Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_arimabackwardselection.wasp
Title produced by softwareARIMA Backward Selection
Date of computationWed, 07 Dec 2016 19:22:32 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/07/t1481134998rc6t0obau5ogjoe.htm/, Retrieved Fri, 01 Nov 2024 03:45:41 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=298281, Retrieved Fri, 01 Nov 2024 03:45:41 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact83
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [ARIMA Backward Selection] [N1316] [2016-12-07 18:22:32] [85f5800284aab30c091766186b093bb4] [Current]
Feedback Forum

Post a new message
Dataseries X:
4440
4835
4055
3645
3425
3350
3670
5130
5930
6185
6240
5790
5475
5561.65
8031.65
8961.65
8045
7588.35
8200
7290
6661.65
6385
6268.35
6248.35
6165
6196.65
6050
5705
5530
5311.65
5145
4855
4556.65
4356.65
3823.35
3570
3735
4191.65
3990
3705
4065
3766.65
3666.65
3681.65
3931.65
4268.35
4291.65
4530
5053.35
4996.65
4913.35
4935
4848.35
4788.35
4771.65
4643.35
4778
4983.35
4953.35
5581.65
5185
5746.65
4240
4095




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time3 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298281&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]3 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=298281&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298281&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R ServerBig Analytics Cloud Computing Center







ARIMA Parameter Estimation and Backward Selection
Iterationar1ar2ar3ma1
Estimates ( 1 )0.6811-0.1378-0.1479-0.4501
(p-val)(0.0519 )(0.4776 )(0.3457 )(0.1781 )
Estimates ( 2 )0.51860-0.2157-0.3249
(p-val)(0.1485 )(NA )(0.0876 )(0.4319 )
Estimates ( 3 )0.24050-0.1760
(p-val)(0.0509 )(NA )(0.202 )(NA )
Estimates ( 4 )0.2366000
(p-val)(0.0575 )(NA )(NA )(NA )
Estimates ( 5 )0000
(p-val)(NA )(NA )(NA )(NA )
Estimates ( 6 )NANANANA
(p-val)(NA )(NA )(NA )(NA )
Estimates ( 7 )NANANANA
(p-val)(NA )(NA )(NA )(NA )

\begin{tabular}{lllllllll}
\hline
ARIMA Parameter Estimation and Backward Selection \tabularnewline
Iteration & ar1 & ar2 & ar3 & ma1 \tabularnewline
Estimates ( 1 ) & 0.6811 & -0.1378 & -0.1479 & -0.4501 \tabularnewline
(p-val) & (0.0519 ) & (0.4776 ) & (0.3457 ) & (0.1781 ) \tabularnewline
Estimates ( 2 ) & 0.5186 & 0 & -0.2157 & -0.3249 \tabularnewline
(p-val) & (0.1485 ) & (NA ) & (0.0876 ) & (0.4319 ) \tabularnewline
Estimates ( 3 ) & 0.2405 & 0 & -0.176 & 0 \tabularnewline
(p-val) & (0.0509 ) & (NA ) & (0.202 ) & (NA ) \tabularnewline
Estimates ( 4 ) & 0.2366 & 0 & 0 & 0 \tabularnewline
(p-val) & (0.0575 ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 5 ) & 0 & 0 & 0 & 0 \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 6 ) & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 7 ) & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298281&T=1

[TABLE]
[ROW][C]ARIMA Parameter Estimation and Backward Selection[/C][/ROW]
[ROW][C]Iteration[/C][C]ar1[/C][C]ar2[/C][C]ar3[/C][C]ma1[/C][/ROW]
[ROW][C]Estimates ( 1 )[/C][C]0.6811[/C][C]-0.1378[/C][C]-0.1479[/C][C]-0.4501[/C][/ROW]
[ROW][C](p-val)[/C][C](0.0519 )[/C][C](0.4776 )[/C][C](0.3457 )[/C][C](0.1781 )[/C][/ROW]
[ROW][C]Estimates ( 2 )[/C][C]0.5186[/C][C]0[/C][C]-0.2157[/C][C]-0.3249[/C][/ROW]
[ROW][C](p-val)[/C][C](0.1485 )[/C][C](NA )[/C][C](0.0876 )[/C][C](0.4319 )[/C][/ROW]
[ROW][C]Estimates ( 3 )[/C][C]0.2405[/C][C]0[/C][C]-0.176[/C][C]0[/C][/ROW]
[ROW][C](p-val)[/C][C](0.0509 )[/C][C](NA )[/C][C](0.202 )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 4 )[/C][C]0.2366[/C][C]0[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C](p-val)[/C][C](0.0575 )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 5 )[/C][C]0[/C][C]0[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 6 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 7 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298281&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298281&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

ARIMA Parameter Estimation and Backward Selection
Iterationar1ar2ar3ma1
Estimates ( 1 )0.6811-0.1378-0.1479-0.4501
(p-val)(0.0519 )(0.4776 )(0.3457 )(0.1781 )
Estimates ( 2 )0.51860-0.2157-0.3249
(p-val)(0.1485 )(NA )(0.0876 )(0.4319 )
Estimates ( 3 )0.24050-0.1760
(p-val)(0.0509 )(NA )(0.202 )(NA )
Estimates ( 4 )0.2366000
(p-val)(0.0575 )(NA )(NA )(NA )
Estimates ( 5 )0000
(p-val)(NA )(NA )(NA )(NA )
Estimates ( 6 )NANANANA
(p-val)(NA )(NA )(NA )(NA )
Estimates ( 7 )NANANANA
(p-val)(NA )(NA )(NA )(NA )







Estimated ARIMA Residuals
Value
2.2522510593653e-07
-1.78777431068903e-05
4.41368226939522e-05
1.83275262334299e-05
1.10600274703359e-05
2.36769051694335e-06
-2.75742920985042e-05
-7.13903070824579e-05
-7.95204112084819e-06
-7.31263663778843e-07
2.19710687341312e-07
1.27922953893456e-05
6.99028242543171e-06
-5.19642544403266e-06
-5.46221376054056e-05
1.6052879331984e-07
1.57709245117306e-05
4.47231332817023e-06
-1.15993303955238e-05
1.75484357779654e-05
9.3374087015458e-06
3.44316010460007e-06
1.37585055198135e-06
-1.78864742280668e-07
2.04294807712048e-06
-1.34036681682809e-06
4.10773396121363e-06
9.07017239409313e-06
3.18230955852265e-06
6.12132565914596e-06
4.33946063815058e-06
1.01671349782129e-05
1.07396978765276e-05
6.8842147594665e-06
2.96331802629605e-05
1.09870720289813e-05
-1.67655219000712e-05
-2.62406317292932e-05
1.8957392762348e-05
1.64266059877505e-05
-2.84639449070562e-05
2.51402482895234e-05
2.63089415748931e-06
-2.82409605248575e-06
-1.70083343710212e-05
-1.59776804325553e-05
3.47453315745831e-06
-1.19591523809888e-05
-1.99616299591162e-05
7.65408452115711e-06
2.86179755922865e-06
-1.69557846032602e-06
3.83272206001584e-06
1.72772445408671e-06
1.19492604365424e-07
5.61772879472278e-06
-7.43906888514822e-06
-7.18856928322718e-06
3.2556356866224e-06
-2.30125991355631e-05
1.90816658343299e-05
-2.20919574770099e-05
6.62939275652418e-05
-6.27718088883707e-06

\begin{tabular}{lllllllll}
\hline
Estimated ARIMA Residuals \tabularnewline
Value \tabularnewline
2.2522510593653e-07 \tabularnewline
-1.78777431068903e-05 \tabularnewline
4.41368226939522e-05 \tabularnewline
1.83275262334299e-05 \tabularnewline
1.10600274703359e-05 \tabularnewline
2.36769051694335e-06 \tabularnewline
-2.75742920985042e-05 \tabularnewline
-7.13903070824579e-05 \tabularnewline
-7.95204112084819e-06 \tabularnewline
-7.31263663778843e-07 \tabularnewline
2.19710687341312e-07 \tabularnewline
1.27922953893456e-05 \tabularnewline
6.99028242543171e-06 \tabularnewline
-5.19642544403266e-06 \tabularnewline
-5.46221376054056e-05 \tabularnewline
1.6052879331984e-07 \tabularnewline
1.57709245117306e-05 \tabularnewline
4.47231332817023e-06 \tabularnewline
-1.15993303955238e-05 \tabularnewline
1.75484357779654e-05 \tabularnewline
9.3374087015458e-06 \tabularnewline
3.44316010460007e-06 \tabularnewline
1.37585055198135e-06 \tabularnewline
-1.78864742280668e-07 \tabularnewline
2.04294807712048e-06 \tabularnewline
-1.34036681682809e-06 \tabularnewline
4.10773396121363e-06 \tabularnewline
9.07017239409313e-06 \tabularnewline
3.18230955852265e-06 \tabularnewline
6.12132565914596e-06 \tabularnewline
4.33946063815058e-06 \tabularnewline
1.01671349782129e-05 \tabularnewline
1.07396978765276e-05 \tabularnewline
6.8842147594665e-06 \tabularnewline
2.96331802629605e-05 \tabularnewline
1.09870720289813e-05 \tabularnewline
-1.67655219000712e-05 \tabularnewline
-2.62406317292932e-05 \tabularnewline
1.8957392762348e-05 \tabularnewline
1.64266059877505e-05 \tabularnewline
-2.84639449070562e-05 \tabularnewline
2.51402482895234e-05 \tabularnewline
2.63089415748931e-06 \tabularnewline
-2.82409605248575e-06 \tabularnewline
-1.70083343710212e-05 \tabularnewline
-1.59776804325553e-05 \tabularnewline
3.47453315745831e-06 \tabularnewline
-1.19591523809888e-05 \tabularnewline
-1.99616299591162e-05 \tabularnewline
7.65408452115711e-06 \tabularnewline
2.86179755922865e-06 \tabularnewline
-1.69557846032602e-06 \tabularnewline
3.83272206001584e-06 \tabularnewline
1.72772445408671e-06 \tabularnewline
1.19492604365424e-07 \tabularnewline
5.61772879472278e-06 \tabularnewline
-7.43906888514822e-06 \tabularnewline
-7.18856928322718e-06 \tabularnewline
3.2556356866224e-06 \tabularnewline
-2.30125991355631e-05 \tabularnewline
1.90816658343299e-05 \tabularnewline
-2.20919574770099e-05 \tabularnewline
6.62939275652418e-05 \tabularnewline
-6.27718088883707e-06 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298281&T=2

[TABLE]
[ROW][C]Estimated ARIMA Residuals[/C][/ROW]
[ROW][C]Value[/C][/ROW]
[ROW][C]2.2522510593653e-07[/C][/ROW]
[ROW][C]-1.78777431068903e-05[/C][/ROW]
[ROW][C]4.41368226939522e-05[/C][/ROW]
[ROW][C]1.83275262334299e-05[/C][/ROW]
[ROW][C]1.10600274703359e-05[/C][/ROW]
[ROW][C]2.36769051694335e-06[/C][/ROW]
[ROW][C]-2.75742920985042e-05[/C][/ROW]
[ROW][C]-7.13903070824579e-05[/C][/ROW]
[ROW][C]-7.95204112084819e-06[/C][/ROW]
[ROW][C]-7.31263663778843e-07[/C][/ROW]
[ROW][C]2.19710687341312e-07[/C][/ROW]
[ROW][C]1.27922953893456e-05[/C][/ROW]
[ROW][C]6.99028242543171e-06[/C][/ROW]
[ROW][C]-5.19642544403266e-06[/C][/ROW]
[ROW][C]-5.46221376054056e-05[/C][/ROW]
[ROW][C]1.6052879331984e-07[/C][/ROW]
[ROW][C]1.57709245117306e-05[/C][/ROW]
[ROW][C]4.47231332817023e-06[/C][/ROW]
[ROW][C]-1.15993303955238e-05[/C][/ROW]
[ROW][C]1.75484357779654e-05[/C][/ROW]
[ROW][C]9.3374087015458e-06[/C][/ROW]
[ROW][C]3.44316010460007e-06[/C][/ROW]
[ROW][C]1.37585055198135e-06[/C][/ROW]
[ROW][C]-1.78864742280668e-07[/C][/ROW]
[ROW][C]2.04294807712048e-06[/C][/ROW]
[ROW][C]-1.34036681682809e-06[/C][/ROW]
[ROW][C]4.10773396121363e-06[/C][/ROW]
[ROW][C]9.07017239409313e-06[/C][/ROW]
[ROW][C]3.18230955852265e-06[/C][/ROW]
[ROW][C]6.12132565914596e-06[/C][/ROW]
[ROW][C]4.33946063815058e-06[/C][/ROW]
[ROW][C]1.01671349782129e-05[/C][/ROW]
[ROW][C]1.07396978765276e-05[/C][/ROW]
[ROW][C]6.8842147594665e-06[/C][/ROW]
[ROW][C]2.96331802629605e-05[/C][/ROW]
[ROW][C]1.09870720289813e-05[/C][/ROW]
[ROW][C]-1.67655219000712e-05[/C][/ROW]
[ROW][C]-2.62406317292932e-05[/C][/ROW]
[ROW][C]1.8957392762348e-05[/C][/ROW]
[ROW][C]1.64266059877505e-05[/C][/ROW]
[ROW][C]-2.84639449070562e-05[/C][/ROW]
[ROW][C]2.51402482895234e-05[/C][/ROW]
[ROW][C]2.63089415748931e-06[/C][/ROW]
[ROW][C]-2.82409605248575e-06[/C][/ROW]
[ROW][C]-1.70083343710212e-05[/C][/ROW]
[ROW][C]-1.59776804325553e-05[/C][/ROW]
[ROW][C]3.47453315745831e-06[/C][/ROW]
[ROW][C]-1.19591523809888e-05[/C][/ROW]
[ROW][C]-1.99616299591162e-05[/C][/ROW]
[ROW][C]7.65408452115711e-06[/C][/ROW]
[ROW][C]2.86179755922865e-06[/C][/ROW]
[ROW][C]-1.69557846032602e-06[/C][/ROW]
[ROW][C]3.83272206001584e-06[/C][/ROW]
[ROW][C]1.72772445408671e-06[/C][/ROW]
[ROW][C]1.19492604365424e-07[/C][/ROW]
[ROW][C]5.61772879472278e-06[/C][/ROW]
[ROW][C]-7.43906888514822e-06[/C][/ROW]
[ROW][C]-7.18856928322718e-06[/C][/ROW]
[ROW][C]3.2556356866224e-06[/C][/ROW]
[ROW][C]-2.30125991355631e-05[/C][/ROW]
[ROW][C]1.90816658343299e-05[/C][/ROW]
[ROW][C]-2.20919574770099e-05[/C][/ROW]
[ROW][C]6.62939275652418e-05[/C][/ROW]
[ROW][C]-6.27718088883707e-06[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298281&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298281&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Estimated ARIMA Residuals
Value
2.2522510593653e-07
-1.78777431068903e-05
4.41368226939522e-05
1.83275262334299e-05
1.10600274703359e-05
2.36769051694335e-06
-2.75742920985042e-05
-7.13903070824579e-05
-7.95204112084819e-06
-7.31263663778843e-07
2.19710687341312e-07
1.27922953893456e-05
6.99028242543171e-06
-5.19642544403266e-06
-5.46221376054056e-05
1.6052879331984e-07
1.57709245117306e-05
4.47231332817023e-06
-1.15993303955238e-05
1.75484357779654e-05
9.3374087015458e-06
3.44316010460007e-06
1.37585055198135e-06
-1.78864742280668e-07
2.04294807712048e-06
-1.34036681682809e-06
4.10773396121363e-06
9.07017239409313e-06
3.18230955852265e-06
6.12132565914596e-06
4.33946063815058e-06
1.01671349782129e-05
1.07396978765276e-05
6.8842147594665e-06
2.96331802629605e-05
1.09870720289813e-05
-1.67655219000712e-05
-2.62406317292932e-05
1.8957392762348e-05
1.64266059877505e-05
-2.84639449070562e-05
2.51402482895234e-05
2.63089415748931e-06
-2.82409605248575e-06
-1.70083343710212e-05
-1.59776804325553e-05
3.47453315745831e-06
-1.19591523809888e-05
-1.99616299591162e-05
7.65408452115711e-06
2.86179755922865e-06
-1.69557846032602e-06
3.83272206001584e-06
1.72772445408671e-06
1.19492604365424e-07
5.61772879472278e-06
-7.43906888514822e-06
-7.18856928322718e-06
3.2556356866224e-06
-2.30125991355631e-05
1.90816658343299e-05
-2.20919574770099e-05
6.62939275652418e-05
-6.27718088883707e-06



Parameters (Session):
par1 = -1.0 ; par2 = 1 ; par3 = 0 ; par4 = 1 ;
Parameters (R input):
par1 = FALSE ; par2 = -1.0 ; par3 = 1 ; par4 = 0 ; par5 = 1 ; par6 = 3 ; par7 = 1 ; par8 = 0 ; par9 = 0 ;
R code (references can be found in the software module):
par9 <- '1'
par8 <- '2'
par7 <- '1'
par6 <- '3'
par5 <- '12'
par4 <- '0'
par3 <- '1'
par2 <- '-1.0'
par1 <- 'FALSE'
library(lattice)
if (par1 == 'TRUE') par1 <- TRUE
if (par1 == 'FALSE') par1 <- FALSE
par2 <- as.numeric(par2) #Box-Cox lambda transformation parameter
par3 <- as.numeric(par3) #degree of non-seasonal differencing
par4 <- as.numeric(par4) #degree of seasonal differencing
par5 <- as.numeric(par5) #seasonal period
par6 <- as.numeric(par6) #degree (p) of the non-seasonal AR(p) polynomial
par7 <- as.numeric(par7) #degree (q) of the non-seasonal MA(q) polynomial
par8 <- as.numeric(par8) #degree (P) of the seasonal AR(P) polynomial
par9 <- as.numeric(par9) #degree (Q) of the seasonal MA(Q) polynomial
armaGR <- function(arima.out, names, n){
try1 <- arima.out$coef
try2 <- sqrt(diag(arima.out$var.coef))
try.data.frame <- data.frame(matrix(NA,ncol=4,nrow=length(names)))
dimnames(try.data.frame) <- list(names,c('coef','std','tstat','pv'))
try.data.frame[,1] <- try1
for(i in 1:length(try2)) try.data.frame[which(rownames(try.data.frame)==names(try2)[i]),2] <- try2[i]
try.data.frame[,3] <- try.data.frame[,1] / try.data.frame[,2]
try.data.frame[,4] <- round((1-pt(abs(try.data.frame[,3]),df=n-(length(try2)+1)))*2,5)
vector <- rep(NA,length(names))
vector[is.na(try.data.frame[,4])] <- 0
maxi <- which.max(try.data.frame[,4])
continue <- max(try.data.frame[,4],na.rm=TRUE) > .05
vector[maxi] <- 0
list(summary=try.data.frame,next.vector=vector,continue=continue)
}
arimaSelect <- function(series, order=c(13,0,0), seasonal=list(order=c(2,0,0),period=12), include.mean=F){
nrc <- order[1]+order[3]+seasonal$order[1]+seasonal$order[3]
coeff <- matrix(NA, nrow=nrc*2, ncol=nrc)
pval <- matrix(NA, nrow=nrc*2, ncol=nrc)
mylist <- rep(list(NULL), nrc)
names <- NULL
if(order[1] > 0) names <- paste('ar',1:order[1],sep='')
if(order[3] > 0) names <- c( names , paste('ma',1:order[3],sep='') )
if(seasonal$order[1] > 0) names <- c(names, paste('sar',1:seasonal$order[1],sep=''))
if(seasonal$order[3] > 0) names <- c(names, paste('sma',1:seasonal$order[3],sep=''))
arima.out <- arima(series, order=order, seasonal=seasonal, include.mean=include.mean, method='ML')
mylist[[1]] <- arima.out
last.arma <- armaGR(arima.out, names, length(series))
mystop <- FALSE
i <- 1
coeff[i,] <- last.arma[[1]][,1]
pval [i,] <- last.arma[[1]][,4]
i <- 2
aic <- arima.out$aic
while(!mystop){
mylist[[i]] <- arima.out
arima.out <- arima(series, order=order, seasonal=seasonal, include.mean=include.mean, method='ML', fixed=last.arma$next.vector)
aic <- c(aic, arima.out$aic)
last.arma <- armaGR(arima.out, names, length(series))
mystop <- !last.arma$continue
coeff[i,] <- last.arma[[1]][,1]
pval [i,] <- last.arma[[1]][,4]
i <- i+1
}
list(coeff, pval, mylist, aic=aic)
}
arimaSelectplot <- function(arimaSelect.out,noms,choix){
noms <- names(arimaSelect.out[[3]][[1]]$coef)
coeff <- arimaSelect.out[[1]]
k <- min(which(is.na(coeff[,1])))-1
coeff <- coeff[1:k,]
pval <- arimaSelect.out[[2]][1:k,]
aic <- arimaSelect.out$aic[1:k]
coeff[coeff==0] <- NA
n <- ncol(coeff)
if(missing(choix)) choix <- k
layout(matrix(c(1,1,1,2,
3,3,3,2,
3,3,3,4,
5,6,7,7),nr=4),
widths=c(10,35,45,15),
heights=c(30,30,15,15))
couleurs <- rainbow(75)[1:50]#(50)
ticks <- pretty(coeff)
par(mar=c(1,1,3,1))
plot(aic,k:1-.5,type='o',pch=21,bg='blue',cex=2,axes=F,lty=2,xpd=NA)
points(aic[choix],k-choix+.5,pch=21,cex=4,bg=2,xpd=NA)
title('aic',line=2)
par(mar=c(3,0,0,0))
plot(0,axes=F,xlab='',ylab='',xlim=range(ticks),ylim=c(.1,1))
rect(xleft = min(ticks) + (0:49)/50*(max(ticks)-min(ticks)),
xright = min(ticks) + (1:50)/50*(max(ticks)-min(ticks)),
ytop = rep(1,50),
ybottom= rep(0,50),col=couleurs,border=NA)
axis(1,ticks)
rect(xleft=min(ticks),xright=max(ticks),ytop=1,ybottom=0)
text(mean(coeff,na.rm=T),.5,'coefficients',cex=2,font=2)
par(mar=c(1,1,3,1))
image(1:n,1:k,t(coeff[k:1,]),axes=F,col=couleurs,zlim=range(ticks))
for(i in 1:n) for(j in 1:k) if(!is.na(coeff[j,i])) {
if(pval[j,i]<.01) symb = 'green'
else if( (pval[j,i]<.05) & (pval[j,i]>=.01)) symb = 'orange'
else if( (pval[j,i]<.1) & (pval[j,i]>=.05)) symb = 'red'
else symb = 'black'
polygon(c(i+.5 ,i+.2 ,i+.5 ,i+.5),
c(k-j+0.5,k-j+0.5,k-j+0.8,k-j+0.5),
col=symb)
if(j==choix) {
rect(xleft=i-.5,
xright=i+.5,
ybottom=k-j+1.5,
ytop=k-j+.5,
lwd=4)
text(i,
k-j+1,
round(coeff[j,i],2),
cex=1.2,
font=2)
}
else{
rect(xleft=i-.5,xright=i+.5,ybottom=k-j+1.5,ytop=k-j+.5)
text(i,k-j+1,round(coeff[j,i],2),cex=1.2,font=1)
}
}
axis(3,1:n,noms)
par(mar=c(0.5,0,0,0.5))
plot(0,axes=F,xlab='',ylab='',type='n',xlim=c(0,8),ylim=c(-.2,.8))
cols <- c('green','orange','red','black')
niv <- c('0','0.01','0.05','0.1')
for(i in 0:3){
polygon(c(1+2*i ,1+2*i ,1+2*i-.5 ,1+2*i),
c(.4 ,.7 , .4 , .4),
col=cols[i+1])
text(2*i,0.5,niv[i+1],cex=1.5)
}
text(8,.5,1,cex=1.5)
text(4,0,'p-value',cex=2)
box()
residus <- arimaSelect.out[[3]][[choix]]$res
par(mar=c(1,2,4,1))
acf(residus,main='')
title('acf',line=.5)
par(mar=c(1,2,4,1))
pacf(residus,main='')
title('pacf',line=.5)
par(mar=c(2,2,4,1))
qqnorm(residus,main='')
title('qq-norm',line=.5)
qqline(residus)
residus
}
if (par2 == 0) x <- log(x)
if (par2 != 0) x <- x^par2
(selection <- arimaSelect(x, order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5)))
bitmap(file='test1.png')
resid <- arimaSelectplot(selection)
dev.off()
resid
bitmap(file='test2.png')
acf(resid,length(resid)/2, main='Residual Autocorrelation Function')
dev.off()
bitmap(file='test3.png')
pacf(resid,length(resid)/2, main='Residual Partial Autocorrelation Function')
dev.off()
bitmap(file='test4.png')
cpgram(resid, main='Residual Cumulative Periodogram')
dev.off()
bitmap(file='test5.png')
hist(resid, main='Residual Histogram', xlab='values of Residuals')
dev.off()
bitmap(file='test6.png')
densityplot(~resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test7.png')
qqnorm(resid, main='Residual Normal Q-Q Plot')
qqline(resid)
dev.off()
ncols <- length(selection[[1]][1,])
nrows <- length(selection[[2]][,1])-1
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'ARIMA Parameter Estimation and Backward Selection', ncols+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Iteration', header=TRUE)
for (i in 1:ncols) {
a<-table.element(a,names(selection[[3]][[1]]$coef)[i],header=TRUE)
}
a<-table.row.end(a)
for (j in 1:nrows) {
a<-table.row.start(a)
mydum <- 'Estimates ('
mydum <- paste(mydum,j)
mydum <- paste(mydum,')')
a<-table.element(a,mydum, header=TRUE)
for (i in 1:ncols) {
a<-table.element(a,round(selection[[1]][j,i],4))
}
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'(p-val)', header=TRUE)
for (i in 1:ncols) {
mydum <- '('
mydum <- paste(mydum,round(selection[[2]][j,i],4),sep='')
mydum <- paste(mydum,')')
a<-table.element(a,mydum)
}
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Estimated ARIMA Residuals', 1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Value', 1,TRUE)
a<-table.row.end(a)
for (i in (par4*par5+par3):length(resid)) {
a<-table.row.start(a)
a<-table.element(a,resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')