Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_arimaforecasting.wasp
Title produced by softwareARIMA Forecasting
Date of computationFri, 09 Dec 2016 10:09:19 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/09/t1481275048ojwrrkq5xwbb5fr.htm/, Retrieved Fri, 01 Nov 2024 03:45:58 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=298463, Retrieved Fri, 01 Nov 2024 03:45:58 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact148
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [ARIMA Backward Selection] [ARIMA Backward se...] [2016-12-09 08:54:02] [5ad8e5538a25411d3c3b0ec85050bd51]
- RMP     [ARIMA Forecasting] [Arima forecasting...] [2016-12-09 09:09:19] [c0b73e623858a81821526bb2f691ccd9] [Current]
Feedback Forum

Post a new message
Dataseries X:
3300
4100
3550
3650
3400
4050
2950
3300
3950
3950
3900
3700
3850
4350
4350
3550
3800
4150
3500
3850
4250
4150
4200
4100
4200
4350
4150
4200
3850
4100
3800
4250
4400
4400
4450
4050
4100
4450
4600
4100
4300
4850
3800
4450
4800
4900
4900
4350
4500
5050
5150
4450
4900
5450
4100
5050
5550
5450
5500
4950
5400
5750
5950
5950
5750
6450
5000
5950
6250
6300
6400
5700
5750
6450
6500
5950
6200
6750
5300
6450
6900
6800
6750
6050
6100
7400
7300
6200
6550
7500
5400
6750
7400
7450
7200
6500
7150
8000
7000
7600
7100
8050
5700
7550
7800
7800
8250
7150
7350
7800
8250
7500
8150
8550




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time2 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298463&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]2 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=298463&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298463&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center







Univariate ARIMA Extrapolation Forecast
timeY[t]F[t]95% LB95% UBp-value(H0: Y[t] = F[t])P(F[t]>Y[t-1])P(F[t]>Y[t-s])P(F[t]>Y[114])
1028050-------
1035700-------
1047550-------
1057800-------
1067800-------
1078250-------
1087150-------
1097350-------
1107800-------
1118250-------
1127500-------
1138150-------
1148550-------
115NA6536.51256006.97747066.0477NA00.9990
116NA8046.19657516.65758575.7354NANA0.96690.0311
117NA8513.93837977.11779050.7589NANA0.99540.4476
118NA8466.81167913.21839020.4048NANA0.99090.3842
119NA8618.91878036.70629201.1312NANA0.89290.5917
120NA7747.14217152.29948341.9849NANA0.97540.0041
121NA8043.58277435.26218651.9033NANA0.98730.0514
122NA8710.92218087.28059334.5637NANA0.99790.6935
123NA8676.13238036.68169315.583NANA0.90420.6505
124NA8266.95557613.52828920.3827NANA0.98930.1979
125NA8520.77547853.60669187.9441NANA0.8620.4658
126NA9152.29648471.33639833.2565NANA0.95850.9585
127NA7134.84016348.63617921.044NANANA2e-04
128NA8637.47387839.45339435.4942NANANA0.5851
129NA9065.5678247.82689883.3072NANANA0.8917
130NA9043.08818200.87689885.2994NANANA0.8744
131NA9198.07778326.746210069.4092NANANA0.9276
132NA8323.2887430.39729216.1788NANANA0.3094
133NA8615.49287700.98829529.9974NANANA0.5558
134NA9285.66388348.998610222.329NANANA0.9381
135NA9251.51388292.796710210.231NANANA0.9242
136NA8841.76347862.18269821.3442NANANA0.7203
137NA9095.1048095.066910095.141NANANA0.8573
138NA9726.9718706.729610747.2124NANANA0.9881

\begin{tabular}{lllllllll}
\hline
Univariate ARIMA Extrapolation Forecast \tabularnewline
time & Y[t] & F[t] & 95% LB & 95% UB & p-value(H0: Y[t] = F[t]) & P(F[t]>Y[t-1]) & P(F[t]>Y[t-s]) & P(F[t]>Y[114]) \tabularnewline
102 & 8050 & - & - & - & - & - & - & - \tabularnewline
103 & 5700 & - & - & - & - & - & - & - \tabularnewline
104 & 7550 & - & - & - & - & - & - & - \tabularnewline
105 & 7800 & - & - & - & - & - & - & - \tabularnewline
106 & 7800 & - & - & - & - & - & - & - \tabularnewline
107 & 8250 & - & - & - & - & - & - & - \tabularnewline
108 & 7150 & - & - & - & - & - & - & - \tabularnewline
109 & 7350 & - & - & - & - & - & - & - \tabularnewline
110 & 7800 & - & - & - & - & - & - & - \tabularnewline
111 & 8250 & - & - & - & - & - & - & - \tabularnewline
112 & 7500 & - & - & - & - & - & - & - \tabularnewline
113 & 8150 & - & - & - & - & - & - & - \tabularnewline
114 & 8550 & - & - & - & - & - & - & - \tabularnewline
115 & NA & 6536.5125 & 6006.9774 & 7066.0477 & NA & 0 & 0.999 & 0 \tabularnewline
116 & NA & 8046.1965 & 7516.6575 & 8575.7354 & NA & NA & 0.9669 & 0.0311 \tabularnewline
117 & NA & 8513.9383 & 7977.1177 & 9050.7589 & NA & NA & 0.9954 & 0.4476 \tabularnewline
118 & NA & 8466.8116 & 7913.2183 & 9020.4048 & NA & NA & 0.9909 & 0.3842 \tabularnewline
119 & NA & 8618.9187 & 8036.7062 & 9201.1312 & NA & NA & 0.8929 & 0.5917 \tabularnewline
120 & NA & 7747.1421 & 7152.2994 & 8341.9849 & NA & NA & 0.9754 & 0.0041 \tabularnewline
121 & NA & 8043.5827 & 7435.2621 & 8651.9033 & NA & NA & 0.9873 & 0.0514 \tabularnewline
122 & NA & 8710.9221 & 8087.2805 & 9334.5637 & NA & NA & 0.9979 & 0.6935 \tabularnewline
123 & NA & 8676.1323 & 8036.6816 & 9315.583 & NA & NA & 0.9042 & 0.6505 \tabularnewline
124 & NA & 8266.9555 & 7613.5282 & 8920.3827 & NA & NA & 0.9893 & 0.1979 \tabularnewline
125 & NA & 8520.7754 & 7853.6066 & 9187.9441 & NA & NA & 0.862 & 0.4658 \tabularnewline
126 & NA & 9152.2964 & 8471.3363 & 9833.2565 & NA & NA & 0.9585 & 0.9585 \tabularnewline
127 & NA & 7134.8401 & 6348.6361 & 7921.044 & NA & NA & NA & 2e-04 \tabularnewline
128 & NA & 8637.4738 & 7839.4533 & 9435.4942 & NA & NA & NA & 0.5851 \tabularnewline
129 & NA & 9065.567 & 8247.8268 & 9883.3072 & NA & NA & NA & 0.8917 \tabularnewline
130 & NA & 9043.0881 & 8200.8768 & 9885.2994 & NA & NA & NA & 0.8744 \tabularnewline
131 & NA & 9198.0777 & 8326.7462 & 10069.4092 & NA & NA & NA & 0.9276 \tabularnewline
132 & NA & 8323.288 & 7430.3972 & 9216.1788 & NA & NA & NA & 0.3094 \tabularnewline
133 & NA & 8615.4928 & 7700.9882 & 9529.9974 & NA & NA & NA & 0.5558 \tabularnewline
134 & NA & 9285.6638 & 8348.9986 & 10222.329 & NA & NA & NA & 0.9381 \tabularnewline
135 & NA & 9251.5138 & 8292.7967 & 10210.231 & NA & NA & NA & 0.9242 \tabularnewline
136 & NA & 8841.7634 & 7862.1826 & 9821.3442 & NA & NA & NA & 0.7203 \tabularnewline
137 & NA & 9095.104 & 8095.0669 & 10095.141 & NA & NA & NA & 0.8573 \tabularnewline
138 & NA & 9726.971 & 8706.7296 & 10747.2124 & NA & NA & NA & 0.9881 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298463&T=1

[TABLE]
[ROW][C]Univariate ARIMA Extrapolation Forecast[/C][/ROW]
[ROW][C]time[/C][C]Y[t][/C][C]F[t][/C][C]95% LB[/C][C]95% UB[/C][C]p-value(H0: Y[t] = F[t])[/C][C]P(F[t]>Y[t-1])[/C][C]P(F[t]>Y[t-s])[/C][C]P(F[t]>Y[114])[/C][/ROW]
[ROW][C]102[/C][C]8050[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]103[/C][C]5700[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]104[/C][C]7550[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]105[/C][C]7800[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]106[/C][C]7800[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]107[/C][C]8250[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]108[/C][C]7150[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]109[/C][C]7350[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]110[/C][C]7800[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]111[/C][C]8250[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]112[/C][C]7500[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]113[/C][C]8150[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]114[/C][C]8550[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]115[/C][C]NA[/C][C]6536.5125[/C][C]6006.9774[/C][C]7066.0477[/C][C]NA[/C][C]0[/C][C]0.999[/C][C]0[/C][/ROW]
[ROW][C]116[/C][C]NA[/C][C]8046.1965[/C][C]7516.6575[/C][C]8575.7354[/C][C]NA[/C][C]NA[/C][C]0.9669[/C][C]0.0311[/C][/ROW]
[ROW][C]117[/C][C]NA[/C][C]8513.9383[/C][C]7977.1177[/C][C]9050.7589[/C][C]NA[/C][C]NA[/C][C]0.9954[/C][C]0.4476[/C][/ROW]
[ROW][C]118[/C][C]NA[/C][C]8466.8116[/C][C]7913.2183[/C][C]9020.4048[/C][C]NA[/C][C]NA[/C][C]0.9909[/C][C]0.3842[/C][/ROW]
[ROW][C]119[/C][C]NA[/C][C]8618.9187[/C][C]8036.7062[/C][C]9201.1312[/C][C]NA[/C][C]NA[/C][C]0.8929[/C][C]0.5917[/C][/ROW]
[ROW][C]120[/C][C]NA[/C][C]7747.1421[/C][C]7152.2994[/C][C]8341.9849[/C][C]NA[/C][C]NA[/C][C]0.9754[/C][C]0.0041[/C][/ROW]
[ROW][C]121[/C][C]NA[/C][C]8043.5827[/C][C]7435.2621[/C][C]8651.9033[/C][C]NA[/C][C]NA[/C][C]0.9873[/C][C]0.0514[/C][/ROW]
[ROW][C]122[/C][C]NA[/C][C]8710.9221[/C][C]8087.2805[/C][C]9334.5637[/C][C]NA[/C][C]NA[/C][C]0.9979[/C][C]0.6935[/C][/ROW]
[ROW][C]123[/C][C]NA[/C][C]8676.1323[/C][C]8036.6816[/C][C]9315.583[/C][C]NA[/C][C]NA[/C][C]0.9042[/C][C]0.6505[/C][/ROW]
[ROW][C]124[/C][C]NA[/C][C]8266.9555[/C][C]7613.5282[/C][C]8920.3827[/C][C]NA[/C][C]NA[/C][C]0.9893[/C][C]0.1979[/C][/ROW]
[ROW][C]125[/C][C]NA[/C][C]8520.7754[/C][C]7853.6066[/C][C]9187.9441[/C][C]NA[/C][C]NA[/C][C]0.862[/C][C]0.4658[/C][/ROW]
[ROW][C]126[/C][C]NA[/C][C]9152.2964[/C][C]8471.3363[/C][C]9833.2565[/C][C]NA[/C][C]NA[/C][C]0.9585[/C][C]0.9585[/C][/ROW]
[ROW][C]127[/C][C]NA[/C][C]7134.8401[/C][C]6348.6361[/C][C]7921.044[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]2e-04[/C][/ROW]
[ROW][C]128[/C][C]NA[/C][C]8637.4738[/C][C]7839.4533[/C][C]9435.4942[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.5851[/C][/ROW]
[ROW][C]129[/C][C]NA[/C][C]9065.567[/C][C]8247.8268[/C][C]9883.3072[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.8917[/C][/ROW]
[ROW][C]130[/C][C]NA[/C][C]9043.0881[/C][C]8200.8768[/C][C]9885.2994[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.8744[/C][/ROW]
[ROW][C]131[/C][C]NA[/C][C]9198.0777[/C][C]8326.7462[/C][C]10069.4092[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.9276[/C][/ROW]
[ROW][C]132[/C][C]NA[/C][C]8323.288[/C][C]7430.3972[/C][C]9216.1788[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.3094[/C][/ROW]
[ROW][C]133[/C][C]NA[/C][C]8615.4928[/C][C]7700.9882[/C][C]9529.9974[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.5558[/C][/ROW]
[ROW][C]134[/C][C]NA[/C][C]9285.6638[/C][C]8348.9986[/C][C]10222.329[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.9381[/C][/ROW]
[ROW][C]135[/C][C]NA[/C][C]9251.5138[/C][C]8292.7967[/C][C]10210.231[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.9242[/C][/ROW]
[ROW][C]136[/C][C]NA[/C][C]8841.7634[/C][C]7862.1826[/C][C]9821.3442[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.7203[/C][/ROW]
[ROW][C]137[/C][C]NA[/C][C]9095.104[/C][C]8095.0669[/C][C]10095.141[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.8573[/C][/ROW]
[ROW][C]138[/C][C]NA[/C][C]9726.971[/C][C]8706.7296[/C][C]10747.2124[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.9881[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298463&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298463&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Univariate ARIMA Extrapolation Forecast
timeY[t]F[t]95% LB95% UBp-value(H0: Y[t] = F[t])P(F[t]>Y[t-1])P(F[t]>Y[t-s])P(F[t]>Y[114])
1028050-------
1035700-------
1047550-------
1057800-------
1067800-------
1078250-------
1087150-------
1097350-------
1107800-------
1118250-------
1127500-------
1138150-------
1148550-------
115NA6536.51256006.97747066.0477NA00.9990
116NA8046.19657516.65758575.7354NANA0.96690.0311
117NA8513.93837977.11779050.7589NANA0.99540.4476
118NA8466.81167913.21839020.4048NANA0.99090.3842
119NA8618.91878036.70629201.1312NANA0.89290.5917
120NA7747.14217152.29948341.9849NANA0.97540.0041
121NA8043.58277435.26218651.9033NANA0.98730.0514
122NA8710.92218087.28059334.5637NANA0.99790.6935
123NA8676.13238036.68169315.583NANA0.90420.6505
124NA8266.95557613.52828920.3827NANA0.98930.1979
125NA8520.77547853.60669187.9441NANA0.8620.4658
126NA9152.29648471.33639833.2565NANA0.95850.9585
127NA7134.84016348.63617921.044NANANA2e-04
128NA8637.47387839.45339435.4942NANANA0.5851
129NA9065.5678247.82689883.3072NANANA0.8917
130NA9043.08818200.87689885.2994NANANA0.8744
131NA9198.07778326.746210069.4092NANANA0.9276
132NA8323.2887430.39729216.1788NANANA0.3094
133NA8615.49287700.98829529.9974NANANA0.5558
134NA9285.66388348.998610222.329NANANA0.9381
135NA9251.51388292.796710210.231NANANA0.9242
136NA8841.76347862.18269821.3442NANANA0.7203
137NA9095.1048095.066910095.141NANANA0.8573
138NA9726.9718706.729610747.2124NANANA0.9881







Univariate ARIMA Extrapolation Forecast Performance
time% S.E.PEMAPEsMAPESq.EMSERMSEScaledEMASE
1150.0413NANANANA00NANA
1160.0336NANANANANANANANA
1170.0322NANANANANANANANA
1180.0334NANANANANANANANA
1190.0345NANANANANANANANA
1200.0392NANANANANANANANA
1210.0386NANANANANANANANA
1220.0365NANANANANANANANA
1230.0376NANANANANANANANA
1240.0403NANANANANANANANA
1250.0399NANANANANANANANA
1260.038NANANANANANANANA
1270.0562NANANANANANANANA
1280.0471NANANANANANANANA
1290.046NANANANANANANANA
1300.0475NANANANANANANANA
1310.0483NANANANANANANANA
1320.0547NANANANANANANANA
1330.0542NANANANANANANANA
1340.0515NANANANANANANANA
1350.0529NANANANANANANANA
1360.0565NANANANANANANANA
1370.0561NANANANANANANANA
1380.0535NANANANANANANANA

\begin{tabular}{lllllllll}
\hline
Univariate ARIMA Extrapolation Forecast Performance \tabularnewline
time & % S.E. & PE & MAPE & sMAPE & Sq.E & MSE & RMSE & ScaledE & MASE \tabularnewline
115 & 0.0413 & NA & NA & NA & NA & 0 & 0 & NA & NA \tabularnewline
116 & 0.0336 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
117 & 0.0322 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
118 & 0.0334 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
119 & 0.0345 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
120 & 0.0392 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
121 & 0.0386 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
122 & 0.0365 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
123 & 0.0376 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
124 & 0.0403 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
125 & 0.0399 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
126 & 0.038 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
127 & 0.0562 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
128 & 0.0471 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
129 & 0.046 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
130 & 0.0475 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
131 & 0.0483 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
132 & 0.0547 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
133 & 0.0542 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
134 & 0.0515 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
135 & 0.0529 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
136 & 0.0565 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
137 & 0.0561 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
138 & 0.0535 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298463&T=2

[TABLE]
[ROW][C]Univariate ARIMA Extrapolation Forecast Performance[/C][/ROW]
[ROW][C]time[/C][C]% S.E.[/C][C]PE[/C][C]MAPE[/C][C]sMAPE[/C][C]Sq.E[/C][C]MSE[/C][C]RMSE[/C][C]ScaledE[/C][C]MASE[/C][/ROW]
[ROW][C]115[/C][C]0.0413[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0[/C][C]0[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]116[/C][C]0.0336[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]117[/C][C]0.0322[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]118[/C][C]0.0334[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]119[/C][C]0.0345[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]120[/C][C]0.0392[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]121[/C][C]0.0386[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]122[/C][C]0.0365[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]123[/C][C]0.0376[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]124[/C][C]0.0403[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]125[/C][C]0.0399[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]126[/C][C]0.038[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]127[/C][C]0.0562[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]128[/C][C]0.0471[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]129[/C][C]0.046[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]130[/C][C]0.0475[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]131[/C][C]0.0483[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]132[/C][C]0.0547[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]133[/C][C]0.0542[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]134[/C][C]0.0515[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]135[/C][C]0.0529[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]136[/C][C]0.0565[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]137[/C][C]0.0561[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]138[/C][C]0.0535[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298463&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298463&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Univariate ARIMA Extrapolation Forecast Performance
time% S.E.PEMAPEsMAPESq.EMSERMSEScaledEMASE
1150.0413NANANANA00NANA
1160.0336NANANANANANANANA
1170.0322NANANANANANANANA
1180.0334NANANANANANANANA
1190.0345NANANANANANANANA
1200.0392NANANANANANANANA
1210.0386NANANANANANANANA
1220.0365NANANANANANANANA
1230.0376NANANANANANANANA
1240.0403NANANANANANANANA
1250.0399NANANANANANANANA
1260.038NANANANANANANANA
1270.0562NANANANANANANANA
1280.0471NANANANANANANANA
1290.046NANANANANANANANA
1300.0475NANANANANANANANA
1310.0483NANANANANANANANA
1320.0547NANANANANANANANA
1330.0542NANANANANANANANA
1340.0515NANANANANANANANA
1350.0529NANANANANANANANA
1360.0565NANANANANANANANA
1370.0561NANANANANANANANA
1380.0535NANANANANANANANA



Parameters (Session):
par1 = 0 ; par2 = 1 ; par3 = 1 ; par4 = 1 ; par5 = 12 ; par6 = 3 ; par7 = 1 ; par8 = 0 ; par9 = 1 ; par10 = FALSE ;
Parameters (R input):
par1 = 0 ; par2 = 1 ; par3 = 1 ; par4 = 1 ; par5 = 12 ; par6 = 3 ; par7 = 1 ; par8 = 0 ; par9 = 1 ; par10 = FALSE ;
R code (references can be found in the software module):
par1 <- as.numeric(par1) #cut off periods
par2 <- as.numeric(par2) #lambda
par3 <- as.numeric(par3) #degree of non-seasonal differencing
par4 <- as.numeric(par4) #degree of seasonal differencing
par5 <- as.numeric(par5) #seasonal period
par6 <- as.numeric(par6) #p
par7 <- as.numeric(par7) #q
par8 <- as.numeric(par8) #P
par9 <- as.numeric(par9) #Q
if (par10 == 'TRUE') par10 <- TRUE
if (par10 == 'FALSE') par10 <- FALSE
if (par2 == 0) x <- log(x)
if (par2 != 0) x <- x^par2
lx <- length(x)
first <- lx - 2*par1
nx <- lx - par1
nx1 <- nx + 1
fx <- lx - nx
if (fx < 1) {
fx <- par5*2
nx1 <- lx + fx - 1
first <- lx - 2*fx
}
first <- 1
if (fx < 3) fx <- round(lx/10,0)
(arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML'))
(forecast <- predict(arima.out,fx))
(lb <- forecast$pred - 1.96 * forecast$se)
(ub <- forecast$pred + 1.96 * forecast$se)
if (par2 == 0) {
x <- exp(x)
forecast$pred <- exp(forecast$pred)
lb <- exp(lb)
ub <- exp(ub)
}
if (par2 != 0) {
x <- x^(1/par2)
forecast$pred <- forecast$pred^(1/par2)
lb <- lb^(1/par2)
ub <- ub^(1/par2)
}
if (par2 < 0) {
olb <- lb
lb <- ub
ub <- olb
}
(actandfor <- c(x[1:nx], forecast$pred))
(perc.se <- (ub-forecast$pred)/1.96/forecast$pred)
bitmap(file='test1.png')
opar <- par(mar=c(4,4,2,2),las=1)
ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub))
plot(x,ylim=ylim,type='n',xlim=c(first,lx))
usr <- par('usr')
rect(usr[1],usr[3],nx+1,usr[4],border=NA,col='lemonchiffon')
rect(nx1,usr[3],usr[2],usr[4],border=NA,col='lavender')
abline(h= (-3:3)*2 , col ='gray', lty =3)
polygon( c(nx1:lx,lx:nx1), c(lb,rev(ub)), col = 'orange', lty=2,border=NA)
lines(nx1:lx, lb , lty=2)
lines(nx1:lx, ub , lty=2)
lines(x, lwd=2)
lines(nx1:lx, forecast$pred , lwd=2 , col ='white')
box()
par(opar)
dev.off()
prob.dec <- array(NA, dim=fx)
prob.sdec <- array(NA, dim=fx)
prob.ldec <- array(NA, dim=fx)
prob.pval <- array(NA, dim=fx)
perf.pe <- array(0, dim=fx)
perf.spe <- array(0, dim=fx)
perf.scalederr <- array(0, dim=fx)
perf.mase <- array(0, dim=fx)
perf.mase1 <- array(0, dim=fx)
perf.mape <- array(0, dim=fx)
perf.smape <- array(0, dim=fx)
perf.mape1 <- array(0, dim=fx)
perf.smape1 <- array(0,dim=fx)
perf.se <- array(0, dim=fx)
perf.mse <- array(0, dim=fx)
perf.mse1 <- array(0, dim=fx)
perf.rmse <- array(0, dim=fx)
perf.scaleddenom <- 0
for (i in 2:fx) {
perf.scaleddenom = perf.scaleddenom + abs(x[nx+i] - x[nx+i-1])
}
perf.scaleddenom = perf.scaleddenom / (fx-1)
for (i in 1:fx) {
locSD <- (ub[i] - forecast$pred[i]) / 1.96
perf.scalederr[i] = (x[nx+i] - forecast$pred[i]) / perf.scaleddenom
perf.pe[i] = (x[nx+i] - forecast$pred[i]) / x[nx+i]
perf.spe[i] = 2*(x[nx+i] - forecast$pred[i]) / (x[nx+i] + forecast$pred[i])
perf.se[i] = (x[nx+i] - forecast$pred[i])^2
prob.dec[i] = pnorm((x[nx+i-1] - forecast$pred[i]) / locSD)
prob.sdec[i] = pnorm((x[nx+i-par5] - forecast$pred[i]) / locSD)
prob.ldec[i] = pnorm((x[nx] - forecast$pred[i]) / locSD)
prob.pval[i] = pnorm(abs(x[nx+i] - forecast$pred[i]) / locSD)
}
perf.mape[1] = abs(perf.pe[1])
perf.smape[1] = abs(perf.spe[1])
perf.mape1[1] = perf.mape[1]
perf.smape1[1] = perf.smape[1]
perf.mse[1] = perf.se[1]
perf.mase[1] = abs(perf.scalederr[1])
perf.mase1[1] = perf.mase[1]
for (i in 2:fx) {
perf.mape[i] = perf.mape[i-1] + abs(perf.pe[i])
perf.mape1[i] = perf.mape[i] / i
perf.smape[i] = perf.smape[i-1] + abs(perf.spe[i])
perf.smape1[i] = perf.smape[i] / i
perf.mse[i] = perf.mse[i-1] + perf.se[i]
perf.mse1[i] = perf.mse[i] / i
perf.mase[i] = perf.mase[i-1] + abs(perf.scalederr[i])
perf.mase1[i] = perf.mase[i] / i
}
perf.rmse = sqrt(perf.mse1)
bitmap(file='test2.png')
plot(forecast$pred, pch=19, type='b',main='ARIMA Extrapolation Forecast', ylab='Forecast and 95% CI', xlab='time',ylim=c(min(lb),max(ub)))
dum <- forecast$pred
dum[1:par1] <- x[(nx+1):lx]
lines(dum, lty=1)
lines(ub,lty=3)
lines(lb,lty=3)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Univariate ARIMA Extrapolation Forecast',9,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'time',1,header=TRUE)
a<-table.element(a,'Y[t]',1,header=TRUE)
a<-table.element(a,'F[t]',1,header=TRUE)
a<-table.element(a,'95% LB',1,header=TRUE)
a<-table.element(a,'95% UB',1,header=TRUE)
a<-table.element(a,'p-value
(H0: Y[t] = F[t])',1,header=TRUE)
a<-table.element(a,'P(F[t]>Y[t-1])',1,header=TRUE)
a<-table.element(a,'P(F[t]>Y[t-s])',1,header=TRUE)
mylab <- paste('P(F[t]>Y[',nx,sep='')
mylab <- paste(mylab,'])',sep='')
a<-table.element(a,mylab,1,header=TRUE)
a<-table.row.end(a)
for (i in (nx-par5):nx) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.row.end(a)
}
for (i in 1:fx) {
a<-table.row.start(a)
a<-table.element(a,nx+i,header=TRUE)
a<-table.element(a,round(x[nx+i],4))
a<-table.element(a,round(forecast$pred[i],4))
a<-table.element(a,round(lb[i],4))
a<-table.element(a,round(ub[i],4))
a<-table.element(a,round((1-prob.pval[i]),4))
a<-table.element(a,round((1-prob.dec[i]),4))
a<-table.element(a,round((1-prob.sdec[i]),4))
a<-table.element(a,round((1-prob.ldec[i]),4))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Univariate ARIMA Extrapolation Forecast Performance',10,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'time',1,header=TRUE)
a<-table.element(a,'% S.E.',1,header=TRUE)
a<-table.element(a,'PE',1,header=TRUE)
a<-table.element(a,'MAPE',1,header=TRUE)
a<-table.element(a,'sMAPE',1,header=TRUE)
a<-table.element(a,'Sq.E',1,header=TRUE)
a<-table.element(a,'MSE',1,header=TRUE)
a<-table.element(a,'RMSE',1,header=TRUE)
a<-table.element(a,'ScaledE',1,header=TRUE)
a<-table.element(a,'MASE',1,header=TRUE)
a<-table.row.end(a)
for (i in 1:fx) {
a<-table.row.start(a)
a<-table.element(a,nx+i,header=TRUE)
a<-table.element(a,round(perc.se[i],4))
a<-table.element(a,round(perf.pe[i],4))
a<-table.element(a,round(perf.mape1[i],4))
a<-table.element(a,round(perf.smape1[i],4))
a<-table.element(a,round(perf.se[i],4))
a<-table.element(a,round(perf.mse1[i],4))
a<-table.element(a,round(perf.rmse[i],4))
a<-table.element(a,round(perf.scalederr[i],4))
a<-table.element(a,round(perf.mase1[i],4))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')