Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_decompose.wasp
Title produced by softwareClassical Decomposition
Date of computationFri, 09 Dec 2016 14:36:43 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/09/t1481290613voxkrekfzc1z7ti.htm/, Retrieved Fri, 01 Nov 2024 03:45:28 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=298538, Retrieved Fri, 01 Nov 2024 03:45:28 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact83
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Classical Decomposition] [] [2016-12-09 13:36:43] [73c8181f60882f9827d3eab75df83592] [Current]
Feedback Forum

Post a new message
Dataseries X:
3655
3390
4000
3810
3790
3790
3350
3900
3725
3945
3840
3625
4000
3915
4200
3900
4140
3945
3735
3970
3745
4140
3840
3570
4085
3865
4280
4280
4240
4065
4060
4265
4085
4450
4195
4160
4580
4130
4645
4375
4480
4485
4465
4515
4465
4790
4270
4495
4490
4275
4695
4630
4560
4665
4725
4840
4745
4940
4635
4910
4690
4585
5065
4705
4580
4660
4510
4885
4765
4700
4590
4655
4845
4495
5020
4535
4700
4435
4285
4780
4450
4875
4670
4325
5000
4675
4950
4790
4785
4520
4735
5055
4640
5045
4710
4650
4915
4260
4505
4575
4785
4610
5220
5285
4870
5440
4615
4645
4845
4780
5005
4905
4630
4785
5160




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time2 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298538&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]2 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=298538&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298538&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center







Classical Decomposition by Moving Averages
tObservationsFitTrendSeasonalRandom
13655NANA105.337NA
23390NANA-190.442NA
34000NANA191.381NA
43810NANA-18.6188NA
53790NANA29.5583NA
63790NANA-90.4157NA
733503655.133749.38-94.2467-305.128
839003947.213785.62161.587-47.2116
937253743.553815.83-72.2791-18.5542
1039454060.923827.92232.999-115.915
1138403741.43846.25-104.84998.5986
1236253717.283867.29-150.011-92.2811
1340003995.133889.79105.3374.87172
1439153718.313908.75-190.442196.692
1542004103.883912.5191.38196.1188
1639003902.843921.46-18.6188-2.83951
1741403959.143929.5829.5583180.858
1839453836.883927.29-90.4157108.124
1937353834.293928.54-94.2467-99.2949
2039704091.593930161.587-121.587
2137453858.973931.25-72.2791-113.971
2241404183.423950.42232.999-43.4153
2338403865.573970.42-104.849-25.5681
2435703829.573979.58-150.011-259.573
2540854103.463998.12105.337-18.4616
2638653833.524023.96-190.44231.4834
2742804241.84050.42191.38138.2022
2842804058.884077.5-18.6188221.119
2942404134.774105.2129.5583105.233
3040654054.174144.58-90.415710.8324
3140604095.544189.79-94.2467-35.5449
3242654383.044221.46161.587-118.045
3340854175.434247.71-72.2791-90.4292
3444504499.874266.88232.999-49.8736
3541954175.984280.83-104.84919.0152
3641604158.324308.33-150.0111.67728
3745804448.044342.71105.337131.955
3841304179.564370-190.442-49.5583
3946454587.634396.25191.38157.3688
4043754407.634426.25-18.6188-32.6312
4144804473.14443.5429.55836.90008
4244854370.214460.62-90.4157114.791
4344654376.594470.83-94.246788.4134
4445154634.714473.12161.587-119.712
4544654408.974481.25-72.279156.0291
4647904726.964493.96232.99963.043
4742704403.074507.92-104.849-133.068
4844954368.744518.75-150.011126.261
4944904642.424537.08105.337-152.42
5042754371.024561.46-190.442-96.0166
5146954778.054586.67191.381-83.0478
5246304585.964604.58-18.618844.0355
5345604655.64626.0429.5583-95.5999
5446654568.134658.54-90.415796.874
5547254589.924684.17-94.2467135.08
56484048674705.42161.587-27.0033
5747454661.474733.75-72.279183.5291
5849404985.294752.29232.999-45.2903
5946354651.44756.25-104.849-16.4014
6049104606.864756.87-150.011303.136
6146904853.044747.71105.337-163.045
6245854550.184740.63-190.44234.8167
6350654934.714743.33191.381130.285
6447054715.554734.17-18.6188-10.5478
6545804751.854722.2929.5583-171.85
6646604619.384709.79-90.415740.624
6745104611.384705.62-94.2467-101.378
6848854869.924708.33161.58715.0801
6947654630.434702.71-72.2791134.571
7047004926.754693.75232.999-226.749
7145904586.824691.67-104.8493.18191
7246554537.284687.29-150.011117.719
7348454773.884668.54105.33771.1217
7444954464.354654.79-190.44230.6501
7550204828.674637.29191.381191.327
7645354612.844631.46-18.6188-77.8395
7747004671.644642.0829.558328.3584
7844354541.254631.67-90.4157-106.251
7942854530.134624.38-94.2467-245.128
8047804799.924638.33161.587-19.9199
8144504570.644642.92-72.2791-120.638
8248754883.624650.62232.999-8.62365
8346704559.944664.79-104.849110.057
8443254521.864671.88-150.011-196.864
8550004799.54694.17105.337200.497
8646754533.934724.38-190.442141.067
8749504935.134743.75191.38114.8688
8847904740.134758.75-18.618849.8688
8947854797.064767.529.5583-12.0583
9045204692.294782.71-90.4157-172.293
9147354698.464792.71-94.246736.5384
9250554933.464771.88161.587121.538
9346404663.764736.04-72.2791-23.7625
9450454941.544708.54232.999103.46
9547104594.734699.58-104.849115.265
9646504553.324703.33-150.01196.6773
9749154832.634727.29105.33782.3717
9842604566.644757.08-190.442-306.642
9945054967.634776.25191.381-462.631
10045754783.674802.29-18.6188-208.673
10147854844.354814.7929.5583-59.3499
10246104720.214810.62-90.4157-110.209
10352204713.254807.5-94.2467506.747
10452854987.844826.25161.587297.163
10548704796.474868.75-72.279173.5291
10654405136.334903.33232.999303.668
10746154805.784910.63-104.849-190.776
10846454761.454911.46-150.011-116.448
10948455021.594916.25105.337-176.587
1104780NANA-190.442NA
1115005NANA191.381NA
1124905NANA-18.6188NA
1134630NANA29.5583NA
1144785NANA-90.4157NA
1155160NANA-94.2467NA

\begin{tabular}{lllllllll}
\hline
Classical Decomposition by Moving Averages \tabularnewline
t & Observations & Fit & Trend & Seasonal & Random \tabularnewline
1 & 3655 & NA & NA & 105.337 & NA \tabularnewline
2 & 3390 & NA & NA & -190.442 & NA \tabularnewline
3 & 4000 & NA & NA & 191.381 & NA \tabularnewline
4 & 3810 & NA & NA & -18.6188 & NA \tabularnewline
5 & 3790 & NA & NA & 29.5583 & NA \tabularnewline
6 & 3790 & NA & NA & -90.4157 & NA \tabularnewline
7 & 3350 & 3655.13 & 3749.38 & -94.2467 & -305.128 \tabularnewline
8 & 3900 & 3947.21 & 3785.62 & 161.587 & -47.2116 \tabularnewline
9 & 3725 & 3743.55 & 3815.83 & -72.2791 & -18.5542 \tabularnewline
10 & 3945 & 4060.92 & 3827.92 & 232.999 & -115.915 \tabularnewline
11 & 3840 & 3741.4 & 3846.25 & -104.849 & 98.5986 \tabularnewline
12 & 3625 & 3717.28 & 3867.29 & -150.011 & -92.2811 \tabularnewline
13 & 4000 & 3995.13 & 3889.79 & 105.337 & 4.87172 \tabularnewline
14 & 3915 & 3718.31 & 3908.75 & -190.442 & 196.692 \tabularnewline
15 & 4200 & 4103.88 & 3912.5 & 191.381 & 96.1188 \tabularnewline
16 & 3900 & 3902.84 & 3921.46 & -18.6188 & -2.83951 \tabularnewline
17 & 4140 & 3959.14 & 3929.58 & 29.5583 & 180.858 \tabularnewline
18 & 3945 & 3836.88 & 3927.29 & -90.4157 & 108.124 \tabularnewline
19 & 3735 & 3834.29 & 3928.54 & -94.2467 & -99.2949 \tabularnewline
20 & 3970 & 4091.59 & 3930 & 161.587 & -121.587 \tabularnewline
21 & 3745 & 3858.97 & 3931.25 & -72.2791 & -113.971 \tabularnewline
22 & 4140 & 4183.42 & 3950.42 & 232.999 & -43.4153 \tabularnewline
23 & 3840 & 3865.57 & 3970.42 & -104.849 & -25.5681 \tabularnewline
24 & 3570 & 3829.57 & 3979.58 & -150.011 & -259.573 \tabularnewline
25 & 4085 & 4103.46 & 3998.12 & 105.337 & -18.4616 \tabularnewline
26 & 3865 & 3833.52 & 4023.96 & -190.442 & 31.4834 \tabularnewline
27 & 4280 & 4241.8 & 4050.42 & 191.381 & 38.2022 \tabularnewline
28 & 4280 & 4058.88 & 4077.5 & -18.6188 & 221.119 \tabularnewline
29 & 4240 & 4134.77 & 4105.21 & 29.5583 & 105.233 \tabularnewline
30 & 4065 & 4054.17 & 4144.58 & -90.4157 & 10.8324 \tabularnewline
31 & 4060 & 4095.54 & 4189.79 & -94.2467 & -35.5449 \tabularnewline
32 & 4265 & 4383.04 & 4221.46 & 161.587 & -118.045 \tabularnewline
33 & 4085 & 4175.43 & 4247.71 & -72.2791 & -90.4292 \tabularnewline
34 & 4450 & 4499.87 & 4266.88 & 232.999 & -49.8736 \tabularnewline
35 & 4195 & 4175.98 & 4280.83 & -104.849 & 19.0152 \tabularnewline
36 & 4160 & 4158.32 & 4308.33 & -150.011 & 1.67728 \tabularnewline
37 & 4580 & 4448.04 & 4342.71 & 105.337 & 131.955 \tabularnewline
38 & 4130 & 4179.56 & 4370 & -190.442 & -49.5583 \tabularnewline
39 & 4645 & 4587.63 & 4396.25 & 191.381 & 57.3688 \tabularnewline
40 & 4375 & 4407.63 & 4426.25 & -18.6188 & -32.6312 \tabularnewline
41 & 4480 & 4473.1 & 4443.54 & 29.5583 & 6.90008 \tabularnewline
42 & 4485 & 4370.21 & 4460.62 & -90.4157 & 114.791 \tabularnewline
43 & 4465 & 4376.59 & 4470.83 & -94.2467 & 88.4134 \tabularnewline
44 & 4515 & 4634.71 & 4473.12 & 161.587 & -119.712 \tabularnewline
45 & 4465 & 4408.97 & 4481.25 & -72.2791 & 56.0291 \tabularnewline
46 & 4790 & 4726.96 & 4493.96 & 232.999 & 63.043 \tabularnewline
47 & 4270 & 4403.07 & 4507.92 & -104.849 & -133.068 \tabularnewline
48 & 4495 & 4368.74 & 4518.75 & -150.011 & 126.261 \tabularnewline
49 & 4490 & 4642.42 & 4537.08 & 105.337 & -152.42 \tabularnewline
50 & 4275 & 4371.02 & 4561.46 & -190.442 & -96.0166 \tabularnewline
51 & 4695 & 4778.05 & 4586.67 & 191.381 & -83.0478 \tabularnewline
52 & 4630 & 4585.96 & 4604.58 & -18.6188 & 44.0355 \tabularnewline
53 & 4560 & 4655.6 & 4626.04 & 29.5583 & -95.5999 \tabularnewline
54 & 4665 & 4568.13 & 4658.54 & -90.4157 & 96.874 \tabularnewline
55 & 4725 & 4589.92 & 4684.17 & -94.2467 & 135.08 \tabularnewline
56 & 4840 & 4867 & 4705.42 & 161.587 & -27.0033 \tabularnewline
57 & 4745 & 4661.47 & 4733.75 & -72.2791 & 83.5291 \tabularnewline
58 & 4940 & 4985.29 & 4752.29 & 232.999 & -45.2903 \tabularnewline
59 & 4635 & 4651.4 & 4756.25 & -104.849 & -16.4014 \tabularnewline
60 & 4910 & 4606.86 & 4756.87 & -150.011 & 303.136 \tabularnewline
61 & 4690 & 4853.04 & 4747.71 & 105.337 & -163.045 \tabularnewline
62 & 4585 & 4550.18 & 4740.63 & -190.442 & 34.8167 \tabularnewline
63 & 5065 & 4934.71 & 4743.33 & 191.381 & 130.285 \tabularnewline
64 & 4705 & 4715.55 & 4734.17 & -18.6188 & -10.5478 \tabularnewline
65 & 4580 & 4751.85 & 4722.29 & 29.5583 & -171.85 \tabularnewline
66 & 4660 & 4619.38 & 4709.79 & -90.4157 & 40.624 \tabularnewline
67 & 4510 & 4611.38 & 4705.62 & -94.2467 & -101.378 \tabularnewline
68 & 4885 & 4869.92 & 4708.33 & 161.587 & 15.0801 \tabularnewline
69 & 4765 & 4630.43 & 4702.71 & -72.2791 & 134.571 \tabularnewline
70 & 4700 & 4926.75 & 4693.75 & 232.999 & -226.749 \tabularnewline
71 & 4590 & 4586.82 & 4691.67 & -104.849 & 3.18191 \tabularnewline
72 & 4655 & 4537.28 & 4687.29 & -150.011 & 117.719 \tabularnewline
73 & 4845 & 4773.88 & 4668.54 & 105.337 & 71.1217 \tabularnewline
74 & 4495 & 4464.35 & 4654.79 & -190.442 & 30.6501 \tabularnewline
75 & 5020 & 4828.67 & 4637.29 & 191.381 & 191.327 \tabularnewline
76 & 4535 & 4612.84 & 4631.46 & -18.6188 & -77.8395 \tabularnewline
77 & 4700 & 4671.64 & 4642.08 & 29.5583 & 28.3584 \tabularnewline
78 & 4435 & 4541.25 & 4631.67 & -90.4157 & -106.251 \tabularnewline
79 & 4285 & 4530.13 & 4624.38 & -94.2467 & -245.128 \tabularnewline
80 & 4780 & 4799.92 & 4638.33 & 161.587 & -19.9199 \tabularnewline
81 & 4450 & 4570.64 & 4642.92 & -72.2791 & -120.638 \tabularnewline
82 & 4875 & 4883.62 & 4650.62 & 232.999 & -8.62365 \tabularnewline
83 & 4670 & 4559.94 & 4664.79 & -104.849 & 110.057 \tabularnewline
84 & 4325 & 4521.86 & 4671.88 & -150.011 & -196.864 \tabularnewline
85 & 5000 & 4799.5 & 4694.17 & 105.337 & 200.497 \tabularnewline
86 & 4675 & 4533.93 & 4724.38 & -190.442 & 141.067 \tabularnewline
87 & 4950 & 4935.13 & 4743.75 & 191.381 & 14.8688 \tabularnewline
88 & 4790 & 4740.13 & 4758.75 & -18.6188 & 49.8688 \tabularnewline
89 & 4785 & 4797.06 & 4767.5 & 29.5583 & -12.0583 \tabularnewline
90 & 4520 & 4692.29 & 4782.71 & -90.4157 & -172.293 \tabularnewline
91 & 4735 & 4698.46 & 4792.71 & -94.2467 & 36.5384 \tabularnewline
92 & 5055 & 4933.46 & 4771.88 & 161.587 & 121.538 \tabularnewline
93 & 4640 & 4663.76 & 4736.04 & -72.2791 & -23.7625 \tabularnewline
94 & 5045 & 4941.54 & 4708.54 & 232.999 & 103.46 \tabularnewline
95 & 4710 & 4594.73 & 4699.58 & -104.849 & 115.265 \tabularnewline
96 & 4650 & 4553.32 & 4703.33 & -150.011 & 96.6773 \tabularnewline
97 & 4915 & 4832.63 & 4727.29 & 105.337 & 82.3717 \tabularnewline
98 & 4260 & 4566.64 & 4757.08 & -190.442 & -306.642 \tabularnewline
99 & 4505 & 4967.63 & 4776.25 & 191.381 & -462.631 \tabularnewline
100 & 4575 & 4783.67 & 4802.29 & -18.6188 & -208.673 \tabularnewline
101 & 4785 & 4844.35 & 4814.79 & 29.5583 & -59.3499 \tabularnewline
102 & 4610 & 4720.21 & 4810.62 & -90.4157 & -110.209 \tabularnewline
103 & 5220 & 4713.25 & 4807.5 & -94.2467 & 506.747 \tabularnewline
104 & 5285 & 4987.84 & 4826.25 & 161.587 & 297.163 \tabularnewline
105 & 4870 & 4796.47 & 4868.75 & -72.2791 & 73.5291 \tabularnewline
106 & 5440 & 5136.33 & 4903.33 & 232.999 & 303.668 \tabularnewline
107 & 4615 & 4805.78 & 4910.63 & -104.849 & -190.776 \tabularnewline
108 & 4645 & 4761.45 & 4911.46 & -150.011 & -116.448 \tabularnewline
109 & 4845 & 5021.59 & 4916.25 & 105.337 & -176.587 \tabularnewline
110 & 4780 & NA & NA & -190.442 & NA \tabularnewline
111 & 5005 & NA & NA & 191.381 & NA \tabularnewline
112 & 4905 & NA & NA & -18.6188 & NA \tabularnewline
113 & 4630 & NA & NA & 29.5583 & NA \tabularnewline
114 & 4785 & NA & NA & -90.4157 & NA \tabularnewline
115 & 5160 & NA & NA & -94.2467 & NA \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298538&T=1

[TABLE]
[ROW][C]Classical Decomposition by Moving Averages[/C][/ROW]
[ROW][C]t[/C][C]Observations[/C][C]Fit[/C][C]Trend[/C][C]Seasonal[/C][C]Random[/C][/ROW]
[ROW][C]1[/C][C]3655[/C][C]NA[/C][C]NA[/C][C]105.337[/C][C]NA[/C][/ROW]
[ROW][C]2[/C][C]3390[/C][C]NA[/C][C]NA[/C][C]-190.442[/C][C]NA[/C][/ROW]
[ROW][C]3[/C][C]4000[/C][C]NA[/C][C]NA[/C][C]191.381[/C][C]NA[/C][/ROW]
[ROW][C]4[/C][C]3810[/C][C]NA[/C][C]NA[/C][C]-18.6188[/C][C]NA[/C][/ROW]
[ROW][C]5[/C][C]3790[/C][C]NA[/C][C]NA[/C][C]29.5583[/C][C]NA[/C][/ROW]
[ROW][C]6[/C][C]3790[/C][C]NA[/C][C]NA[/C][C]-90.4157[/C][C]NA[/C][/ROW]
[ROW][C]7[/C][C]3350[/C][C]3655.13[/C][C]3749.38[/C][C]-94.2467[/C][C]-305.128[/C][/ROW]
[ROW][C]8[/C][C]3900[/C][C]3947.21[/C][C]3785.62[/C][C]161.587[/C][C]-47.2116[/C][/ROW]
[ROW][C]9[/C][C]3725[/C][C]3743.55[/C][C]3815.83[/C][C]-72.2791[/C][C]-18.5542[/C][/ROW]
[ROW][C]10[/C][C]3945[/C][C]4060.92[/C][C]3827.92[/C][C]232.999[/C][C]-115.915[/C][/ROW]
[ROW][C]11[/C][C]3840[/C][C]3741.4[/C][C]3846.25[/C][C]-104.849[/C][C]98.5986[/C][/ROW]
[ROW][C]12[/C][C]3625[/C][C]3717.28[/C][C]3867.29[/C][C]-150.011[/C][C]-92.2811[/C][/ROW]
[ROW][C]13[/C][C]4000[/C][C]3995.13[/C][C]3889.79[/C][C]105.337[/C][C]4.87172[/C][/ROW]
[ROW][C]14[/C][C]3915[/C][C]3718.31[/C][C]3908.75[/C][C]-190.442[/C][C]196.692[/C][/ROW]
[ROW][C]15[/C][C]4200[/C][C]4103.88[/C][C]3912.5[/C][C]191.381[/C][C]96.1188[/C][/ROW]
[ROW][C]16[/C][C]3900[/C][C]3902.84[/C][C]3921.46[/C][C]-18.6188[/C][C]-2.83951[/C][/ROW]
[ROW][C]17[/C][C]4140[/C][C]3959.14[/C][C]3929.58[/C][C]29.5583[/C][C]180.858[/C][/ROW]
[ROW][C]18[/C][C]3945[/C][C]3836.88[/C][C]3927.29[/C][C]-90.4157[/C][C]108.124[/C][/ROW]
[ROW][C]19[/C][C]3735[/C][C]3834.29[/C][C]3928.54[/C][C]-94.2467[/C][C]-99.2949[/C][/ROW]
[ROW][C]20[/C][C]3970[/C][C]4091.59[/C][C]3930[/C][C]161.587[/C][C]-121.587[/C][/ROW]
[ROW][C]21[/C][C]3745[/C][C]3858.97[/C][C]3931.25[/C][C]-72.2791[/C][C]-113.971[/C][/ROW]
[ROW][C]22[/C][C]4140[/C][C]4183.42[/C][C]3950.42[/C][C]232.999[/C][C]-43.4153[/C][/ROW]
[ROW][C]23[/C][C]3840[/C][C]3865.57[/C][C]3970.42[/C][C]-104.849[/C][C]-25.5681[/C][/ROW]
[ROW][C]24[/C][C]3570[/C][C]3829.57[/C][C]3979.58[/C][C]-150.011[/C][C]-259.573[/C][/ROW]
[ROW][C]25[/C][C]4085[/C][C]4103.46[/C][C]3998.12[/C][C]105.337[/C][C]-18.4616[/C][/ROW]
[ROW][C]26[/C][C]3865[/C][C]3833.52[/C][C]4023.96[/C][C]-190.442[/C][C]31.4834[/C][/ROW]
[ROW][C]27[/C][C]4280[/C][C]4241.8[/C][C]4050.42[/C][C]191.381[/C][C]38.2022[/C][/ROW]
[ROW][C]28[/C][C]4280[/C][C]4058.88[/C][C]4077.5[/C][C]-18.6188[/C][C]221.119[/C][/ROW]
[ROW][C]29[/C][C]4240[/C][C]4134.77[/C][C]4105.21[/C][C]29.5583[/C][C]105.233[/C][/ROW]
[ROW][C]30[/C][C]4065[/C][C]4054.17[/C][C]4144.58[/C][C]-90.4157[/C][C]10.8324[/C][/ROW]
[ROW][C]31[/C][C]4060[/C][C]4095.54[/C][C]4189.79[/C][C]-94.2467[/C][C]-35.5449[/C][/ROW]
[ROW][C]32[/C][C]4265[/C][C]4383.04[/C][C]4221.46[/C][C]161.587[/C][C]-118.045[/C][/ROW]
[ROW][C]33[/C][C]4085[/C][C]4175.43[/C][C]4247.71[/C][C]-72.2791[/C][C]-90.4292[/C][/ROW]
[ROW][C]34[/C][C]4450[/C][C]4499.87[/C][C]4266.88[/C][C]232.999[/C][C]-49.8736[/C][/ROW]
[ROW][C]35[/C][C]4195[/C][C]4175.98[/C][C]4280.83[/C][C]-104.849[/C][C]19.0152[/C][/ROW]
[ROW][C]36[/C][C]4160[/C][C]4158.32[/C][C]4308.33[/C][C]-150.011[/C][C]1.67728[/C][/ROW]
[ROW][C]37[/C][C]4580[/C][C]4448.04[/C][C]4342.71[/C][C]105.337[/C][C]131.955[/C][/ROW]
[ROW][C]38[/C][C]4130[/C][C]4179.56[/C][C]4370[/C][C]-190.442[/C][C]-49.5583[/C][/ROW]
[ROW][C]39[/C][C]4645[/C][C]4587.63[/C][C]4396.25[/C][C]191.381[/C][C]57.3688[/C][/ROW]
[ROW][C]40[/C][C]4375[/C][C]4407.63[/C][C]4426.25[/C][C]-18.6188[/C][C]-32.6312[/C][/ROW]
[ROW][C]41[/C][C]4480[/C][C]4473.1[/C][C]4443.54[/C][C]29.5583[/C][C]6.90008[/C][/ROW]
[ROW][C]42[/C][C]4485[/C][C]4370.21[/C][C]4460.62[/C][C]-90.4157[/C][C]114.791[/C][/ROW]
[ROW][C]43[/C][C]4465[/C][C]4376.59[/C][C]4470.83[/C][C]-94.2467[/C][C]88.4134[/C][/ROW]
[ROW][C]44[/C][C]4515[/C][C]4634.71[/C][C]4473.12[/C][C]161.587[/C][C]-119.712[/C][/ROW]
[ROW][C]45[/C][C]4465[/C][C]4408.97[/C][C]4481.25[/C][C]-72.2791[/C][C]56.0291[/C][/ROW]
[ROW][C]46[/C][C]4790[/C][C]4726.96[/C][C]4493.96[/C][C]232.999[/C][C]63.043[/C][/ROW]
[ROW][C]47[/C][C]4270[/C][C]4403.07[/C][C]4507.92[/C][C]-104.849[/C][C]-133.068[/C][/ROW]
[ROW][C]48[/C][C]4495[/C][C]4368.74[/C][C]4518.75[/C][C]-150.011[/C][C]126.261[/C][/ROW]
[ROW][C]49[/C][C]4490[/C][C]4642.42[/C][C]4537.08[/C][C]105.337[/C][C]-152.42[/C][/ROW]
[ROW][C]50[/C][C]4275[/C][C]4371.02[/C][C]4561.46[/C][C]-190.442[/C][C]-96.0166[/C][/ROW]
[ROW][C]51[/C][C]4695[/C][C]4778.05[/C][C]4586.67[/C][C]191.381[/C][C]-83.0478[/C][/ROW]
[ROW][C]52[/C][C]4630[/C][C]4585.96[/C][C]4604.58[/C][C]-18.6188[/C][C]44.0355[/C][/ROW]
[ROW][C]53[/C][C]4560[/C][C]4655.6[/C][C]4626.04[/C][C]29.5583[/C][C]-95.5999[/C][/ROW]
[ROW][C]54[/C][C]4665[/C][C]4568.13[/C][C]4658.54[/C][C]-90.4157[/C][C]96.874[/C][/ROW]
[ROW][C]55[/C][C]4725[/C][C]4589.92[/C][C]4684.17[/C][C]-94.2467[/C][C]135.08[/C][/ROW]
[ROW][C]56[/C][C]4840[/C][C]4867[/C][C]4705.42[/C][C]161.587[/C][C]-27.0033[/C][/ROW]
[ROW][C]57[/C][C]4745[/C][C]4661.47[/C][C]4733.75[/C][C]-72.2791[/C][C]83.5291[/C][/ROW]
[ROW][C]58[/C][C]4940[/C][C]4985.29[/C][C]4752.29[/C][C]232.999[/C][C]-45.2903[/C][/ROW]
[ROW][C]59[/C][C]4635[/C][C]4651.4[/C][C]4756.25[/C][C]-104.849[/C][C]-16.4014[/C][/ROW]
[ROW][C]60[/C][C]4910[/C][C]4606.86[/C][C]4756.87[/C][C]-150.011[/C][C]303.136[/C][/ROW]
[ROW][C]61[/C][C]4690[/C][C]4853.04[/C][C]4747.71[/C][C]105.337[/C][C]-163.045[/C][/ROW]
[ROW][C]62[/C][C]4585[/C][C]4550.18[/C][C]4740.63[/C][C]-190.442[/C][C]34.8167[/C][/ROW]
[ROW][C]63[/C][C]5065[/C][C]4934.71[/C][C]4743.33[/C][C]191.381[/C][C]130.285[/C][/ROW]
[ROW][C]64[/C][C]4705[/C][C]4715.55[/C][C]4734.17[/C][C]-18.6188[/C][C]-10.5478[/C][/ROW]
[ROW][C]65[/C][C]4580[/C][C]4751.85[/C][C]4722.29[/C][C]29.5583[/C][C]-171.85[/C][/ROW]
[ROW][C]66[/C][C]4660[/C][C]4619.38[/C][C]4709.79[/C][C]-90.4157[/C][C]40.624[/C][/ROW]
[ROW][C]67[/C][C]4510[/C][C]4611.38[/C][C]4705.62[/C][C]-94.2467[/C][C]-101.378[/C][/ROW]
[ROW][C]68[/C][C]4885[/C][C]4869.92[/C][C]4708.33[/C][C]161.587[/C][C]15.0801[/C][/ROW]
[ROW][C]69[/C][C]4765[/C][C]4630.43[/C][C]4702.71[/C][C]-72.2791[/C][C]134.571[/C][/ROW]
[ROW][C]70[/C][C]4700[/C][C]4926.75[/C][C]4693.75[/C][C]232.999[/C][C]-226.749[/C][/ROW]
[ROW][C]71[/C][C]4590[/C][C]4586.82[/C][C]4691.67[/C][C]-104.849[/C][C]3.18191[/C][/ROW]
[ROW][C]72[/C][C]4655[/C][C]4537.28[/C][C]4687.29[/C][C]-150.011[/C][C]117.719[/C][/ROW]
[ROW][C]73[/C][C]4845[/C][C]4773.88[/C][C]4668.54[/C][C]105.337[/C][C]71.1217[/C][/ROW]
[ROW][C]74[/C][C]4495[/C][C]4464.35[/C][C]4654.79[/C][C]-190.442[/C][C]30.6501[/C][/ROW]
[ROW][C]75[/C][C]5020[/C][C]4828.67[/C][C]4637.29[/C][C]191.381[/C][C]191.327[/C][/ROW]
[ROW][C]76[/C][C]4535[/C][C]4612.84[/C][C]4631.46[/C][C]-18.6188[/C][C]-77.8395[/C][/ROW]
[ROW][C]77[/C][C]4700[/C][C]4671.64[/C][C]4642.08[/C][C]29.5583[/C][C]28.3584[/C][/ROW]
[ROW][C]78[/C][C]4435[/C][C]4541.25[/C][C]4631.67[/C][C]-90.4157[/C][C]-106.251[/C][/ROW]
[ROW][C]79[/C][C]4285[/C][C]4530.13[/C][C]4624.38[/C][C]-94.2467[/C][C]-245.128[/C][/ROW]
[ROW][C]80[/C][C]4780[/C][C]4799.92[/C][C]4638.33[/C][C]161.587[/C][C]-19.9199[/C][/ROW]
[ROW][C]81[/C][C]4450[/C][C]4570.64[/C][C]4642.92[/C][C]-72.2791[/C][C]-120.638[/C][/ROW]
[ROW][C]82[/C][C]4875[/C][C]4883.62[/C][C]4650.62[/C][C]232.999[/C][C]-8.62365[/C][/ROW]
[ROW][C]83[/C][C]4670[/C][C]4559.94[/C][C]4664.79[/C][C]-104.849[/C][C]110.057[/C][/ROW]
[ROW][C]84[/C][C]4325[/C][C]4521.86[/C][C]4671.88[/C][C]-150.011[/C][C]-196.864[/C][/ROW]
[ROW][C]85[/C][C]5000[/C][C]4799.5[/C][C]4694.17[/C][C]105.337[/C][C]200.497[/C][/ROW]
[ROW][C]86[/C][C]4675[/C][C]4533.93[/C][C]4724.38[/C][C]-190.442[/C][C]141.067[/C][/ROW]
[ROW][C]87[/C][C]4950[/C][C]4935.13[/C][C]4743.75[/C][C]191.381[/C][C]14.8688[/C][/ROW]
[ROW][C]88[/C][C]4790[/C][C]4740.13[/C][C]4758.75[/C][C]-18.6188[/C][C]49.8688[/C][/ROW]
[ROW][C]89[/C][C]4785[/C][C]4797.06[/C][C]4767.5[/C][C]29.5583[/C][C]-12.0583[/C][/ROW]
[ROW][C]90[/C][C]4520[/C][C]4692.29[/C][C]4782.71[/C][C]-90.4157[/C][C]-172.293[/C][/ROW]
[ROW][C]91[/C][C]4735[/C][C]4698.46[/C][C]4792.71[/C][C]-94.2467[/C][C]36.5384[/C][/ROW]
[ROW][C]92[/C][C]5055[/C][C]4933.46[/C][C]4771.88[/C][C]161.587[/C][C]121.538[/C][/ROW]
[ROW][C]93[/C][C]4640[/C][C]4663.76[/C][C]4736.04[/C][C]-72.2791[/C][C]-23.7625[/C][/ROW]
[ROW][C]94[/C][C]5045[/C][C]4941.54[/C][C]4708.54[/C][C]232.999[/C][C]103.46[/C][/ROW]
[ROW][C]95[/C][C]4710[/C][C]4594.73[/C][C]4699.58[/C][C]-104.849[/C][C]115.265[/C][/ROW]
[ROW][C]96[/C][C]4650[/C][C]4553.32[/C][C]4703.33[/C][C]-150.011[/C][C]96.6773[/C][/ROW]
[ROW][C]97[/C][C]4915[/C][C]4832.63[/C][C]4727.29[/C][C]105.337[/C][C]82.3717[/C][/ROW]
[ROW][C]98[/C][C]4260[/C][C]4566.64[/C][C]4757.08[/C][C]-190.442[/C][C]-306.642[/C][/ROW]
[ROW][C]99[/C][C]4505[/C][C]4967.63[/C][C]4776.25[/C][C]191.381[/C][C]-462.631[/C][/ROW]
[ROW][C]100[/C][C]4575[/C][C]4783.67[/C][C]4802.29[/C][C]-18.6188[/C][C]-208.673[/C][/ROW]
[ROW][C]101[/C][C]4785[/C][C]4844.35[/C][C]4814.79[/C][C]29.5583[/C][C]-59.3499[/C][/ROW]
[ROW][C]102[/C][C]4610[/C][C]4720.21[/C][C]4810.62[/C][C]-90.4157[/C][C]-110.209[/C][/ROW]
[ROW][C]103[/C][C]5220[/C][C]4713.25[/C][C]4807.5[/C][C]-94.2467[/C][C]506.747[/C][/ROW]
[ROW][C]104[/C][C]5285[/C][C]4987.84[/C][C]4826.25[/C][C]161.587[/C][C]297.163[/C][/ROW]
[ROW][C]105[/C][C]4870[/C][C]4796.47[/C][C]4868.75[/C][C]-72.2791[/C][C]73.5291[/C][/ROW]
[ROW][C]106[/C][C]5440[/C][C]5136.33[/C][C]4903.33[/C][C]232.999[/C][C]303.668[/C][/ROW]
[ROW][C]107[/C][C]4615[/C][C]4805.78[/C][C]4910.63[/C][C]-104.849[/C][C]-190.776[/C][/ROW]
[ROW][C]108[/C][C]4645[/C][C]4761.45[/C][C]4911.46[/C][C]-150.011[/C][C]-116.448[/C][/ROW]
[ROW][C]109[/C][C]4845[/C][C]5021.59[/C][C]4916.25[/C][C]105.337[/C][C]-176.587[/C][/ROW]
[ROW][C]110[/C][C]4780[/C][C]NA[/C][C]NA[/C][C]-190.442[/C][C]NA[/C][/ROW]
[ROW][C]111[/C][C]5005[/C][C]NA[/C][C]NA[/C][C]191.381[/C][C]NA[/C][/ROW]
[ROW][C]112[/C][C]4905[/C][C]NA[/C][C]NA[/C][C]-18.6188[/C][C]NA[/C][/ROW]
[ROW][C]113[/C][C]4630[/C][C]NA[/C][C]NA[/C][C]29.5583[/C][C]NA[/C][/ROW]
[ROW][C]114[/C][C]4785[/C][C]NA[/C][C]NA[/C][C]-90.4157[/C][C]NA[/C][/ROW]
[ROW][C]115[/C][C]5160[/C][C]NA[/C][C]NA[/C][C]-94.2467[/C][C]NA[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298538&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298538&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Classical Decomposition by Moving Averages
tObservationsFitTrendSeasonalRandom
13655NANA105.337NA
23390NANA-190.442NA
34000NANA191.381NA
43810NANA-18.6188NA
53790NANA29.5583NA
63790NANA-90.4157NA
733503655.133749.38-94.2467-305.128
839003947.213785.62161.587-47.2116
937253743.553815.83-72.2791-18.5542
1039454060.923827.92232.999-115.915
1138403741.43846.25-104.84998.5986
1236253717.283867.29-150.011-92.2811
1340003995.133889.79105.3374.87172
1439153718.313908.75-190.442196.692
1542004103.883912.5191.38196.1188
1639003902.843921.46-18.6188-2.83951
1741403959.143929.5829.5583180.858
1839453836.883927.29-90.4157108.124
1937353834.293928.54-94.2467-99.2949
2039704091.593930161.587-121.587
2137453858.973931.25-72.2791-113.971
2241404183.423950.42232.999-43.4153
2338403865.573970.42-104.849-25.5681
2435703829.573979.58-150.011-259.573
2540854103.463998.12105.337-18.4616
2638653833.524023.96-190.44231.4834
2742804241.84050.42191.38138.2022
2842804058.884077.5-18.6188221.119
2942404134.774105.2129.5583105.233
3040654054.174144.58-90.415710.8324
3140604095.544189.79-94.2467-35.5449
3242654383.044221.46161.587-118.045
3340854175.434247.71-72.2791-90.4292
3444504499.874266.88232.999-49.8736
3541954175.984280.83-104.84919.0152
3641604158.324308.33-150.0111.67728
3745804448.044342.71105.337131.955
3841304179.564370-190.442-49.5583
3946454587.634396.25191.38157.3688
4043754407.634426.25-18.6188-32.6312
4144804473.14443.5429.55836.90008
4244854370.214460.62-90.4157114.791
4344654376.594470.83-94.246788.4134
4445154634.714473.12161.587-119.712
4544654408.974481.25-72.279156.0291
4647904726.964493.96232.99963.043
4742704403.074507.92-104.849-133.068
4844954368.744518.75-150.011126.261
4944904642.424537.08105.337-152.42
5042754371.024561.46-190.442-96.0166
5146954778.054586.67191.381-83.0478
5246304585.964604.58-18.618844.0355
5345604655.64626.0429.5583-95.5999
5446654568.134658.54-90.415796.874
5547254589.924684.17-94.2467135.08
56484048674705.42161.587-27.0033
5747454661.474733.75-72.279183.5291
5849404985.294752.29232.999-45.2903
5946354651.44756.25-104.849-16.4014
6049104606.864756.87-150.011303.136
6146904853.044747.71105.337-163.045
6245854550.184740.63-190.44234.8167
6350654934.714743.33191.381130.285
6447054715.554734.17-18.6188-10.5478
6545804751.854722.2929.5583-171.85
6646604619.384709.79-90.415740.624
6745104611.384705.62-94.2467-101.378
6848854869.924708.33161.58715.0801
6947654630.434702.71-72.2791134.571
7047004926.754693.75232.999-226.749
7145904586.824691.67-104.8493.18191
7246554537.284687.29-150.011117.719
7348454773.884668.54105.33771.1217
7444954464.354654.79-190.44230.6501
7550204828.674637.29191.381191.327
7645354612.844631.46-18.6188-77.8395
7747004671.644642.0829.558328.3584
7844354541.254631.67-90.4157-106.251
7942854530.134624.38-94.2467-245.128
8047804799.924638.33161.587-19.9199
8144504570.644642.92-72.2791-120.638
8248754883.624650.62232.999-8.62365
8346704559.944664.79-104.849110.057
8443254521.864671.88-150.011-196.864
8550004799.54694.17105.337200.497
8646754533.934724.38-190.442141.067
8749504935.134743.75191.38114.8688
8847904740.134758.75-18.618849.8688
8947854797.064767.529.5583-12.0583
9045204692.294782.71-90.4157-172.293
9147354698.464792.71-94.246736.5384
9250554933.464771.88161.587121.538
9346404663.764736.04-72.2791-23.7625
9450454941.544708.54232.999103.46
9547104594.734699.58-104.849115.265
9646504553.324703.33-150.01196.6773
9749154832.634727.29105.33782.3717
9842604566.644757.08-190.442-306.642
9945054967.634776.25191.381-462.631
10045754783.674802.29-18.6188-208.673
10147854844.354814.7929.5583-59.3499
10246104720.214810.62-90.4157-110.209
10352204713.254807.5-94.2467506.747
10452854987.844826.25161.587297.163
10548704796.474868.75-72.279173.5291
10654405136.334903.33232.999303.668
10746154805.784910.63-104.849-190.776
10846454761.454911.46-150.011-116.448
10948455021.594916.25105.337-176.587
1104780NANA-190.442NA
1115005NANA191.381NA
1124905NANA-18.6188NA
1134630NANA29.5583NA
1144785NANA-90.4157NA
1155160NANA-94.2467NA



Parameters (Session):
par1 = additive ; par2 = 12 ;
Parameters (R input):
par1 = additive ; par2 = 12 ;
R code (references can be found in the software module):
par2 <- '12'
par1 <- 'additive'
par2 <- as.numeric(par2)
x <- ts(x,freq=par2)
m <- decompose(x,type=par1)
m$figure
bitmap(file='test1.png')
plot(m)
dev.off()
mylagmax <- length(x)/2
bitmap(file='test2.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(x),lag.max = mylagmax,main='Observed')
acf(as.numeric(m$trend),na.action=na.pass,lag.max = mylagmax,main='Trend')
acf(as.numeric(m$seasonal),na.action=na.pass,lag.max = mylagmax,main='Seasonal')
acf(as.numeric(m$random),na.action=na.pass,lag.max = mylagmax,main='Random')
par(op)
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
spectrum(as.numeric(x),main='Observed')
spectrum(as.numeric(m$trend[!is.na(m$trend)]),main='Trend')
spectrum(as.numeric(m$seasonal[!is.na(m$seasonal)]),main='Seasonal')
spectrum(as.numeric(m$random[!is.na(m$random)]),main='Random')
par(op)
dev.off()
bitmap(file='test4.png')
op <- par(mfrow = c(2,2))
cpgram(as.numeric(x),main='Observed')
cpgram(as.numeric(m$trend[!is.na(m$trend)]),main='Trend')
cpgram(as.numeric(m$seasonal[!is.na(m$seasonal)]),main='Seasonal')
cpgram(as.numeric(m$random[!is.na(m$random)]),main='Random')
par(op)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Classical Decomposition by Moving Averages',6,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observations',header=TRUE)
a<-table.element(a,'Fit',header=TRUE)
a<-table.element(a,'Trend',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,'Random',header=TRUE)
a<-table.row.end(a)
for (i in 1:length(m$trend)) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
if (par1 == 'additive') a<-table.element(a,signif(m$trend[i]+m$seasonal[i],6)) else a<-table.element(a,signif(m$trend[i]*m$seasonal[i],6))
a<-table.element(a,signif(m$trend[i],6))
a<-table.element(a,signif(m$seasonal[i],6))
a<-table.element(a,signif(m$random[i],6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')