Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_arimabackwardselection.wasp
Title produced by softwareARIMA Backward Selection
Date of computationFri, 09 Dec 2016 09:53:41 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/09/t1481273881eup3xfwbhwic4yj.htm/, Retrieved Fri, 01 Nov 2024 03:34:39 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=298446, Retrieved Fri, 01 Nov 2024 03:34:39 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact125
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [ARIMA Backward Selection] [ARIMA Backward Se...] [2016-12-09 08:53:41] [fc6d28d208bad0c833791fcb11cb4db1] [Current]
Feedback Forum

Post a new message
Dataseries X:
1660
1955
2460
2580
2480
2975
2755
2595
2670
2850
2575
2425
2760
2380
2865
2850
3075
2895
2775
2930
2915
3125
2595
2350
2735
3005
3260
3000
3170
3065
2990
3135
2880
4295
4110
3320
3695
3830
4405
5650
5195
4070
4545
4460
4565
4575
3830
3955
4360
4080
4985
4210
4745
4910
4110
4455
3380
4775
4185
3875
4920
4600
4985
5570
4985
5460
5370
5080
4765
5455
4780
4735
4545
4730
5565
5365
5505
5745
5060
4995
5435
5390
5345
4665
5495
4585
4975
5320
6065
5995
5040
4930
5240
5000
5000
4565
5375
5030
5345
5830
5185
5880
6320
5460
4505
5680
4645
4075
4460
4805
5325
5620
5730
5505
4750
5455
5300
6020
4860
4245
6440
5630
5945
5670
5120
6025




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time12 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time12 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298446&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]12 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=298446&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298446&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time12 seconds
R ServerBig Analytics Cloud Computing Center







ARIMA Parameter Estimation and Backward Selection
Iterationar1ar2ar3ma1sar1sar2sma1
Estimates ( 1 )-0.0118-0.1424-0.0344-0.4816-0.3476-0.0748-0.7538
(p-val)(0.9677 )(0.3779 )(0.8042 )(0.0896 )(0.0448 )(0.6447 )(1e-04 )
Estimates ( 2 )0-0.1375-0.0305-0.4924-0.3484-0.0751-0.7531
(p-val)(NA )(0.1964 )(0.7621 )(0 )(0.0406 )(0.6383 )(1e-04 )
Estimates ( 3 )0-0.13420-0.4984-0.3539-0.084-0.7459
(p-val)(NA )(0.2058 )(NA )(0 )(0.039 )(0.5981 )(1e-04 )
Estimates ( 4 )0-0.13310-0.4962-0.28790-0.8181
(p-val)(NA )(0.2091 )(NA )(0 )(0.0116 )(NA )(0 )
Estimates ( 5 )000-0.5451-0.30690-0.8125
(p-val)(NA )(NA )(NA )(0 )(0.0062 )(NA )(0 )
Estimates ( 6 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 7 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 8 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 9 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 10 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 11 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 12 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 13 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )

\begin{tabular}{lllllllll}
\hline
ARIMA Parameter Estimation and Backward Selection \tabularnewline
Iteration & ar1 & ar2 & ar3 & ma1 & sar1 & sar2 & sma1 \tabularnewline
Estimates ( 1 ) & -0.0118 & -0.1424 & -0.0344 & -0.4816 & -0.3476 & -0.0748 & -0.7538 \tabularnewline
(p-val) & (0.9677 ) & (0.3779 ) & (0.8042 ) & (0.0896 ) & (0.0448 ) & (0.6447 ) & (1e-04 ) \tabularnewline
Estimates ( 2 ) & 0 & -0.1375 & -0.0305 & -0.4924 & -0.3484 & -0.0751 & -0.7531 \tabularnewline
(p-val) & (NA ) & (0.1964 ) & (0.7621 ) & (0 ) & (0.0406 ) & (0.6383 ) & (1e-04 ) \tabularnewline
Estimates ( 3 ) & 0 & -0.1342 & 0 & -0.4984 & -0.3539 & -0.084 & -0.7459 \tabularnewline
(p-val) & (NA ) & (0.2058 ) & (NA ) & (0 ) & (0.039 ) & (0.5981 ) & (1e-04 ) \tabularnewline
Estimates ( 4 ) & 0 & -0.1331 & 0 & -0.4962 & -0.2879 & 0 & -0.8181 \tabularnewline
(p-val) & (NA ) & (0.2091 ) & (NA ) & (0 ) & (0.0116 ) & (NA ) & (0 ) \tabularnewline
Estimates ( 5 ) & 0 & 0 & 0 & -0.5451 & -0.3069 & 0 & -0.8125 \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (0 ) & (0.0062 ) & (NA ) & (0 ) \tabularnewline
Estimates ( 6 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 7 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 8 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 9 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 10 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 11 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 12 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 13 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298446&T=1

[TABLE]
[ROW][C]ARIMA Parameter Estimation and Backward Selection[/C][/ROW]
[ROW][C]Iteration[/C][C]ar1[/C][C]ar2[/C][C]ar3[/C][C]ma1[/C][C]sar1[/C][C]sar2[/C][C]sma1[/C][/ROW]
[ROW][C]Estimates ( 1 )[/C][C]-0.0118[/C][C]-0.1424[/C][C]-0.0344[/C][C]-0.4816[/C][C]-0.3476[/C][C]-0.0748[/C][C]-0.7538[/C][/ROW]
[ROW][C](p-val)[/C][C](0.9677 )[/C][C](0.3779 )[/C][C](0.8042 )[/C][C](0.0896 )[/C][C](0.0448 )[/C][C](0.6447 )[/C][C](1e-04 )[/C][/ROW]
[ROW][C]Estimates ( 2 )[/C][C]0[/C][C]-0.1375[/C][C]-0.0305[/C][C]-0.4924[/C][C]-0.3484[/C][C]-0.0751[/C][C]-0.7531[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](0.1964 )[/C][C](0.7621 )[/C][C](0 )[/C][C](0.0406 )[/C][C](0.6383 )[/C][C](1e-04 )[/C][/ROW]
[ROW][C]Estimates ( 3 )[/C][C]0[/C][C]-0.1342[/C][C]0[/C][C]-0.4984[/C][C]-0.3539[/C][C]-0.084[/C][C]-0.7459[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](0.2058 )[/C][C](NA )[/C][C](0 )[/C][C](0.039 )[/C][C](0.5981 )[/C][C](1e-04 )[/C][/ROW]
[ROW][C]Estimates ( 4 )[/C][C]0[/C][C]-0.1331[/C][C]0[/C][C]-0.4962[/C][C]-0.2879[/C][C]0[/C][C]-0.8181[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](0.2091 )[/C][C](NA )[/C][C](0 )[/C][C](0.0116 )[/C][C](NA )[/C][C](0 )[/C][/ROW]
[ROW][C]Estimates ( 5 )[/C][C]0[/C][C]0[/C][C]0[/C][C]-0.5451[/C][C]-0.3069[/C][C]0[/C][C]-0.8125[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](0 )[/C][C](0.0062 )[/C][C](NA )[/C][C](0 )[/C][/ROW]
[ROW][C]Estimates ( 6 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 7 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 8 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 9 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 10 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 11 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 12 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 13 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298446&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298446&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

ARIMA Parameter Estimation and Backward Selection
Iterationar1ar2ar3ma1sar1sar2sma1
Estimates ( 1 )-0.0118-0.1424-0.0344-0.4816-0.3476-0.0748-0.7538
(p-val)(0.9677 )(0.3779 )(0.8042 )(0.0896 )(0.0448 )(0.6447 )(1e-04 )
Estimates ( 2 )0-0.1375-0.0305-0.4924-0.3484-0.0751-0.7531
(p-val)(NA )(0.1964 )(0.7621 )(0 )(0.0406 )(0.6383 )(1e-04 )
Estimates ( 3 )0-0.13420-0.4984-0.3539-0.084-0.7459
(p-val)(NA )(0.2058 )(NA )(0 )(0.039 )(0.5981 )(1e-04 )
Estimates ( 4 )0-0.13310-0.4962-0.28790-0.8181
(p-val)(NA )(0.2091 )(NA )(0 )(0.0116 )(NA )(0 )
Estimates ( 5 )000-0.5451-0.30690-0.8125
(p-val)(NA )(NA )(NA )(0 )(0.0062 )(NA )(0 )
Estimates ( 6 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 7 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 8 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 9 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 10 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 11 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 12 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 13 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )







Estimated ARIMA Residuals
Value
-0.0252986479763734
-0.181223269118806
-0.0941079070022401
-0.104593702383331
0.0204664917052209
-0.153024310729341
-0.0434104976383166
0.032386285503816
-0.00164200641606991
0.00967915232593647
-0.0632773560757989
-0.0395742550283953
0.0659641157635769
0.0604716944095721
-0.0731429240738212
-0.124916615885473
-0.0316129494210095
-0.137191813190511
-0.0285113352806033
0.0275198645026042
-0.0671451272830137
0.256349174749261
0.184859589559713
0.0172623907495899
0.0357455033951069
0.0365928797851597
-0.025565056813397
0.215277042787645
-0.00397462279403031
-0.227989326791229
0.0232195329810364
-0.0493234937938777
0.0192071434872852
-0.0914323111069055
-0.0832164016841327
0.0693178311696389
0.0184471030238511
-0.0636639879968642
0.00823924743482895
-0.154315554405308
0.0098031244343215
0.00953761304990645
-0.114306833260576
0.00385908165917385
-0.253655644931451
0.0298434184362947
-0.0395396532550859
0.0524695389835518
0.150367006348103
-0.0159364047984119
-0.0596595857918253
0.00167181658229888
-0.114011740467814
0.100350419269578
0.0136152512734045
-0.0340658381153474
-0.0775687333390978
-0.042937330883022
-0.0337425578338862
0.0586688878309767
-0.106175237790266
-0.0126590701598427
-0.0306512906043743
-0.042615823676413
-0.035301223894991
0.0644669214562687
-0.0496660022897606
-0.057245080203422
0.121505123357662
-0.142853042372811
0.0680519993142288
-0.0393832776008736
0.0131907778079697
-0.163614679772197
-0.140469941437501
-0.0559599424306845
0.0963287211709282
0.0534369613612811
-0.0964993926305166
-0.0795822372517527
0.088041979550416
-0.195748858341911
0.0587819803477821
-0.0305475855962962
0.0753839228319178
-0.0472491623662056
-0.107126431357215
0.0138085408313799
-0.115750745624167
0.0743965254196157
0.139951635161655
-0.0656637103275977
-0.157592187277038
-0.0214355735476194
-0.117203600195381
-0.0973217656125047
-0.0742414271225471
0.0643474371468382
-0.00953332804801694
0.0452108950224303
-0.00694680574676127
-0.0262740122859878
-0.0694034501273686
0.087365728554976
0.0127968836787121
0.0610719315671415
-0.114095238036729
-0.107255543699737
0.220260758746437
0.0213035476952798
-0.0187330396214584
-0.10148639678284
-0.160758580501243
0.0415522408267081

\begin{tabular}{lllllllll}
\hline
Estimated ARIMA Residuals \tabularnewline
Value \tabularnewline
-0.0252986479763734 \tabularnewline
-0.181223269118806 \tabularnewline
-0.0941079070022401 \tabularnewline
-0.104593702383331 \tabularnewline
0.0204664917052209 \tabularnewline
-0.153024310729341 \tabularnewline
-0.0434104976383166 \tabularnewline
0.032386285503816 \tabularnewline
-0.00164200641606991 \tabularnewline
0.00967915232593647 \tabularnewline
-0.0632773560757989 \tabularnewline
-0.0395742550283953 \tabularnewline
0.0659641157635769 \tabularnewline
0.0604716944095721 \tabularnewline
-0.0731429240738212 \tabularnewline
-0.124916615885473 \tabularnewline
-0.0316129494210095 \tabularnewline
-0.137191813190511 \tabularnewline
-0.0285113352806033 \tabularnewline
0.0275198645026042 \tabularnewline
-0.0671451272830137 \tabularnewline
0.256349174749261 \tabularnewline
0.184859589559713 \tabularnewline
0.0172623907495899 \tabularnewline
0.0357455033951069 \tabularnewline
0.0365928797851597 \tabularnewline
-0.025565056813397 \tabularnewline
0.215277042787645 \tabularnewline
-0.00397462279403031 \tabularnewline
-0.227989326791229 \tabularnewline
0.0232195329810364 \tabularnewline
-0.0493234937938777 \tabularnewline
0.0192071434872852 \tabularnewline
-0.0914323111069055 \tabularnewline
-0.0832164016841327 \tabularnewline
0.0693178311696389 \tabularnewline
0.0184471030238511 \tabularnewline
-0.0636639879968642 \tabularnewline
0.00823924743482895 \tabularnewline
-0.154315554405308 \tabularnewline
0.0098031244343215 \tabularnewline
0.00953761304990645 \tabularnewline
-0.114306833260576 \tabularnewline
0.00385908165917385 \tabularnewline
-0.253655644931451 \tabularnewline
0.0298434184362947 \tabularnewline
-0.0395396532550859 \tabularnewline
0.0524695389835518 \tabularnewline
0.150367006348103 \tabularnewline
-0.0159364047984119 \tabularnewline
-0.0596595857918253 \tabularnewline
0.00167181658229888 \tabularnewline
-0.114011740467814 \tabularnewline
0.100350419269578 \tabularnewline
0.0136152512734045 \tabularnewline
-0.0340658381153474 \tabularnewline
-0.0775687333390978 \tabularnewline
-0.042937330883022 \tabularnewline
-0.0337425578338862 \tabularnewline
0.0586688878309767 \tabularnewline
-0.106175237790266 \tabularnewline
-0.0126590701598427 \tabularnewline
-0.0306512906043743 \tabularnewline
-0.042615823676413 \tabularnewline
-0.035301223894991 \tabularnewline
0.0644669214562687 \tabularnewline
-0.0496660022897606 \tabularnewline
-0.057245080203422 \tabularnewline
0.121505123357662 \tabularnewline
-0.142853042372811 \tabularnewline
0.0680519993142288 \tabularnewline
-0.0393832776008736 \tabularnewline
0.0131907778079697 \tabularnewline
-0.163614679772197 \tabularnewline
-0.140469941437501 \tabularnewline
-0.0559599424306845 \tabularnewline
0.0963287211709282 \tabularnewline
0.0534369613612811 \tabularnewline
-0.0964993926305166 \tabularnewline
-0.0795822372517527 \tabularnewline
0.088041979550416 \tabularnewline
-0.195748858341911 \tabularnewline
0.0587819803477821 \tabularnewline
-0.0305475855962962 \tabularnewline
0.0753839228319178 \tabularnewline
-0.0472491623662056 \tabularnewline
-0.107126431357215 \tabularnewline
0.0138085408313799 \tabularnewline
-0.115750745624167 \tabularnewline
0.0743965254196157 \tabularnewline
0.139951635161655 \tabularnewline
-0.0656637103275977 \tabularnewline
-0.157592187277038 \tabularnewline
-0.0214355735476194 \tabularnewline
-0.117203600195381 \tabularnewline
-0.0973217656125047 \tabularnewline
-0.0742414271225471 \tabularnewline
0.0643474371468382 \tabularnewline
-0.00953332804801694 \tabularnewline
0.0452108950224303 \tabularnewline
-0.00694680574676127 \tabularnewline
-0.0262740122859878 \tabularnewline
-0.0694034501273686 \tabularnewline
0.087365728554976 \tabularnewline
0.0127968836787121 \tabularnewline
0.0610719315671415 \tabularnewline
-0.114095238036729 \tabularnewline
-0.107255543699737 \tabularnewline
0.220260758746437 \tabularnewline
0.0213035476952798 \tabularnewline
-0.0187330396214584 \tabularnewline
-0.10148639678284 \tabularnewline
-0.160758580501243 \tabularnewline
0.0415522408267081 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298446&T=2

[TABLE]
[ROW][C]Estimated ARIMA Residuals[/C][/ROW]
[ROW][C]Value[/C][/ROW]
[ROW][C]-0.0252986479763734[/C][/ROW]
[ROW][C]-0.181223269118806[/C][/ROW]
[ROW][C]-0.0941079070022401[/C][/ROW]
[ROW][C]-0.104593702383331[/C][/ROW]
[ROW][C]0.0204664917052209[/C][/ROW]
[ROW][C]-0.153024310729341[/C][/ROW]
[ROW][C]-0.0434104976383166[/C][/ROW]
[ROW][C]0.032386285503816[/C][/ROW]
[ROW][C]-0.00164200641606991[/C][/ROW]
[ROW][C]0.00967915232593647[/C][/ROW]
[ROW][C]-0.0632773560757989[/C][/ROW]
[ROW][C]-0.0395742550283953[/C][/ROW]
[ROW][C]0.0659641157635769[/C][/ROW]
[ROW][C]0.0604716944095721[/C][/ROW]
[ROW][C]-0.0731429240738212[/C][/ROW]
[ROW][C]-0.124916615885473[/C][/ROW]
[ROW][C]-0.0316129494210095[/C][/ROW]
[ROW][C]-0.137191813190511[/C][/ROW]
[ROW][C]-0.0285113352806033[/C][/ROW]
[ROW][C]0.0275198645026042[/C][/ROW]
[ROW][C]-0.0671451272830137[/C][/ROW]
[ROW][C]0.256349174749261[/C][/ROW]
[ROW][C]0.184859589559713[/C][/ROW]
[ROW][C]0.0172623907495899[/C][/ROW]
[ROW][C]0.0357455033951069[/C][/ROW]
[ROW][C]0.0365928797851597[/C][/ROW]
[ROW][C]-0.025565056813397[/C][/ROW]
[ROW][C]0.215277042787645[/C][/ROW]
[ROW][C]-0.00397462279403031[/C][/ROW]
[ROW][C]-0.227989326791229[/C][/ROW]
[ROW][C]0.0232195329810364[/C][/ROW]
[ROW][C]-0.0493234937938777[/C][/ROW]
[ROW][C]0.0192071434872852[/C][/ROW]
[ROW][C]-0.0914323111069055[/C][/ROW]
[ROW][C]-0.0832164016841327[/C][/ROW]
[ROW][C]0.0693178311696389[/C][/ROW]
[ROW][C]0.0184471030238511[/C][/ROW]
[ROW][C]-0.0636639879968642[/C][/ROW]
[ROW][C]0.00823924743482895[/C][/ROW]
[ROW][C]-0.154315554405308[/C][/ROW]
[ROW][C]0.0098031244343215[/C][/ROW]
[ROW][C]0.00953761304990645[/C][/ROW]
[ROW][C]-0.114306833260576[/C][/ROW]
[ROW][C]0.00385908165917385[/C][/ROW]
[ROW][C]-0.253655644931451[/C][/ROW]
[ROW][C]0.0298434184362947[/C][/ROW]
[ROW][C]-0.0395396532550859[/C][/ROW]
[ROW][C]0.0524695389835518[/C][/ROW]
[ROW][C]0.150367006348103[/C][/ROW]
[ROW][C]-0.0159364047984119[/C][/ROW]
[ROW][C]-0.0596595857918253[/C][/ROW]
[ROW][C]0.00167181658229888[/C][/ROW]
[ROW][C]-0.114011740467814[/C][/ROW]
[ROW][C]0.100350419269578[/C][/ROW]
[ROW][C]0.0136152512734045[/C][/ROW]
[ROW][C]-0.0340658381153474[/C][/ROW]
[ROW][C]-0.0775687333390978[/C][/ROW]
[ROW][C]-0.042937330883022[/C][/ROW]
[ROW][C]-0.0337425578338862[/C][/ROW]
[ROW][C]0.0586688878309767[/C][/ROW]
[ROW][C]-0.106175237790266[/C][/ROW]
[ROW][C]-0.0126590701598427[/C][/ROW]
[ROW][C]-0.0306512906043743[/C][/ROW]
[ROW][C]-0.042615823676413[/C][/ROW]
[ROW][C]-0.035301223894991[/C][/ROW]
[ROW][C]0.0644669214562687[/C][/ROW]
[ROW][C]-0.0496660022897606[/C][/ROW]
[ROW][C]-0.057245080203422[/C][/ROW]
[ROW][C]0.121505123357662[/C][/ROW]
[ROW][C]-0.142853042372811[/C][/ROW]
[ROW][C]0.0680519993142288[/C][/ROW]
[ROW][C]-0.0393832776008736[/C][/ROW]
[ROW][C]0.0131907778079697[/C][/ROW]
[ROW][C]-0.163614679772197[/C][/ROW]
[ROW][C]-0.140469941437501[/C][/ROW]
[ROW][C]-0.0559599424306845[/C][/ROW]
[ROW][C]0.0963287211709282[/C][/ROW]
[ROW][C]0.0534369613612811[/C][/ROW]
[ROW][C]-0.0964993926305166[/C][/ROW]
[ROW][C]-0.0795822372517527[/C][/ROW]
[ROW][C]0.088041979550416[/C][/ROW]
[ROW][C]-0.195748858341911[/C][/ROW]
[ROW][C]0.0587819803477821[/C][/ROW]
[ROW][C]-0.0305475855962962[/C][/ROW]
[ROW][C]0.0753839228319178[/C][/ROW]
[ROW][C]-0.0472491623662056[/C][/ROW]
[ROW][C]-0.107126431357215[/C][/ROW]
[ROW][C]0.0138085408313799[/C][/ROW]
[ROW][C]-0.115750745624167[/C][/ROW]
[ROW][C]0.0743965254196157[/C][/ROW]
[ROW][C]0.139951635161655[/C][/ROW]
[ROW][C]-0.0656637103275977[/C][/ROW]
[ROW][C]-0.157592187277038[/C][/ROW]
[ROW][C]-0.0214355735476194[/C][/ROW]
[ROW][C]-0.117203600195381[/C][/ROW]
[ROW][C]-0.0973217656125047[/C][/ROW]
[ROW][C]-0.0742414271225471[/C][/ROW]
[ROW][C]0.0643474371468382[/C][/ROW]
[ROW][C]-0.00953332804801694[/C][/ROW]
[ROW][C]0.0452108950224303[/C][/ROW]
[ROW][C]-0.00694680574676127[/C][/ROW]
[ROW][C]-0.0262740122859878[/C][/ROW]
[ROW][C]-0.0694034501273686[/C][/ROW]
[ROW][C]0.087365728554976[/C][/ROW]
[ROW][C]0.0127968836787121[/C][/ROW]
[ROW][C]0.0610719315671415[/C][/ROW]
[ROW][C]-0.114095238036729[/C][/ROW]
[ROW][C]-0.107255543699737[/C][/ROW]
[ROW][C]0.220260758746437[/C][/ROW]
[ROW][C]0.0213035476952798[/C][/ROW]
[ROW][C]-0.0187330396214584[/C][/ROW]
[ROW][C]-0.10148639678284[/C][/ROW]
[ROW][C]-0.160758580501243[/C][/ROW]
[ROW][C]0.0415522408267081[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298446&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298446&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Estimated ARIMA Residuals
Value
-0.0252986479763734
-0.181223269118806
-0.0941079070022401
-0.104593702383331
0.0204664917052209
-0.153024310729341
-0.0434104976383166
0.032386285503816
-0.00164200641606991
0.00967915232593647
-0.0632773560757989
-0.0395742550283953
0.0659641157635769
0.0604716944095721
-0.0731429240738212
-0.124916615885473
-0.0316129494210095
-0.137191813190511
-0.0285113352806033
0.0275198645026042
-0.0671451272830137
0.256349174749261
0.184859589559713
0.0172623907495899
0.0357455033951069
0.0365928797851597
-0.025565056813397
0.215277042787645
-0.00397462279403031
-0.227989326791229
0.0232195329810364
-0.0493234937938777
0.0192071434872852
-0.0914323111069055
-0.0832164016841327
0.0693178311696389
0.0184471030238511
-0.0636639879968642
0.00823924743482895
-0.154315554405308
0.0098031244343215
0.00953761304990645
-0.114306833260576
0.00385908165917385
-0.253655644931451
0.0298434184362947
-0.0395396532550859
0.0524695389835518
0.150367006348103
-0.0159364047984119
-0.0596595857918253
0.00167181658229888
-0.114011740467814
0.100350419269578
0.0136152512734045
-0.0340658381153474
-0.0775687333390978
-0.042937330883022
-0.0337425578338862
0.0586688878309767
-0.106175237790266
-0.0126590701598427
-0.0306512906043743
-0.042615823676413
-0.035301223894991
0.0644669214562687
-0.0496660022897606
-0.057245080203422
0.121505123357662
-0.142853042372811
0.0680519993142288
-0.0393832776008736
0.0131907778079697
-0.163614679772197
-0.140469941437501
-0.0559599424306845
0.0963287211709282
0.0534369613612811
-0.0964993926305166
-0.0795822372517527
0.088041979550416
-0.195748858341911
0.0587819803477821
-0.0305475855962962
0.0753839228319178
-0.0472491623662056
-0.107126431357215
0.0138085408313799
-0.115750745624167
0.0743965254196157
0.139951635161655
-0.0656637103275977
-0.157592187277038
-0.0214355735476194
-0.117203600195381
-0.0973217656125047
-0.0742414271225471
0.0643474371468382
-0.00953332804801694
0.0452108950224303
-0.00694680574676127
-0.0262740122859878
-0.0694034501273686
0.087365728554976
0.0127968836787121
0.0610719315671415
-0.114095238036729
-0.107255543699737
0.220260758746437
0.0213035476952798
-0.0187330396214584
-0.10148639678284
-0.160758580501243
0.0415522408267081



Parameters (Session):
par1 = FALSE ; par2 = 0.0 ; par3 = 1 ; par4 = 1 ; par5 = 12 ; par6 = 3 ; par7 = 1 ; par8 = 2 ; par9 = 1 ;
Parameters (R input):
par1 = FALSE ; par2 = 0.0 ; par3 = 1 ; par4 = 1 ; par5 = 12 ; par6 = 3 ; par7 = 1 ; par8 = 2 ; par9 = 1 ;
R code (references can be found in the software module):
library(lattice)
if (par1 == 'TRUE') par1 <- TRUE
if (par1 == 'FALSE') par1 <- FALSE
par2 <- as.numeric(par2) #Box-Cox lambda transformation parameter
par3 <- as.numeric(par3) #degree of non-seasonal differencing
par4 <- as.numeric(par4) #degree of seasonal differencing
par5 <- as.numeric(par5) #seasonal period
par6 <- as.numeric(par6) #degree (p) of the non-seasonal AR(p) polynomial
par7 <- as.numeric(par7) #degree (q) of the non-seasonal MA(q) polynomial
par8 <- as.numeric(par8) #degree (P) of the seasonal AR(P) polynomial
par9 <- as.numeric(par9) #degree (Q) of the seasonal MA(Q) polynomial
armaGR <- function(arima.out, names, n){
try1 <- arima.out$coef
try2 <- sqrt(diag(arima.out$var.coef))
try.data.frame <- data.frame(matrix(NA,ncol=4,nrow=length(names)))
dimnames(try.data.frame) <- list(names,c('coef','std','tstat','pv'))
try.data.frame[,1] <- try1
for(i in 1:length(try2)) try.data.frame[which(rownames(try.data.frame)==names(try2)[i]),2] <- try2[i]
try.data.frame[,3] <- try.data.frame[,1] / try.data.frame[,2]
try.data.frame[,4] <- round((1-pt(abs(try.data.frame[,3]),df=n-(length(try2)+1)))*2,5)
vector <- rep(NA,length(names))
vector[is.na(try.data.frame[,4])] <- 0
maxi <- which.max(try.data.frame[,4])
continue <- max(try.data.frame[,4],na.rm=TRUE) > .05
vector[maxi] <- 0
list(summary=try.data.frame,next.vector=vector,continue=continue)
}
arimaSelect <- function(series, order=c(13,0,0), seasonal=list(order=c(2,0,0),period=12), include.mean=F){
nrc <- order[1]+order[3]+seasonal$order[1]+seasonal$order[3]
coeff <- matrix(NA, nrow=nrc*2, ncol=nrc)
pval <- matrix(NA, nrow=nrc*2, ncol=nrc)
mylist <- rep(list(NULL), nrc)
names <- NULL
if(order[1] > 0) names <- paste('ar',1:order[1],sep='')
if(order[3] > 0) names <- c( names , paste('ma',1:order[3],sep='') )
if(seasonal$order[1] > 0) names <- c(names, paste('sar',1:seasonal$order[1],sep=''))
if(seasonal$order[3] > 0) names <- c(names, paste('sma',1:seasonal$order[3],sep=''))
arima.out <- arima(series, order=order, seasonal=seasonal, include.mean=include.mean, method='ML')
mylist[[1]] <- arima.out
last.arma <- armaGR(arima.out, names, length(series))
mystop <- FALSE
i <- 1
coeff[i,] <- last.arma[[1]][,1]
pval [i,] <- last.arma[[1]][,4]
i <- 2
aic <- arima.out$aic
while(!mystop){
mylist[[i]] <- arima.out
arima.out <- arima(series, order=order, seasonal=seasonal, include.mean=include.mean, method='ML', fixed=last.arma$next.vector)
aic <- c(aic, arima.out$aic)
last.arma <- armaGR(arima.out, names, length(series))
mystop <- !last.arma$continue
coeff[i,] <- last.arma[[1]][,1]
pval [i,] <- last.arma[[1]][,4]
i <- i+1
}
list(coeff, pval, mylist, aic=aic)
}
arimaSelectplot <- function(arimaSelect.out,noms,choix){
noms <- names(arimaSelect.out[[3]][[1]]$coef)
coeff <- arimaSelect.out[[1]]
k <- min(which(is.na(coeff[,1])))-1
coeff <- coeff[1:k,]
pval <- arimaSelect.out[[2]][1:k,]
aic <- arimaSelect.out$aic[1:k]
coeff[coeff==0] <- NA
n <- ncol(coeff)
if(missing(choix)) choix <- k
layout(matrix(c(1,1,1,2,
3,3,3,2,
3,3,3,4,
5,6,7,7),nr=4),
widths=c(10,35,45,15),
heights=c(30,30,15,15))
couleurs <- rainbow(75)[1:50]#(50)
ticks <- pretty(coeff)
par(mar=c(1,1,3,1))
plot(aic,k:1-.5,type='o',pch=21,bg='blue',cex=2,axes=F,lty=2,xpd=NA)
points(aic[choix],k-choix+.5,pch=21,cex=4,bg=2,xpd=NA)
title('aic',line=2)
par(mar=c(3,0,0,0))
plot(0,axes=F,xlab='',ylab='',xlim=range(ticks),ylim=c(.1,1))
rect(xleft = min(ticks) + (0:49)/50*(max(ticks)-min(ticks)),
xright = min(ticks) + (1:50)/50*(max(ticks)-min(ticks)),
ytop = rep(1,50),
ybottom= rep(0,50),col=couleurs,border=NA)
axis(1,ticks)
rect(xleft=min(ticks),xright=max(ticks),ytop=1,ybottom=0)
text(mean(coeff,na.rm=T),.5,'coefficients',cex=2,font=2)
par(mar=c(1,1,3,1))
image(1:n,1:k,t(coeff[k:1,]),axes=F,col=couleurs,zlim=range(ticks))
for(i in 1:n) for(j in 1:k) if(!is.na(coeff[j,i])) {
if(pval[j,i]<.01) symb = 'green'
else if( (pval[j,i]<.05) & (pval[j,i]>=.01)) symb = 'orange'
else if( (pval[j,i]<.1) & (pval[j,i]>=.05)) symb = 'red'
else symb = 'black'
polygon(c(i+.5 ,i+.2 ,i+.5 ,i+.5),
c(k-j+0.5,k-j+0.5,k-j+0.8,k-j+0.5),
col=symb)
if(j==choix) {
rect(xleft=i-.5,
xright=i+.5,
ybottom=k-j+1.5,
ytop=k-j+.5,
lwd=4)
text(i,
k-j+1,
round(coeff[j,i],2),
cex=1.2,
font=2)
}
else{
rect(xleft=i-.5,xright=i+.5,ybottom=k-j+1.5,ytop=k-j+.5)
text(i,k-j+1,round(coeff[j,i],2),cex=1.2,font=1)
}
}
axis(3,1:n,noms)
par(mar=c(0.5,0,0,0.5))
plot(0,axes=F,xlab='',ylab='',type='n',xlim=c(0,8),ylim=c(-.2,.8))
cols <- c('green','orange','red','black')
niv <- c('0','0.01','0.05','0.1')
for(i in 0:3){
polygon(c(1+2*i ,1+2*i ,1+2*i-.5 ,1+2*i),
c(.4 ,.7 , .4 , .4),
col=cols[i+1])
text(2*i,0.5,niv[i+1],cex=1.5)
}
text(8,.5,1,cex=1.5)
text(4,0,'p-value',cex=2)
box()
residus <- arimaSelect.out[[3]][[choix]]$res
par(mar=c(1,2,4,1))
acf(residus,main='')
title('acf',line=.5)
par(mar=c(1,2,4,1))
pacf(residus,main='')
title('pacf',line=.5)
par(mar=c(2,2,4,1))
qqnorm(residus,main='')
title('qq-norm',line=.5)
qqline(residus)
residus
}
if (par2 == 0) x <- log(x)
if (par2 != 0) x <- x^par2
(selection <- arimaSelect(x, order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5)))
bitmap(file='test1.png')
resid <- arimaSelectplot(selection)
dev.off()
resid
bitmap(file='test2.png')
acf(resid,length(resid)/2, main='Residual Autocorrelation Function')
dev.off()
bitmap(file='test3.png')
pacf(resid,length(resid)/2, main='Residual Partial Autocorrelation Function')
dev.off()
bitmap(file='test4.png')
cpgram(resid, main='Residual Cumulative Periodogram')
dev.off()
bitmap(file='test5.png')
hist(resid, main='Residual Histogram', xlab='values of Residuals')
dev.off()
bitmap(file='test6.png')
densityplot(~resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test7.png')
qqnorm(resid, main='Residual Normal Q-Q Plot')
qqline(resid)
dev.off()
ncols <- length(selection[[1]][1,])
nrows <- length(selection[[2]][,1])-1
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'ARIMA Parameter Estimation and Backward Selection', ncols+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Iteration', header=TRUE)
for (i in 1:ncols) {
a<-table.element(a,names(selection[[3]][[1]]$coef)[i],header=TRUE)
}
a<-table.row.end(a)
for (j in 1:nrows) {
a<-table.row.start(a)
mydum <- 'Estimates ('
mydum <- paste(mydum,j)
mydum <- paste(mydum,')')
a<-table.element(a,mydum, header=TRUE)
for (i in 1:ncols) {
a<-table.element(a,round(selection[[1]][j,i],4))
}
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'(p-val)', header=TRUE)
for (i in 1:ncols) {
mydum <- '('
mydum <- paste(mydum,round(selection[[2]][j,i],4),sep='')
mydum <- paste(mydum,')')
a<-table.element(a,mydum)
}
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Estimated ARIMA Residuals', 1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Value', 1,TRUE)
a<-table.row.end(a)
for (i in (par4*par5+par3):length(resid)) {
a<-table.row.start(a)
a<-table.element(a,resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')