Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_structuraltimeseries.wasp
Title produced by softwareStructural Time Series Models
Date of computationFri, 09 Dec 2016 14:56:32 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/09/t1481291859sbrzz4iekq4n6ng.htm/, Retrieved Fri, 01 Nov 2024 03:31:30 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=298548, Retrieved Fri, 01 Nov 2024 03:31:30 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact46
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [(Partial) Autocorrelation Function] [Autocorr eerste] [2016-12-07 13:39:31] [5f979cb1c6fa86b57093c7542788c28c]
- RM      [Structural Time Series Models] [Structural Time S...] [2016-12-09 13:56:32] [4c05fa0998bf98e29c2e453b139976f4] [Current]
Feedback Forum

Post a new message
Dataseries X:
2954.4
1769.7
1509.9
2257.2
3433.2
2083.8
1664.7
2463.3
3995.4
2447.4
2042.7
3198.6
4935.3
3024
2573.7
3957.9
5640.6
3630
3028.2
4534.2
6815.1
3962.4
3236.4
4946.1
6911.7
4376.1
3276
5187
7664.1
4283.7
3254.7
5046.6
7470.6
3655.8
2937.3
4923.9
6344.7
2981.7
2114.7
3919.5
5380.8
2661
1935.9
3669.9
5669.7
2508.9
1911.6
3758.1
5597.7
2573.4
1916.7
4160.1
5292.6
2547
1850.4
3855.6




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time2 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298548&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]2 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=298548&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298548&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center







Structural Time Series Model -- Interpolation
tObservedLevelSlopeSeasonalStand. Residuals
12954.42954.4000
21769.71954.61655734068-282.356696963419-184.916557340684-1.46993360813801
31509.91706.59586174659-272.700964466493-196.6958617465870.146809926491716
42257.21967.85266389435-110.760698893686289.347336105652.94264574860372
53433.22445.7530027613763.5116030548907987.4469972386252.88807100848867
62083.82514.2791680365265.0689685327246-430.4791680365220.0249073522813433
71664.72382.916039871013.19876787644644-718.216039871006-0.948437341089399
82463.32406.730982737029.6894575145638756.56901726297830.100289643781095
93995.42715.73046288024103.9500018393741279.669537119761.45586628479502
102447.42842.69900544446111.198482833306-395.2990054444580.111930137068221
112042.72884.1699317759989.231015453782-841.469931775994-0.339035158212634
123198.63131.30009673512138.97697377052567.29990326488020.76758742838964
134935.33494.97103290654209.7669287616071440.328967093461.09244365614413
1430243580.73720601298170.700624513852-556.73720601298-0.602858483403443
152573.73615.96423392769128.019691548754-1042.26423392769-0.658644502948378
163957.93850.54982555103161.593380533146107.3501744489680.518097698575343
175640.64083.16701818815183.9694849108971557.432981811850.345301126289312
1836304208.01070069535165.341852915854-578.01070069535-0.287455931244219
193028.24239.41515557509123.144773205134-1211.21515557509-0.651172372263147
204534.24391.33206913807132.209458922351142.867930861930.139883452552719
216815.14886.64418101405246.6052387070471928.455818985951.76532044474751
223962.44841.09727701514154.562473752561-878.697277015143-1.42037567481416
233236.44702.7248794149562.2731094565562-1466.32487941495-1.42418110166427
244946.14815.7007432777878.247052559539130.3992567222230.246504981031232
256911.74849.7207483572664.31328605745282061.97925164274-0.215021602246079
264376.15014.297664889295.9014226127335-638.1976648891960.487458415070345
2732764941.2978308916342.6889473261216-1665.29783089163-0.821158564605451
2851874994.5191094865246.007166672572192.4808905134780.0512057411452939
297664.15349.32085291132143.2931437775322314.779147088681.50128729928245
304283.75193.9699535588249.2051003664138-910.269953558816-1.45193776929672
313254.75058.26336234507-9.05147519503358-1803.56336234507-0.898997569748157
325046.64978.25814411919-31.405508392861768.3418558808134-0.344960570118707
337470.64954.82103438887-28.89505805399242515.778965611130.0387404980787141
343655.84685.14557156922-104.753116157794-1029.34557156922-1.1706182387773
352937.34612.88048739641-94.5177358310873-1675.580487396410.157949243505114
364923.94683.24924143095-42.5701160032565240.6507585690530.801639703831008
376344.74178.58795471616-188.1523070092182166.11204528384-2.24657962901613
382981.73957.3885670263-198.563816072312-975.688567026304-0.16066720803444
392114.73778.08538220968-192.495738870049-1663.385382209680.0936407024492618
403919.53514.83799827109-214.786100944041404.662001728911-0.343978016904388
415380.83238.29991365739-234.241112533532142.50008634261-0.30022375963163
4226613326.42722709876-132.678683430404-665.4272270987651.5672801921709
431935.93428.4159039748-58.7465448474665-1492.51590397481.14089804063485
443669.93356.53473058614-62.8846200202337313.365269413862-0.0638575042883914
455669.73515.678719224237.06566979965862154.021280775771.07945137428735
462508.93431.19880795613-21.7758383560512-922.298807956133-0.44507328983714
471911.63407.35875711429-22.4261701421376-1495.75875711429-0.0100357202527845
483758.13466.53443530943.28255710486884291.5655646906020.396729177669081
495597.73443.68860849064-4.949211039909822154.01139150936-0.127030116094948
502573.43470.617009223865.09385591335634-897.2170092238550.154981522630948
511916.73466.203209467682.0984614296882-1549.50320946768-0.0462240070806516
524160.13672.3241083626166.3758926881815487.7758916373920.991909564439146
535292.63460.46339444687-21.28277160763631832.13660555314-1.35272156678621
5425473415.89014092452-28.6204564664656-868.890140924516-0.113232897609787
551850.43422.23893546656-17.6033661121591-1571.838935466560.170012352403752
563855.63316.34878593819-45.4181874748114539.251214061805-0.429229774784062

\begin{tabular}{lllllllll}
\hline
Structural Time Series Model -- Interpolation \tabularnewline
t & Observed & Level & Slope & Seasonal & Stand. Residuals \tabularnewline
1 & 2954.4 & 2954.4 & 0 & 0 & 0 \tabularnewline
2 & 1769.7 & 1954.61655734068 & -282.356696963419 & -184.916557340684 & -1.46993360813801 \tabularnewline
3 & 1509.9 & 1706.59586174659 & -272.700964466493 & -196.695861746587 & 0.146809926491716 \tabularnewline
4 & 2257.2 & 1967.85266389435 & -110.760698893686 & 289.34733610565 & 2.94264574860372 \tabularnewline
5 & 3433.2 & 2445.75300276137 & 63.5116030548907 & 987.446997238625 & 2.88807100848867 \tabularnewline
6 & 2083.8 & 2514.27916803652 & 65.0689685327246 & -430.479168036522 & 0.0249073522813433 \tabularnewline
7 & 1664.7 & 2382.91603987101 & 3.19876787644644 & -718.216039871006 & -0.948437341089399 \tabularnewline
8 & 2463.3 & 2406.73098273702 & 9.68945751456387 & 56.5690172629783 & 0.100289643781095 \tabularnewline
9 & 3995.4 & 2715.73046288024 & 103.950001839374 & 1279.66953711976 & 1.45586628479502 \tabularnewline
10 & 2447.4 & 2842.69900544446 & 111.198482833306 & -395.299005444458 & 0.111930137068221 \tabularnewline
11 & 2042.7 & 2884.16993177599 & 89.231015453782 & -841.469931775994 & -0.339035158212634 \tabularnewline
12 & 3198.6 & 3131.30009673512 & 138.976973770525 & 67.2999032648802 & 0.76758742838964 \tabularnewline
13 & 4935.3 & 3494.97103290654 & 209.766928761607 & 1440.32896709346 & 1.09244365614413 \tabularnewline
14 & 3024 & 3580.73720601298 & 170.700624513852 & -556.73720601298 & -0.602858483403443 \tabularnewline
15 & 2573.7 & 3615.96423392769 & 128.019691548754 & -1042.26423392769 & -0.658644502948378 \tabularnewline
16 & 3957.9 & 3850.54982555103 & 161.593380533146 & 107.350174448968 & 0.518097698575343 \tabularnewline
17 & 5640.6 & 4083.16701818815 & 183.969484910897 & 1557.43298181185 & 0.345301126289312 \tabularnewline
18 & 3630 & 4208.01070069535 & 165.341852915854 & -578.01070069535 & -0.287455931244219 \tabularnewline
19 & 3028.2 & 4239.41515557509 & 123.144773205134 & -1211.21515557509 & -0.651172372263147 \tabularnewline
20 & 4534.2 & 4391.33206913807 & 132.209458922351 & 142.86793086193 & 0.139883452552719 \tabularnewline
21 & 6815.1 & 4886.64418101405 & 246.605238707047 & 1928.45581898595 & 1.76532044474751 \tabularnewline
22 & 3962.4 & 4841.09727701514 & 154.562473752561 & -878.697277015143 & -1.42037567481416 \tabularnewline
23 & 3236.4 & 4702.72487941495 & 62.2731094565562 & -1466.32487941495 & -1.42418110166427 \tabularnewline
24 & 4946.1 & 4815.70074327778 & 78.247052559539 & 130.399256722223 & 0.246504981031232 \tabularnewline
25 & 6911.7 & 4849.72074835726 & 64.3132860574528 & 2061.97925164274 & -0.215021602246079 \tabularnewline
26 & 4376.1 & 5014.2976648892 & 95.9014226127335 & -638.197664889196 & 0.487458415070345 \tabularnewline
27 & 3276 & 4941.29783089163 & 42.6889473261216 & -1665.29783089163 & -0.821158564605451 \tabularnewline
28 & 5187 & 4994.51910948652 & 46.007166672572 & 192.480890513478 & 0.0512057411452939 \tabularnewline
29 & 7664.1 & 5349.32085291132 & 143.293143777532 & 2314.77914708868 & 1.50128729928245 \tabularnewline
30 & 4283.7 & 5193.96995355882 & 49.2051003664138 & -910.269953558816 & -1.45193776929672 \tabularnewline
31 & 3254.7 & 5058.26336234507 & -9.05147519503358 & -1803.56336234507 & -0.898997569748157 \tabularnewline
32 & 5046.6 & 4978.25814411919 & -31.4055083928617 & 68.3418558808134 & -0.344960570118707 \tabularnewline
33 & 7470.6 & 4954.82103438887 & -28.8950580539924 & 2515.77896561113 & 0.0387404980787141 \tabularnewline
34 & 3655.8 & 4685.14557156922 & -104.753116157794 & -1029.34557156922 & -1.1706182387773 \tabularnewline
35 & 2937.3 & 4612.88048739641 & -94.5177358310873 & -1675.58048739641 & 0.157949243505114 \tabularnewline
36 & 4923.9 & 4683.24924143095 & -42.5701160032565 & 240.650758569053 & 0.801639703831008 \tabularnewline
37 & 6344.7 & 4178.58795471616 & -188.152307009218 & 2166.11204528384 & -2.24657962901613 \tabularnewline
38 & 2981.7 & 3957.3885670263 & -198.563816072312 & -975.688567026304 & -0.16066720803444 \tabularnewline
39 & 2114.7 & 3778.08538220968 & -192.495738870049 & -1663.38538220968 & 0.0936407024492618 \tabularnewline
40 & 3919.5 & 3514.83799827109 & -214.786100944041 & 404.662001728911 & -0.343978016904388 \tabularnewline
41 & 5380.8 & 3238.29991365739 & -234.24111253353 & 2142.50008634261 & -0.30022375963163 \tabularnewline
42 & 2661 & 3326.42722709876 & -132.678683430404 & -665.427227098765 & 1.5672801921709 \tabularnewline
43 & 1935.9 & 3428.4159039748 & -58.7465448474665 & -1492.5159039748 & 1.14089804063485 \tabularnewline
44 & 3669.9 & 3356.53473058614 & -62.8846200202337 & 313.365269413862 & -0.0638575042883914 \tabularnewline
45 & 5669.7 & 3515.67871922423 & 7.0656697996586 & 2154.02128077577 & 1.07945137428735 \tabularnewline
46 & 2508.9 & 3431.19880795613 & -21.7758383560512 & -922.298807956133 & -0.44507328983714 \tabularnewline
47 & 1911.6 & 3407.35875711429 & -22.4261701421376 & -1495.75875711429 & -0.0100357202527845 \tabularnewline
48 & 3758.1 & 3466.5344353094 & 3.28255710486884 & 291.565564690602 & 0.396729177669081 \tabularnewline
49 & 5597.7 & 3443.68860849064 & -4.94921103990982 & 2154.01139150936 & -0.127030116094948 \tabularnewline
50 & 2573.4 & 3470.61700922386 & 5.09385591335634 & -897.217009223855 & 0.154981522630948 \tabularnewline
51 & 1916.7 & 3466.20320946768 & 2.0984614296882 & -1549.50320946768 & -0.0462240070806516 \tabularnewline
52 & 4160.1 & 3672.32410836261 & 66.3758926881815 & 487.775891637392 & 0.991909564439146 \tabularnewline
53 & 5292.6 & 3460.46339444687 & -21.2827716076363 & 1832.13660555314 & -1.35272156678621 \tabularnewline
54 & 2547 & 3415.89014092452 & -28.6204564664656 & -868.890140924516 & -0.113232897609787 \tabularnewline
55 & 1850.4 & 3422.23893546656 & -17.6033661121591 & -1571.83893546656 & 0.170012352403752 \tabularnewline
56 & 3855.6 & 3316.34878593819 & -45.4181874748114 & 539.251214061805 & -0.429229774784062 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298548&T=1

[TABLE]
[ROW][C]Structural Time Series Model -- Interpolation[/C][/ROW]
[ROW][C]t[/C][C]Observed[/C][C]Level[/C][C]Slope[/C][C]Seasonal[/C][C]Stand. Residuals[/C][/ROW]
[ROW][C]1[/C][C]2954.4[/C][C]2954.4[/C][C]0[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]2[/C][C]1769.7[/C][C]1954.61655734068[/C][C]-282.356696963419[/C][C]-184.916557340684[/C][C]-1.46993360813801[/C][/ROW]
[ROW][C]3[/C][C]1509.9[/C][C]1706.59586174659[/C][C]-272.700964466493[/C][C]-196.695861746587[/C][C]0.146809926491716[/C][/ROW]
[ROW][C]4[/C][C]2257.2[/C][C]1967.85266389435[/C][C]-110.760698893686[/C][C]289.34733610565[/C][C]2.94264574860372[/C][/ROW]
[ROW][C]5[/C][C]3433.2[/C][C]2445.75300276137[/C][C]63.5116030548907[/C][C]987.446997238625[/C][C]2.88807100848867[/C][/ROW]
[ROW][C]6[/C][C]2083.8[/C][C]2514.27916803652[/C][C]65.0689685327246[/C][C]-430.479168036522[/C][C]0.0249073522813433[/C][/ROW]
[ROW][C]7[/C][C]1664.7[/C][C]2382.91603987101[/C][C]3.19876787644644[/C][C]-718.216039871006[/C][C]-0.948437341089399[/C][/ROW]
[ROW][C]8[/C][C]2463.3[/C][C]2406.73098273702[/C][C]9.68945751456387[/C][C]56.5690172629783[/C][C]0.100289643781095[/C][/ROW]
[ROW][C]9[/C][C]3995.4[/C][C]2715.73046288024[/C][C]103.950001839374[/C][C]1279.66953711976[/C][C]1.45586628479502[/C][/ROW]
[ROW][C]10[/C][C]2447.4[/C][C]2842.69900544446[/C][C]111.198482833306[/C][C]-395.299005444458[/C][C]0.111930137068221[/C][/ROW]
[ROW][C]11[/C][C]2042.7[/C][C]2884.16993177599[/C][C]89.231015453782[/C][C]-841.469931775994[/C][C]-0.339035158212634[/C][/ROW]
[ROW][C]12[/C][C]3198.6[/C][C]3131.30009673512[/C][C]138.976973770525[/C][C]67.2999032648802[/C][C]0.76758742838964[/C][/ROW]
[ROW][C]13[/C][C]4935.3[/C][C]3494.97103290654[/C][C]209.766928761607[/C][C]1440.32896709346[/C][C]1.09244365614413[/C][/ROW]
[ROW][C]14[/C][C]3024[/C][C]3580.73720601298[/C][C]170.700624513852[/C][C]-556.73720601298[/C][C]-0.602858483403443[/C][/ROW]
[ROW][C]15[/C][C]2573.7[/C][C]3615.96423392769[/C][C]128.019691548754[/C][C]-1042.26423392769[/C][C]-0.658644502948378[/C][/ROW]
[ROW][C]16[/C][C]3957.9[/C][C]3850.54982555103[/C][C]161.593380533146[/C][C]107.350174448968[/C][C]0.518097698575343[/C][/ROW]
[ROW][C]17[/C][C]5640.6[/C][C]4083.16701818815[/C][C]183.969484910897[/C][C]1557.43298181185[/C][C]0.345301126289312[/C][/ROW]
[ROW][C]18[/C][C]3630[/C][C]4208.01070069535[/C][C]165.341852915854[/C][C]-578.01070069535[/C][C]-0.287455931244219[/C][/ROW]
[ROW][C]19[/C][C]3028.2[/C][C]4239.41515557509[/C][C]123.144773205134[/C][C]-1211.21515557509[/C][C]-0.651172372263147[/C][/ROW]
[ROW][C]20[/C][C]4534.2[/C][C]4391.33206913807[/C][C]132.209458922351[/C][C]142.86793086193[/C][C]0.139883452552719[/C][/ROW]
[ROW][C]21[/C][C]6815.1[/C][C]4886.64418101405[/C][C]246.605238707047[/C][C]1928.45581898595[/C][C]1.76532044474751[/C][/ROW]
[ROW][C]22[/C][C]3962.4[/C][C]4841.09727701514[/C][C]154.562473752561[/C][C]-878.697277015143[/C][C]-1.42037567481416[/C][/ROW]
[ROW][C]23[/C][C]3236.4[/C][C]4702.72487941495[/C][C]62.2731094565562[/C][C]-1466.32487941495[/C][C]-1.42418110166427[/C][/ROW]
[ROW][C]24[/C][C]4946.1[/C][C]4815.70074327778[/C][C]78.247052559539[/C][C]130.399256722223[/C][C]0.246504981031232[/C][/ROW]
[ROW][C]25[/C][C]6911.7[/C][C]4849.72074835726[/C][C]64.3132860574528[/C][C]2061.97925164274[/C][C]-0.215021602246079[/C][/ROW]
[ROW][C]26[/C][C]4376.1[/C][C]5014.2976648892[/C][C]95.9014226127335[/C][C]-638.197664889196[/C][C]0.487458415070345[/C][/ROW]
[ROW][C]27[/C][C]3276[/C][C]4941.29783089163[/C][C]42.6889473261216[/C][C]-1665.29783089163[/C][C]-0.821158564605451[/C][/ROW]
[ROW][C]28[/C][C]5187[/C][C]4994.51910948652[/C][C]46.007166672572[/C][C]192.480890513478[/C][C]0.0512057411452939[/C][/ROW]
[ROW][C]29[/C][C]7664.1[/C][C]5349.32085291132[/C][C]143.293143777532[/C][C]2314.77914708868[/C][C]1.50128729928245[/C][/ROW]
[ROW][C]30[/C][C]4283.7[/C][C]5193.96995355882[/C][C]49.2051003664138[/C][C]-910.269953558816[/C][C]-1.45193776929672[/C][/ROW]
[ROW][C]31[/C][C]3254.7[/C][C]5058.26336234507[/C][C]-9.05147519503358[/C][C]-1803.56336234507[/C][C]-0.898997569748157[/C][/ROW]
[ROW][C]32[/C][C]5046.6[/C][C]4978.25814411919[/C][C]-31.4055083928617[/C][C]68.3418558808134[/C][C]-0.344960570118707[/C][/ROW]
[ROW][C]33[/C][C]7470.6[/C][C]4954.82103438887[/C][C]-28.8950580539924[/C][C]2515.77896561113[/C][C]0.0387404980787141[/C][/ROW]
[ROW][C]34[/C][C]3655.8[/C][C]4685.14557156922[/C][C]-104.753116157794[/C][C]-1029.34557156922[/C][C]-1.1706182387773[/C][/ROW]
[ROW][C]35[/C][C]2937.3[/C][C]4612.88048739641[/C][C]-94.5177358310873[/C][C]-1675.58048739641[/C][C]0.157949243505114[/C][/ROW]
[ROW][C]36[/C][C]4923.9[/C][C]4683.24924143095[/C][C]-42.5701160032565[/C][C]240.650758569053[/C][C]0.801639703831008[/C][/ROW]
[ROW][C]37[/C][C]6344.7[/C][C]4178.58795471616[/C][C]-188.152307009218[/C][C]2166.11204528384[/C][C]-2.24657962901613[/C][/ROW]
[ROW][C]38[/C][C]2981.7[/C][C]3957.3885670263[/C][C]-198.563816072312[/C][C]-975.688567026304[/C][C]-0.16066720803444[/C][/ROW]
[ROW][C]39[/C][C]2114.7[/C][C]3778.08538220968[/C][C]-192.495738870049[/C][C]-1663.38538220968[/C][C]0.0936407024492618[/C][/ROW]
[ROW][C]40[/C][C]3919.5[/C][C]3514.83799827109[/C][C]-214.786100944041[/C][C]404.662001728911[/C][C]-0.343978016904388[/C][/ROW]
[ROW][C]41[/C][C]5380.8[/C][C]3238.29991365739[/C][C]-234.24111253353[/C][C]2142.50008634261[/C][C]-0.30022375963163[/C][/ROW]
[ROW][C]42[/C][C]2661[/C][C]3326.42722709876[/C][C]-132.678683430404[/C][C]-665.427227098765[/C][C]1.5672801921709[/C][/ROW]
[ROW][C]43[/C][C]1935.9[/C][C]3428.4159039748[/C][C]-58.7465448474665[/C][C]-1492.5159039748[/C][C]1.14089804063485[/C][/ROW]
[ROW][C]44[/C][C]3669.9[/C][C]3356.53473058614[/C][C]-62.8846200202337[/C][C]313.365269413862[/C][C]-0.0638575042883914[/C][/ROW]
[ROW][C]45[/C][C]5669.7[/C][C]3515.67871922423[/C][C]7.0656697996586[/C][C]2154.02128077577[/C][C]1.07945137428735[/C][/ROW]
[ROW][C]46[/C][C]2508.9[/C][C]3431.19880795613[/C][C]-21.7758383560512[/C][C]-922.298807956133[/C][C]-0.44507328983714[/C][/ROW]
[ROW][C]47[/C][C]1911.6[/C][C]3407.35875711429[/C][C]-22.4261701421376[/C][C]-1495.75875711429[/C][C]-0.0100357202527845[/C][/ROW]
[ROW][C]48[/C][C]3758.1[/C][C]3466.5344353094[/C][C]3.28255710486884[/C][C]291.565564690602[/C][C]0.396729177669081[/C][/ROW]
[ROW][C]49[/C][C]5597.7[/C][C]3443.68860849064[/C][C]-4.94921103990982[/C][C]2154.01139150936[/C][C]-0.127030116094948[/C][/ROW]
[ROW][C]50[/C][C]2573.4[/C][C]3470.61700922386[/C][C]5.09385591335634[/C][C]-897.217009223855[/C][C]0.154981522630948[/C][/ROW]
[ROW][C]51[/C][C]1916.7[/C][C]3466.20320946768[/C][C]2.0984614296882[/C][C]-1549.50320946768[/C][C]-0.0462240070806516[/C][/ROW]
[ROW][C]52[/C][C]4160.1[/C][C]3672.32410836261[/C][C]66.3758926881815[/C][C]487.775891637392[/C][C]0.991909564439146[/C][/ROW]
[ROW][C]53[/C][C]5292.6[/C][C]3460.46339444687[/C][C]-21.2827716076363[/C][C]1832.13660555314[/C][C]-1.35272156678621[/C][/ROW]
[ROW][C]54[/C][C]2547[/C][C]3415.89014092452[/C][C]-28.6204564664656[/C][C]-868.890140924516[/C][C]-0.113232897609787[/C][/ROW]
[ROW][C]55[/C][C]1850.4[/C][C]3422.23893546656[/C][C]-17.6033661121591[/C][C]-1571.83893546656[/C][C]0.170012352403752[/C][/ROW]
[ROW][C]56[/C][C]3855.6[/C][C]3316.34878593819[/C][C]-45.4181874748114[/C][C]539.251214061805[/C][C]-0.429229774784062[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298548&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298548&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Structural Time Series Model -- Interpolation
tObservedLevelSlopeSeasonalStand. Residuals
12954.42954.4000
21769.71954.61655734068-282.356696963419-184.916557340684-1.46993360813801
31509.91706.59586174659-272.700964466493-196.6958617465870.146809926491716
42257.21967.85266389435-110.760698893686289.347336105652.94264574860372
53433.22445.7530027613763.5116030548907987.4469972386252.88807100848867
62083.82514.2791680365265.0689685327246-430.4791680365220.0249073522813433
71664.72382.916039871013.19876787644644-718.216039871006-0.948437341089399
82463.32406.730982737029.6894575145638756.56901726297830.100289643781095
93995.42715.73046288024103.9500018393741279.669537119761.45586628479502
102447.42842.69900544446111.198482833306-395.2990054444580.111930137068221
112042.72884.1699317759989.231015453782-841.469931775994-0.339035158212634
123198.63131.30009673512138.97697377052567.29990326488020.76758742838964
134935.33494.97103290654209.7669287616071440.328967093461.09244365614413
1430243580.73720601298170.700624513852-556.73720601298-0.602858483403443
152573.73615.96423392769128.019691548754-1042.26423392769-0.658644502948378
163957.93850.54982555103161.593380533146107.3501744489680.518097698575343
175640.64083.16701818815183.9694849108971557.432981811850.345301126289312
1836304208.01070069535165.341852915854-578.01070069535-0.287455931244219
193028.24239.41515557509123.144773205134-1211.21515557509-0.651172372263147
204534.24391.33206913807132.209458922351142.867930861930.139883452552719
216815.14886.64418101405246.6052387070471928.455818985951.76532044474751
223962.44841.09727701514154.562473752561-878.697277015143-1.42037567481416
233236.44702.7248794149562.2731094565562-1466.32487941495-1.42418110166427
244946.14815.7007432777878.247052559539130.3992567222230.246504981031232
256911.74849.7207483572664.31328605745282061.97925164274-0.215021602246079
264376.15014.297664889295.9014226127335-638.1976648891960.487458415070345
2732764941.2978308916342.6889473261216-1665.29783089163-0.821158564605451
2851874994.5191094865246.007166672572192.4808905134780.0512057411452939
297664.15349.32085291132143.2931437775322314.779147088681.50128729928245
304283.75193.9699535588249.2051003664138-910.269953558816-1.45193776929672
313254.75058.26336234507-9.05147519503358-1803.56336234507-0.898997569748157
325046.64978.25814411919-31.405508392861768.3418558808134-0.344960570118707
337470.64954.82103438887-28.89505805399242515.778965611130.0387404980787141
343655.84685.14557156922-104.753116157794-1029.34557156922-1.1706182387773
352937.34612.88048739641-94.5177358310873-1675.580487396410.157949243505114
364923.94683.24924143095-42.5701160032565240.6507585690530.801639703831008
376344.74178.58795471616-188.1523070092182166.11204528384-2.24657962901613
382981.73957.3885670263-198.563816072312-975.688567026304-0.16066720803444
392114.73778.08538220968-192.495738870049-1663.385382209680.0936407024492618
403919.53514.83799827109-214.786100944041404.662001728911-0.343978016904388
415380.83238.29991365739-234.241112533532142.50008634261-0.30022375963163
4226613326.42722709876-132.678683430404-665.4272270987651.5672801921709
431935.93428.4159039748-58.7465448474665-1492.51590397481.14089804063485
443669.93356.53473058614-62.8846200202337313.365269413862-0.0638575042883914
455669.73515.678719224237.06566979965862154.021280775771.07945137428735
462508.93431.19880795613-21.7758383560512-922.298807956133-0.44507328983714
471911.63407.35875711429-22.4261701421376-1495.75875711429-0.0100357202527845
483758.13466.53443530943.28255710486884291.5655646906020.396729177669081
495597.73443.68860849064-4.949211039909822154.01139150936-0.127030116094948
502573.43470.617009223865.09385591335634-897.2170092238550.154981522630948
511916.73466.203209467682.0984614296882-1549.50320946768-0.0462240070806516
524160.13672.3241083626166.3758926881815487.7758916373920.991909564439146
535292.63460.46339444687-21.28277160763631832.13660555314-1.35272156678621
5425473415.89014092452-28.6204564664656-868.890140924516-0.113232897609787
551850.43422.23893546656-17.6033661121591-1571.838935466560.170012352403752
563855.63316.34878593819-45.4181874748114539.251214061805-0.429229774784062







Structural Time Series Model -- Extrapolation
tObservedLevelSeasonal
15157.062502301673286.335179141861870.72732315982
22379.670866239463250.30310221899-870.632235979528
31680.943194180563214.27102529613-1533.32783111557
43711.471692308553178.23894837327533.232743935282
55012.934194610223142.20687145041870.72732315982
62235.542558548013106.17479452754-870.632235979528
71536.814886489113070.14271760468-1533.32783111557
83567.34338461713034.11064068182533.232743935282
94868.805886918772998.078563758951870.72732315982
102091.414250856562962.04648683609-870.632235979528
111392.686578797662926.01440991323-1533.32783111557
123423.215076925652889.98233299036533.232743935282

\begin{tabular}{lllllllll}
\hline
Structural Time Series Model -- Extrapolation \tabularnewline
t & Observed & Level & Seasonal \tabularnewline
1 & 5157.06250230167 & 3286.33517914186 & 1870.72732315982 \tabularnewline
2 & 2379.67086623946 & 3250.30310221899 & -870.632235979528 \tabularnewline
3 & 1680.94319418056 & 3214.27102529613 & -1533.32783111557 \tabularnewline
4 & 3711.47169230855 & 3178.23894837327 & 533.232743935282 \tabularnewline
5 & 5012.93419461022 & 3142.2068714504 & 1870.72732315982 \tabularnewline
6 & 2235.54255854801 & 3106.17479452754 & -870.632235979528 \tabularnewline
7 & 1536.81488648911 & 3070.14271760468 & -1533.32783111557 \tabularnewline
8 & 3567.3433846171 & 3034.11064068182 & 533.232743935282 \tabularnewline
9 & 4868.80588691877 & 2998.07856375895 & 1870.72732315982 \tabularnewline
10 & 2091.41425085656 & 2962.04648683609 & -870.632235979528 \tabularnewline
11 & 1392.68657879766 & 2926.01440991323 & -1533.32783111557 \tabularnewline
12 & 3423.21507692565 & 2889.98233299036 & 533.232743935282 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298548&T=2

[TABLE]
[ROW][C]Structural Time Series Model -- Extrapolation[/C][/ROW]
[ROW][C]t[/C][C]Observed[/C][C]Level[/C][C]Seasonal[/C][/ROW]
[ROW][C]1[/C][C]5157.06250230167[/C][C]3286.33517914186[/C][C]1870.72732315982[/C][/ROW]
[ROW][C]2[/C][C]2379.67086623946[/C][C]3250.30310221899[/C][C]-870.632235979528[/C][/ROW]
[ROW][C]3[/C][C]1680.94319418056[/C][C]3214.27102529613[/C][C]-1533.32783111557[/C][/ROW]
[ROW][C]4[/C][C]3711.47169230855[/C][C]3178.23894837327[/C][C]533.232743935282[/C][/ROW]
[ROW][C]5[/C][C]5012.93419461022[/C][C]3142.2068714504[/C][C]1870.72732315982[/C][/ROW]
[ROW][C]6[/C][C]2235.54255854801[/C][C]3106.17479452754[/C][C]-870.632235979528[/C][/ROW]
[ROW][C]7[/C][C]1536.81488648911[/C][C]3070.14271760468[/C][C]-1533.32783111557[/C][/ROW]
[ROW][C]8[/C][C]3567.3433846171[/C][C]3034.11064068182[/C][C]533.232743935282[/C][/ROW]
[ROW][C]9[/C][C]4868.80588691877[/C][C]2998.07856375895[/C][C]1870.72732315982[/C][/ROW]
[ROW][C]10[/C][C]2091.41425085656[/C][C]2962.04648683609[/C][C]-870.632235979528[/C][/ROW]
[ROW][C]11[/C][C]1392.68657879766[/C][C]2926.01440991323[/C][C]-1533.32783111557[/C][/ROW]
[ROW][C]12[/C][C]3423.21507692565[/C][C]2889.98233299036[/C][C]533.232743935282[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298548&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298548&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Structural Time Series Model -- Extrapolation
tObservedLevelSeasonal
15157.062502301673286.335179141861870.72732315982
22379.670866239463250.30310221899-870.632235979528
31680.943194180563214.27102529613-1533.32783111557
43711.471692308553178.23894837327533.232743935282
55012.934194610223142.20687145041870.72732315982
62235.542558548013106.17479452754-870.632235979528
71536.814886489113070.14271760468-1533.32783111557
83567.34338461713034.11064068182533.232743935282
94868.805886918772998.078563758951870.72732315982
102091.414250856562962.04648683609-870.632235979528
111392.686578797662926.01440991323-1533.32783111557
123423.215076925652889.98233299036533.232743935282



Parameters (Session):
par1 = Default ; par2 = 1 ; par3 = 1 ; par4 = 1 ; par5 = 4 ; par6 = White Noise ; par7 = 0.95 ;
Parameters (R input):
par1 = 4 ; par2 = 12 ; par3 = BFGS ;
R code (references can be found in the software module):
par3 <- 'BFGS'
par2 <- '8'
par1 <- '4'
require('stsm')
require('stsm.class')
require('KFKSDS')
par1 <- as.numeric(par1)
par2 <- as.numeric(par2)
nx <- length(x)
x <- ts(x,frequency=par1)
m <- StructTS(x,type='BSM')
print(m$coef)
print(m$fitted)
print(m$resid)
mylevel <- as.numeric(m$fitted[,'level'])
myslope <- as.numeric(m$fitted[,'slope'])
myseas <- as.numeric(m$fitted[,'sea'])
myresid <- as.numeric(m$resid)
myfit <- mylevel+myseas
mm <- stsm.model(model = 'BSM', y = x, transPars = 'StructTS')
fit2 <- stsmFit(mm, stsm.method = 'maxlik.td.optim', method = par3, KF.args = list(P0cov = TRUE))
(fit2.comps <- tsSmooth(fit2, P0cov = FALSE)$states)
m2 <- set.pars(mm, pmax(fit2$par, .Machine$double.eps))
(ss <- char2numeric(m2))
(pred <- predict(ss, x, n.ahead = par2))
mylagmax <- nx/2
bitmap(file='test2.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(x),lag.max = mylagmax,main='Observed')
acf(mylevel,na.action=na.pass,lag.max = mylagmax,main='Level')
acf(myseas,na.action=na.pass,lag.max = mylagmax,main='Seasonal')
acf(myresid,na.action=na.pass,lag.max = mylagmax,main='Standardized Residals')
par(op)
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
spectrum(as.numeric(x),main='Observed')
spectrum(mylevel,main='Level')
spectrum(myseas,main='Seasonal')
spectrum(myresid,main='Standardized Residals')
par(op)
dev.off()
bitmap(file='test4.png')
op <- par(mfrow = c(2,2))
cpgram(as.numeric(x),main='Observed')
cpgram(mylevel,main='Level')
cpgram(myseas,main='Seasonal')
cpgram(myresid,main='Standardized Residals')
par(op)
dev.off()
bitmap(file='test1.png')
plot(as.numeric(m$resid),main='Standardized Residuals',ylab='Residuals',xlab='time',type='b')
grid()
dev.off()
bitmap(file='test5.png')
op <- par(mfrow = c(2,2))
hist(m$resid,main='Residual Histogram')
plot(density(m$resid),main='Residual Kernel Density')
qqnorm(m$resid,main='Residual Normal QQ Plot')
qqline(m$resid)
plot(m$resid^2, myfit^2,main='Sq.Resid vs. Sq.Fit',xlab='Squared residuals',ylab='Squared Fit')
par(op)
dev.off()
bitmap(file='test6.png')
par(mfrow = c(3,1), mar = c(3,3,3,3))
plot(cbind(x, pred$pred), type = 'n', plot.type = 'single', ylab = '')
lines(x)
polygon(c(time(pred$pred), rev(time(pred$pred))), c(pred$pred + 2 * pred$se, rev(pred$pred)), col = 'gray85', border = NA)
polygon(c(time(pred$pred), rev(time(pred$pred))), c(pred$pred - 2 * pred$se, rev(pred$pred)), col = ' gray85', border = NA)
lines(pred$pred, col = 'blue', lwd = 1.5)
mtext(text = 'forecasts of the observed series', side = 3, adj = 0)
plot(cbind(x, pred$a[,1]), type = 'n', plot.type = 'single', ylab = '')
lines(x)
polygon(c(time(pred$a[,1]), rev(time(pred$a[,1]))), c(pred$a[,1] + 2 * sqrt(pred$P[,1]), rev(pred$a[,1])), col = 'gray85', border = NA)
polygon(c(time(pred$a[,1]), rev(time(pred$a[,1]))), c(pred$a[,1] - 2 * sqrt(pred$P[,1]), rev(pred$a[,1])), col = ' gray85', border = NA)
lines(pred$a[,1], col = 'blue', lwd = 1.5)
mtext(text = 'forecasts of the level component', side = 3, adj = 0)
plot(cbind(fit2.comps[,3], pred$a[,3]), type = 'n', plot.type = 'single', ylab = '')
lines(fit2.comps[,3])
polygon(c(time(pred$a[,3]), rev(time(pred$a[,3]))), c(pred$a[,3] + 2 * sqrt(pred$P[,3]), rev(pred$a[,3])), col = 'gray85', border = NA)
polygon(c(time(pred$a[,3]), rev(time(pred$a[,3]))), c(pred$a[,3] - 2 * sqrt(pred$P[,3]), rev(pred$a[,3])), col = ' gray85', border = NA)
lines(pred$a[,3], col = 'blue', lwd = 1.5)
mtext(text = 'forecasts of the seasonal component', side = 3, adj = 0)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Structural Time Series Model -- Interpolation',6,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observed',header=TRUE)
a<-table.element(a,'Level',header=TRUE)
a<-table.element(a,'Slope',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,'Stand. Residuals',header=TRUE)
a<-table.row.end(a)
for (i in 1:nx) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
a<-table.element(a,mylevel[i])
a<-table.element(a,myslope[i])
a<-table.element(a,myseas[i])
a<-table.element(a,myresid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Structural Time Series Model -- Extrapolation',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observed',header=TRUE)
a<-table.element(a,'Level',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.row.end(a)
for (i in 1:par2) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,pred$pred[i])
a<-table.element(a,pred$a[i,1])
a<-table.element(a,pred$a[i,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')