Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_decompose.wasp
Title produced by softwareClassical Decomposition
Date of computationFri, 09 Dec 2016 16:40:23 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/09/t1481298064lexr1diw1saorsg.htm/, Retrieved Fri, 01 Nov 2024 03:44:33 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=298579, Retrieved Fri, 01 Nov 2024 03:44:33 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact69
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Classical Decomposition] [Classical Decompo...] [2016-12-09 15:40:23] [4d72a1efe36cb2a85639504d1000816e] [Current]
Feedback Forum

Post a new message
Dataseries X:
4480
4580
5360
4960
5140
5000
5080
5160
5080
5500
5260
5160
4500
4740
5840
5340
5500
5820
5620
5920
5980
6340
6220
5900
5280
5500
6460
5920
6240
6120
5980
6380
5920
6360
5860
5320
4780
4800
5480
5220
5380
5220
5200
5260
5060
5880
5580
5020
6060
5980
6680
6560
6680
6420
6660
7000
6780
7460
6960
6560
6060
6140
7160
6920
7140
7180
7340
7480
7620
8280
7740
7700
7080
7100
8380
7840
7880
8300
8140
8320
8340
8740
8520
8260
7260
7360
8620
8220
8360
8400
8080
8400
8500
8820
8580
7740
7640
7480
8900
7920
8560
8640
8340
9100
8720
9360
8800
8060
7380
7040
8020
7800
8380
8480
8320
8780
8360
9540
8880
7960
7660
7820
8680
8560
8720
8920




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time2 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298579&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]2 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=298579&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298579&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center







Classical Decomposition by Moving Averages
tObservationsFitTrendSeasonalRandom
14480NANA-673.227NA
24580NANA-693.875NA
35360NANA318.625NA
44960NANA-137.486NA
55140NANA91.4954NA
65000NANA112.884NA
750805052.545064.17-11.62527.4583
851605337.295071.67265.625-177.292
950805192.625098.3394.2917-112.625
1055005791.625134.17657.458-291.625
1152605404.545165239.542-144.542
1251604950.465214.17-263.708209.542
1345004597.615270.83-673.227-97.6065
1447404631.125325-693.875108.875
1558405712.795394.17318.625127.208
1653405329.185466.67-137.48610.8194
1755005633.165541.6791.4954-133.162
1858205725.385612.5112.88494.6157
1956205664.215675.83-11.625-44.2083
2059206005.625740265.625-85.625
2159805891.795797.594.291788.2083
2263406504.965847.5657.458-164.958
2362206142.045902.5239.54277.9583
2459005682.125945.83-263.708217.875
2552805300.115973.33-673.227-20.1065
2655005313.626007.5-693.875186.375
2764606342.796024.17318.625117.208
2859205885.016022.5-137.48634.9861
2962406099.836008.3391.4954140.171
3061206082.055969.17112.88437.9491
3159805912.545924.17-11.62567.4583
3263806139.795874.17265.625240.208
3359205898.465804.1794.291721.5417
3463606391.625734.17657.458-31.625
3558605908.715669.17239.542-48.7083
3653205332.135595.83-263.708-12.125
3747804852.615525.83-673.227-72.6065
3848004752.795446.67-693.87547.2083
3954805682.795364.17318.625-202.792
4052205170.855308.33-137.48649.1528
4153805368.165276.6791.495411.838
4252205365.385252.5112.884-145.384
4352005281.715293.33-11.625-81.7083
4452605661.465395.83265.625-401.458
4550605589.29549594.2917-529.292
4658806258.295600.83657.458-378.292
4755805950.385710.83239.542-370.375
4850205551.295815-263.708-531.292
4960605252.615925.83-673.227807.394
5059805365.296059.17-693.875614.708
5166806521.966203.33318.625158.042
5265606203.356340.83-137.486356.653
5366806555.666464.1791.4954124.338
5464206698.726585.83112.884-278.718
5566606638.386650-11.62521.625
5670006922.296656.67265.62577.7083
5767806777.626683.3394.29172.375
5874607375.796718.33657.45884.2083
5969606992.046752.5239.542-32.0417
6065606539.626803.33-263.70820.375
6160606190.116863.33-673.227-130.106
6261406217.796911.67-693.875-77.7917
6371607285.296966.67318.625-125.292
6469206898.357035.83-137.48621.6528
65714071947102.591.4954-53.9954
6671807295.387182.5112.884-115.384
6773407260.887272.5-11.62579.125
6874807620.627355265.625-140.625
6976207540.127445.8394.291779.875
7082808192.467535657.45887.5417
7177407843.717604.17239.542-103.708
7277007417.967681.67-263.708282.042
7370807088.447761.67-673.227-8.43981
7471007136.127830-693.875-36.125
7583808213.627895318.625166.375
7678407806.687944.17-137.48633.3194
7778808087.337995.8391.4954-207.329
7883008164.558051.67112.884135.449
7981408070.888082.5-11.62569.125
8083208366.468100.83265.625-46.4583
8183408215.968121.6794.2917124.042
8287408804.968147.5657.458-64.9583
8385208422.878183.33239.54297.125
8482607943.798207.5-263.708316.208
8572607535.948209.17-673.227-275.94
8673607516.128210-693.875-156.125
8786208538.628220318.62581.375
8882208092.518230-137.486127.486
8983608327.338235.8391.495432.6713
9084008329.558216.67112.88470.4491
9180808199.218210.83-11.625-119.208
9284008497.298231.67265.625-97.2917
9385008342.628248.3394.2917157.375
9488208904.968247.5657.458-84.9583
9585808482.878243.33239.54297.125
9677407997.968261.67-263.708-257.958
9776407609.278282.5-673.22730.7269
9874807628.628322.5-693.875-148.625
9989008679.468360.83318.625220.542
10079208255.018392.5-137.486-335.014
10185608515.668424.1791.495444.338
10286408559.558446.67112.88480.4491
10383408437.548449.17-11.625-97.5417
10491008685.628420265.625414.375
10587208459.29836594.2917260.708
10693608980.798323.33657.458379.208
10788008550.378310.83239.542249.625
10880608032.968296.67-263.70827.0417
10973807615.948289.17-673.227-235.94
11070407581.128275-693.875-541.125
11180208565.298246.67318.625-545.292
11278008101.688239.17-137.486-301.681
11383808341.5825091.495438.5046
11484808362.058249.17112.884117.949
11583208245.048256.67-11.62574.9583
11687808566.468300.83265.625213.542
11783608455.128360.8394.2917-95.125
11895409077.468420657.458462.542
11988808705.388465.83239.542174.625
12079608234.628498.33-263.708-274.625
1217660NANA-673.227NA
1227820NANA-693.875NA
1238680NANA318.625NA
1248560NANA-137.486NA
1258720NANA91.4954NA
1268920NANA112.884NA

\begin{tabular}{lllllllll}
\hline
Classical Decomposition by Moving Averages \tabularnewline
t & Observations & Fit & Trend & Seasonal & Random \tabularnewline
1 & 4480 & NA & NA & -673.227 & NA \tabularnewline
2 & 4580 & NA & NA & -693.875 & NA \tabularnewline
3 & 5360 & NA & NA & 318.625 & NA \tabularnewline
4 & 4960 & NA & NA & -137.486 & NA \tabularnewline
5 & 5140 & NA & NA & 91.4954 & NA \tabularnewline
6 & 5000 & NA & NA & 112.884 & NA \tabularnewline
7 & 5080 & 5052.54 & 5064.17 & -11.625 & 27.4583 \tabularnewline
8 & 5160 & 5337.29 & 5071.67 & 265.625 & -177.292 \tabularnewline
9 & 5080 & 5192.62 & 5098.33 & 94.2917 & -112.625 \tabularnewline
10 & 5500 & 5791.62 & 5134.17 & 657.458 & -291.625 \tabularnewline
11 & 5260 & 5404.54 & 5165 & 239.542 & -144.542 \tabularnewline
12 & 5160 & 4950.46 & 5214.17 & -263.708 & 209.542 \tabularnewline
13 & 4500 & 4597.61 & 5270.83 & -673.227 & -97.6065 \tabularnewline
14 & 4740 & 4631.12 & 5325 & -693.875 & 108.875 \tabularnewline
15 & 5840 & 5712.79 & 5394.17 & 318.625 & 127.208 \tabularnewline
16 & 5340 & 5329.18 & 5466.67 & -137.486 & 10.8194 \tabularnewline
17 & 5500 & 5633.16 & 5541.67 & 91.4954 & -133.162 \tabularnewline
18 & 5820 & 5725.38 & 5612.5 & 112.884 & 94.6157 \tabularnewline
19 & 5620 & 5664.21 & 5675.83 & -11.625 & -44.2083 \tabularnewline
20 & 5920 & 6005.62 & 5740 & 265.625 & -85.625 \tabularnewline
21 & 5980 & 5891.79 & 5797.5 & 94.2917 & 88.2083 \tabularnewline
22 & 6340 & 6504.96 & 5847.5 & 657.458 & -164.958 \tabularnewline
23 & 6220 & 6142.04 & 5902.5 & 239.542 & 77.9583 \tabularnewline
24 & 5900 & 5682.12 & 5945.83 & -263.708 & 217.875 \tabularnewline
25 & 5280 & 5300.11 & 5973.33 & -673.227 & -20.1065 \tabularnewline
26 & 5500 & 5313.62 & 6007.5 & -693.875 & 186.375 \tabularnewline
27 & 6460 & 6342.79 & 6024.17 & 318.625 & 117.208 \tabularnewline
28 & 5920 & 5885.01 & 6022.5 & -137.486 & 34.9861 \tabularnewline
29 & 6240 & 6099.83 & 6008.33 & 91.4954 & 140.171 \tabularnewline
30 & 6120 & 6082.05 & 5969.17 & 112.884 & 37.9491 \tabularnewline
31 & 5980 & 5912.54 & 5924.17 & -11.625 & 67.4583 \tabularnewline
32 & 6380 & 6139.79 & 5874.17 & 265.625 & 240.208 \tabularnewline
33 & 5920 & 5898.46 & 5804.17 & 94.2917 & 21.5417 \tabularnewline
34 & 6360 & 6391.62 & 5734.17 & 657.458 & -31.625 \tabularnewline
35 & 5860 & 5908.71 & 5669.17 & 239.542 & -48.7083 \tabularnewline
36 & 5320 & 5332.13 & 5595.83 & -263.708 & -12.125 \tabularnewline
37 & 4780 & 4852.61 & 5525.83 & -673.227 & -72.6065 \tabularnewline
38 & 4800 & 4752.79 & 5446.67 & -693.875 & 47.2083 \tabularnewline
39 & 5480 & 5682.79 & 5364.17 & 318.625 & -202.792 \tabularnewline
40 & 5220 & 5170.85 & 5308.33 & -137.486 & 49.1528 \tabularnewline
41 & 5380 & 5368.16 & 5276.67 & 91.4954 & 11.838 \tabularnewline
42 & 5220 & 5365.38 & 5252.5 & 112.884 & -145.384 \tabularnewline
43 & 5200 & 5281.71 & 5293.33 & -11.625 & -81.7083 \tabularnewline
44 & 5260 & 5661.46 & 5395.83 & 265.625 & -401.458 \tabularnewline
45 & 5060 & 5589.29 & 5495 & 94.2917 & -529.292 \tabularnewline
46 & 5880 & 6258.29 & 5600.83 & 657.458 & -378.292 \tabularnewline
47 & 5580 & 5950.38 & 5710.83 & 239.542 & -370.375 \tabularnewline
48 & 5020 & 5551.29 & 5815 & -263.708 & -531.292 \tabularnewline
49 & 6060 & 5252.61 & 5925.83 & -673.227 & 807.394 \tabularnewline
50 & 5980 & 5365.29 & 6059.17 & -693.875 & 614.708 \tabularnewline
51 & 6680 & 6521.96 & 6203.33 & 318.625 & 158.042 \tabularnewline
52 & 6560 & 6203.35 & 6340.83 & -137.486 & 356.653 \tabularnewline
53 & 6680 & 6555.66 & 6464.17 & 91.4954 & 124.338 \tabularnewline
54 & 6420 & 6698.72 & 6585.83 & 112.884 & -278.718 \tabularnewline
55 & 6660 & 6638.38 & 6650 & -11.625 & 21.625 \tabularnewline
56 & 7000 & 6922.29 & 6656.67 & 265.625 & 77.7083 \tabularnewline
57 & 6780 & 6777.62 & 6683.33 & 94.2917 & 2.375 \tabularnewline
58 & 7460 & 7375.79 & 6718.33 & 657.458 & 84.2083 \tabularnewline
59 & 6960 & 6992.04 & 6752.5 & 239.542 & -32.0417 \tabularnewline
60 & 6560 & 6539.62 & 6803.33 & -263.708 & 20.375 \tabularnewline
61 & 6060 & 6190.11 & 6863.33 & -673.227 & -130.106 \tabularnewline
62 & 6140 & 6217.79 & 6911.67 & -693.875 & -77.7917 \tabularnewline
63 & 7160 & 7285.29 & 6966.67 & 318.625 & -125.292 \tabularnewline
64 & 6920 & 6898.35 & 7035.83 & -137.486 & 21.6528 \tabularnewline
65 & 7140 & 7194 & 7102.5 & 91.4954 & -53.9954 \tabularnewline
66 & 7180 & 7295.38 & 7182.5 & 112.884 & -115.384 \tabularnewline
67 & 7340 & 7260.88 & 7272.5 & -11.625 & 79.125 \tabularnewline
68 & 7480 & 7620.62 & 7355 & 265.625 & -140.625 \tabularnewline
69 & 7620 & 7540.12 & 7445.83 & 94.2917 & 79.875 \tabularnewline
70 & 8280 & 8192.46 & 7535 & 657.458 & 87.5417 \tabularnewline
71 & 7740 & 7843.71 & 7604.17 & 239.542 & -103.708 \tabularnewline
72 & 7700 & 7417.96 & 7681.67 & -263.708 & 282.042 \tabularnewline
73 & 7080 & 7088.44 & 7761.67 & -673.227 & -8.43981 \tabularnewline
74 & 7100 & 7136.12 & 7830 & -693.875 & -36.125 \tabularnewline
75 & 8380 & 8213.62 & 7895 & 318.625 & 166.375 \tabularnewline
76 & 7840 & 7806.68 & 7944.17 & -137.486 & 33.3194 \tabularnewline
77 & 7880 & 8087.33 & 7995.83 & 91.4954 & -207.329 \tabularnewline
78 & 8300 & 8164.55 & 8051.67 & 112.884 & 135.449 \tabularnewline
79 & 8140 & 8070.88 & 8082.5 & -11.625 & 69.125 \tabularnewline
80 & 8320 & 8366.46 & 8100.83 & 265.625 & -46.4583 \tabularnewline
81 & 8340 & 8215.96 & 8121.67 & 94.2917 & 124.042 \tabularnewline
82 & 8740 & 8804.96 & 8147.5 & 657.458 & -64.9583 \tabularnewline
83 & 8520 & 8422.87 & 8183.33 & 239.542 & 97.125 \tabularnewline
84 & 8260 & 7943.79 & 8207.5 & -263.708 & 316.208 \tabularnewline
85 & 7260 & 7535.94 & 8209.17 & -673.227 & -275.94 \tabularnewline
86 & 7360 & 7516.12 & 8210 & -693.875 & -156.125 \tabularnewline
87 & 8620 & 8538.62 & 8220 & 318.625 & 81.375 \tabularnewline
88 & 8220 & 8092.51 & 8230 & -137.486 & 127.486 \tabularnewline
89 & 8360 & 8327.33 & 8235.83 & 91.4954 & 32.6713 \tabularnewline
90 & 8400 & 8329.55 & 8216.67 & 112.884 & 70.4491 \tabularnewline
91 & 8080 & 8199.21 & 8210.83 & -11.625 & -119.208 \tabularnewline
92 & 8400 & 8497.29 & 8231.67 & 265.625 & -97.2917 \tabularnewline
93 & 8500 & 8342.62 & 8248.33 & 94.2917 & 157.375 \tabularnewline
94 & 8820 & 8904.96 & 8247.5 & 657.458 & -84.9583 \tabularnewline
95 & 8580 & 8482.87 & 8243.33 & 239.542 & 97.125 \tabularnewline
96 & 7740 & 7997.96 & 8261.67 & -263.708 & -257.958 \tabularnewline
97 & 7640 & 7609.27 & 8282.5 & -673.227 & 30.7269 \tabularnewline
98 & 7480 & 7628.62 & 8322.5 & -693.875 & -148.625 \tabularnewline
99 & 8900 & 8679.46 & 8360.83 & 318.625 & 220.542 \tabularnewline
100 & 7920 & 8255.01 & 8392.5 & -137.486 & -335.014 \tabularnewline
101 & 8560 & 8515.66 & 8424.17 & 91.4954 & 44.338 \tabularnewline
102 & 8640 & 8559.55 & 8446.67 & 112.884 & 80.4491 \tabularnewline
103 & 8340 & 8437.54 & 8449.17 & -11.625 & -97.5417 \tabularnewline
104 & 9100 & 8685.62 & 8420 & 265.625 & 414.375 \tabularnewline
105 & 8720 & 8459.29 & 8365 & 94.2917 & 260.708 \tabularnewline
106 & 9360 & 8980.79 & 8323.33 & 657.458 & 379.208 \tabularnewline
107 & 8800 & 8550.37 & 8310.83 & 239.542 & 249.625 \tabularnewline
108 & 8060 & 8032.96 & 8296.67 & -263.708 & 27.0417 \tabularnewline
109 & 7380 & 7615.94 & 8289.17 & -673.227 & -235.94 \tabularnewline
110 & 7040 & 7581.12 & 8275 & -693.875 & -541.125 \tabularnewline
111 & 8020 & 8565.29 & 8246.67 & 318.625 & -545.292 \tabularnewline
112 & 7800 & 8101.68 & 8239.17 & -137.486 & -301.681 \tabularnewline
113 & 8380 & 8341.5 & 8250 & 91.4954 & 38.5046 \tabularnewline
114 & 8480 & 8362.05 & 8249.17 & 112.884 & 117.949 \tabularnewline
115 & 8320 & 8245.04 & 8256.67 & -11.625 & 74.9583 \tabularnewline
116 & 8780 & 8566.46 & 8300.83 & 265.625 & 213.542 \tabularnewline
117 & 8360 & 8455.12 & 8360.83 & 94.2917 & -95.125 \tabularnewline
118 & 9540 & 9077.46 & 8420 & 657.458 & 462.542 \tabularnewline
119 & 8880 & 8705.38 & 8465.83 & 239.542 & 174.625 \tabularnewline
120 & 7960 & 8234.62 & 8498.33 & -263.708 & -274.625 \tabularnewline
121 & 7660 & NA & NA & -673.227 & NA \tabularnewline
122 & 7820 & NA & NA & -693.875 & NA \tabularnewline
123 & 8680 & NA & NA & 318.625 & NA \tabularnewline
124 & 8560 & NA & NA & -137.486 & NA \tabularnewline
125 & 8720 & NA & NA & 91.4954 & NA \tabularnewline
126 & 8920 & NA & NA & 112.884 & NA \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298579&T=1

[TABLE]
[ROW][C]Classical Decomposition by Moving Averages[/C][/ROW]
[ROW][C]t[/C][C]Observations[/C][C]Fit[/C][C]Trend[/C][C]Seasonal[/C][C]Random[/C][/ROW]
[ROW][C]1[/C][C]4480[/C][C]NA[/C][C]NA[/C][C]-673.227[/C][C]NA[/C][/ROW]
[ROW][C]2[/C][C]4580[/C][C]NA[/C][C]NA[/C][C]-693.875[/C][C]NA[/C][/ROW]
[ROW][C]3[/C][C]5360[/C][C]NA[/C][C]NA[/C][C]318.625[/C][C]NA[/C][/ROW]
[ROW][C]4[/C][C]4960[/C][C]NA[/C][C]NA[/C][C]-137.486[/C][C]NA[/C][/ROW]
[ROW][C]5[/C][C]5140[/C][C]NA[/C][C]NA[/C][C]91.4954[/C][C]NA[/C][/ROW]
[ROW][C]6[/C][C]5000[/C][C]NA[/C][C]NA[/C][C]112.884[/C][C]NA[/C][/ROW]
[ROW][C]7[/C][C]5080[/C][C]5052.54[/C][C]5064.17[/C][C]-11.625[/C][C]27.4583[/C][/ROW]
[ROW][C]8[/C][C]5160[/C][C]5337.29[/C][C]5071.67[/C][C]265.625[/C][C]-177.292[/C][/ROW]
[ROW][C]9[/C][C]5080[/C][C]5192.62[/C][C]5098.33[/C][C]94.2917[/C][C]-112.625[/C][/ROW]
[ROW][C]10[/C][C]5500[/C][C]5791.62[/C][C]5134.17[/C][C]657.458[/C][C]-291.625[/C][/ROW]
[ROW][C]11[/C][C]5260[/C][C]5404.54[/C][C]5165[/C][C]239.542[/C][C]-144.542[/C][/ROW]
[ROW][C]12[/C][C]5160[/C][C]4950.46[/C][C]5214.17[/C][C]-263.708[/C][C]209.542[/C][/ROW]
[ROW][C]13[/C][C]4500[/C][C]4597.61[/C][C]5270.83[/C][C]-673.227[/C][C]-97.6065[/C][/ROW]
[ROW][C]14[/C][C]4740[/C][C]4631.12[/C][C]5325[/C][C]-693.875[/C][C]108.875[/C][/ROW]
[ROW][C]15[/C][C]5840[/C][C]5712.79[/C][C]5394.17[/C][C]318.625[/C][C]127.208[/C][/ROW]
[ROW][C]16[/C][C]5340[/C][C]5329.18[/C][C]5466.67[/C][C]-137.486[/C][C]10.8194[/C][/ROW]
[ROW][C]17[/C][C]5500[/C][C]5633.16[/C][C]5541.67[/C][C]91.4954[/C][C]-133.162[/C][/ROW]
[ROW][C]18[/C][C]5820[/C][C]5725.38[/C][C]5612.5[/C][C]112.884[/C][C]94.6157[/C][/ROW]
[ROW][C]19[/C][C]5620[/C][C]5664.21[/C][C]5675.83[/C][C]-11.625[/C][C]-44.2083[/C][/ROW]
[ROW][C]20[/C][C]5920[/C][C]6005.62[/C][C]5740[/C][C]265.625[/C][C]-85.625[/C][/ROW]
[ROW][C]21[/C][C]5980[/C][C]5891.79[/C][C]5797.5[/C][C]94.2917[/C][C]88.2083[/C][/ROW]
[ROW][C]22[/C][C]6340[/C][C]6504.96[/C][C]5847.5[/C][C]657.458[/C][C]-164.958[/C][/ROW]
[ROW][C]23[/C][C]6220[/C][C]6142.04[/C][C]5902.5[/C][C]239.542[/C][C]77.9583[/C][/ROW]
[ROW][C]24[/C][C]5900[/C][C]5682.12[/C][C]5945.83[/C][C]-263.708[/C][C]217.875[/C][/ROW]
[ROW][C]25[/C][C]5280[/C][C]5300.11[/C][C]5973.33[/C][C]-673.227[/C][C]-20.1065[/C][/ROW]
[ROW][C]26[/C][C]5500[/C][C]5313.62[/C][C]6007.5[/C][C]-693.875[/C][C]186.375[/C][/ROW]
[ROW][C]27[/C][C]6460[/C][C]6342.79[/C][C]6024.17[/C][C]318.625[/C][C]117.208[/C][/ROW]
[ROW][C]28[/C][C]5920[/C][C]5885.01[/C][C]6022.5[/C][C]-137.486[/C][C]34.9861[/C][/ROW]
[ROW][C]29[/C][C]6240[/C][C]6099.83[/C][C]6008.33[/C][C]91.4954[/C][C]140.171[/C][/ROW]
[ROW][C]30[/C][C]6120[/C][C]6082.05[/C][C]5969.17[/C][C]112.884[/C][C]37.9491[/C][/ROW]
[ROW][C]31[/C][C]5980[/C][C]5912.54[/C][C]5924.17[/C][C]-11.625[/C][C]67.4583[/C][/ROW]
[ROW][C]32[/C][C]6380[/C][C]6139.79[/C][C]5874.17[/C][C]265.625[/C][C]240.208[/C][/ROW]
[ROW][C]33[/C][C]5920[/C][C]5898.46[/C][C]5804.17[/C][C]94.2917[/C][C]21.5417[/C][/ROW]
[ROW][C]34[/C][C]6360[/C][C]6391.62[/C][C]5734.17[/C][C]657.458[/C][C]-31.625[/C][/ROW]
[ROW][C]35[/C][C]5860[/C][C]5908.71[/C][C]5669.17[/C][C]239.542[/C][C]-48.7083[/C][/ROW]
[ROW][C]36[/C][C]5320[/C][C]5332.13[/C][C]5595.83[/C][C]-263.708[/C][C]-12.125[/C][/ROW]
[ROW][C]37[/C][C]4780[/C][C]4852.61[/C][C]5525.83[/C][C]-673.227[/C][C]-72.6065[/C][/ROW]
[ROW][C]38[/C][C]4800[/C][C]4752.79[/C][C]5446.67[/C][C]-693.875[/C][C]47.2083[/C][/ROW]
[ROW][C]39[/C][C]5480[/C][C]5682.79[/C][C]5364.17[/C][C]318.625[/C][C]-202.792[/C][/ROW]
[ROW][C]40[/C][C]5220[/C][C]5170.85[/C][C]5308.33[/C][C]-137.486[/C][C]49.1528[/C][/ROW]
[ROW][C]41[/C][C]5380[/C][C]5368.16[/C][C]5276.67[/C][C]91.4954[/C][C]11.838[/C][/ROW]
[ROW][C]42[/C][C]5220[/C][C]5365.38[/C][C]5252.5[/C][C]112.884[/C][C]-145.384[/C][/ROW]
[ROW][C]43[/C][C]5200[/C][C]5281.71[/C][C]5293.33[/C][C]-11.625[/C][C]-81.7083[/C][/ROW]
[ROW][C]44[/C][C]5260[/C][C]5661.46[/C][C]5395.83[/C][C]265.625[/C][C]-401.458[/C][/ROW]
[ROW][C]45[/C][C]5060[/C][C]5589.29[/C][C]5495[/C][C]94.2917[/C][C]-529.292[/C][/ROW]
[ROW][C]46[/C][C]5880[/C][C]6258.29[/C][C]5600.83[/C][C]657.458[/C][C]-378.292[/C][/ROW]
[ROW][C]47[/C][C]5580[/C][C]5950.38[/C][C]5710.83[/C][C]239.542[/C][C]-370.375[/C][/ROW]
[ROW][C]48[/C][C]5020[/C][C]5551.29[/C][C]5815[/C][C]-263.708[/C][C]-531.292[/C][/ROW]
[ROW][C]49[/C][C]6060[/C][C]5252.61[/C][C]5925.83[/C][C]-673.227[/C][C]807.394[/C][/ROW]
[ROW][C]50[/C][C]5980[/C][C]5365.29[/C][C]6059.17[/C][C]-693.875[/C][C]614.708[/C][/ROW]
[ROW][C]51[/C][C]6680[/C][C]6521.96[/C][C]6203.33[/C][C]318.625[/C][C]158.042[/C][/ROW]
[ROW][C]52[/C][C]6560[/C][C]6203.35[/C][C]6340.83[/C][C]-137.486[/C][C]356.653[/C][/ROW]
[ROW][C]53[/C][C]6680[/C][C]6555.66[/C][C]6464.17[/C][C]91.4954[/C][C]124.338[/C][/ROW]
[ROW][C]54[/C][C]6420[/C][C]6698.72[/C][C]6585.83[/C][C]112.884[/C][C]-278.718[/C][/ROW]
[ROW][C]55[/C][C]6660[/C][C]6638.38[/C][C]6650[/C][C]-11.625[/C][C]21.625[/C][/ROW]
[ROW][C]56[/C][C]7000[/C][C]6922.29[/C][C]6656.67[/C][C]265.625[/C][C]77.7083[/C][/ROW]
[ROW][C]57[/C][C]6780[/C][C]6777.62[/C][C]6683.33[/C][C]94.2917[/C][C]2.375[/C][/ROW]
[ROW][C]58[/C][C]7460[/C][C]7375.79[/C][C]6718.33[/C][C]657.458[/C][C]84.2083[/C][/ROW]
[ROW][C]59[/C][C]6960[/C][C]6992.04[/C][C]6752.5[/C][C]239.542[/C][C]-32.0417[/C][/ROW]
[ROW][C]60[/C][C]6560[/C][C]6539.62[/C][C]6803.33[/C][C]-263.708[/C][C]20.375[/C][/ROW]
[ROW][C]61[/C][C]6060[/C][C]6190.11[/C][C]6863.33[/C][C]-673.227[/C][C]-130.106[/C][/ROW]
[ROW][C]62[/C][C]6140[/C][C]6217.79[/C][C]6911.67[/C][C]-693.875[/C][C]-77.7917[/C][/ROW]
[ROW][C]63[/C][C]7160[/C][C]7285.29[/C][C]6966.67[/C][C]318.625[/C][C]-125.292[/C][/ROW]
[ROW][C]64[/C][C]6920[/C][C]6898.35[/C][C]7035.83[/C][C]-137.486[/C][C]21.6528[/C][/ROW]
[ROW][C]65[/C][C]7140[/C][C]7194[/C][C]7102.5[/C][C]91.4954[/C][C]-53.9954[/C][/ROW]
[ROW][C]66[/C][C]7180[/C][C]7295.38[/C][C]7182.5[/C][C]112.884[/C][C]-115.384[/C][/ROW]
[ROW][C]67[/C][C]7340[/C][C]7260.88[/C][C]7272.5[/C][C]-11.625[/C][C]79.125[/C][/ROW]
[ROW][C]68[/C][C]7480[/C][C]7620.62[/C][C]7355[/C][C]265.625[/C][C]-140.625[/C][/ROW]
[ROW][C]69[/C][C]7620[/C][C]7540.12[/C][C]7445.83[/C][C]94.2917[/C][C]79.875[/C][/ROW]
[ROW][C]70[/C][C]8280[/C][C]8192.46[/C][C]7535[/C][C]657.458[/C][C]87.5417[/C][/ROW]
[ROW][C]71[/C][C]7740[/C][C]7843.71[/C][C]7604.17[/C][C]239.542[/C][C]-103.708[/C][/ROW]
[ROW][C]72[/C][C]7700[/C][C]7417.96[/C][C]7681.67[/C][C]-263.708[/C][C]282.042[/C][/ROW]
[ROW][C]73[/C][C]7080[/C][C]7088.44[/C][C]7761.67[/C][C]-673.227[/C][C]-8.43981[/C][/ROW]
[ROW][C]74[/C][C]7100[/C][C]7136.12[/C][C]7830[/C][C]-693.875[/C][C]-36.125[/C][/ROW]
[ROW][C]75[/C][C]8380[/C][C]8213.62[/C][C]7895[/C][C]318.625[/C][C]166.375[/C][/ROW]
[ROW][C]76[/C][C]7840[/C][C]7806.68[/C][C]7944.17[/C][C]-137.486[/C][C]33.3194[/C][/ROW]
[ROW][C]77[/C][C]7880[/C][C]8087.33[/C][C]7995.83[/C][C]91.4954[/C][C]-207.329[/C][/ROW]
[ROW][C]78[/C][C]8300[/C][C]8164.55[/C][C]8051.67[/C][C]112.884[/C][C]135.449[/C][/ROW]
[ROW][C]79[/C][C]8140[/C][C]8070.88[/C][C]8082.5[/C][C]-11.625[/C][C]69.125[/C][/ROW]
[ROW][C]80[/C][C]8320[/C][C]8366.46[/C][C]8100.83[/C][C]265.625[/C][C]-46.4583[/C][/ROW]
[ROW][C]81[/C][C]8340[/C][C]8215.96[/C][C]8121.67[/C][C]94.2917[/C][C]124.042[/C][/ROW]
[ROW][C]82[/C][C]8740[/C][C]8804.96[/C][C]8147.5[/C][C]657.458[/C][C]-64.9583[/C][/ROW]
[ROW][C]83[/C][C]8520[/C][C]8422.87[/C][C]8183.33[/C][C]239.542[/C][C]97.125[/C][/ROW]
[ROW][C]84[/C][C]8260[/C][C]7943.79[/C][C]8207.5[/C][C]-263.708[/C][C]316.208[/C][/ROW]
[ROW][C]85[/C][C]7260[/C][C]7535.94[/C][C]8209.17[/C][C]-673.227[/C][C]-275.94[/C][/ROW]
[ROW][C]86[/C][C]7360[/C][C]7516.12[/C][C]8210[/C][C]-693.875[/C][C]-156.125[/C][/ROW]
[ROW][C]87[/C][C]8620[/C][C]8538.62[/C][C]8220[/C][C]318.625[/C][C]81.375[/C][/ROW]
[ROW][C]88[/C][C]8220[/C][C]8092.51[/C][C]8230[/C][C]-137.486[/C][C]127.486[/C][/ROW]
[ROW][C]89[/C][C]8360[/C][C]8327.33[/C][C]8235.83[/C][C]91.4954[/C][C]32.6713[/C][/ROW]
[ROW][C]90[/C][C]8400[/C][C]8329.55[/C][C]8216.67[/C][C]112.884[/C][C]70.4491[/C][/ROW]
[ROW][C]91[/C][C]8080[/C][C]8199.21[/C][C]8210.83[/C][C]-11.625[/C][C]-119.208[/C][/ROW]
[ROW][C]92[/C][C]8400[/C][C]8497.29[/C][C]8231.67[/C][C]265.625[/C][C]-97.2917[/C][/ROW]
[ROW][C]93[/C][C]8500[/C][C]8342.62[/C][C]8248.33[/C][C]94.2917[/C][C]157.375[/C][/ROW]
[ROW][C]94[/C][C]8820[/C][C]8904.96[/C][C]8247.5[/C][C]657.458[/C][C]-84.9583[/C][/ROW]
[ROW][C]95[/C][C]8580[/C][C]8482.87[/C][C]8243.33[/C][C]239.542[/C][C]97.125[/C][/ROW]
[ROW][C]96[/C][C]7740[/C][C]7997.96[/C][C]8261.67[/C][C]-263.708[/C][C]-257.958[/C][/ROW]
[ROW][C]97[/C][C]7640[/C][C]7609.27[/C][C]8282.5[/C][C]-673.227[/C][C]30.7269[/C][/ROW]
[ROW][C]98[/C][C]7480[/C][C]7628.62[/C][C]8322.5[/C][C]-693.875[/C][C]-148.625[/C][/ROW]
[ROW][C]99[/C][C]8900[/C][C]8679.46[/C][C]8360.83[/C][C]318.625[/C][C]220.542[/C][/ROW]
[ROW][C]100[/C][C]7920[/C][C]8255.01[/C][C]8392.5[/C][C]-137.486[/C][C]-335.014[/C][/ROW]
[ROW][C]101[/C][C]8560[/C][C]8515.66[/C][C]8424.17[/C][C]91.4954[/C][C]44.338[/C][/ROW]
[ROW][C]102[/C][C]8640[/C][C]8559.55[/C][C]8446.67[/C][C]112.884[/C][C]80.4491[/C][/ROW]
[ROW][C]103[/C][C]8340[/C][C]8437.54[/C][C]8449.17[/C][C]-11.625[/C][C]-97.5417[/C][/ROW]
[ROW][C]104[/C][C]9100[/C][C]8685.62[/C][C]8420[/C][C]265.625[/C][C]414.375[/C][/ROW]
[ROW][C]105[/C][C]8720[/C][C]8459.29[/C][C]8365[/C][C]94.2917[/C][C]260.708[/C][/ROW]
[ROW][C]106[/C][C]9360[/C][C]8980.79[/C][C]8323.33[/C][C]657.458[/C][C]379.208[/C][/ROW]
[ROW][C]107[/C][C]8800[/C][C]8550.37[/C][C]8310.83[/C][C]239.542[/C][C]249.625[/C][/ROW]
[ROW][C]108[/C][C]8060[/C][C]8032.96[/C][C]8296.67[/C][C]-263.708[/C][C]27.0417[/C][/ROW]
[ROW][C]109[/C][C]7380[/C][C]7615.94[/C][C]8289.17[/C][C]-673.227[/C][C]-235.94[/C][/ROW]
[ROW][C]110[/C][C]7040[/C][C]7581.12[/C][C]8275[/C][C]-693.875[/C][C]-541.125[/C][/ROW]
[ROW][C]111[/C][C]8020[/C][C]8565.29[/C][C]8246.67[/C][C]318.625[/C][C]-545.292[/C][/ROW]
[ROW][C]112[/C][C]7800[/C][C]8101.68[/C][C]8239.17[/C][C]-137.486[/C][C]-301.681[/C][/ROW]
[ROW][C]113[/C][C]8380[/C][C]8341.5[/C][C]8250[/C][C]91.4954[/C][C]38.5046[/C][/ROW]
[ROW][C]114[/C][C]8480[/C][C]8362.05[/C][C]8249.17[/C][C]112.884[/C][C]117.949[/C][/ROW]
[ROW][C]115[/C][C]8320[/C][C]8245.04[/C][C]8256.67[/C][C]-11.625[/C][C]74.9583[/C][/ROW]
[ROW][C]116[/C][C]8780[/C][C]8566.46[/C][C]8300.83[/C][C]265.625[/C][C]213.542[/C][/ROW]
[ROW][C]117[/C][C]8360[/C][C]8455.12[/C][C]8360.83[/C][C]94.2917[/C][C]-95.125[/C][/ROW]
[ROW][C]118[/C][C]9540[/C][C]9077.46[/C][C]8420[/C][C]657.458[/C][C]462.542[/C][/ROW]
[ROW][C]119[/C][C]8880[/C][C]8705.38[/C][C]8465.83[/C][C]239.542[/C][C]174.625[/C][/ROW]
[ROW][C]120[/C][C]7960[/C][C]8234.62[/C][C]8498.33[/C][C]-263.708[/C][C]-274.625[/C][/ROW]
[ROW][C]121[/C][C]7660[/C][C]NA[/C][C]NA[/C][C]-673.227[/C][C]NA[/C][/ROW]
[ROW][C]122[/C][C]7820[/C][C]NA[/C][C]NA[/C][C]-693.875[/C][C]NA[/C][/ROW]
[ROW][C]123[/C][C]8680[/C][C]NA[/C][C]NA[/C][C]318.625[/C][C]NA[/C][/ROW]
[ROW][C]124[/C][C]8560[/C][C]NA[/C][C]NA[/C][C]-137.486[/C][C]NA[/C][/ROW]
[ROW][C]125[/C][C]8720[/C][C]NA[/C][C]NA[/C][C]91.4954[/C][C]NA[/C][/ROW]
[ROW][C]126[/C][C]8920[/C][C]NA[/C][C]NA[/C][C]112.884[/C][C]NA[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298579&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298579&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Classical Decomposition by Moving Averages
tObservationsFitTrendSeasonalRandom
14480NANA-673.227NA
24580NANA-693.875NA
35360NANA318.625NA
44960NANA-137.486NA
55140NANA91.4954NA
65000NANA112.884NA
750805052.545064.17-11.62527.4583
851605337.295071.67265.625-177.292
950805192.625098.3394.2917-112.625
1055005791.625134.17657.458-291.625
1152605404.545165239.542-144.542
1251604950.465214.17-263.708209.542
1345004597.615270.83-673.227-97.6065
1447404631.125325-693.875108.875
1558405712.795394.17318.625127.208
1653405329.185466.67-137.48610.8194
1755005633.165541.6791.4954-133.162
1858205725.385612.5112.88494.6157
1956205664.215675.83-11.625-44.2083
2059206005.625740265.625-85.625
2159805891.795797.594.291788.2083
2263406504.965847.5657.458-164.958
2362206142.045902.5239.54277.9583
2459005682.125945.83-263.708217.875
2552805300.115973.33-673.227-20.1065
2655005313.626007.5-693.875186.375
2764606342.796024.17318.625117.208
2859205885.016022.5-137.48634.9861
2962406099.836008.3391.4954140.171
3061206082.055969.17112.88437.9491
3159805912.545924.17-11.62567.4583
3263806139.795874.17265.625240.208
3359205898.465804.1794.291721.5417
3463606391.625734.17657.458-31.625
3558605908.715669.17239.542-48.7083
3653205332.135595.83-263.708-12.125
3747804852.615525.83-673.227-72.6065
3848004752.795446.67-693.87547.2083
3954805682.795364.17318.625-202.792
4052205170.855308.33-137.48649.1528
4153805368.165276.6791.495411.838
4252205365.385252.5112.884-145.384
4352005281.715293.33-11.625-81.7083
4452605661.465395.83265.625-401.458
4550605589.29549594.2917-529.292
4658806258.295600.83657.458-378.292
4755805950.385710.83239.542-370.375
4850205551.295815-263.708-531.292
4960605252.615925.83-673.227807.394
5059805365.296059.17-693.875614.708
5166806521.966203.33318.625158.042
5265606203.356340.83-137.486356.653
5366806555.666464.1791.4954124.338
5464206698.726585.83112.884-278.718
5566606638.386650-11.62521.625
5670006922.296656.67265.62577.7083
5767806777.626683.3394.29172.375
5874607375.796718.33657.45884.2083
5969606992.046752.5239.542-32.0417
6065606539.626803.33-263.70820.375
6160606190.116863.33-673.227-130.106
6261406217.796911.67-693.875-77.7917
6371607285.296966.67318.625-125.292
6469206898.357035.83-137.48621.6528
65714071947102.591.4954-53.9954
6671807295.387182.5112.884-115.384
6773407260.887272.5-11.62579.125
6874807620.627355265.625-140.625
6976207540.127445.8394.291779.875
7082808192.467535657.45887.5417
7177407843.717604.17239.542-103.708
7277007417.967681.67-263.708282.042
7370807088.447761.67-673.227-8.43981
7471007136.127830-693.875-36.125
7583808213.627895318.625166.375
7678407806.687944.17-137.48633.3194
7778808087.337995.8391.4954-207.329
7883008164.558051.67112.884135.449
7981408070.888082.5-11.62569.125
8083208366.468100.83265.625-46.4583
8183408215.968121.6794.2917124.042
8287408804.968147.5657.458-64.9583
8385208422.878183.33239.54297.125
8482607943.798207.5-263.708316.208
8572607535.948209.17-673.227-275.94
8673607516.128210-693.875-156.125
8786208538.628220318.62581.375
8882208092.518230-137.486127.486
8983608327.338235.8391.495432.6713
9084008329.558216.67112.88470.4491
9180808199.218210.83-11.625-119.208
9284008497.298231.67265.625-97.2917
9385008342.628248.3394.2917157.375
9488208904.968247.5657.458-84.9583
9585808482.878243.33239.54297.125
9677407997.968261.67-263.708-257.958
9776407609.278282.5-673.22730.7269
9874807628.628322.5-693.875-148.625
9989008679.468360.83318.625220.542
10079208255.018392.5-137.486-335.014
10185608515.668424.1791.495444.338
10286408559.558446.67112.88480.4491
10383408437.548449.17-11.625-97.5417
10491008685.628420265.625414.375
10587208459.29836594.2917260.708
10693608980.798323.33657.458379.208
10788008550.378310.83239.542249.625
10880608032.968296.67-263.70827.0417
10973807615.948289.17-673.227-235.94
11070407581.128275-693.875-541.125
11180208565.298246.67318.625-545.292
11278008101.688239.17-137.486-301.681
11383808341.5825091.495438.5046
11484808362.058249.17112.884117.949
11583208245.048256.67-11.62574.9583
11687808566.468300.83265.625213.542
11783608455.128360.8394.2917-95.125
11895409077.468420657.458462.542
11988808705.388465.83239.542174.625
12079608234.628498.33-263.708-274.625
1217660NANA-673.227NA
1227820NANA-693.875NA
1238680NANA318.625NA
1248560NANA-137.486NA
1258720NANA91.4954NA
1268920NANA112.884NA



Parameters (Session):
Parameters (R input):
par1 = additive ; par2 = 12 ;
R code (references can be found in the software module):
par2 <- as.numeric(par2)
x <- ts(x,freq=par2)
m <- decompose(x,type=par1)
m$figure
bitmap(file='test1.png')
plot(m)
dev.off()
mylagmax <- length(x)/2
bitmap(file='test2.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(x),lag.max = mylagmax,main='Observed')
acf(as.numeric(m$trend),na.action=na.pass,lag.max = mylagmax,main='Trend')
acf(as.numeric(m$seasonal),na.action=na.pass,lag.max = mylagmax,main='Seasonal')
acf(as.numeric(m$random),na.action=na.pass,lag.max = mylagmax,main='Random')
par(op)
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
spectrum(as.numeric(x),main='Observed')
spectrum(as.numeric(m$trend[!is.na(m$trend)]),main='Trend')
spectrum(as.numeric(m$seasonal[!is.na(m$seasonal)]),main='Seasonal')
spectrum(as.numeric(m$random[!is.na(m$random)]),main='Random')
par(op)
dev.off()
bitmap(file='test4.png')
op <- par(mfrow = c(2,2))
cpgram(as.numeric(x),main='Observed')
cpgram(as.numeric(m$trend[!is.na(m$trend)]),main='Trend')
cpgram(as.numeric(m$seasonal[!is.na(m$seasonal)]),main='Seasonal')
cpgram(as.numeric(m$random[!is.na(m$random)]),main='Random')
par(op)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Classical Decomposition by Moving Averages',6,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observations',header=TRUE)
a<-table.element(a,'Fit',header=TRUE)
a<-table.element(a,'Trend',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,'Random',header=TRUE)
a<-table.row.end(a)
for (i in 1:length(m$trend)) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
if (par1 == 'additive') a<-table.element(a,signif(m$trend[i]+m$seasonal[i],6)) else a<-table.element(a,signif(m$trend[i]*m$seasonal[i],6))
a<-table.element(a,signif(m$trend[i],6))
a<-table.element(a,signif(m$seasonal[i],6))
a<-table.element(a,signif(m$random[i],6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')