, p-value = 0.5074
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=298618&T=7

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298618&T=7

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 1.8309, df1 = 2, df2 = 160, p-value = 0.1636
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = 1.8511, df1 = 8, df2 = 154, p-value = 0.07166
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 0.68144, df1 = 2, df2 = 160, p-value = 0.5074







Variance Inflation Factors (Multicollinearity)
> vif
      V1       V2       V4       V5 
1.098557 1.115956 1.046786 1.012247 

\begin{tabular}{lllllllll}
\hline
Variance Inflation Factors (Multicollinearity) \tabularnewline
> vif
      V1       V2       V4       V5 
1.098557 1.115956 1.046786 1.012247 
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=298618&T=8

[TABLE]
[ROW][C]Variance Inflation Factors (Multicollinearity)[/C][/ROW]
[ROW][C]
> vif
      V1       V2       V4       V5 
1.098557 1.115956 1.046786 1.012247 
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=298618&T=8

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298618&T=8

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Variance Inflation Factors (Multicollinearity)
> vif
      V1       V2       V4       V5 
1.098557 1.115956 1.046786 1.012247 



Parameters (Session):
par1 = 5 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ; par4 = 0 ; par5 = 0 ;
Parameters (R input):
par1 = 5 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ; par4 = 0 ; par5 = 0 ;
R code (references can be found in the software module):
library(lattice)
library(lmtest)
library(car)
library(MASS)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
mywarning <- ''
par1 <- as.numeric(par1)
if(is.na(par1)) {
par1 <- 1
mywarning = 'Warning: you did not specify the column number of the endogenous series! The first column was selected by default.'
}
if (par4=='') par4 <- 0
par4 <- as.numeric(par4)
if (par5=='') par5 <- 0
par5 <- as.numeric(par5)
x <- na.omit(t(y))
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'Seasonal Differences (s=12)'){
(n <- n - 12)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+12,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'First and Seasonal Differences (s=12)'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
(n <- n - 12)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+12,j] - x[i,j]
}
}
x <- x2
}
if(par4 > 0) {
x2 <- array(0, dim=c(n-par4,par4), dimnames=list(1:(n-par4), paste(colnames(x)[par1],'(t-',1:par4,')',sep='')))
for (i in 1:(n-par4)) {
for (j in 1:par4) {
x2[i,j] <- x[i+par4-j,par1]
}
}
x <- cbind(x[(par4+1):n,], x2)
n <- n - par4
}
if(par5 > 0) {
x2 <- array(0, dim=c(n-par5*12,par5), dimnames=list(1:(n-par5*12), paste(colnames(x)[par1],'(t-',1:par5,'s)',sep='')))
for (i in 1:(n-par5*12)) {
for (j in 1:par5) {
x2[i,j] <- x[i+par5*12-j*12,par1]
}
}
x <- cbind(x[(par5*12+1):n,], x2)
n <- n - par5*12
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
(k <- length(x[n,]))
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
print(x)
(k <- length(x[n,]))
head(x)
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
sresid <- studres(mylm)
hist(sresid, freq=FALSE, main='Distribution of Studentized Residuals')
xfit<-seq(min(sresid),max(sresid),length=40)
yfit<-dnorm(xfit)
lines(xfit, yfit)
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqPlot(mylm, main='QQ Plot')
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
print(z)
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, signif(mysum$coefficients[i,1],6), sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, mywarning)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Multiple Linear Regression - Ordinary Least Squares', 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,formatC(signif(mysum$coefficients[i,1],5),format='g',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,2],5),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,3],4),format='e',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4],4),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4]/2,4),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a,formatC(signif(sqrt(mysum$r.squared),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$adj.r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a,formatC(signif(mysum$fstatistic[1],6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[2],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[3],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a,formatC(signif(1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a,formatC(signif(mysum$sigma,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a,formatC(signif(sum(myerror*myerror),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
myr <- as.numeric(mysum$resid)
myr
if(n < 200) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,formatC(signif(x[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(x[i]-mysum$resid[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$resid[i],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,1],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,2],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,3],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant1,6))
a<-table.element(a,formatC(signif(numsignificant1/numgqtests,6),format='g',flag=' '))
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant5,6))
a<-table.element(a,signif(numsignificant5/numgqtests,6))
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant10,6))
a<-table.element(a,signif(numsignificant10/numgqtests,6))
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}
}
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of fitted values',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_fitted <- resettest(mylm,power=2:3,type='fitted')
a<-table.element(a,paste('
',RC.texteval('reset_test_fitted'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of regressors',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_regressors <- resettest(mylm,power=2:3,type='regressor')
a<-table.element(a,paste('
',RC.texteval('reset_test_regressors'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of principal components',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_principal_components <- resettest(mylm,power=2:3,type='princomp')
a<-table.element(a,paste('
',RC.texteval('reset_test_principal_components'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable8.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Variance Inflation Factors (Multicollinearity)',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
vif <- vif(mylm)
a<-table.element(a,paste('
',RC.texteval('vif'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable9.tab')