Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_arimabackwardselection.wasp
Title produced by softwareARIMA Backward Selection
Date of computationFri, 09 Dec 2016 09:52:56 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/09/t1481274386sa0tux41my2xg41.htm/, Retrieved Fri, 01 Nov 2024 03:33:55 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=298449, Retrieved Fri, 01 Nov 2024 03:33:55 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact154
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [ARIMA Backward Selection] [Paper N2163] [2016-12-09 08:52:56] [1e2703d0f11438bcd65480dae45a3781] [Current]
Feedback Forum

Post a new message
Dataseries X:
3875
3755
4670
4335
4945
4600
4395
4345
4390
4490
4395
4690
4590
4630
5375
4655
4975
4810
4445
4660
4215
4825
4250
3945
4390
4315
4835
4835
4970
4690
4700
4855
4610
4900
4250
4105
4740
4565
5155
5320
5430
4690
4540
4575
4660
4850
4200
4360
4655
4585
5315
5115
5100
5735
5260
5050
5165
5190
4720
5275
4605
4825
5595
5160
5320
5540
4970
5445
5305
5145
4895
4555
4980
4930
5810
5210
5450
5510
5010
5495
5125
5190
4565
4255
4875
4650
5295
5045
5430
5325
4920
5445
4895
5175
4545
4220
4595
4360
4750
4985
5140
4995
5150
5240
4875
5170
4715
4370
5160
4930
5600
5385
5425
5375
5365




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time7 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time7 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298449&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]7 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=298449&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298449&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time7 seconds
R ServerBig Analytics Cloud Computing Center







ARIMA Parameter Estimation and Backward Selection
Iterationar1ar2ar3ma1sar1sar2sma1
Estimates ( 1 )-0.7416-0.37510.12120.1707-0.1617-0.3223-0.5556
(p-val)(0.0106 )(0.0845 )(0.4329 )(0.5383 )(0.4192 )(0.017 )(0.0074 )
Estimates ( 2 )-0.5807-0.27240.18110-0.1672-0.323-0.5538
(p-val)(0 )(0.0208 )(0.0833 )(NA )(0.3995 )(0.0163 )(0.0064 )
Estimates ( 3 )-0.559-0.24860.14900-0.2601-0.6882
(p-val)(0 )(0.0295 )(0.1305 )(NA )(NA )(0.027 )(0 )
Estimates ( 4 )-0.6111-0.3423000-0.256-0.6742
(p-val)(0 )(5e-04 )(NA )(NA )(NA )(0.0317 )(0 )
Estimates ( 5 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 6 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 7 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 8 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 9 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 10 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 11 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 12 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 13 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )

\begin{tabular}{lllllllll}
\hline
ARIMA Parameter Estimation and Backward Selection \tabularnewline
Iteration & ar1 & ar2 & ar3 & ma1 & sar1 & sar2 & sma1 \tabularnewline
Estimates ( 1 ) & -0.7416 & -0.3751 & 0.1212 & 0.1707 & -0.1617 & -0.3223 & -0.5556 \tabularnewline
(p-val) & (0.0106 ) & (0.0845 ) & (0.4329 ) & (0.5383 ) & (0.4192 ) & (0.017 ) & (0.0074 ) \tabularnewline
Estimates ( 2 ) & -0.5807 & -0.2724 & 0.1811 & 0 & -0.1672 & -0.323 & -0.5538 \tabularnewline
(p-val) & (0 ) & (0.0208 ) & (0.0833 ) & (NA ) & (0.3995 ) & (0.0163 ) & (0.0064 ) \tabularnewline
Estimates ( 3 ) & -0.559 & -0.2486 & 0.149 & 0 & 0 & -0.2601 & -0.6882 \tabularnewline
(p-val) & (0 ) & (0.0295 ) & (0.1305 ) & (NA ) & (NA ) & (0.027 ) & (0 ) \tabularnewline
Estimates ( 4 ) & -0.6111 & -0.3423 & 0 & 0 & 0 & -0.256 & -0.6742 \tabularnewline
(p-val) & (0 ) & (5e-04 ) & (NA ) & (NA ) & (NA ) & (0.0317 ) & (0 ) \tabularnewline
Estimates ( 5 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 6 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 7 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 8 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 9 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 10 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 11 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 12 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 13 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298449&T=1

[TABLE]
[ROW][C]ARIMA Parameter Estimation and Backward Selection[/C][/ROW]
[ROW][C]Iteration[/C][C]ar1[/C][C]ar2[/C][C]ar3[/C][C]ma1[/C][C]sar1[/C][C]sar2[/C][C]sma1[/C][/ROW]
[ROW][C]Estimates ( 1 )[/C][C]-0.7416[/C][C]-0.3751[/C][C]0.1212[/C][C]0.1707[/C][C]-0.1617[/C][C]-0.3223[/C][C]-0.5556[/C][/ROW]
[ROW][C](p-val)[/C][C](0.0106 )[/C][C](0.0845 )[/C][C](0.4329 )[/C][C](0.5383 )[/C][C](0.4192 )[/C][C](0.017 )[/C][C](0.0074 )[/C][/ROW]
[ROW][C]Estimates ( 2 )[/C][C]-0.5807[/C][C]-0.2724[/C][C]0.1811[/C][C]0[/C][C]-0.1672[/C][C]-0.323[/C][C]-0.5538[/C][/ROW]
[ROW][C](p-val)[/C][C](0 )[/C][C](0.0208 )[/C][C](0.0833 )[/C][C](NA )[/C][C](0.3995 )[/C][C](0.0163 )[/C][C](0.0064 )[/C][/ROW]
[ROW][C]Estimates ( 3 )[/C][C]-0.559[/C][C]-0.2486[/C][C]0.149[/C][C]0[/C][C]0[/C][C]-0.2601[/C][C]-0.6882[/C][/ROW]
[ROW][C](p-val)[/C][C](0 )[/C][C](0.0295 )[/C][C](0.1305 )[/C][C](NA )[/C][C](NA )[/C][C](0.027 )[/C][C](0 )[/C][/ROW]
[ROW][C]Estimates ( 4 )[/C][C]-0.6111[/C][C]-0.3423[/C][C]0[/C][C]0[/C][C]0[/C][C]-0.256[/C][C]-0.6742[/C][/ROW]
[ROW][C](p-val)[/C][C](0 )[/C][C](5e-04 )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](0.0317 )[/C][C](0 )[/C][/ROW]
[ROW][C]Estimates ( 5 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 6 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 7 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 8 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 9 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 10 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 11 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 12 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 13 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298449&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298449&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

ARIMA Parameter Estimation and Backward Selection
Iterationar1ar2ar3ma1sar1sar2sma1
Estimates ( 1 )-0.7416-0.37510.12120.1707-0.1617-0.3223-0.5556
(p-val)(0.0106 )(0.0845 )(0.4329 )(0.5383 )(0.4192 )(0.017 )(0.0074 )
Estimates ( 2 )-0.5807-0.27240.18110-0.1672-0.323-0.5538
(p-val)(0 )(0.0208 )(0.0833 )(NA )(0.3995 )(0.0163 )(0.0064 )
Estimates ( 3 )-0.559-0.24860.14900-0.2601-0.6882
(p-val)(0 )(0.0295 )(0.1305 )(NA )(NA )(0.027 )(0 )
Estimates ( 4 )-0.6111-0.3423000-0.256-0.6742
(p-val)(0 )(5e-04 )(NA )(NA )(NA )(0.0317 )(0 )
Estimates ( 5 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 6 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 7 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 8 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 9 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 10 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 11 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 12 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 13 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )







Estimated ARIMA Residuals
Value
-0.0287134409935481
0.0263603284663032
-0.0374268389869955
-0.0770980015867887
-0.100918370538488
-0.00354958355316661
-0.0148429276375365
0.0479996103099163
-0.0729115491913257
0.054090713592613
-0.0602099640210186
-0.124390955636779
0.00391560137544155
0.0269249552852041
-0.0160503448046776
0.0564289962399565
-0.00587144902764539
-0.005640939206204
0.0248111941077329
0.0444557608115526
0.0266562683909432
-0.0344418777119877
-0.0550897704189854
-0.0445123091245888
0.0581639756120238
0.0236496002729778
-0.0268736795764561
0.0337187711931325
-0.0195677419123819
-0.0850550109691261
-0.075729761340704
-0.0219941224189403
0.0488243352679406
0.0149787096883861
-0.041833391323697
-0.0113349906165936
0.00142861572669739
0.0179150975498468
-0.00726374584780587
0.00913149141609457
-0.0607671115061495
0.168599534152718
0.0570402513468259
-0.0153986952010813
-0.0267296547541712
-0.0423589308748323
-0.000365275453957134
0.0836412121420853
-0.122117893483596
-0.0225637281957399
-0.0292560621187822
0.0147828839024378
-0.0356934398441765
0.0216331425056016
-0.0353746115438151
0.0675105987231648
0.0288732778161369
-0.0499869938854531
-0.00443784964915078
-0.0879028753820316
0.0476292025625748
0.000675044922022745
0.0493833424738712
-0.0659533445377187
-0.0282361919355843
0.0433044019883766
0.00615449936402781
0.0422843442692869
-0.0351277819904703
-0.0262887146549328
-0.0583442678364365
-0.0604127194627203
0.0169362597336524
-0.0088450671016887
-0.0168314321614901
-0.0190539248286718
0.0401130508364511
0.017344753126788
-0.0118199691416861
0.0597535113952358
-0.0390616056542097
-0.00253397085854932
-0.0294560884588596
-0.0712079815406573
-0.0119729059457226
-0.0360671674242543
-0.0531399002832202
0.0477333171642555
0.0313244637789568
0.00140720110465625
0.0725312229559586
0.022132012025274
-0.0200691098651909
-0.0122072075497843
0.023240879609421
-0.0404113507606306
0.0863515416400583
0.0216065055728712
0.0180863587074944
-0.0350514468230073
-0.0257462492275011
-0.0191351346239762
0.0347170670372257

\begin{tabular}{lllllllll}
\hline
Estimated ARIMA Residuals \tabularnewline
Value \tabularnewline
-0.0287134409935481 \tabularnewline
0.0263603284663032 \tabularnewline
-0.0374268389869955 \tabularnewline
-0.0770980015867887 \tabularnewline
-0.100918370538488 \tabularnewline
-0.00354958355316661 \tabularnewline
-0.0148429276375365 \tabularnewline
0.0479996103099163 \tabularnewline
-0.0729115491913257 \tabularnewline
0.054090713592613 \tabularnewline
-0.0602099640210186 \tabularnewline
-0.124390955636779 \tabularnewline
0.00391560137544155 \tabularnewline
0.0269249552852041 \tabularnewline
-0.0160503448046776 \tabularnewline
0.0564289962399565 \tabularnewline
-0.00587144902764539 \tabularnewline
-0.005640939206204 \tabularnewline
0.0248111941077329 \tabularnewline
0.0444557608115526 \tabularnewline
0.0266562683909432 \tabularnewline
-0.0344418777119877 \tabularnewline
-0.0550897704189854 \tabularnewline
-0.0445123091245888 \tabularnewline
0.0581639756120238 \tabularnewline
0.0236496002729778 \tabularnewline
-0.0268736795764561 \tabularnewline
0.0337187711931325 \tabularnewline
-0.0195677419123819 \tabularnewline
-0.0850550109691261 \tabularnewline
-0.075729761340704 \tabularnewline
-0.0219941224189403 \tabularnewline
0.0488243352679406 \tabularnewline
0.0149787096883861 \tabularnewline
-0.041833391323697 \tabularnewline
-0.0113349906165936 \tabularnewline
0.00142861572669739 \tabularnewline
0.0179150975498468 \tabularnewline
-0.00726374584780587 \tabularnewline
0.00913149141609457 \tabularnewline
-0.0607671115061495 \tabularnewline
0.168599534152718 \tabularnewline
0.0570402513468259 \tabularnewline
-0.0153986952010813 \tabularnewline
-0.0267296547541712 \tabularnewline
-0.0423589308748323 \tabularnewline
-0.000365275453957134 \tabularnewline
0.0836412121420853 \tabularnewline
-0.122117893483596 \tabularnewline
-0.0225637281957399 \tabularnewline
-0.0292560621187822 \tabularnewline
0.0147828839024378 \tabularnewline
-0.0356934398441765 \tabularnewline
0.0216331425056016 \tabularnewline
-0.0353746115438151 \tabularnewline
0.0675105987231648 \tabularnewline
0.0288732778161369 \tabularnewline
-0.0499869938854531 \tabularnewline
-0.00443784964915078 \tabularnewline
-0.0879028753820316 \tabularnewline
0.0476292025625748 \tabularnewline
0.000675044922022745 \tabularnewline
0.0493833424738712 \tabularnewline
-0.0659533445377187 \tabularnewline
-0.0282361919355843 \tabularnewline
0.0433044019883766 \tabularnewline
0.00615449936402781 \tabularnewline
0.0422843442692869 \tabularnewline
-0.0351277819904703 \tabularnewline
-0.0262887146549328 \tabularnewline
-0.0583442678364365 \tabularnewline
-0.0604127194627203 \tabularnewline
0.0169362597336524 \tabularnewline
-0.0088450671016887 \tabularnewline
-0.0168314321614901 \tabularnewline
-0.0190539248286718 \tabularnewline
0.0401130508364511 \tabularnewline
0.017344753126788 \tabularnewline
-0.0118199691416861 \tabularnewline
0.0597535113952358 \tabularnewline
-0.0390616056542097 \tabularnewline
-0.00253397085854932 \tabularnewline
-0.0294560884588596 \tabularnewline
-0.0712079815406573 \tabularnewline
-0.0119729059457226 \tabularnewline
-0.0360671674242543 \tabularnewline
-0.0531399002832202 \tabularnewline
0.0477333171642555 \tabularnewline
0.0313244637789568 \tabularnewline
0.00140720110465625 \tabularnewline
0.0725312229559586 \tabularnewline
0.022132012025274 \tabularnewline
-0.0200691098651909 \tabularnewline
-0.0122072075497843 \tabularnewline
0.023240879609421 \tabularnewline
-0.0404113507606306 \tabularnewline
0.0863515416400583 \tabularnewline
0.0216065055728712 \tabularnewline
0.0180863587074944 \tabularnewline
-0.0350514468230073 \tabularnewline
-0.0257462492275011 \tabularnewline
-0.0191351346239762 \tabularnewline
0.0347170670372257 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298449&T=2

[TABLE]
[ROW][C]Estimated ARIMA Residuals[/C][/ROW]
[ROW][C]Value[/C][/ROW]
[ROW][C]-0.0287134409935481[/C][/ROW]
[ROW][C]0.0263603284663032[/C][/ROW]
[ROW][C]-0.0374268389869955[/C][/ROW]
[ROW][C]-0.0770980015867887[/C][/ROW]
[ROW][C]-0.100918370538488[/C][/ROW]
[ROW][C]-0.00354958355316661[/C][/ROW]
[ROW][C]-0.0148429276375365[/C][/ROW]
[ROW][C]0.0479996103099163[/C][/ROW]
[ROW][C]-0.0729115491913257[/C][/ROW]
[ROW][C]0.054090713592613[/C][/ROW]
[ROW][C]-0.0602099640210186[/C][/ROW]
[ROW][C]-0.124390955636779[/C][/ROW]
[ROW][C]0.00391560137544155[/C][/ROW]
[ROW][C]0.0269249552852041[/C][/ROW]
[ROW][C]-0.0160503448046776[/C][/ROW]
[ROW][C]0.0564289962399565[/C][/ROW]
[ROW][C]-0.00587144902764539[/C][/ROW]
[ROW][C]-0.005640939206204[/C][/ROW]
[ROW][C]0.0248111941077329[/C][/ROW]
[ROW][C]0.0444557608115526[/C][/ROW]
[ROW][C]0.0266562683909432[/C][/ROW]
[ROW][C]-0.0344418777119877[/C][/ROW]
[ROW][C]-0.0550897704189854[/C][/ROW]
[ROW][C]-0.0445123091245888[/C][/ROW]
[ROW][C]0.0581639756120238[/C][/ROW]
[ROW][C]0.0236496002729778[/C][/ROW]
[ROW][C]-0.0268736795764561[/C][/ROW]
[ROW][C]0.0337187711931325[/C][/ROW]
[ROW][C]-0.0195677419123819[/C][/ROW]
[ROW][C]-0.0850550109691261[/C][/ROW]
[ROW][C]-0.075729761340704[/C][/ROW]
[ROW][C]-0.0219941224189403[/C][/ROW]
[ROW][C]0.0488243352679406[/C][/ROW]
[ROW][C]0.0149787096883861[/C][/ROW]
[ROW][C]-0.041833391323697[/C][/ROW]
[ROW][C]-0.0113349906165936[/C][/ROW]
[ROW][C]0.00142861572669739[/C][/ROW]
[ROW][C]0.0179150975498468[/C][/ROW]
[ROW][C]-0.00726374584780587[/C][/ROW]
[ROW][C]0.00913149141609457[/C][/ROW]
[ROW][C]-0.0607671115061495[/C][/ROW]
[ROW][C]0.168599534152718[/C][/ROW]
[ROW][C]0.0570402513468259[/C][/ROW]
[ROW][C]-0.0153986952010813[/C][/ROW]
[ROW][C]-0.0267296547541712[/C][/ROW]
[ROW][C]-0.0423589308748323[/C][/ROW]
[ROW][C]-0.000365275453957134[/C][/ROW]
[ROW][C]0.0836412121420853[/C][/ROW]
[ROW][C]-0.122117893483596[/C][/ROW]
[ROW][C]-0.0225637281957399[/C][/ROW]
[ROW][C]-0.0292560621187822[/C][/ROW]
[ROW][C]0.0147828839024378[/C][/ROW]
[ROW][C]-0.0356934398441765[/C][/ROW]
[ROW][C]0.0216331425056016[/C][/ROW]
[ROW][C]-0.0353746115438151[/C][/ROW]
[ROW][C]0.0675105987231648[/C][/ROW]
[ROW][C]0.0288732778161369[/C][/ROW]
[ROW][C]-0.0499869938854531[/C][/ROW]
[ROW][C]-0.00443784964915078[/C][/ROW]
[ROW][C]-0.0879028753820316[/C][/ROW]
[ROW][C]0.0476292025625748[/C][/ROW]
[ROW][C]0.000675044922022745[/C][/ROW]
[ROW][C]0.0493833424738712[/C][/ROW]
[ROW][C]-0.0659533445377187[/C][/ROW]
[ROW][C]-0.0282361919355843[/C][/ROW]
[ROW][C]0.0433044019883766[/C][/ROW]
[ROW][C]0.00615449936402781[/C][/ROW]
[ROW][C]0.0422843442692869[/C][/ROW]
[ROW][C]-0.0351277819904703[/C][/ROW]
[ROW][C]-0.0262887146549328[/C][/ROW]
[ROW][C]-0.0583442678364365[/C][/ROW]
[ROW][C]-0.0604127194627203[/C][/ROW]
[ROW][C]0.0169362597336524[/C][/ROW]
[ROW][C]-0.0088450671016887[/C][/ROW]
[ROW][C]-0.0168314321614901[/C][/ROW]
[ROW][C]-0.0190539248286718[/C][/ROW]
[ROW][C]0.0401130508364511[/C][/ROW]
[ROW][C]0.017344753126788[/C][/ROW]
[ROW][C]-0.0118199691416861[/C][/ROW]
[ROW][C]0.0597535113952358[/C][/ROW]
[ROW][C]-0.0390616056542097[/C][/ROW]
[ROW][C]-0.00253397085854932[/C][/ROW]
[ROW][C]-0.0294560884588596[/C][/ROW]
[ROW][C]-0.0712079815406573[/C][/ROW]
[ROW][C]-0.0119729059457226[/C][/ROW]
[ROW][C]-0.0360671674242543[/C][/ROW]
[ROW][C]-0.0531399002832202[/C][/ROW]
[ROW][C]0.0477333171642555[/C][/ROW]
[ROW][C]0.0313244637789568[/C][/ROW]
[ROW][C]0.00140720110465625[/C][/ROW]
[ROW][C]0.0725312229559586[/C][/ROW]
[ROW][C]0.022132012025274[/C][/ROW]
[ROW][C]-0.0200691098651909[/C][/ROW]
[ROW][C]-0.0122072075497843[/C][/ROW]
[ROW][C]0.023240879609421[/C][/ROW]
[ROW][C]-0.0404113507606306[/C][/ROW]
[ROW][C]0.0863515416400583[/C][/ROW]
[ROW][C]0.0216065055728712[/C][/ROW]
[ROW][C]0.0180863587074944[/C][/ROW]
[ROW][C]-0.0350514468230073[/C][/ROW]
[ROW][C]-0.0257462492275011[/C][/ROW]
[ROW][C]-0.0191351346239762[/C][/ROW]
[ROW][C]0.0347170670372257[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298449&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298449&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Estimated ARIMA Residuals
Value
-0.0287134409935481
0.0263603284663032
-0.0374268389869955
-0.0770980015867887
-0.100918370538488
-0.00354958355316661
-0.0148429276375365
0.0479996103099163
-0.0729115491913257
0.054090713592613
-0.0602099640210186
-0.124390955636779
0.00391560137544155
0.0269249552852041
-0.0160503448046776
0.0564289962399565
-0.00587144902764539
-0.005640939206204
0.0248111941077329
0.0444557608115526
0.0266562683909432
-0.0344418777119877
-0.0550897704189854
-0.0445123091245888
0.0581639756120238
0.0236496002729778
-0.0268736795764561
0.0337187711931325
-0.0195677419123819
-0.0850550109691261
-0.075729761340704
-0.0219941224189403
0.0488243352679406
0.0149787096883861
-0.041833391323697
-0.0113349906165936
0.00142861572669739
0.0179150975498468
-0.00726374584780587
0.00913149141609457
-0.0607671115061495
0.168599534152718
0.0570402513468259
-0.0153986952010813
-0.0267296547541712
-0.0423589308748323
-0.000365275453957134
0.0836412121420853
-0.122117893483596
-0.0225637281957399
-0.0292560621187822
0.0147828839024378
-0.0356934398441765
0.0216331425056016
-0.0353746115438151
0.0675105987231648
0.0288732778161369
-0.0499869938854531
-0.00443784964915078
-0.0879028753820316
0.0476292025625748
0.000675044922022745
0.0493833424738712
-0.0659533445377187
-0.0282361919355843
0.0433044019883766
0.00615449936402781
0.0422843442692869
-0.0351277819904703
-0.0262887146549328
-0.0583442678364365
-0.0604127194627203
0.0169362597336524
-0.0088450671016887
-0.0168314321614901
-0.0190539248286718
0.0401130508364511
0.017344753126788
-0.0118199691416861
0.0597535113952358
-0.0390616056542097
-0.00253397085854932
-0.0294560884588596
-0.0712079815406573
-0.0119729059457226
-0.0360671674242543
-0.0531399002832202
0.0477333171642555
0.0313244637789568
0.00140720110465625
0.0725312229559586
0.022132012025274
-0.0200691098651909
-0.0122072075497843
0.023240879609421
-0.0404113507606306
0.0863515416400583
0.0216065055728712
0.0180863587074944
-0.0350514468230073
-0.0257462492275011
-0.0191351346239762
0.0347170670372257



Parameters (Session):
par1 = 1 ; par2 = 0 ; par3 = 0 ; par4 = 1 ;
Parameters (R input):
par1 = FALSE ; par2 = 0.0 ; par3 = 1 ; par4 = 1 ; par5 = 12 ; par6 = 3 ; par7 = 1 ; par8 = 2 ; par9 = 1 ;
R code (references can be found in the software module):
library(lattice)
if (par1 == 'TRUE') par1 <- TRUE
if (par1 == 'FALSE') par1 <- FALSE
par2 <- as.numeric(par2) #Box-Cox lambda transformation parameter
par3 <- as.numeric(par3) #degree of non-seasonal differencing
par4 <- as.numeric(par4) #degree of seasonal differencing
par5 <- as.numeric(par5) #seasonal period
par6 <- as.numeric(par6) #degree (p) of the non-seasonal AR(p) polynomial
par7 <- as.numeric(par7) #degree (q) of the non-seasonal MA(q) polynomial
par8 <- as.numeric(par8) #degree (P) of the seasonal AR(P) polynomial
par9 <- as.numeric(par9) #degree (Q) of the seasonal MA(Q) polynomial
armaGR <- function(arima.out, names, n){
try1 <- arima.out$coef
try2 <- sqrt(diag(arima.out$var.coef))
try.data.frame <- data.frame(matrix(NA,ncol=4,nrow=length(names)))
dimnames(try.data.frame) <- list(names,c('coef','std','tstat','pv'))
try.data.frame[,1] <- try1
for(i in 1:length(try2)) try.data.frame[which(rownames(try.data.frame)==names(try2)[i]),2] <- try2[i]
try.data.frame[,3] <- try.data.frame[,1] / try.data.frame[,2]
try.data.frame[,4] <- round((1-pt(abs(try.data.frame[,3]),df=n-(length(try2)+1)))*2,5)
vector <- rep(NA,length(names))
vector[is.na(try.data.frame[,4])] <- 0
maxi <- which.max(try.data.frame[,4])
continue <- max(try.data.frame[,4],na.rm=TRUE) > .05
vector[maxi] <- 0
list(summary=try.data.frame,next.vector=vector,continue=continue)
}
arimaSelect <- function(series, order=c(13,0,0), seasonal=list(order=c(2,0,0),period=12), include.mean=F){
nrc <- order[1]+order[3]+seasonal$order[1]+seasonal$order[3]
coeff <- matrix(NA, nrow=nrc*2, ncol=nrc)
pval <- matrix(NA, nrow=nrc*2, ncol=nrc)
mylist <- rep(list(NULL), nrc)
names <- NULL
if(order[1] > 0) names <- paste('ar',1:order[1],sep='')
if(order[3] > 0) names <- c( names , paste('ma',1:order[3],sep='') )
if(seasonal$order[1] > 0) names <- c(names, paste('sar',1:seasonal$order[1],sep=''))
if(seasonal$order[3] > 0) names <- c(names, paste('sma',1:seasonal$order[3],sep=''))
arima.out <- arima(series, order=order, seasonal=seasonal, include.mean=include.mean, method='ML')
mylist[[1]] <- arima.out
last.arma <- armaGR(arima.out, names, length(series))
mystop <- FALSE
i <- 1
coeff[i,] <- last.arma[[1]][,1]
pval [i,] <- last.arma[[1]][,4]
i <- 2
aic <- arima.out$aic
while(!mystop){
mylist[[i]] <- arima.out
arima.out <- arima(series, order=order, seasonal=seasonal, include.mean=include.mean, method='ML', fixed=last.arma$next.vector)
aic <- c(aic, arima.out$aic)
last.arma <- armaGR(arima.out, names, length(series))
mystop <- !last.arma$continue
coeff[i,] <- last.arma[[1]][,1]
pval [i,] <- last.arma[[1]][,4]
i <- i+1
}
list(coeff, pval, mylist, aic=aic)
}
arimaSelectplot <- function(arimaSelect.out,noms,choix){
noms <- names(arimaSelect.out[[3]][[1]]$coef)
coeff <- arimaSelect.out[[1]]
k <- min(which(is.na(coeff[,1])))-1
coeff <- coeff[1:k,]
pval <- arimaSelect.out[[2]][1:k,]
aic <- arimaSelect.out$aic[1:k]
coeff[coeff==0] <- NA
n <- ncol(coeff)
if(missing(choix)) choix <- k
layout(matrix(c(1,1,1,2,
3,3,3,2,
3,3,3,4,
5,6,7,7),nr=4),
widths=c(10,35,45,15),
heights=c(30,30,15,15))
couleurs <- rainbow(75)[1:50]#(50)
ticks <- pretty(coeff)
par(mar=c(1,1,3,1))
plot(aic,k:1-.5,type='o',pch=21,bg='blue',cex=2,axes=F,lty=2,xpd=NA)
points(aic[choix],k-choix+.5,pch=21,cex=4,bg=2,xpd=NA)
title('aic',line=2)
par(mar=c(3,0,0,0))
plot(0,axes=F,xlab='',ylab='',xlim=range(ticks),ylim=c(.1,1))
rect(xleft = min(ticks) + (0:49)/50*(max(ticks)-min(ticks)),
xright = min(ticks) + (1:50)/50*(max(ticks)-min(ticks)),
ytop = rep(1,50),
ybottom= rep(0,50),col=couleurs,border=NA)
axis(1,ticks)
rect(xleft=min(ticks),xright=max(ticks),ytop=1,ybottom=0)
text(mean(coeff,na.rm=T),.5,'coefficients',cex=2,font=2)
par(mar=c(1,1,3,1))
image(1:n,1:k,t(coeff[k:1,]),axes=F,col=couleurs,zlim=range(ticks))
for(i in 1:n) for(j in 1:k) if(!is.na(coeff[j,i])) {
if(pval[j,i]<.01) symb = 'green'
else if( (pval[j,i]<.05) & (pval[j,i]>=.01)) symb = 'orange'
else if( (pval[j,i]<.1) & (pval[j,i]>=.05)) symb = 'red'
else symb = 'black'
polygon(c(i+.5 ,i+.2 ,i+.5 ,i+.5),
c(k-j+0.5,k-j+0.5,k-j+0.8,k-j+0.5),
col=symb)
if(j==choix) {
rect(xleft=i-.5,
xright=i+.5,
ybottom=k-j+1.5,
ytop=k-j+.5,
lwd=4)
text(i,
k-j+1,
round(coeff[j,i],2),
cex=1.2,
font=2)
}
else{
rect(xleft=i-.5,xright=i+.5,ybottom=k-j+1.5,ytop=k-j+.5)
text(i,k-j+1,round(coeff[j,i],2),cex=1.2,font=1)
}
}
axis(3,1:n,noms)
par(mar=c(0.5,0,0,0.5))
plot(0,axes=F,xlab='',ylab='',type='n',xlim=c(0,8),ylim=c(-.2,.8))
cols <- c('green','orange','red','black')
niv <- c('0','0.01','0.05','0.1')
for(i in 0:3){
polygon(c(1+2*i ,1+2*i ,1+2*i-.5 ,1+2*i),
c(.4 ,.7 , .4 , .4),
col=cols[i+1])
text(2*i,0.5,niv[i+1],cex=1.5)
}
text(8,.5,1,cex=1.5)
text(4,0,'p-value',cex=2)
box()
residus <- arimaSelect.out[[3]][[choix]]$res
par(mar=c(1,2,4,1))
acf(residus,main='')
title('acf',line=.5)
par(mar=c(1,2,4,1))
pacf(residus,main='')
title('pacf',line=.5)
par(mar=c(2,2,4,1))
qqnorm(residus,main='')
title('qq-norm',line=.5)
qqline(residus)
residus
}
if (par2 == 0) x <- log(x)
if (par2 != 0) x <- x^par2
(selection <- arimaSelect(x, order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5)))
bitmap(file='test1.png')
resid <- arimaSelectplot(selection)
dev.off()
resid
bitmap(file='test2.png')
acf(resid,length(resid)/2, main='Residual Autocorrelation Function')
dev.off()
bitmap(file='test3.png')
pacf(resid,length(resid)/2, main='Residual Partial Autocorrelation Function')
dev.off()
bitmap(file='test4.png')
cpgram(resid, main='Residual Cumulative Periodogram')
dev.off()
bitmap(file='test5.png')
hist(resid, main='Residual Histogram', xlab='values of Residuals')
dev.off()
bitmap(file='test6.png')
densityplot(~resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test7.png')
qqnorm(resid, main='Residual Normal Q-Q Plot')
qqline(resid)
dev.off()
ncols <- length(selection[[1]][1,])
nrows <- length(selection[[2]][,1])-1
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'ARIMA Parameter Estimation and Backward Selection', ncols+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Iteration', header=TRUE)
for (i in 1:ncols) {
a<-table.element(a,names(selection[[3]][[1]]$coef)[i],header=TRUE)
}
a<-table.row.end(a)
for (j in 1:nrows) {
a<-table.row.start(a)
mydum <- 'Estimates ('
mydum <- paste(mydum,j)
mydum <- paste(mydum,')')
a<-table.element(a,mydum, header=TRUE)
for (i in 1:ncols) {
a<-table.element(a,round(selection[[1]][j,i],4))
}
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'(p-val)', header=TRUE)
for (i in 1:ncols) {
mydum <- '('
mydum <- paste(mydum,round(selection[[2]][j,i],4),sep='')
mydum <- paste(mydum,')')
a<-table.element(a,mydum)
}
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Estimated ARIMA Residuals', 1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Value', 1,TRUE)
a<-table.row.end(a)
for (i in (par4*par5+par3):length(resid)) {
a<-table.row.start(a)
a<-table.element(a,resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')