Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_structuraltimeseries.wasp
Title produced by softwareStructural Time Series Models
Date of computationFri, 09 Dec 2016 16:43:00 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/09/t14812982098g90wmemosq3zwg.htm/, Retrieved Fri, 01 Nov 2024 03:27:20 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=298580, Retrieved Fri, 01 Nov 2024 03:27:20 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact85
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Structural Time Series Models] [Structural Time S...] [2016-12-09 15:43:00] [4d72a1efe36cb2a85639504d1000816e] [Current]
Feedback Forum

Post a new message
Dataseries X:
4480
4580
5360
4960
5140
5000
5080
5160
5080
5500
5260
5160
4500
4740
5840
5340
5500
5820
5620
5920
5980
6340
6220
5900
5280
5500
6460
5920
6240
6120
5980
6380
5920
6360
5860
5320
4780
4800
5480
5220
5380
5220
5200
5260
5060
5880
5580
5020
6060
5980
6680
6560
6680
6420
6660
7000
6780
7460
6960
6560
6060
6140
7160
6920
7140
7180
7340
7480
7620
8280
7740
7700
7080
7100
8380
7840
7880
8300
8140
8320
8340
8740
8520
8260
7260
7360
8620
8220
8360
8400
8080
8400
8500
8820
8580
7740
7640
7480
8900
7920
8560
8640
8340
9100
8720
9360
8800
8060
7380
7040
8020
7800
8380
8480
8320
8780
8360
9540
8880
7960
7660
7820
8680
8560
8720
8920




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time4 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298580&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]4 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=298580&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298580&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R ServerBig Analytics Cloud Computing Center







Structural Time Series Model -- Interpolation
tObservedLevelSlopeSeasonalStand. Residuals
144804480000
245804561.723856255884.1355574174908116.67259513240910.281801442045843
353605096.5810338503825.5434607408128247.2061704165242.53134439411985
449605053.0154939472624.3065442915207-90.4877059518462-0.364455985472826
551405094.1827609143924.457379100280445.18868304477840.0894544880759433
650005026.7033883418123.7595411721859-23.2743132104005-0.487397003299229
750805042.9370679007723.698882673390837.3433398943665-0.0398731035062604
851605111.5050124654324.078071706386546.82431594017910.237652429522336
950805088.7655350401323.6762347148376-7.02272005857844-0.247945611590446
1055005345.8696734059725.6849990631772145.4415173605881.23615285008483
1152605310.1661124104425.156501786369-47.8812171388218-0.325069951901072
1251605196.0559171341723.9564253332707-30.8727817955159-0.737400970331776
1345004925.9739305690434.2647643394314-414.878509712772-1.74185875477538
1447404910.1398872150933.7587662696842-168.473630877617-0.252926398092716
1558405329.9620543338842.4349064026399498.0183811030651.9005217440201
1653405435.0183581018343.5152986899842-97.11467436239970.325345452663523
1755005442.6384725548443.139856766556158.6013317314826-0.18972486808473
1858205688.8061369169344.5995619945184124.1420751596961.074782750064
1956205656.5913313763444.1026118989363-33.9227026851051-0.406452130918482
2059205784.7739363397744.6684160759222132.3069575092320.444701403512139
2159805973.6421210723345.70531642223321.354334313613340.76258260438122
2263406122.486949828746.4698199034868213.934460274470.54552231120796
2362206198.042061810346.652324963711520.94828169379080.153752329019302
2459005992.3636323540546.29674576419-83.5903616829131-1.33472791270739
2552805836.8026225551447.7696278922946-549.661634102588-1.09778930370188
2655005831.420761525647.4812032287656-329.615071210913-0.277087328760555
2764605931.0664323209248.2465901833697527.2433252601480.264435885248058
2859205999.0764038465848.5407711100722-79.7300107880.102294432971966
2962406164.102764203749.864798699920871.94955875464130.612969260929957
3061206073.2605414490248.677460593391851.5498525832295-0.743629448540404
3159806065.7346741723148.2756078642347-83.8097778803694-0.297139572608492
3263806227.2719834073849.0654403648278148.848918562210.598689362209577
3359206096.9910004306447.7881591068836-170.850177286905-0.94787936135838
3463606125.7298307610547.65890940646234.92238526737-0.100640981855483
3558605901.1575616105646.2703958110105-31.8357724137365-1.4368751160958
3653205539.8325214528545.4806526725422-205.847921508529-2.15574204038917
3747805376.9392319491545.4511932878182-589.747806937975-1.10972187869037
3848005229.0687559043944.3617311308251-422.522173379909-1.01138955463
3954805059.0338615416741.934040705369428.039730656893-1.10295906386582
4052205216.7080886738443.4192184741302-0.5421357286523970.599929690136273
4153805264.3815765558243.4674907641919115.4753074587210.0223196795504078
4252205221.3969723195342.66231658735131.53735842295134-0.456054871773696
4352005295.0045390255942.9098914467224-96.05801629953170.163456189609643
4452605173.1801130567241.683064527639392.4318160173907-0.870214899827037
4550605200.2338243840241.5786331912193-139.735452224413-0.0772563499874931
4658805407.8921422500442.6501070015393466.4513592335580.876373009722917
4755805462.499557325142.7101447166801117.0932167815920.0630523280659392
4850205279.8853099828441.9549859897076-252.200545702046-1.18991540416319
4960606049.8407267736244.3424472815706-14.69160401035033.84817180866669
5059806307.066748263445.6947230688785-334.2529251177021.11421680144268
5166806344.342288387945.6112566551758335.937669229867-0.0436270529519838
5265606498.7711118870446.860275754291957.61234331838970.565400029899335
5366806553.0253330802546.9417554459891126.7266519308810.0387346402613157
5464206490.3206165287845.8734515909406-66.6145491147604-0.577487877849371
5566606619.8914994458546.593959453133237.26957878866780.441658477092247
5670006818.2125265264447.786858948349176.6353229154220.800847837068993
5767806939.4459413913448.3205705735149-161.9401916082180.387488485141655
5874606986.6476879138648.3133216384216473.390295376255-0.00589763727963083
5969606906.3344810009747.616015771892558.0318728421722-0.677717659563377
6065607035.0782029572547.9888197234012-477.8341596011190.427759399741174
6160606529.670417498845.2335288759202-450.887478778878-2.91548537332151
6261406467.5097058077444.4847739840902-323.891667814898-0.562199468465688
6371606712.5177123328346.3549765453574440.7899829682371.04312143903471
6469206828.6495869056847.098166725307289.02529025822420.363316216046197
6571406941.600183424147.7998443415308196.193171617630.344794607834126
6671807177.877198814249.6633927221346-4.231359050477110.991453999085867
6773407329.9517551313450.58228295390296.583620538610330.539852370688734
6874807362.9513767390550.4383361888043117.644225440628-0.0927190803828952
6976207632.5121320692952.0777480348214-19.93573886982321.15491436839551
7082807750.8590932404152.5234660400101526.8964978965250.349009938151436
7177407723.840978572152.048667626690618.8526634320908-0.41877575963578
7277007883.052857204152.6466118120321-186.6827171561890.564319913549702
7370807688.9408306228551.1527768482218-600.594083835677-1.29776855724583
7471007577.767878796449.9426403499122-472.30612355406-0.849942426228708
7583807822.8473317228951.7169635414053550.6279692626391.01744166148921
7678407838.9758850094651.35568247517342.21217454582486-0.185607270802612
7778807807.5188875788750.499467745354575.2553641141832-0.43356164582169
7883008143.3613381294653.3199076753265147.0346668987411.49964678346963
7981408191.006606821153.2678738383398-50.8150110113968-0.0298842069871988
8083208272.4548002249653.505586288144246.59249444056060.148465530405118
8183408362.615915509453.7891399034046-23.85532589375480.193024072859942
8287408283.9313530574952.8530633909735460.546671857513-0.697138692607152
8385208434.680733407253.491620669795182.01041606053950.515047519152461
8482608407.4590669089652.9789001110775-144.731150704405-0.424618041836279
8572608063.4985444771150.2790125974761-790.101977756799-2.08553846520768
8673607950.3334333848748.9990682725269-584.838731264444-0.855989331928138
8786208015.4706630743649.1445468044181603.9891772465280.0842698625000608
8882208153.5074805831950.01982197786463.52129103055740.464184375231775
8983608323.4028492320651.229043829276932.58117557009650.627675656231203
9084008311.5975953871350.610158056328390.5216930316917-0.331066740918658
9180808226.7714777446749.3550406458745-142.205717973922-0.712624731796291
9284008316.7686001986149.7056100401981.85964382521690.213934034052371
9385008442.3465486689450.311909384340455.09220267913370.39921922086199
9488208433.6851804126849.8741526541749388.305168033282-0.310138128108474
9585808444.5372922173249.599975282734136.779561057069-0.205172137624403
9677408022.0592597598646.3129562771543-266.131427801798-2.4816396624218
9776408211.7711826592547.3673368971135-576.603221882290.752960000937221
9874808163.1966015531746.5875350655801-679.973166159686-0.502570923088772
9989008279.2553915537447.2131844635969618.417928449950.363136711130534
10079208069.178507273644.7287590841725-140.571163851861-1.34480067956996
10185608321.3446642605846.7810403509846231.7051107603921.08635375657382
10286408468.258966518747.7556579371134168.3769193470690.52566917475851
10383408517.939791452247.773582548647-178.0046135578350.010122157668105
10491008853.6913750010250.299915431769236.6018628365381.51472045162161
10587208764.4849935968649.1522830216159-39.7819578116415-0.733546111352824
10693608863.4697947197949.5388169981629494.8505278872940.261918304241856
10788008666.9034647360847.7025253562833141.391008504532-1.29328525213786
10880608487.4623643346946.0107132982059-419.808830076886-1.19335879953836
10973808144.9539747712342.9909150916362-751.877325358364-2.03920563140748
11070407873.7673737550940.3629830689528-823.216456383812-1.64604546907999
11180207529.1968194350236.888080502853503.699971232361-2.01359301180159
11278007812.9668930331139.2420982568209-21.23105960709491.29132169131852
11383808076.4642847731941.4278375890024296.0209799391341.17465296927443
11484808268.6336255673742.8825143010673206.3046167543630.791076364587245
11583208496.262971747344.605578051024-182.477720237690.970771095486845
11687808529.3526204673644.5032362713775251.035117025755-0.0605328826474491
11783608465.8785551891843.5927623607783-102.242421107066-0.567438799710547
11895408753.4448021847645.5567954557682778.3403810072741.28170428665809
11988808705.5472028616144.8253453289268177.59919250493-0.490880565467499
12079608406.8313116017342.1336446157972-435.267953429275-1.80406052684507
12176608306.2155917654540.9775672011907-641.41512011662-0.749031412522942
12278208443.4164306289241.8006869536981-626.6467670176010.50420981739439
12386808377.176700945240.8218161913147306.443976288702-0.565468800985167
12485608569.1429769843742.2511353180771-14.20462149233980.790995149160632
12587208555.2598752311841.7102103168468166.621407366216-0.294082960541029
12689208703.6211776315442.7316593984933212.7988926937830.559554098062483

\begin{tabular}{lllllllll}
\hline
Structural Time Series Model -- Interpolation \tabularnewline
t & Observed & Level & Slope & Seasonal & Stand. Residuals \tabularnewline
1 & 4480 & 4480 & 0 & 0 & 0 \tabularnewline
2 & 4580 & 4561.72385625588 & 4.13555741749081 & 16.6725951324091 & 0.281801442045843 \tabularnewline
3 & 5360 & 5096.58103385038 & 25.5434607408128 & 247.206170416524 & 2.53134439411985 \tabularnewline
4 & 4960 & 5053.01549394726 & 24.3065442915207 & -90.4877059518462 & -0.364455985472826 \tabularnewline
5 & 5140 & 5094.18276091439 & 24.4573791002804 & 45.1886830447784 & 0.0894544880759433 \tabularnewline
6 & 5000 & 5026.70338834181 & 23.7595411721859 & -23.2743132104005 & -0.487397003299229 \tabularnewline
7 & 5080 & 5042.93706790077 & 23.6988826733908 & 37.3433398943665 & -0.0398731035062604 \tabularnewline
8 & 5160 & 5111.50501246543 & 24.0780717063865 & 46.8243159401791 & 0.237652429522336 \tabularnewline
9 & 5080 & 5088.76553504013 & 23.6762347148376 & -7.02272005857844 & -0.247945611590446 \tabularnewline
10 & 5500 & 5345.86967340597 & 25.6849990631772 & 145.441517360588 & 1.23615285008483 \tabularnewline
11 & 5260 & 5310.16611241044 & 25.156501786369 & -47.8812171388218 & -0.325069951901072 \tabularnewline
12 & 5160 & 5196.05591713417 & 23.9564253332707 & -30.8727817955159 & -0.737400970331776 \tabularnewline
13 & 4500 & 4925.97393056904 & 34.2647643394314 & -414.878509712772 & -1.74185875477538 \tabularnewline
14 & 4740 & 4910.13988721509 & 33.7587662696842 & -168.473630877617 & -0.252926398092716 \tabularnewline
15 & 5840 & 5329.96205433388 & 42.4349064026399 & 498.018381103065 & 1.9005217440201 \tabularnewline
16 & 5340 & 5435.01835810183 & 43.5152986899842 & -97.1146743623997 & 0.325345452663523 \tabularnewline
17 & 5500 & 5442.63847255484 & 43.1398567665561 & 58.6013317314826 & -0.18972486808473 \tabularnewline
18 & 5820 & 5688.80613691693 & 44.5995619945184 & 124.142075159696 & 1.074782750064 \tabularnewline
19 & 5620 & 5656.59133137634 & 44.1026118989363 & -33.9227026851051 & -0.406452130918482 \tabularnewline
20 & 5920 & 5784.77393633977 & 44.6684160759222 & 132.306957509232 & 0.444701403512139 \tabularnewline
21 & 5980 & 5973.64212107233 & 45.7053164222332 & 1.35433431361334 & 0.76258260438122 \tabularnewline
22 & 6340 & 6122.4869498287 & 46.4698199034868 & 213.93446027447 & 0.54552231120796 \tabularnewline
23 & 6220 & 6198.0420618103 & 46.6523249637115 & 20.9482816937908 & 0.153752329019302 \tabularnewline
24 & 5900 & 5992.36363235405 & 46.29674576419 & -83.5903616829131 & -1.33472791270739 \tabularnewline
25 & 5280 & 5836.80262255514 & 47.7696278922946 & -549.661634102588 & -1.09778930370188 \tabularnewline
26 & 5500 & 5831.4207615256 & 47.4812032287656 & -329.615071210913 & -0.277087328760555 \tabularnewline
27 & 6460 & 5931.06643232092 & 48.2465901833697 & 527.243325260148 & 0.264435885248058 \tabularnewline
28 & 5920 & 5999.07640384658 & 48.5407711100722 & -79.730010788 & 0.102294432971966 \tabularnewline
29 & 6240 & 6164.1027642037 & 49.8647986999208 & 71.9495587546413 & 0.612969260929957 \tabularnewline
30 & 6120 & 6073.26054144902 & 48.6774605933918 & 51.5498525832295 & -0.743629448540404 \tabularnewline
31 & 5980 & 6065.73467417231 & 48.2756078642347 & -83.8097778803694 & -0.297139572608492 \tabularnewline
32 & 6380 & 6227.27198340738 & 49.0654403648278 & 148.84891856221 & 0.598689362209577 \tabularnewline
33 & 5920 & 6096.99100043064 & 47.7881591068836 & -170.850177286905 & -0.94787936135838 \tabularnewline
34 & 6360 & 6125.72983076105 & 47.65890940646 & 234.92238526737 & -0.100640981855483 \tabularnewline
35 & 5860 & 5901.15756161056 & 46.2703958110105 & -31.8357724137365 & -1.4368751160958 \tabularnewline
36 & 5320 & 5539.83252145285 & 45.4806526725422 & -205.847921508529 & -2.15574204038917 \tabularnewline
37 & 4780 & 5376.93923194915 & 45.4511932878182 & -589.747806937975 & -1.10972187869037 \tabularnewline
38 & 4800 & 5229.06875590439 & 44.3617311308251 & -422.522173379909 & -1.01138955463 \tabularnewline
39 & 5480 & 5059.03386154167 & 41.934040705369 & 428.039730656893 & -1.10295906386582 \tabularnewline
40 & 5220 & 5216.70808867384 & 43.4192184741302 & -0.542135728652397 & 0.599929690136273 \tabularnewline
41 & 5380 & 5264.38157655582 & 43.4674907641919 & 115.475307458721 & 0.0223196795504078 \tabularnewline
42 & 5220 & 5221.39697231953 & 42.6623165873513 & 1.53735842295134 & -0.456054871773696 \tabularnewline
43 & 5200 & 5295.00453902559 & 42.9098914467224 & -96.0580162995317 & 0.163456189609643 \tabularnewline
44 & 5260 & 5173.18011305672 & 41.6830645276393 & 92.4318160173907 & -0.870214899827037 \tabularnewline
45 & 5060 & 5200.23382438402 & 41.5786331912193 & -139.735452224413 & -0.0772563499874931 \tabularnewline
46 & 5880 & 5407.89214225004 & 42.6501070015393 & 466.451359233558 & 0.876373009722917 \tabularnewline
47 & 5580 & 5462.4995573251 & 42.7101447166801 & 117.093216781592 & 0.0630523280659392 \tabularnewline
48 & 5020 & 5279.88530998284 & 41.9549859897076 & -252.200545702046 & -1.18991540416319 \tabularnewline
49 & 6060 & 6049.84072677362 & 44.3424472815706 & -14.6916040103503 & 3.84817180866669 \tabularnewline
50 & 5980 & 6307.0667482634 & 45.6947230688785 & -334.252925117702 & 1.11421680144268 \tabularnewline
51 & 6680 & 6344.3422883879 & 45.6112566551758 & 335.937669229867 & -0.0436270529519838 \tabularnewline
52 & 6560 & 6498.77111188704 & 46.8602757542919 & 57.6123433183897 & 0.565400029899335 \tabularnewline
53 & 6680 & 6553.02533308025 & 46.9417554459891 & 126.726651930881 & 0.0387346402613157 \tabularnewline
54 & 6420 & 6490.32061652878 & 45.8734515909406 & -66.6145491147604 & -0.577487877849371 \tabularnewline
55 & 6660 & 6619.89149944585 & 46.5939594531332 & 37.2695787886678 & 0.441658477092247 \tabularnewline
56 & 7000 & 6818.21252652644 & 47.786858948349 & 176.635322915422 & 0.800847837068993 \tabularnewline
57 & 6780 & 6939.44594139134 & 48.3205705735149 & -161.940191608218 & 0.387488485141655 \tabularnewline
58 & 7460 & 6986.64768791386 & 48.3133216384216 & 473.390295376255 & -0.00589763727963083 \tabularnewline
59 & 6960 & 6906.33448100097 & 47.6160157718925 & 58.0318728421722 & -0.677717659563377 \tabularnewline
60 & 6560 & 7035.07820295725 & 47.9888197234012 & -477.834159601119 & 0.427759399741174 \tabularnewline
61 & 6060 & 6529.6704174988 & 45.2335288759202 & -450.887478778878 & -2.91548537332151 \tabularnewline
62 & 6140 & 6467.50970580774 & 44.4847739840902 & -323.891667814898 & -0.562199468465688 \tabularnewline
63 & 7160 & 6712.51771233283 & 46.3549765453574 & 440.789982968237 & 1.04312143903471 \tabularnewline
64 & 6920 & 6828.64958690568 & 47.0981667253072 & 89.0252902582242 & 0.363316216046197 \tabularnewline
65 & 7140 & 6941.6001834241 & 47.7998443415308 & 196.19317161763 & 0.344794607834126 \tabularnewline
66 & 7180 & 7177.8771988142 & 49.6633927221346 & -4.23135905047711 & 0.991453999085867 \tabularnewline
67 & 7340 & 7329.95175513134 & 50.5822829539029 & 6.58362053861033 & 0.539852370688734 \tabularnewline
68 & 7480 & 7362.95137673905 & 50.4383361888043 & 117.644225440628 & -0.0927190803828952 \tabularnewline
69 & 7620 & 7632.51213206929 & 52.0777480348214 & -19.9357388698232 & 1.15491436839551 \tabularnewline
70 & 8280 & 7750.85909324041 & 52.5234660400101 & 526.896497896525 & 0.349009938151436 \tabularnewline
71 & 7740 & 7723.8409785721 & 52.0486676266906 & 18.8526634320908 & -0.41877575963578 \tabularnewline
72 & 7700 & 7883.0528572041 & 52.6466118120321 & -186.682717156189 & 0.564319913549702 \tabularnewline
73 & 7080 & 7688.94083062285 & 51.1527768482218 & -600.594083835677 & -1.29776855724583 \tabularnewline
74 & 7100 & 7577.7678787964 & 49.9426403499122 & -472.30612355406 & -0.849942426228708 \tabularnewline
75 & 8380 & 7822.84733172289 & 51.7169635414053 & 550.627969262639 & 1.01744166148921 \tabularnewline
76 & 7840 & 7838.97588500946 & 51.3556824751734 & 2.21217454582486 & -0.185607270802612 \tabularnewline
77 & 7880 & 7807.51888757887 & 50.4994677453545 & 75.2553641141832 & -0.43356164582169 \tabularnewline
78 & 8300 & 8143.36133812946 & 53.3199076753265 & 147.034666898741 & 1.49964678346963 \tabularnewline
79 & 8140 & 8191.0066068211 & 53.2678738383398 & -50.8150110113968 & -0.0298842069871988 \tabularnewline
80 & 8320 & 8272.45480022496 & 53.5055862881442 & 46.5924944405606 & 0.148465530405118 \tabularnewline
81 & 8340 & 8362.6159155094 & 53.7891399034046 & -23.8553258937548 & 0.193024072859942 \tabularnewline
82 & 8740 & 8283.93135305749 & 52.8530633909735 & 460.546671857513 & -0.697138692607152 \tabularnewline
83 & 8520 & 8434.6807334072 & 53.4916206697951 & 82.0104160605395 & 0.515047519152461 \tabularnewline
84 & 8260 & 8407.45906690896 & 52.9789001110775 & -144.731150704405 & -0.424618041836279 \tabularnewline
85 & 7260 & 8063.49854447711 & 50.2790125974761 & -790.101977756799 & -2.08553846520768 \tabularnewline
86 & 7360 & 7950.33343338487 & 48.9990682725269 & -584.838731264444 & -0.855989331928138 \tabularnewline
87 & 8620 & 8015.47066307436 & 49.1445468044181 & 603.989177246528 & 0.0842698625000608 \tabularnewline
88 & 8220 & 8153.50748058319 & 50.019821977864 & 63.5212910305574 & 0.464184375231775 \tabularnewline
89 & 8360 & 8323.40284923206 & 51.2290438292769 & 32.5811755700965 & 0.627675656231203 \tabularnewline
90 & 8400 & 8311.59759538713 & 50.6101580563283 & 90.5216930316917 & -0.331066740918658 \tabularnewline
91 & 8080 & 8226.77147774467 & 49.3550406458745 & -142.205717973922 & -0.712624731796291 \tabularnewline
92 & 8400 & 8316.76860019861 & 49.70561004019 & 81.8596438252169 & 0.213934034052371 \tabularnewline
93 & 8500 & 8442.34654866894 & 50.3119093843404 & 55.0922026791337 & 0.39921922086199 \tabularnewline
94 & 8820 & 8433.68518041268 & 49.8741526541749 & 388.305168033282 & -0.310138128108474 \tabularnewline
95 & 8580 & 8444.53729221732 & 49.599975282734 & 136.779561057069 & -0.205172137624403 \tabularnewline
96 & 7740 & 8022.05925975986 & 46.3129562771543 & -266.131427801798 & -2.4816396624218 \tabularnewline
97 & 7640 & 8211.77118265925 & 47.3673368971135 & -576.60322188229 & 0.752960000937221 \tabularnewline
98 & 7480 & 8163.19660155317 & 46.5875350655801 & -679.973166159686 & -0.502570923088772 \tabularnewline
99 & 8900 & 8279.25539155374 & 47.2131844635969 & 618.41792844995 & 0.363136711130534 \tabularnewline
100 & 7920 & 8069.1785072736 & 44.7287590841725 & -140.571163851861 & -1.34480067956996 \tabularnewline
101 & 8560 & 8321.34466426058 & 46.7810403509846 & 231.705110760392 & 1.08635375657382 \tabularnewline
102 & 8640 & 8468.2589665187 & 47.7556579371134 & 168.376919347069 & 0.52566917475851 \tabularnewline
103 & 8340 & 8517.9397914522 & 47.773582548647 & -178.004613557835 & 0.010122157668105 \tabularnewline
104 & 9100 & 8853.69137500102 & 50.299915431769 & 236.601862836538 & 1.51472045162161 \tabularnewline
105 & 8720 & 8764.48499359686 & 49.1522830216159 & -39.7819578116415 & -0.733546111352824 \tabularnewline
106 & 9360 & 8863.46979471979 & 49.5388169981629 & 494.850527887294 & 0.261918304241856 \tabularnewline
107 & 8800 & 8666.90346473608 & 47.7025253562833 & 141.391008504532 & -1.29328525213786 \tabularnewline
108 & 8060 & 8487.46236433469 & 46.0107132982059 & -419.808830076886 & -1.19335879953836 \tabularnewline
109 & 7380 & 8144.95397477123 & 42.9909150916362 & -751.877325358364 & -2.03920563140748 \tabularnewline
110 & 7040 & 7873.76737375509 & 40.3629830689528 & -823.216456383812 & -1.64604546907999 \tabularnewline
111 & 8020 & 7529.19681943502 & 36.888080502853 & 503.699971232361 & -2.01359301180159 \tabularnewline
112 & 7800 & 7812.96689303311 & 39.2420982568209 & -21.2310596070949 & 1.29132169131852 \tabularnewline
113 & 8380 & 8076.46428477319 & 41.4278375890024 & 296.020979939134 & 1.17465296927443 \tabularnewline
114 & 8480 & 8268.63362556737 & 42.8825143010673 & 206.304616754363 & 0.791076364587245 \tabularnewline
115 & 8320 & 8496.2629717473 & 44.605578051024 & -182.47772023769 & 0.970771095486845 \tabularnewline
116 & 8780 & 8529.35262046736 & 44.5032362713775 & 251.035117025755 & -0.0605328826474491 \tabularnewline
117 & 8360 & 8465.87855518918 & 43.5927623607783 & -102.242421107066 & -0.567438799710547 \tabularnewline
118 & 9540 & 8753.44480218476 & 45.5567954557682 & 778.340381007274 & 1.28170428665809 \tabularnewline
119 & 8880 & 8705.54720286161 & 44.8253453289268 & 177.59919250493 & -0.490880565467499 \tabularnewline
120 & 7960 & 8406.83131160173 & 42.1336446157972 & -435.267953429275 & -1.80406052684507 \tabularnewline
121 & 7660 & 8306.21559176545 & 40.9775672011907 & -641.41512011662 & -0.749031412522942 \tabularnewline
122 & 7820 & 8443.41643062892 & 41.8006869536981 & -626.646767017601 & 0.50420981739439 \tabularnewline
123 & 8680 & 8377.1767009452 & 40.8218161913147 & 306.443976288702 & -0.565468800985167 \tabularnewline
124 & 8560 & 8569.14297698437 & 42.2511353180771 & -14.2046214923398 & 0.790995149160632 \tabularnewline
125 & 8720 & 8555.25987523118 & 41.7102103168468 & 166.621407366216 & -0.294082960541029 \tabularnewline
126 & 8920 & 8703.62117763154 & 42.7316593984933 & 212.798892693783 & 0.559554098062483 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298580&T=1

[TABLE]
[ROW][C]Structural Time Series Model -- Interpolation[/C][/ROW]
[ROW][C]t[/C][C]Observed[/C][C]Level[/C][C]Slope[/C][C]Seasonal[/C][C]Stand. Residuals[/C][/ROW]
[ROW][C]1[/C][C]4480[/C][C]4480[/C][C]0[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]2[/C][C]4580[/C][C]4561.72385625588[/C][C]4.13555741749081[/C][C]16.6725951324091[/C][C]0.281801442045843[/C][/ROW]
[ROW][C]3[/C][C]5360[/C][C]5096.58103385038[/C][C]25.5434607408128[/C][C]247.206170416524[/C][C]2.53134439411985[/C][/ROW]
[ROW][C]4[/C][C]4960[/C][C]5053.01549394726[/C][C]24.3065442915207[/C][C]-90.4877059518462[/C][C]-0.364455985472826[/C][/ROW]
[ROW][C]5[/C][C]5140[/C][C]5094.18276091439[/C][C]24.4573791002804[/C][C]45.1886830447784[/C][C]0.0894544880759433[/C][/ROW]
[ROW][C]6[/C][C]5000[/C][C]5026.70338834181[/C][C]23.7595411721859[/C][C]-23.2743132104005[/C][C]-0.487397003299229[/C][/ROW]
[ROW][C]7[/C][C]5080[/C][C]5042.93706790077[/C][C]23.6988826733908[/C][C]37.3433398943665[/C][C]-0.0398731035062604[/C][/ROW]
[ROW][C]8[/C][C]5160[/C][C]5111.50501246543[/C][C]24.0780717063865[/C][C]46.8243159401791[/C][C]0.237652429522336[/C][/ROW]
[ROW][C]9[/C][C]5080[/C][C]5088.76553504013[/C][C]23.6762347148376[/C][C]-7.02272005857844[/C][C]-0.247945611590446[/C][/ROW]
[ROW][C]10[/C][C]5500[/C][C]5345.86967340597[/C][C]25.6849990631772[/C][C]145.441517360588[/C][C]1.23615285008483[/C][/ROW]
[ROW][C]11[/C][C]5260[/C][C]5310.16611241044[/C][C]25.156501786369[/C][C]-47.8812171388218[/C][C]-0.325069951901072[/C][/ROW]
[ROW][C]12[/C][C]5160[/C][C]5196.05591713417[/C][C]23.9564253332707[/C][C]-30.8727817955159[/C][C]-0.737400970331776[/C][/ROW]
[ROW][C]13[/C][C]4500[/C][C]4925.97393056904[/C][C]34.2647643394314[/C][C]-414.878509712772[/C][C]-1.74185875477538[/C][/ROW]
[ROW][C]14[/C][C]4740[/C][C]4910.13988721509[/C][C]33.7587662696842[/C][C]-168.473630877617[/C][C]-0.252926398092716[/C][/ROW]
[ROW][C]15[/C][C]5840[/C][C]5329.96205433388[/C][C]42.4349064026399[/C][C]498.018381103065[/C][C]1.9005217440201[/C][/ROW]
[ROW][C]16[/C][C]5340[/C][C]5435.01835810183[/C][C]43.5152986899842[/C][C]-97.1146743623997[/C][C]0.325345452663523[/C][/ROW]
[ROW][C]17[/C][C]5500[/C][C]5442.63847255484[/C][C]43.1398567665561[/C][C]58.6013317314826[/C][C]-0.18972486808473[/C][/ROW]
[ROW][C]18[/C][C]5820[/C][C]5688.80613691693[/C][C]44.5995619945184[/C][C]124.142075159696[/C][C]1.074782750064[/C][/ROW]
[ROW][C]19[/C][C]5620[/C][C]5656.59133137634[/C][C]44.1026118989363[/C][C]-33.9227026851051[/C][C]-0.406452130918482[/C][/ROW]
[ROW][C]20[/C][C]5920[/C][C]5784.77393633977[/C][C]44.6684160759222[/C][C]132.306957509232[/C][C]0.444701403512139[/C][/ROW]
[ROW][C]21[/C][C]5980[/C][C]5973.64212107233[/C][C]45.7053164222332[/C][C]1.35433431361334[/C][C]0.76258260438122[/C][/ROW]
[ROW][C]22[/C][C]6340[/C][C]6122.4869498287[/C][C]46.4698199034868[/C][C]213.93446027447[/C][C]0.54552231120796[/C][/ROW]
[ROW][C]23[/C][C]6220[/C][C]6198.0420618103[/C][C]46.6523249637115[/C][C]20.9482816937908[/C][C]0.153752329019302[/C][/ROW]
[ROW][C]24[/C][C]5900[/C][C]5992.36363235405[/C][C]46.29674576419[/C][C]-83.5903616829131[/C][C]-1.33472791270739[/C][/ROW]
[ROW][C]25[/C][C]5280[/C][C]5836.80262255514[/C][C]47.7696278922946[/C][C]-549.661634102588[/C][C]-1.09778930370188[/C][/ROW]
[ROW][C]26[/C][C]5500[/C][C]5831.4207615256[/C][C]47.4812032287656[/C][C]-329.615071210913[/C][C]-0.277087328760555[/C][/ROW]
[ROW][C]27[/C][C]6460[/C][C]5931.06643232092[/C][C]48.2465901833697[/C][C]527.243325260148[/C][C]0.264435885248058[/C][/ROW]
[ROW][C]28[/C][C]5920[/C][C]5999.07640384658[/C][C]48.5407711100722[/C][C]-79.730010788[/C][C]0.102294432971966[/C][/ROW]
[ROW][C]29[/C][C]6240[/C][C]6164.1027642037[/C][C]49.8647986999208[/C][C]71.9495587546413[/C][C]0.612969260929957[/C][/ROW]
[ROW][C]30[/C][C]6120[/C][C]6073.26054144902[/C][C]48.6774605933918[/C][C]51.5498525832295[/C][C]-0.743629448540404[/C][/ROW]
[ROW][C]31[/C][C]5980[/C][C]6065.73467417231[/C][C]48.2756078642347[/C][C]-83.8097778803694[/C][C]-0.297139572608492[/C][/ROW]
[ROW][C]32[/C][C]6380[/C][C]6227.27198340738[/C][C]49.0654403648278[/C][C]148.84891856221[/C][C]0.598689362209577[/C][/ROW]
[ROW][C]33[/C][C]5920[/C][C]6096.99100043064[/C][C]47.7881591068836[/C][C]-170.850177286905[/C][C]-0.94787936135838[/C][/ROW]
[ROW][C]34[/C][C]6360[/C][C]6125.72983076105[/C][C]47.65890940646[/C][C]234.92238526737[/C][C]-0.100640981855483[/C][/ROW]
[ROW][C]35[/C][C]5860[/C][C]5901.15756161056[/C][C]46.2703958110105[/C][C]-31.8357724137365[/C][C]-1.4368751160958[/C][/ROW]
[ROW][C]36[/C][C]5320[/C][C]5539.83252145285[/C][C]45.4806526725422[/C][C]-205.847921508529[/C][C]-2.15574204038917[/C][/ROW]
[ROW][C]37[/C][C]4780[/C][C]5376.93923194915[/C][C]45.4511932878182[/C][C]-589.747806937975[/C][C]-1.10972187869037[/C][/ROW]
[ROW][C]38[/C][C]4800[/C][C]5229.06875590439[/C][C]44.3617311308251[/C][C]-422.522173379909[/C][C]-1.01138955463[/C][/ROW]
[ROW][C]39[/C][C]5480[/C][C]5059.03386154167[/C][C]41.934040705369[/C][C]428.039730656893[/C][C]-1.10295906386582[/C][/ROW]
[ROW][C]40[/C][C]5220[/C][C]5216.70808867384[/C][C]43.4192184741302[/C][C]-0.542135728652397[/C][C]0.599929690136273[/C][/ROW]
[ROW][C]41[/C][C]5380[/C][C]5264.38157655582[/C][C]43.4674907641919[/C][C]115.475307458721[/C][C]0.0223196795504078[/C][/ROW]
[ROW][C]42[/C][C]5220[/C][C]5221.39697231953[/C][C]42.6623165873513[/C][C]1.53735842295134[/C][C]-0.456054871773696[/C][/ROW]
[ROW][C]43[/C][C]5200[/C][C]5295.00453902559[/C][C]42.9098914467224[/C][C]-96.0580162995317[/C][C]0.163456189609643[/C][/ROW]
[ROW][C]44[/C][C]5260[/C][C]5173.18011305672[/C][C]41.6830645276393[/C][C]92.4318160173907[/C][C]-0.870214899827037[/C][/ROW]
[ROW][C]45[/C][C]5060[/C][C]5200.23382438402[/C][C]41.5786331912193[/C][C]-139.735452224413[/C][C]-0.0772563499874931[/C][/ROW]
[ROW][C]46[/C][C]5880[/C][C]5407.89214225004[/C][C]42.6501070015393[/C][C]466.451359233558[/C][C]0.876373009722917[/C][/ROW]
[ROW][C]47[/C][C]5580[/C][C]5462.4995573251[/C][C]42.7101447166801[/C][C]117.093216781592[/C][C]0.0630523280659392[/C][/ROW]
[ROW][C]48[/C][C]5020[/C][C]5279.88530998284[/C][C]41.9549859897076[/C][C]-252.200545702046[/C][C]-1.18991540416319[/C][/ROW]
[ROW][C]49[/C][C]6060[/C][C]6049.84072677362[/C][C]44.3424472815706[/C][C]-14.6916040103503[/C][C]3.84817180866669[/C][/ROW]
[ROW][C]50[/C][C]5980[/C][C]6307.0667482634[/C][C]45.6947230688785[/C][C]-334.252925117702[/C][C]1.11421680144268[/C][/ROW]
[ROW][C]51[/C][C]6680[/C][C]6344.3422883879[/C][C]45.6112566551758[/C][C]335.937669229867[/C][C]-0.0436270529519838[/C][/ROW]
[ROW][C]52[/C][C]6560[/C][C]6498.77111188704[/C][C]46.8602757542919[/C][C]57.6123433183897[/C][C]0.565400029899335[/C][/ROW]
[ROW][C]53[/C][C]6680[/C][C]6553.02533308025[/C][C]46.9417554459891[/C][C]126.726651930881[/C][C]0.0387346402613157[/C][/ROW]
[ROW][C]54[/C][C]6420[/C][C]6490.32061652878[/C][C]45.8734515909406[/C][C]-66.6145491147604[/C][C]-0.577487877849371[/C][/ROW]
[ROW][C]55[/C][C]6660[/C][C]6619.89149944585[/C][C]46.5939594531332[/C][C]37.2695787886678[/C][C]0.441658477092247[/C][/ROW]
[ROW][C]56[/C][C]7000[/C][C]6818.21252652644[/C][C]47.786858948349[/C][C]176.635322915422[/C][C]0.800847837068993[/C][/ROW]
[ROW][C]57[/C][C]6780[/C][C]6939.44594139134[/C][C]48.3205705735149[/C][C]-161.940191608218[/C][C]0.387488485141655[/C][/ROW]
[ROW][C]58[/C][C]7460[/C][C]6986.64768791386[/C][C]48.3133216384216[/C][C]473.390295376255[/C][C]-0.00589763727963083[/C][/ROW]
[ROW][C]59[/C][C]6960[/C][C]6906.33448100097[/C][C]47.6160157718925[/C][C]58.0318728421722[/C][C]-0.677717659563377[/C][/ROW]
[ROW][C]60[/C][C]6560[/C][C]7035.07820295725[/C][C]47.9888197234012[/C][C]-477.834159601119[/C][C]0.427759399741174[/C][/ROW]
[ROW][C]61[/C][C]6060[/C][C]6529.6704174988[/C][C]45.2335288759202[/C][C]-450.887478778878[/C][C]-2.91548537332151[/C][/ROW]
[ROW][C]62[/C][C]6140[/C][C]6467.50970580774[/C][C]44.4847739840902[/C][C]-323.891667814898[/C][C]-0.562199468465688[/C][/ROW]
[ROW][C]63[/C][C]7160[/C][C]6712.51771233283[/C][C]46.3549765453574[/C][C]440.789982968237[/C][C]1.04312143903471[/C][/ROW]
[ROW][C]64[/C][C]6920[/C][C]6828.64958690568[/C][C]47.0981667253072[/C][C]89.0252902582242[/C][C]0.363316216046197[/C][/ROW]
[ROW][C]65[/C][C]7140[/C][C]6941.6001834241[/C][C]47.7998443415308[/C][C]196.19317161763[/C][C]0.344794607834126[/C][/ROW]
[ROW][C]66[/C][C]7180[/C][C]7177.8771988142[/C][C]49.6633927221346[/C][C]-4.23135905047711[/C][C]0.991453999085867[/C][/ROW]
[ROW][C]67[/C][C]7340[/C][C]7329.95175513134[/C][C]50.5822829539029[/C][C]6.58362053861033[/C][C]0.539852370688734[/C][/ROW]
[ROW][C]68[/C][C]7480[/C][C]7362.95137673905[/C][C]50.4383361888043[/C][C]117.644225440628[/C][C]-0.0927190803828952[/C][/ROW]
[ROW][C]69[/C][C]7620[/C][C]7632.51213206929[/C][C]52.0777480348214[/C][C]-19.9357388698232[/C][C]1.15491436839551[/C][/ROW]
[ROW][C]70[/C][C]8280[/C][C]7750.85909324041[/C][C]52.5234660400101[/C][C]526.896497896525[/C][C]0.349009938151436[/C][/ROW]
[ROW][C]71[/C][C]7740[/C][C]7723.8409785721[/C][C]52.0486676266906[/C][C]18.8526634320908[/C][C]-0.41877575963578[/C][/ROW]
[ROW][C]72[/C][C]7700[/C][C]7883.0528572041[/C][C]52.6466118120321[/C][C]-186.682717156189[/C][C]0.564319913549702[/C][/ROW]
[ROW][C]73[/C][C]7080[/C][C]7688.94083062285[/C][C]51.1527768482218[/C][C]-600.594083835677[/C][C]-1.29776855724583[/C][/ROW]
[ROW][C]74[/C][C]7100[/C][C]7577.7678787964[/C][C]49.9426403499122[/C][C]-472.30612355406[/C][C]-0.849942426228708[/C][/ROW]
[ROW][C]75[/C][C]8380[/C][C]7822.84733172289[/C][C]51.7169635414053[/C][C]550.627969262639[/C][C]1.01744166148921[/C][/ROW]
[ROW][C]76[/C][C]7840[/C][C]7838.97588500946[/C][C]51.3556824751734[/C][C]2.21217454582486[/C][C]-0.185607270802612[/C][/ROW]
[ROW][C]77[/C][C]7880[/C][C]7807.51888757887[/C][C]50.4994677453545[/C][C]75.2553641141832[/C][C]-0.43356164582169[/C][/ROW]
[ROW][C]78[/C][C]8300[/C][C]8143.36133812946[/C][C]53.3199076753265[/C][C]147.034666898741[/C][C]1.49964678346963[/C][/ROW]
[ROW][C]79[/C][C]8140[/C][C]8191.0066068211[/C][C]53.2678738383398[/C][C]-50.8150110113968[/C][C]-0.0298842069871988[/C][/ROW]
[ROW][C]80[/C][C]8320[/C][C]8272.45480022496[/C][C]53.5055862881442[/C][C]46.5924944405606[/C][C]0.148465530405118[/C][/ROW]
[ROW][C]81[/C][C]8340[/C][C]8362.6159155094[/C][C]53.7891399034046[/C][C]-23.8553258937548[/C][C]0.193024072859942[/C][/ROW]
[ROW][C]82[/C][C]8740[/C][C]8283.93135305749[/C][C]52.8530633909735[/C][C]460.546671857513[/C][C]-0.697138692607152[/C][/ROW]
[ROW][C]83[/C][C]8520[/C][C]8434.6807334072[/C][C]53.4916206697951[/C][C]82.0104160605395[/C][C]0.515047519152461[/C][/ROW]
[ROW][C]84[/C][C]8260[/C][C]8407.45906690896[/C][C]52.9789001110775[/C][C]-144.731150704405[/C][C]-0.424618041836279[/C][/ROW]
[ROW][C]85[/C][C]7260[/C][C]8063.49854447711[/C][C]50.2790125974761[/C][C]-790.101977756799[/C][C]-2.08553846520768[/C][/ROW]
[ROW][C]86[/C][C]7360[/C][C]7950.33343338487[/C][C]48.9990682725269[/C][C]-584.838731264444[/C][C]-0.855989331928138[/C][/ROW]
[ROW][C]87[/C][C]8620[/C][C]8015.47066307436[/C][C]49.1445468044181[/C][C]603.989177246528[/C][C]0.0842698625000608[/C][/ROW]
[ROW][C]88[/C][C]8220[/C][C]8153.50748058319[/C][C]50.019821977864[/C][C]63.5212910305574[/C][C]0.464184375231775[/C][/ROW]
[ROW][C]89[/C][C]8360[/C][C]8323.40284923206[/C][C]51.2290438292769[/C][C]32.5811755700965[/C][C]0.627675656231203[/C][/ROW]
[ROW][C]90[/C][C]8400[/C][C]8311.59759538713[/C][C]50.6101580563283[/C][C]90.5216930316917[/C][C]-0.331066740918658[/C][/ROW]
[ROW][C]91[/C][C]8080[/C][C]8226.77147774467[/C][C]49.3550406458745[/C][C]-142.205717973922[/C][C]-0.712624731796291[/C][/ROW]
[ROW][C]92[/C][C]8400[/C][C]8316.76860019861[/C][C]49.70561004019[/C][C]81.8596438252169[/C][C]0.213934034052371[/C][/ROW]
[ROW][C]93[/C][C]8500[/C][C]8442.34654866894[/C][C]50.3119093843404[/C][C]55.0922026791337[/C][C]0.39921922086199[/C][/ROW]
[ROW][C]94[/C][C]8820[/C][C]8433.68518041268[/C][C]49.8741526541749[/C][C]388.305168033282[/C][C]-0.310138128108474[/C][/ROW]
[ROW][C]95[/C][C]8580[/C][C]8444.53729221732[/C][C]49.599975282734[/C][C]136.779561057069[/C][C]-0.205172137624403[/C][/ROW]
[ROW][C]96[/C][C]7740[/C][C]8022.05925975986[/C][C]46.3129562771543[/C][C]-266.131427801798[/C][C]-2.4816396624218[/C][/ROW]
[ROW][C]97[/C][C]7640[/C][C]8211.77118265925[/C][C]47.3673368971135[/C][C]-576.60322188229[/C][C]0.752960000937221[/C][/ROW]
[ROW][C]98[/C][C]7480[/C][C]8163.19660155317[/C][C]46.5875350655801[/C][C]-679.973166159686[/C][C]-0.502570923088772[/C][/ROW]
[ROW][C]99[/C][C]8900[/C][C]8279.25539155374[/C][C]47.2131844635969[/C][C]618.41792844995[/C][C]0.363136711130534[/C][/ROW]
[ROW][C]100[/C][C]7920[/C][C]8069.1785072736[/C][C]44.7287590841725[/C][C]-140.571163851861[/C][C]-1.34480067956996[/C][/ROW]
[ROW][C]101[/C][C]8560[/C][C]8321.34466426058[/C][C]46.7810403509846[/C][C]231.705110760392[/C][C]1.08635375657382[/C][/ROW]
[ROW][C]102[/C][C]8640[/C][C]8468.2589665187[/C][C]47.7556579371134[/C][C]168.376919347069[/C][C]0.52566917475851[/C][/ROW]
[ROW][C]103[/C][C]8340[/C][C]8517.9397914522[/C][C]47.773582548647[/C][C]-178.004613557835[/C][C]0.010122157668105[/C][/ROW]
[ROW][C]104[/C][C]9100[/C][C]8853.69137500102[/C][C]50.299915431769[/C][C]236.601862836538[/C][C]1.51472045162161[/C][/ROW]
[ROW][C]105[/C][C]8720[/C][C]8764.48499359686[/C][C]49.1522830216159[/C][C]-39.7819578116415[/C][C]-0.733546111352824[/C][/ROW]
[ROW][C]106[/C][C]9360[/C][C]8863.46979471979[/C][C]49.5388169981629[/C][C]494.850527887294[/C][C]0.261918304241856[/C][/ROW]
[ROW][C]107[/C][C]8800[/C][C]8666.90346473608[/C][C]47.7025253562833[/C][C]141.391008504532[/C][C]-1.29328525213786[/C][/ROW]
[ROW][C]108[/C][C]8060[/C][C]8487.46236433469[/C][C]46.0107132982059[/C][C]-419.808830076886[/C][C]-1.19335879953836[/C][/ROW]
[ROW][C]109[/C][C]7380[/C][C]8144.95397477123[/C][C]42.9909150916362[/C][C]-751.877325358364[/C][C]-2.03920563140748[/C][/ROW]
[ROW][C]110[/C][C]7040[/C][C]7873.76737375509[/C][C]40.3629830689528[/C][C]-823.216456383812[/C][C]-1.64604546907999[/C][/ROW]
[ROW][C]111[/C][C]8020[/C][C]7529.19681943502[/C][C]36.888080502853[/C][C]503.699971232361[/C][C]-2.01359301180159[/C][/ROW]
[ROW][C]112[/C][C]7800[/C][C]7812.96689303311[/C][C]39.2420982568209[/C][C]-21.2310596070949[/C][C]1.29132169131852[/C][/ROW]
[ROW][C]113[/C][C]8380[/C][C]8076.46428477319[/C][C]41.4278375890024[/C][C]296.020979939134[/C][C]1.17465296927443[/C][/ROW]
[ROW][C]114[/C][C]8480[/C][C]8268.63362556737[/C][C]42.8825143010673[/C][C]206.304616754363[/C][C]0.791076364587245[/C][/ROW]
[ROW][C]115[/C][C]8320[/C][C]8496.2629717473[/C][C]44.605578051024[/C][C]-182.47772023769[/C][C]0.970771095486845[/C][/ROW]
[ROW][C]116[/C][C]8780[/C][C]8529.35262046736[/C][C]44.5032362713775[/C][C]251.035117025755[/C][C]-0.0605328826474491[/C][/ROW]
[ROW][C]117[/C][C]8360[/C][C]8465.87855518918[/C][C]43.5927623607783[/C][C]-102.242421107066[/C][C]-0.567438799710547[/C][/ROW]
[ROW][C]118[/C][C]9540[/C][C]8753.44480218476[/C][C]45.5567954557682[/C][C]778.340381007274[/C][C]1.28170428665809[/C][/ROW]
[ROW][C]119[/C][C]8880[/C][C]8705.54720286161[/C][C]44.8253453289268[/C][C]177.59919250493[/C][C]-0.490880565467499[/C][/ROW]
[ROW][C]120[/C][C]7960[/C][C]8406.83131160173[/C][C]42.1336446157972[/C][C]-435.267953429275[/C][C]-1.80406052684507[/C][/ROW]
[ROW][C]121[/C][C]7660[/C][C]8306.21559176545[/C][C]40.9775672011907[/C][C]-641.41512011662[/C][C]-0.749031412522942[/C][/ROW]
[ROW][C]122[/C][C]7820[/C][C]8443.41643062892[/C][C]41.8006869536981[/C][C]-626.646767017601[/C][C]0.50420981739439[/C][/ROW]
[ROW][C]123[/C][C]8680[/C][C]8377.1767009452[/C][C]40.8218161913147[/C][C]306.443976288702[/C][C]-0.565468800985167[/C][/ROW]
[ROW][C]124[/C][C]8560[/C][C]8569.14297698437[/C][C]42.2511353180771[/C][C]-14.2046214923398[/C][C]0.790995149160632[/C][/ROW]
[ROW][C]125[/C][C]8720[/C][C]8555.25987523118[/C][C]41.7102103168468[/C][C]166.621407366216[/C][C]-0.294082960541029[/C][/ROW]
[ROW][C]126[/C][C]8920[/C][C]8703.62117763154[/C][C]42.7316593984933[/C][C]212.798892693783[/C][C]0.559554098062483[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298580&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298580&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Structural Time Series Model -- Interpolation
tObservedLevelSlopeSeasonalStand. Residuals
144804480000
245804561.723856255884.1355574174908116.67259513240910.281801442045843
353605096.5810338503825.5434607408128247.2061704165242.53134439411985
449605053.0154939472624.3065442915207-90.4877059518462-0.364455985472826
551405094.1827609143924.457379100280445.18868304477840.0894544880759433
650005026.7033883418123.7595411721859-23.2743132104005-0.487397003299229
750805042.9370679007723.698882673390837.3433398943665-0.0398731035062604
851605111.5050124654324.078071706386546.82431594017910.237652429522336
950805088.7655350401323.6762347148376-7.02272005857844-0.247945611590446
1055005345.8696734059725.6849990631772145.4415173605881.23615285008483
1152605310.1661124104425.156501786369-47.8812171388218-0.325069951901072
1251605196.0559171341723.9564253332707-30.8727817955159-0.737400970331776
1345004925.9739305690434.2647643394314-414.878509712772-1.74185875477538
1447404910.1398872150933.7587662696842-168.473630877617-0.252926398092716
1558405329.9620543338842.4349064026399498.0183811030651.9005217440201
1653405435.0183581018343.5152986899842-97.11467436239970.325345452663523
1755005442.6384725548443.139856766556158.6013317314826-0.18972486808473
1858205688.8061369169344.5995619945184124.1420751596961.074782750064
1956205656.5913313763444.1026118989363-33.9227026851051-0.406452130918482
2059205784.7739363397744.6684160759222132.3069575092320.444701403512139
2159805973.6421210723345.70531642223321.354334313613340.76258260438122
2263406122.486949828746.4698199034868213.934460274470.54552231120796
2362206198.042061810346.652324963711520.94828169379080.153752329019302
2459005992.3636323540546.29674576419-83.5903616829131-1.33472791270739
2552805836.8026225551447.7696278922946-549.661634102588-1.09778930370188
2655005831.420761525647.4812032287656-329.615071210913-0.277087328760555
2764605931.0664323209248.2465901833697527.2433252601480.264435885248058
2859205999.0764038465848.5407711100722-79.7300107880.102294432971966
2962406164.102764203749.864798699920871.94955875464130.612969260929957
3061206073.2605414490248.677460593391851.5498525832295-0.743629448540404
3159806065.7346741723148.2756078642347-83.8097778803694-0.297139572608492
3263806227.2719834073849.0654403648278148.848918562210.598689362209577
3359206096.9910004306447.7881591068836-170.850177286905-0.94787936135838
3463606125.7298307610547.65890940646234.92238526737-0.100640981855483
3558605901.1575616105646.2703958110105-31.8357724137365-1.4368751160958
3653205539.8325214528545.4806526725422-205.847921508529-2.15574204038917
3747805376.9392319491545.4511932878182-589.747806937975-1.10972187869037
3848005229.0687559043944.3617311308251-422.522173379909-1.01138955463
3954805059.0338615416741.934040705369428.039730656893-1.10295906386582
4052205216.7080886738443.4192184741302-0.5421357286523970.599929690136273
4153805264.3815765558243.4674907641919115.4753074587210.0223196795504078
4252205221.3969723195342.66231658735131.53735842295134-0.456054871773696
4352005295.0045390255942.9098914467224-96.05801629953170.163456189609643
4452605173.1801130567241.683064527639392.4318160173907-0.870214899827037
4550605200.2338243840241.5786331912193-139.735452224413-0.0772563499874931
4658805407.8921422500442.6501070015393466.4513592335580.876373009722917
4755805462.499557325142.7101447166801117.0932167815920.0630523280659392
4850205279.8853099828441.9549859897076-252.200545702046-1.18991540416319
4960606049.8407267736244.3424472815706-14.69160401035033.84817180866669
5059806307.066748263445.6947230688785-334.2529251177021.11421680144268
5166806344.342288387945.6112566551758335.937669229867-0.0436270529519838
5265606498.7711118870446.860275754291957.61234331838970.565400029899335
5366806553.0253330802546.9417554459891126.7266519308810.0387346402613157
5464206490.3206165287845.8734515909406-66.6145491147604-0.577487877849371
5566606619.8914994458546.593959453133237.26957878866780.441658477092247
5670006818.2125265264447.786858948349176.6353229154220.800847837068993
5767806939.4459413913448.3205705735149-161.9401916082180.387488485141655
5874606986.6476879138648.3133216384216473.390295376255-0.00589763727963083
5969606906.3344810009747.616015771892558.0318728421722-0.677717659563377
6065607035.0782029572547.9888197234012-477.8341596011190.427759399741174
6160606529.670417498845.2335288759202-450.887478778878-2.91548537332151
6261406467.5097058077444.4847739840902-323.891667814898-0.562199468465688
6371606712.5177123328346.3549765453574440.7899829682371.04312143903471
6469206828.6495869056847.098166725307289.02529025822420.363316216046197
6571406941.600183424147.7998443415308196.193171617630.344794607834126
6671807177.877198814249.6633927221346-4.231359050477110.991453999085867
6773407329.9517551313450.58228295390296.583620538610330.539852370688734
6874807362.9513767390550.4383361888043117.644225440628-0.0927190803828952
6976207632.5121320692952.0777480348214-19.93573886982321.15491436839551
7082807750.8590932404152.5234660400101526.8964978965250.349009938151436
7177407723.840978572152.048667626690618.8526634320908-0.41877575963578
7277007883.052857204152.6466118120321-186.6827171561890.564319913549702
7370807688.9408306228551.1527768482218-600.594083835677-1.29776855724583
7471007577.767878796449.9426403499122-472.30612355406-0.849942426228708
7583807822.8473317228951.7169635414053550.6279692626391.01744166148921
7678407838.9758850094651.35568247517342.21217454582486-0.185607270802612
7778807807.5188875788750.499467745354575.2553641141832-0.43356164582169
7883008143.3613381294653.3199076753265147.0346668987411.49964678346963
7981408191.006606821153.2678738383398-50.8150110113968-0.0298842069871988
8083208272.4548002249653.505586288144246.59249444056060.148465530405118
8183408362.615915509453.7891399034046-23.85532589375480.193024072859942
8287408283.9313530574952.8530633909735460.546671857513-0.697138692607152
8385208434.680733407253.491620669795182.01041606053950.515047519152461
8482608407.4590669089652.9789001110775-144.731150704405-0.424618041836279
8572608063.4985444771150.2790125974761-790.101977756799-2.08553846520768
8673607950.3334333848748.9990682725269-584.838731264444-0.855989331928138
8786208015.4706630743649.1445468044181603.9891772465280.0842698625000608
8882208153.5074805831950.01982197786463.52129103055740.464184375231775
8983608323.4028492320651.229043829276932.58117557009650.627675656231203
9084008311.5975953871350.610158056328390.5216930316917-0.331066740918658
9180808226.7714777446749.3550406458745-142.205717973922-0.712624731796291
9284008316.7686001986149.7056100401981.85964382521690.213934034052371
9385008442.3465486689450.311909384340455.09220267913370.39921922086199
9488208433.6851804126849.8741526541749388.305168033282-0.310138128108474
9585808444.5372922173249.599975282734136.779561057069-0.205172137624403
9677408022.0592597598646.3129562771543-266.131427801798-2.4816396624218
9776408211.7711826592547.3673368971135-576.603221882290.752960000937221
9874808163.1966015531746.5875350655801-679.973166159686-0.502570923088772
9989008279.2553915537447.2131844635969618.417928449950.363136711130534
10079208069.178507273644.7287590841725-140.571163851861-1.34480067956996
10185608321.3446642605846.7810403509846231.7051107603921.08635375657382
10286408468.258966518747.7556579371134168.3769193470690.52566917475851
10383408517.939791452247.773582548647-178.0046135578350.010122157668105
10491008853.6913750010250.299915431769236.6018628365381.51472045162161
10587208764.4849935968649.1522830216159-39.7819578116415-0.733546111352824
10693608863.4697947197949.5388169981629494.8505278872940.261918304241856
10788008666.9034647360847.7025253562833141.391008504532-1.29328525213786
10880608487.4623643346946.0107132982059-419.808830076886-1.19335879953836
10973808144.9539747712342.9909150916362-751.877325358364-2.03920563140748
11070407873.7673737550940.3629830689528-823.216456383812-1.64604546907999
11180207529.1968194350236.888080502853503.699971232361-2.01359301180159
11278007812.9668930331139.2420982568209-21.23105960709491.29132169131852
11383808076.4642847731941.4278375890024296.0209799391341.17465296927443
11484808268.6336255673742.8825143010673206.3046167543630.791076364587245
11583208496.262971747344.605578051024-182.477720237690.970771095486845
11687808529.3526204673644.5032362713775251.035117025755-0.0605328826474491
11783608465.8785551891843.5927623607783-102.242421107066-0.567438799710547
11895408753.4448021847645.5567954557682778.3403810072741.28170428665809
11988808705.5472028616144.8253453289268177.59919250493-0.490880565467499
12079608406.8313116017342.1336446157972-435.267953429275-1.80406052684507
12176608306.2155917654540.9775672011907-641.41512011662-0.749031412522942
12278208443.4164306289241.8006869536981-626.6467670176010.50420981739439
12386808377.176700945240.8218161913147306.443976288702-0.565468800985167
12485608569.1429769843742.2511353180771-14.20462149233980.790995149160632
12587208555.2598752311841.7102103168468166.621407366216-0.294082960541029
12689208703.6211776315442.7316593984933212.7988926937830.559554098062483







Structural Time Series Model -- Extrapolation
tObservedLevelSeasonal
18590.565816867058704.00771149163-113.441894624589
29092.617480701418729.07699803312363.540482668287
38679.683213987668754.14628457461-74.4630705869506
49727.378046220168779.2155711161948.162475104055
59170.643955789868804.28485765759366.35909813227
68407.462676824148829.35414419908-421.891467374944
78097.564279399488854.42343074057-756.85915134109
88168.135039054018879.49271728206-711.357678228049
99049.251850477918904.56200382355144.689846654359
108852.405231430068929.63129036504-77.2260589349805
119056.250356472098954.70057690653101.549779565562
129210.707502414098979.76986344802230.937638966072

\begin{tabular}{lllllllll}
\hline
Structural Time Series Model -- Extrapolation \tabularnewline
t & Observed & Level & Seasonal \tabularnewline
1 & 8590.56581686705 & 8704.00771149163 & -113.441894624589 \tabularnewline
2 & 9092.61748070141 & 8729.07699803312 & 363.540482668287 \tabularnewline
3 & 8679.68321398766 & 8754.14628457461 & -74.4630705869506 \tabularnewline
4 & 9727.37804622016 & 8779.2155711161 & 948.162475104055 \tabularnewline
5 & 9170.64395578986 & 8804.28485765759 & 366.35909813227 \tabularnewline
6 & 8407.46267682414 & 8829.35414419908 & -421.891467374944 \tabularnewline
7 & 8097.56427939948 & 8854.42343074057 & -756.85915134109 \tabularnewline
8 & 8168.13503905401 & 8879.49271728206 & -711.357678228049 \tabularnewline
9 & 9049.25185047791 & 8904.56200382355 & 144.689846654359 \tabularnewline
10 & 8852.40523143006 & 8929.63129036504 & -77.2260589349805 \tabularnewline
11 & 9056.25035647209 & 8954.70057690653 & 101.549779565562 \tabularnewline
12 & 9210.70750241409 & 8979.76986344802 & 230.937638966072 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298580&T=2

[TABLE]
[ROW][C]Structural Time Series Model -- Extrapolation[/C][/ROW]
[ROW][C]t[/C][C]Observed[/C][C]Level[/C][C]Seasonal[/C][/ROW]
[ROW][C]1[/C][C]8590.56581686705[/C][C]8704.00771149163[/C][C]-113.441894624589[/C][/ROW]
[ROW][C]2[/C][C]9092.61748070141[/C][C]8729.07699803312[/C][C]363.540482668287[/C][/ROW]
[ROW][C]3[/C][C]8679.68321398766[/C][C]8754.14628457461[/C][C]-74.4630705869506[/C][/ROW]
[ROW][C]4[/C][C]9727.37804622016[/C][C]8779.2155711161[/C][C]948.162475104055[/C][/ROW]
[ROW][C]5[/C][C]9170.64395578986[/C][C]8804.28485765759[/C][C]366.35909813227[/C][/ROW]
[ROW][C]6[/C][C]8407.46267682414[/C][C]8829.35414419908[/C][C]-421.891467374944[/C][/ROW]
[ROW][C]7[/C][C]8097.56427939948[/C][C]8854.42343074057[/C][C]-756.85915134109[/C][/ROW]
[ROW][C]8[/C][C]8168.13503905401[/C][C]8879.49271728206[/C][C]-711.357678228049[/C][/ROW]
[ROW][C]9[/C][C]9049.25185047791[/C][C]8904.56200382355[/C][C]144.689846654359[/C][/ROW]
[ROW][C]10[/C][C]8852.40523143006[/C][C]8929.63129036504[/C][C]-77.2260589349805[/C][/ROW]
[ROW][C]11[/C][C]9056.25035647209[/C][C]8954.70057690653[/C][C]101.549779565562[/C][/ROW]
[ROW][C]12[/C][C]9210.70750241409[/C][C]8979.76986344802[/C][C]230.937638966072[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298580&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298580&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Structural Time Series Model -- Extrapolation
tObservedLevelSeasonal
18590.565816867058704.00771149163-113.441894624589
29092.617480701418729.07699803312363.540482668287
38679.683213987668754.14628457461-74.4630705869506
49727.378046220168779.2155711161948.162475104055
59170.643955789868804.28485765759366.35909813227
68407.462676824148829.35414419908-421.891467374944
78097.564279399488854.42343074057-756.85915134109
88168.135039054018879.49271728206-711.357678228049
99049.251850477918904.56200382355144.689846654359
108852.405231430068929.63129036504-77.2260589349805
119056.250356472098954.70057690653101.549779565562
129210.707502414098979.76986344802230.937638966072



Parameters (Session):
Parameters (R input):
par1 = 12 ; par2 = 12 ; par3 = BFGS ;
R code (references can be found in the software module):
require('stsm')
require('stsm.class')
require('KFKSDS')
par1 <- as.numeric(par1)
par2 <- as.numeric(par2)
nx <- length(x)
x <- ts(x,frequency=par1)
m <- StructTS(x,type='BSM')
print(m$coef)
print(m$fitted)
print(m$resid)
mylevel <- as.numeric(m$fitted[,'level'])
myslope <- as.numeric(m$fitted[,'slope'])
myseas <- as.numeric(m$fitted[,'sea'])
myresid <- as.numeric(m$resid)
myfit <- mylevel+myseas
mm <- stsm.model(model = 'BSM', y = x, transPars = 'StructTS')
fit2 <- stsmFit(mm, stsm.method = 'maxlik.td.optim', method = par3, KF.args = list(P0cov = TRUE))
(fit2.comps <- tsSmooth(fit2, P0cov = FALSE)$states)
m2 <- set.pars(mm, pmax(fit2$par, .Machine$double.eps))
(ss <- char2numeric(m2))
(pred <- predict(ss, x, n.ahead = par2))
mylagmax <- nx/2
bitmap(file='test2.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(x),lag.max = mylagmax,main='Observed')
acf(mylevel,na.action=na.pass,lag.max = mylagmax,main='Level')
acf(myseas,na.action=na.pass,lag.max = mylagmax,main='Seasonal')
acf(myresid,na.action=na.pass,lag.max = mylagmax,main='Standardized Residals')
par(op)
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
spectrum(as.numeric(x),main='Observed')
spectrum(mylevel,main='Level')
spectrum(myseas,main='Seasonal')
spectrum(myresid,main='Standardized Residals')
par(op)
dev.off()
bitmap(file='test4.png')
op <- par(mfrow = c(2,2))
cpgram(as.numeric(x),main='Observed')
cpgram(mylevel,main='Level')
cpgram(myseas,main='Seasonal')
cpgram(myresid,main='Standardized Residals')
par(op)
dev.off()
bitmap(file='test1.png')
plot(as.numeric(m$resid),main='Standardized Residuals',ylab='Residuals',xlab='time',type='b')
grid()
dev.off()
bitmap(file='test5.png')
op <- par(mfrow = c(2,2))
hist(m$resid,main='Residual Histogram')
plot(density(m$resid),main='Residual Kernel Density')
qqnorm(m$resid,main='Residual Normal QQ Plot')
qqline(m$resid)
plot(m$resid^2, myfit^2,main='Sq.Resid vs. Sq.Fit',xlab='Squared residuals',ylab='Squared Fit')
par(op)
dev.off()
bitmap(file='test6.png')
par(mfrow = c(3,1), mar = c(3,3,3,3))
plot(cbind(x, pred$pred), type = 'n', plot.type = 'single', ylab = '')
lines(x)
polygon(c(time(pred$pred), rev(time(pred$pred))), c(pred$pred + 2 * pred$se, rev(pred$pred)), col = 'gray85', border = NA)
polygon(c(time(pred$pred), rev(time(pred$pred))), c(pred$pred - 2 * pred$se, rev(pred$pred)), col = ' gray85', border = NA)
lines(pred$pred, col = 'blue', lwd = 1.5)
mtext(text = 'forecasts of the observed series', side = 3, adj = 0)
plot(cbind(x, pred$a[,1]), type = 'n', plot.type = 'single', ylab = '')
lines(x)
polygon(c(time(pred$a[,1]), rev(time(pred$a[,1]))), c(pred$a[,1] + 2 * sqrt(pred$P[,1]), rev(pred$a[,1])), col = 'gray85', border = NA)
polygon(c(time(pred$a[,1]), rev(time(pred$a[,1]))), c(pred$a[,1] - 2 * sqrt(pred$P[,1]), rev(pred$a[,1])), col = ' gray85', border = NA)
lines(pred$a[,1], col = 'blue', lwd = 1.5)
mtext(text = 'forecasts of the level component', side = 3, adj = 0)
plot(cbind(fit2.comps[,3], pred$a[,3]), type = 'n', plot.type = 'single', ylab = '')
lines(fit2.comps[,3])
polygon(c(time(pred$a[,3]), rev(time(pred$a[,3]))), c(pred$a[,3] + 2 * sqrt(pred$P[,3]), rev(pred$a[,3])), col = 'gray85', border = NA)
polygon(c(time(pred$a[,3]), rev(time(pred$a[,3]))), c(pred$a[,3] - 2 * sqrt(pred$P[,3]), rev(pred$a[,3])), col = ' gray85', border = NA)
lines(pred$a[,3], col = 'blue', lwd = 1.5)
mtext(text = 'forecasts of the seasonal component', side = 3, adj = 0)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Structural Time Series Model -- Interpolation',6,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observed',header=TRUE)
a<-table.element(a,'Level',header=TRUE)
a<-table.element(a,'Slope',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,'Stand. Residuals',header=TRUE)
a<-table.row.end(a)
for (i in 1:nx) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
a<-table.element(a,mylevel[i])
a<-table.element(a,myslope[i])
a<-table.element(a,myseas[i])
a<-table.element(a,myresid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Structural Time Series Model -- Extrapolation',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observed',header=TRUE)
a<-table.element(a,'Level',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.row.end(a)
for (i in 1:par2) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,pred$pred[i])
a<-table.element(a,pred$a[i,1])
a<-table.element(a,pred$a[i,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')