Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_pairs.wasp
Title produced by softwareKendall tau Correlation Matrix
Date of computationFri, 09 Dec 2016 14:04:06 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/09/t1481288681wmqxff5ky5e8nye.htm/, Retrieved Fri, 01 Nov 2024 03:47:09 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=298522, Retrieved Fri, 01 Nov 2024 03:47:09 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact87
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Kendall tau Correlation Matrix] [Correlatie Matric...] [2016-12-09 13:04:06] [8fee619fda962476c4dedef05f7f9476] [Current]
Feedback Forum

Post a new message
Dataseries X:
4	3	3	3
5	4	4	3
4	5	5	3
5	3	5	3
5	4	5	3
5	4	5	3
4	4	4	3
4	4	4	4
4	3	4	3
4	4	4	4
5	4	5	3
5	4	4	3
5	4	4	3
4	4	4	4
4	4	4	3
4	4	5	3
4	4	5	3
3	4	3	3
4	3	5	3
5	4	4	4
4	2	4	3
5	4	5	3
3	3	4	4
2	4	4	4
5	4	5	4
5	4	5	3
4	3	3	3
4	4	5	3
4	4	4	3
3	4	5	3
4	4	4	3
3	4	3	3
5	4	5	3
2	3	3	3
3	4	4	3
2	4	4	3
5	5	4	3
4	4	4	4
5	4	5	3
5	4	4	3
4	5	4	3
5	4	4	3
4	4	4	3
4	2	4	2
5	4	5	3
3	4	4	3
2	4	4	4
5	4	4	3
4	4	4	3
5	3	5	3
3	4	4	3
2	4	4	5
5	4	5	3
1	3	3	3
5	4	4	4
5	5	5	5
4	4	5	4
5	4	5	4
5	4	4	4
5	4	2	3
4	5	5	3
4	5	5	3
4	4	4	4
4	5	4	5
5	4	5	4
5	4	4	3
4	4	4	3
2	4	4	3
4	4	4	4
3	3	3	3
4	4	4	4
5	4	4	3
5	4	4	3
3	4	4	3
4	4	4	3
3	4	4	3
4	4	4	3
4	4	4	3
5	4	4	3
2	3	3	3
4	5	4	5
2	3	3	3
4	4	5	5
4	4	4	3
5	5	5	4
4	5	5	3
3	4	4	3
3	4	3	3
4	5	5	3
2	4	4	4
5	5	5	4
4	3	4	3
4	4	4	4
5	4	4	3
4	4	4	3
2	4	3	3
5	4	5	3
5	4	5	4
4	4	4	3
5	5	5	3
3	4	4	4
4	4	4	4
3	4	4	5




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time1 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298522&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]1 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=298522&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298522&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center







Correlations for all pairs of data series (method=pearson)
TVDC1TVDC2TVDC3TVDC4
TVDC110.2410.49-0.044
TVDC20.24110.3580.292
TVDC30.490.35810.113
TVDC4-0.0440.2920.1131

\begin{tabular}{lllllllll}
\hline
Correlations for all pairs of data series (method=pearson) \tabularnewline
  & TVDC1 & TVDC2 & TVDC3 & TVDC4 \tabularnewline
TVDC1 & 1 & 0.241 & 0.49 & -0.044 \tabularnewline
TVDC2 & 0.241 & 1 & 0.358 & 0.292 \tabularnewline
TVDC3 & 0.49 & 0.358 & 1 & 0.113 \tabularnewline
TVDC4 & -0.044 & 0.292 & 0.113 & 1 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298522&T=1

[TABLE]
[ROW][C]Correlations for all pairs of data series (method=pearson)[/C][/ROW]
[ROW][C] [/C][C]TVDC1[/C][C]TVDC2[/C][C]TVDC3[/C][C]TVDC4[/C][/ROW]
[ROW][C]TVDC1[/C][C]1[/C][C]0.241[/C][C]0.49[/C][C]-0.044[/C][/ROW]
[ROW][C]TVDC2[/C][C]0.241[/C][C]1[/C][C]0.358[/C][C]0.292[/C][/ROW]
[ROW][C]TVDC3[/C][C]0.49[/C][C]0.358[/C][C]1[/C][C]0.113[/C][/ROW]
[ROW][C]TVDC4[/C][C]-0.044[/C][C]0.292[/C][C]0.113[/C][C]1[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298522&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298522&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Correlations for all pairs of data series (method=pearson)
TVDC1TVDC2TVDC3TVDC4
TVDC110.2410.49-0.044
TVDC20.24110.3580.292
TVDC30.490.35810.113
TVDC4-0.0440.2920.1131







Correlations for all pairs of data series with p-values
pairPearson rSpearman rhoKendall tau
TVDC1;TVDC20.24120.2310.2048
p-value(0.0141)(0.0189)(0.021)
TVDC1;TVDC30.49050.50250.4616
p-value(0)(0)(0)
TVDC1;TVDC4-0.0439-0.0238-0.0217
p-value(0.6598)(0.8112)(0.8091)
TVDC2;TVDC30.35810.37910.3583
p-value(2e-04)(1e-04)(1e-04)
TVDC2;TVDC40.29230.24150.2311
p-value(0.0027)(0.014)(0.013)
TVDC3;TVDC40.11310.09410.088
p-value(0.2553)(0.3443)(0.3425)

\begin{tabular}{lllllllll}
\hline
Correlations for all pairs of data series with p-values \tabularnewline
pair & Pearson r & Spearman rho & Kendall tau \tabularnewline
TVDC1;TVDC2 & 0.2412 & 0.231 & 0.2048 \tabularnewline
p-value & (0.0141) & (0.0189) & (0.021) \tabularnewline
TVDC1;TVDC3 & 0.4905 & 0.5025 & 0.4616 \tabularnewline
p-value & (0) & (0) & (0) \tabularnewline
TVDC1;TVDC4 & -0.0439 & -0.0238 & -0.0217 \tabularnewline
p-value & (0.6598) & (0.8112) & (0.8091) \tabularnewline
TVDC2;TVDC3 & 0.3581 & 0.3791 & 0.3583 \tabularnewline
p-value & (2e-04) & (1e-04) & (1e-04) \tabularnewline
TVDC2;TVDC4 & 0.2923 & 0.2415 & 0.2311 \tabularnewline
p-value & (0.0027) & (0.014) & (0.013) \tabularnewline
TVDC3;TVDC4 & 0.1131 & 0.0941 & 0.088 \tabularnewline
p-value & (0.2553) & (0.3443) & (0.3425) \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298522&T=2

[TABLE]
[ROW][C]Correlations for all pairs of data series with p-values[/C][/ROW]
[ROW][C]pair[/C][C]Pearson r[/C][C]Spearman rho[/C][C]Kendall tau[/C][/ROW]
[ROW][C]TVDC1;TVDC2[/C][C]0.2412[/C][C]0.231[/C][C]0.2048[/C][/ROW]
[ROW][C]p-value[/C][C](0.0141)[/C][C](0.0189)[/C][C](0.021)[/C][/ROW]
[ROW][C]TVDC1;TVDC3[/C][C]0.4905[/C][C]0.5025[/C][C]0.4616[/C][/ROW]
[ROW][C]p-value[/C][C](0)[/C][C](0)[/C][C](0)[/C][/ROW]
[ROW][C]TVDC1;TVDC4[/C][C]-0.0439[/C][C]-0.0238[/C][C]-0.0217[/C][/ROW]
[ROW][C]p-value[/C][C](0.6598)[/C][C](0.8112)[/C][C](0.8091)[/C][/ROW]
[ROW][C]TVDC2;TVDC3[/C][C]0.3581[/C][C]0.3791[/C][C]0.3583[/C][/ROW]
[ROW][C]p-value[/C][C](2e-04)[/C][C](1e-04)[/C][C](1e-04)[/C][/ROW]
[ROW][C]TVDC2;TVDC4[/C][C]0.2923[/C][C]0.2415[/C][C]0.2311[/C][/ROW]
[ROW][C]p-value[/C][C](0.0027)[/C][C](0.014)[/C][C](0.013)[/C][/ROW]
[ROW][C]TVDC3;TVDC4[/C][C]0.1131[/C][C]0.0941[/C][C]0.088[/C][/ROW]
[ROW][C]p-value[/C][C](0.2553)[/C][C](0.3443)[/C][C](0.3425)[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298522&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298522&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Correlations for all pairs of data series with p-values
pairPearson rSpearman rhoKendall tau
TVDC1;TVDC20.24120.2310.2048
p-value(0.0141)(0.0189)(0.021)
TVDC1;TVDC30.49050.50250.4616
p-value(0)(0)(0)
TVDC1;TVDC4-0.0439-0.0238-0.0217
p-value(0.6598)(0.8112)(0.8091)
TVDC2;TVDC30.35810.37910.3583
p-value(2e-04)(1e-04)(1e-04)
TVDC2;TVDC40.29230.24150.2311
p-value(0.0027)(0.014)(0.013)
TVDC3;TVDC40.11310.09410.088
p-value(0.2553)(0.3443)(0.3425)







Meta Analysis of Correlation Tests
Number of significant by total number of Correlations
Type I errorPearson rSpearman rhoKendall tau
0.010.50.330.33
0.020.670.670.5
0.030.670.670.67
0.040.670.670.67
0.050.670.670.67
0.060.670.670.67
0.070.670.670.67
0.080.670.670.67
0.090.670.670.67
0.10.670.670.67

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Correlation Tests \tabularnewline
Number of significant by total number of Correlations \tabularnewline
Type I error & Pearson r & Spearman rho & Kendall tau \tabularnewline
0.01 & 0.5 & 0.33 & 0.33 \tabularnewline
0.02 & 0.67 & 0.67 & 0.5 \tabularnewline
0.03 & 0.67 & 0.67 & 0.67 \tabularnewline
0.04 & 0.67 & 0.67 & 0.67 \tabularnewline
0.05 & 0.67 & 0.67 & 0.67 \tabularnewline
0.06 & 0.67 & 0.67 & 0.67 \tabularnewline
0.07 & 0.67 & 0.67 & 0.67 \tabularnewline
0.08 & 0.67 & 0.67 & 0.67 \tabularnewline
0.09 & 0.67 & 0.67 & 0.67 \tabularnewline
0.1 & 0.67 & 0.67 & 0.67 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298522&T=3

[TABLE]
[ROW][C]Meta Analysis of Correlation Tests[/C][/ROW]
[ROW][C]Number of significant by total number of Correlations[/C][/ROW]
[ROW][C]Type I error[/C][C]Pearson r[/C][C]Spearman rho[/C][C]Kendall tau[/C][/ROW]
[ROW][C]0.01[/C][C]0.5[/C][C]0.33[/C][C]0.33[/C][/ROW]
[ROW][C]0.02[/C][C]0.67[/C][C]0.67[/C][C]0.5[/C][/ROW]
[ROW][C]0.03[/C][C]0.67[/C][C]0.67[/C][C]0.67[/C][/ROW]
[ROW][C]0.04[/C][C]0.67[/C][C]0.67[/C][C]0.67[/C][/ROW]
[ROW][C]0.05[/C][C]0.67[/C][C]0.67[/C][C]0.67[/C][/ROW]
[ROW][C]0.06[/C][C]0.67[/C][C]0.67[/C][C]0.67[/C][/ROW]
[ROW][C]0.07[/C][C]0.67[/C][C]0.67[/C][C]0.67[/C][/ROW]
[ROW][C]0.08[/C][C]0.67[/C][C]0.67[/C][C]0.67[/C][/ROW]
[ROW][C]0.09[/C][C]0.67[/C][C]0.67[/C][C]0.67[/C][/ROW]
[ROW][C]0.1[/C][C]0.67[/C][C]0.67[/C][C]0.67[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298522&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298522&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Correlation Tests
Number of significant by total number of Correlations
Type I errorPearson rSpearman rhoKendall tau
0.010.50.330.33
0.020.670.670.5
0.030.670.670.67
0.040.670.670.67
0.050.670.670.67
0.060.670.670.67
0.070.670.670.67
0.080.670.670.67
0.090.670.670.67
0.10.670.670.67



Parameters (Session):
par2 = grey ; par3 = TRUE ; par4 = Unknown ;
Parameters (R input):
par1 = pearson ;
R code (references can be found in the software module):
panel.tau <- function(x, y, digits=2, prefix='', cex.cor)
{
usr <- par('usr'); on.exit(par(usr))
par(usr = c(0, 1, 0, 1))
rr <- cor.test(x, y, method=par1)
r <- round(rr$p.value,2)
txt <- format(c(r, 0.123456789), digits=digits)[1]
txt <- paste(prefix, txt, sep='')
if(missing(cex.cor)) cex <- 0.5/strwidth(txt)
text(0.5, 0.5, txt, cex = cex)
}
panel.hist <- function(x, ...)
{
usr <- par('usr'); on.exit(par(usr))
par(usr = c(usr[1:2], 0, 1.5) )
h <- hist(x, plot = FALSE)
breaks <- h$breaks; nB <- length(breaks)
y <- h$counts; y <- y/max(y)
rect(breaks[-nB], 0, breaks[-1], y, col='grey', ...)
}
x <- na.omit(x)
y <- t(na.omit(t(y)))
bitmap(file='test1.png')
pairs(t(y),diag.panel=panel.hist, upper.panel=panel.smooth, lower.panel=panel.tau, main=main)
dev.off()
load(file='createtable')
n <- length(y[,1])
print(n)
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,paste('Correlations for all pairs of data series (method=',par1,')',sep=''),n+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,' ',header=TRUE)
for (i in 1:n) {
a<-table.element(a,dimnames(t(x))[[2]][i],header=TRUE)
}
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,dimnames(t(x))[[2]][i],header=TRUE)
for (j in 1:n) {
r <- cor.test(y[i,],y[j,],method=par1)
a<-table.element(a,round(r$estimate,3))
}
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
ncorrs <- (n*n -n)/2
mycorrs <- array(0, dim=c(10,3))
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Correlations for all pairs of data series with p-values',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'pair',1,TRUE)
a<-table.element(a,'Pearson r',1,TRUE)
a<-table.element(a,'Spearman rho',1,TRUE)
a<-table.element(a,'Kendall tau',1,TRUE)
a<-table.row.end(a)
cor.test(y[1,],y[2,],method=par1)
for (i in 1:(n-1))
{
for (j in (i+1):n)
{
a<-table.row.start(a)
dum <- paste(dimnames(t(x))[[2]][i],';',dimnames(t(x))[[2]][j],sep='')
a<-table.element(a,dum,header=TRUE)
rp <- cor.test(y[i,],y[j,],method='pearson')
a<-table.element(a,round(rp$estimate,4))
rs <- cor.test(y[i,],y[j,],method='spearman')
a<-table.element(a,round(rs$estimate,4))
rk <- cor.test(y[i,],y[j,],method='kendall')
a<-table.element(a,round(rk$estimate,4))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value',header=T)
a<-table.element(a,paste('(',round(rp$p.value,4),')',sep=''))
a<-table.element(a,paste('(',round(rs$p.value,4),')',sep=''))
a<-table.element(a,paste('(',round(rk$p.value,4),')',sep=''))
a<-table.row.end(a)
for (iii in 1:10) {
iiid100 <- iii / 100
if (rp$p.value < iiid100) mycorrs[iii, 1] = mycorrs[iii, 1] + 1
if (rs$p.value < iiid100) mycorrs[iii, 2] = mycorrs[iii, 2] + 1
if (rk$p.value < iiid100) mycorrs[iii, 3] = mycorrs[iii, 3] + 1
}
}
}
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Correlation Tests',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Number of significant by total number of Correlations',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Type I error',1,TRUE)
a<-table.element(a,'Pearson r',1,TRUE)
a<-table.element(a,'Spearman rho',1,TRUE)
a<-table.element(a,'Kendall tau',1,TRUE)
a<-table.row.end(a)
for (iii in 1:10) {
iiid100 <- iii / 100
a<-table.row.start(a)
a<-table.element(a,round(iiid100,2),header=T)
a<-table.element(a,round(mycorrs[iii,1]/ncorrs,2))
a<-table.element(a,round(mycorrs[iii,2]/ncorrs,2))
a<-table.element(a,round(mycorrs[iii,3]/ncorrs,2))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')