Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_decompose.wasp
Title produced by softwareClassical Decomposition
Date of computationWed, 07 Dec 2016 18:46:55 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/07/t14811336469f9r186wcfy2pvs.htm/, Retrieved Fri, 01 Nov 2024 03:27:25 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=298271, Retrieved Fri, 01 Nov 2024 03:27:25 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact84
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Classical Decomposition] [Classical Decompo...] [2016-12-07 17:46:55] [153c3207812fd13fe5ceee3276565119] [Current]
Feedback Forum

Post a new message
Dataseries X:
3780
3795
3840
3900
3940
3990
4050
4090
4145
4190
4175
4230
4220
4245
4295
4290
4325
4335
4360
4360
4320
4310
4345
4315
4315
4335
4365
4410
4435
4440
4390
4445
4470
4430
4450
4480
4565
4515
4490
4535
4545
4555
4575
4585
4600
4690
4720
4780
4775
4830
4865
4945
5005
5065
5105
5080
5045
5115
5095
5075
5080
5115
5115
5115
5065
5045
5080
5115
5080
5100
5085
5120
5195
5135
5200
5150
5105
5105
5030
5060
5075
5030
5090
5070
5160
5110
5145
5075
5125
5055
5050
5040
5020
5025
4960
4965
4875
4805
4735
4775
4815
4870
4860
4875
4900
4855
4880
4850
4880
4900
4910
4935
4965
4945
4965
4950




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time2 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298271&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]2 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=298271&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298271&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center







Classical Decomposition by Moving Averages
tObservationsFitTrendSeasonalRandom
13780NANA6.07374NA
23795NANA-10.4772NA
33840NANA-3.52985NA
43900NANA-0.300685NA
53940NANA8.1889NA
63990NANA7.53786NA
740504029.434028.750.68021820.5698
840904072.974065.837.1385517.0281
941454101.174103.54-2.3753443.8337
1041904136.634138.75-2.1207153.3707
1141754165.54171.04-5.546639.50497
1242304196.194201.46-5.2688633.8105
1342204234.824228.756.07374-14.8237
1442454242.444252.92-10.47722.56052
1542954267.934271.46-3.5298527.0715
1642904283.454283.75-0.3006856.55068
1743254304.024295.838.188920.9778
18433543144306.467.5378621.0038
1943604314.644313.960.68021845.3614
2043604328.814321.677.1385531.1948
2143204325.964328.33-2.37534-5.958
2243104334.134336.25-2.12071-24.1293
2343454340.294345.83-5.546634.7133
2443154349.524354.79-5.26886-34.5228
2543154366.494360.426.07374-51.4904
2643354354.734365.21-10.4772-19.7311
2743654371.474375-3.52985-6.47015
2844104385.954386.25-0.30068524.0507
2944354403.814395.628.188931.1861
3044404414.414406.887.5378625.5871
3143904424.854424.170.680218-34.8469
3244454449.224442.087.13855-4.22188
3344704452.424454.79-2.3753417.5837
3444304463.094465.21-2.12071-33.0876
3544504469.454475-5.54663-19.4534
3644804479.114484.38-5.268860.893856
3745654502.954496.886.0737462.0513
3845154499.944510.42-10.477215.0605
3944904518.144521.67-3.52985-28.1368
4045354537.624537.92-0.300685-2.61598
4145454568.1945608.1889-23.1889
4245554591.294583.757.53786-36.2879
4345754605.6846050.680218-30.6802
4445854634.014626.887.13855-49.0136
4546004653.254655.62-2.37534-53.2497
4646904686.214688.33-2.120713.78737
4747204719.044724.58-5.546630.963301
4847804759.734765-5.2688620.2689
4947754814.414808.336.07374-39.4071
5048304840.564851.04-10.4772-10.5645
5148654886.684890.21-3.52985-21.6785
5249454926.164926.46-0.30068518.8424
5350054967.984959.798.188937.0194
5450654995.254987.717.5378669.7538
5551055013.395012.710.68021891.6114
5650805044.435037.297.1385535.5698
5750455057.215059.58-2.37534-12.208
5851155074.965077.08-2.1207140.0374
5950955081.125086.67-5.5466313.88
6050755083.065088.33-5.26886-8.06448
6150805092.535086.466.07374-12.5321
6251155076.45086.88-10.477238.6022
6351155086.265089.79-3.5298528.7382
6451155090.325090.62-0.30068524.6757
6550655097.775089.588.1889-32.7722
6650455098.585091.047.53786-53.5795
6750805098.395097.710.680218-18.3886
6851155110.475103.337.138554.52812
6950805105.335107.71-2.37534-25.333
7051005110.595112.71-2.12071-10.5876
7150855110.295115.83-5.54663-25.2867
7251205114.735120-5.268865.26886
7351955126.495120.426.0737468.5096
7451355105.565116.04-10.477229.4355
7552005110.015113.54-3.5298589.9882
7651505110.125110.42-0.30068539.884
7751055115.95107.718.1889-10.8972
7851055113.375105.837.53786-8.37119
7950305102.975102.290.680218-72.9719
8050605106.935099.797.13855-46.9302
8150755094.085096.46-2.37534-19.083
8250305088.925091.04-2.12071-58.921
8350905083.25088.75-5.546636.79663
8450705082.235087.5-5.26886-12.2311
8551605092.325086.256.0737467.6763
8651105075.775086.25-10.477234.2272
8751455079.65083.12-3.5298565.4049
8850755080.325080.62-0.300685-5.32432
8951255083.1950758.188941.8111
9050555072.755065.217.53786-17.7462
9150505049.645048.960.6802180.361449
9250405031.515024.387.138558.48645
9350204992.214994.58-2.3753427.792
9450254962.884965-2.1207162.1207
9549604934.044939.58-5.5466325.9633
9649654913.694918.96-5.2688651.3105
9748754909.414903.336.07374-34.4071
9848054878.064888.54-10.4772-73.0645
9947354873.144876.67-3.52985-138.137
10047754864.284864.58-0.300685-89.2826
10148154862.364854.178.1889-47.3556
10248704853.584846.047.5378616.4205
10348604842.144841.460.68021817.8614
10448754852.764845.627.1385522.2364
10549004854.54856.88-2.3753445.5003
10648554868.714870.83-2.12071-13.7126
10748804878.24883.75-5.546631.79663
10848504887.864893.12-5.26886-37.8561
10948804906.74900.626.07374-26.6987
11049004897.654908.12-10.47722.35219
1114910NANA-3.52985NA
1124935NANA-0.300685NA
1134965NANA8.1889NA
1144945NANA7.53786NA
1154965NANA0.680218NA
1164950NANA7.13855NA

\begin{tabular}{lllllllll}
\hline
Classical Decomposition by Moving Averages \tabularnewline
t & Observations & Fit & Trend & Seasonal & Random \tabularnewline
1 & 3780 & NA & NA & 6.07374 & NA \tabularnewline
2 & 3795 & NA & NA & -10.4772 & NA \tabularnewline
3 & 3840 & NA & NA & -3.52985 & NA \tabularnewline
4 & 3900 & NA & NA & -0.300685 & NA \tabularnewline
5 & 3940 & NA & NA & 8.1889 & NA \tabularnewline
6 & 3990 & NA & NA & 7.53786 & NA \tabularnewline
7 & 4050 & 4029.43 & 4028.75 & 0.680218 & 20.5698 \tabularnewline
8 & 4090 & 4072.97 & 4065.83 & 7.13855 & 17.0281 \tabularnewline
9 & 4145 & 4101.17 & 4103.54 & -2.37534 & 43.8337 \tabularnewline
10 & 4190 & 4136.63 & 4138.75 & -2.12071 & 53.3707 \tabularnewline
11 & 4175 & 4165.5 & 4171.04 & -5.54663 & 9.50497 \tabularnewline
12 & 4230 & 4196.19 & 4201.46 & -5.26886 & 33.8105 \tabularnewline
13 & 4220 & 4234.82 & 4228.75 & 6.07374 & -14.8237 \tabularnewline
14 & 4245 & 4242.44 & 4252.92 & -10.4772 & 2.56052 \tabularnewline
15 & 4295 & 4267.93 & 4271.46 & -3.52985 & 27.0715 \tabularnewline
16 & 4290 & 4283.45 & 4283.75 & -0.300685 & 6.55068 \tabularnewline
17 & 4325 & 4304.02 & 4295.83 & 8.1889 & 20.9778 \tabularnewline
18 & 4335 & 4314 & 4306.46 & 7.53786 & 21.0038 \tabularnewline
19 & 4360 & 4314.64 & 4313.96 & 0.680218 & 45.3614 \tabularnewline
20 & 4360 & 4328.81 & 4321.67 & 7.13855 & 31.1948 \tabularnewline
21 & 4320 & 4325.96 & 4328.33 & -2.37534 & -5.958 \tabularnewline
22 & 4310 & 4334.13 & 4336.25 & -2.12071 & -24.1293 \tabularnewline
23 & 4345 & 4340.29 & 4345.83 & -5.54663 & 4.7133 \tabularnewline
24 & 4315 & 4349.52 & 4354.79 & -5.26886 & -34.5228 \tabularnewline
25 & 4315 & 4366.49 & 4360.42 & 6.07374 & -51.4904 \tabularnewline
26 & 4335 & 4354.73 & 4365.21 & -10.4772 & -19.7311 \tabularnewline
27 & 4365 & 4371.47 & 4375 & -3.52985 & -6.47015 \tabularnewline
28 & 4410 & 4385.95 & 4386.25 & -0.300685 & 24.0507 \tabularnewline
29 & 4435 & 4403.81 & 4395.62 & 8.1889 & 31.1861 \tabularnewline
30 & 4440 & 4414.41 & 4406.88 & 7.53786 & 25.5871 \tabularnewline
31 & 4390 & 4424.85 & 4424.17 & 0.680218 & -34.8469 \tabularnewline
32 & 4445 & 4449.22 & 4442.08 & 7.13855 & -4.22188 \tabularnewline
33 & 4470 & 4452.42 & 4454.79 & -2.37534 & 17.5837 \tabularnewline
34 & 4430 & 4463.09 & 4465.21 & -2.12071 & -33.0876 \tabularnewline
35 & 4450 & 4469.45 & 4475 & -5.54663 & -19.4534 \tabularnewline
36 & 4480 & 4479.11 & 4484.38 & -5.26886 & 0.893856 \tabularnewline
37 & 4565 & 4502.95 & 4496.88 & 6.07374 & 62.0513 \tabularnewline
38 & 4515 & 4499.94 & 4510.42 & -10.4772 & 15.0605 \tabularnewline
39 & 4490 & 4518.14 & 4521.67 & -3.52985 & -28.1368 \tabularnewline
40 & 4535 & 4537.62 & 4537.92 & -0.300685 & -2.61598 \tabularnewline
41 & 4545 & 4568.19 & 4560 & 8.1889 & -23.1889 \tabularnewline
42 & 4555 & 4591.29 & 4583.75 & 7.53786 & -36.2879 \tabularnewline
43 & 4575 & 4605.68 & 4605 & 0.680218 & -30.6802 \tabularnewline
44 & 4585 & 4634.01 & 4626.88 & 7.13855 & -49.0136 \tabularnewline
45 & 4600 & 4653.25 & 4655.62 & -2.37534 & -53.2497 \tabularnewline
46 & 4690 & 4686.21 & 4688.33 & -2.12071 & 3.78737 \tabularnewline
47 & 4720 & 4719.04 & 4724.58 & -5.54663 & 0.963301 \tabularnewline
48 & 4780 & 4759.73 & 4765 & -5.26886 & 20.2689 \tabularnewline
49 & 4775 & 4814.41 & 4808.33 & 6.07374 & -39.4071 \tabularnewline
50 & 4830 & 4840.56 & 4851.04 & -10.4772 & -10.5645 \tabularnewline
51 & 4865 & 4886.68 & 4890.21 & -3.52985 & -21.6785 \tabularnewline
52 & 4945 & 4926.16 & 4926.46 & -0.300685 & 18.8424 \tabularnewline
53 & 5005 & 4967.98 & 4959.79 & 8.1889 & 37.0194 \tabularnewline
54 & 5065 & 4995.25 & 4987.71 & 7.53786 & 69.7538 \tabularnewline
55 & 5105 & 5013.39 & 5012.71 & 0.680218 & 91.6114 \tabularnewline
56 & 5080 & 5044.43 & 5037.29 & 7.13855 & 35.5698 \tabularnewline
57 & 5045 & 5057.21 & 5059.58 & -2.37534 & -12.208 \tabularnewline
58 & 5115 & 5074.96 & 5077.08 & -2.12071 & 40.0374 \tabularnewline
59 & 5095 & 5081.12 & 5086.67 & -5.54663 & 13.88 \tabularnewline
60 & 5075 & 5083.06 & 5088.33 & -5.26886 & -8.06448 \tabularnewline
61 & 5080 & 5092.53 & 5086.46 & 6.07374 & -12.5321 \tabularnewline
62 & 5115 & 5076.4 & 5086.88 & -10.4772 & 38.6022 \tabularnewline
63 & 5115 & 5086.26 & 5089.79 & -3.52985 & 28.7382 \tabularnewline
64 & 5115 & 5090.32 & 5090.62 & -0.300685 & 24.6757 \tabularnewline
65 & 5065 & 5097.77 & 5089.58 & 8.1889 & -32.7722 \tabularnewline
66 & 5045 & 5098.58 & 5091.04 & 7.53786 & -53.5795 \tabularnewline
67 & 5080 & 5098.39 & 5097.71 & 0.680218 & -18.3886 \tabularnewline
68 & 5115 & 5110.47 & 5103.33 & 7.13855 & 4.52812 \tabularnewline
69 & 5080 & 5105.33 & 5107.71 & -2.37534 & -25.333 \tabularnewline
70 & 5100 & 5110.59 & 5112.71 & -2.12071 & -10.5876 \tabularnewline
71 & 5085 & 5110.29 & 5115.83 & -5.54663 & -25.2867 \tabularnewline
72 & 5120 & 5114.73 & 5120 & -5.26886 & 5.26886 \tabularnewline
73 & 5195 & 5126.49 & 5120.42 & 6.07374 & 68.5096 \tabularnewline
74 & 5135 & 5105.56 & 5116.04 & -10.4772 & 29.4355 \tabularnewline
75 & 5200 & 5110.01 & 5113.54 & -3.52985 & 89.9882 \tabularnewline
76 & 5150 & 5110.12 & 5110.42 & -0.300685 & 39.884 \tabularnewline
77 & 5105 & 5115.9 & 5107.71 & 8.1889 & -10.8972 \tabularnewline
78 & 5105 & 5113.37 & 5105.83 & 7.53786 & -8.37119 \tabularnewline
79 & 5030 & 5102.97 & 5102.29 & 0.680218 & -72.9719 \tabularnewline
80 & 5060 & 5106.93 & 5099.79 & 7.13855 & -46.9302 \tabularnewline
81 & 5075 & 5094.08 & 5096.46 & -2.37534 & -19.083 \tabularnewline
82 & 5030 & 5088.92 & 5091.04 & -2.12071 & -58.921 \tabularnewline
83 & 5090 & 5083.2 & 5088.75 & -5.54663 & 6.79663 \tabularnewline
84 & 5070 & 5082.23 & 5087.5 & -5.26886 & -12.2311 \tabularnewline
85 & 5160 & 5092.32 & 5086.25 & 6.07374 & 67.6763 \tabularnewline
86 & 5110 & 5075.77 & 5086.25 & -10.4772 & 34.2272 \tabularnewline
87 & 5145 & 5079.6 & 5083.12 & -3.52985 & 65.4049 \tabularnewline
88 & 5075 & 5080.32 & 5080.62 & -0.300685 & -5.32432 \tabularnewline
89 & 5125 & 5083.19 & 5075 & 8.1889 & 41.8111 \tabularnewline
90 & 5055 & 5072.75 & 5065.21 & 7.53786 & -17.7462 \tabularnewline
91 & 5050 & 5049.64 & 5048.96 & 0.680218 & 0.361449 \tabularnewline
92 & 5040 & 5031.51 & 5024.38 & 7.13855 & 8.48645 \tabularnewline
93 & 5020 & 4992.21 & 4994.58 & -2.37534 & 27.792 \tabularnewline
94 & 5025 & 4962.88 & 4965 & -2.12071 & 62.1207 \tabularnewline
95 & 4960 & 4934.04 & 4939.58 & -5.54663 & 25.9633 \tabularnewline
96 & 4965 & 4913.69 & 4918.96 & -5.26886 & 51.3105 \tabularnewline
97 & 4875 & 4909.41 & 4903.33 & 6.07374 & -34.4071 \tabularnewline
98 & 4805 & 4878.06 & 4888.54 & -10.4772 & -73.0645 \tabularnewline
99 & 4735 & 4873.14 & 4876.67 & -3.52985 & -138.137 \tabularnewline
100 & 4775 & 4864.28 & 4864.58 & -0.300685 & -89.2826 \tabularnewline
101 & 4815 & 4862.36 & 4854.17 & 8.1889 & -47.3556 \tabularnewline
102 & 4870 & 4853.58 & 4846.04 & 7.53786 & 16.4205 \tabularnewline
103 & 4860 & 4842.14 & 4841.46 & 0.680218 & 17.8614 \tabularnewline
104 & 4875 & 4852.76 & 4845.62 & 7.13855 & 22.2364 \tabularnewline
105 & 4900 & 4854.5 & 4856.88 & -2.37534 & 45.5003 \tabularnewline
106 & 4855 & 4868.71 & 4870.83 & -2.12071 & -13.7126 \tabularnewline
107 & 4880 & 4878.2 & 4883.75 & -5.54663 & 1.79663 \tabularnewline
108 & 4850 & 4887.86 & 4893.12 & -5.26886 & -37.8561 \tabularnewline
109 & 4880 & 4906.7 & 4900.62 & 6.07374 & -26.6987 \tabularnewline
110 & 4900 & 4897.65 & 4908.12 & -10.4772 & 2.35219 \tabularnewline
111 & 4910 & NA & NA & -3.52985 & NA \tabularnewline
112 & 4935 & NA & NA & -0.300685 & NA \tabularnewline
113 & 4965 & NA & NA & 8.1889 & NA \tabularnewline
114 & 4945 & NA & NA & 7.53786 & NA \tabularnewline
115 & 4965 & NA & NA & 0.680218 & NA \tabularnewline
116 & 4950 & NA & NA & 7.13855 & NA \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298271&T=1

[TABLE]
[ROW][C]Classical Decomposition by Moving Averages[/C][/ROW]
[ROW][C]t[/C][C]Observations[/C][C]Fit[/C][C]Trend[/C][C]Seasonal[/C][C]Random[/C][/ROW]
[ROW][C]1[/C][C]3780[/C][C]NA[/C][C]NA[/C][C]6.07374[/C][C]NA[/C][/ROW]
[ROW][C]2[/C][C]3795[/C][C]NA[/C][C]NA[/C][C]-10.4772[/C][C]NA[/C][/ROW]
[ROW][C]3[/C][C]3840[/C][C]NA[/C][C]NA[/C][C]-3.52985[/C][C]NA[/C][/ROW]
[ROW][C]4[/C][C]3900[/C][C]NA[/C][C]NA[/C][C]-0.300685[/C][C]NA[/C][/ROW]
[ROW][C]5[/C][C]3940[/C][C]NA[/C][C]NA[/C][C]8.1889[/C][C]NA[/C][/ROW]
[ROW][C]6[/C][C]3990[/C][C]NA[/C][C]NA[/C][C]7.53786[/C][C]NA[/C][/ROW]
[ROW][C]7[/C][C]4050[/C][C]4029.43[/C][C]4028.75[/C][C]0.680218[/C][C]20.5698[/C][/ROW]
[ROW][C]8[/C][C]4090[/C][C]4072.97[/C][C]4065.83[/C][C]7.13855[/C][C]17.0281[/C][/ROW]
[ROW][C]9[/C][C]4145[/C][C]4101.17[/C][C]4103.54[/C][C]-2.37534[/C][C]43.8337[/C][/ROW]
[ROW][C]10[/C][C]4190[/C][C]4136.63[/C][C]4138.75[/C][C]-2.12071[/C][C]53.3707[/C][/ROW]
[ROW][C]11[/C][C]4175[/C][C]4165.5[/C][C]4171.04[/C][C]-5.54663[/C][C]9.50497[/C][/ROW]
[ROW][C]12[/C][C]4230[/C][C]4196.19[/C][C]4201.46[/C][C]-5.26886[/C][C]33.8105[/C][/ROW]
[ROW][C]13[/C][C]4220[/C][C]4234.82[/C][C]4228.75[/C][C]6.07374[/C][C]-14.8237[/C][/ROW]
[ROW][C]14[/C][C]4245[/C][C]4242.44[/C][C]4252.92[/C][C]-10.4772[/C][C]2.56052[/C][/ROW]
[ROW][C]15[/C][C]4295[/C][C]4267.93[/C][C]4271.46[/C][C]-3.52985[/C][C]27.0715[/C][/ROW]
[ROW][C]16[/C][C]4290[/C][C]4283.45[/C][C]4283.75[/C][C]-0.300685[/C][C]6.55068[/C][/ROW]
[ROW][C]17[/C][C]4325[/C][C]4304.02[/C][C]4295.83[/C][C]8.1889[/C][C]20.9778[/C][/ROW]
[ROW][C]18[/C][C]4335[/C][C]4314[/C][C]4306.46[/C][C]7.53786[/C][C]21.0038[/C][/ROW]
[ROW][C]19[/C][C]4360[/C][C]4314.64[/C][C]4313.96[/C][C]0.680218[/C][C]45.3614[/C][/ROW]
[ROW][C]20[/C][C]4360[/C][C]4328.81[/C][C]4321.67[/C][C]7.13855[/C][C]31.1948[/C][/ROW]
[ROW][C]21[/C][C]4320[/C][C]4325.96[/C][C]4328.33[/C][C]-2.37534[/C][C]-5.958[/C][/ROW]
[ROW][C]22[/C][C]4310[/C][C]4334.13[/C][C]4336.25[/C][C]-2.12071[/C][C]-24.1293[/C][/ROW]
[ROW][C]23[/C][C]4345[/C][C]4340.29[/C][C]4345.83[/C][C]-5.54663[/C][C]4.7133[/C][/ROW]
[ROW][C]24[/C][C]4315[/C][C]4349.52[/C][C]4354.79[/C][C]-5.26886[/C][C]-34.5228[/C][/ROW]
[ROW][C]25[/C][C]4315[/C][C]4366.49[/C][C]4360.42[/C][C]6.07374[/C][C]-51.4904[/C][/ROW]
[ROW][C]26[/C][C]4335[/C][C]4354.73[/C][C]4365.21[/C][C]-10.4772[/C][C]-19.7311[/C][/ROW]
[ROW][C]27[/C][C]4365[/C][C]4371.47[/C][C]4375[/C][C]-3.52985[/C][C]-6.47015[/C][/ROW]
[ROW][C]28[/C][C]4410[/C][C]4385.95[/C][C]4386.25[/C][C]-0.300685[/C][C]24.0507[/C][/ROW]
[ROW][C]29[/C][C]4435[/C][C]4403.81[/C][C]4395.62[/C][C]8.1889[/C][C]31.1861[/C][/ROW]
[ROW][C]30[/C][C]4440[/C][C]4414.41[/C][C]4406.88[/C][C]7.53786[/C][C]25.5871[/C][/ROW]
[ROW][C]31[/C][C]4390[/C][C]4424.85[/C][C]4424.17[/C][C]0.680218[/C][C]-34.8469[/C][/ROW]
[ROW][C]32[/C][C]4445[/C][C]4449.22[/C][C]4442.08[/C][C]7.13855[/C][C]-4.22188[/C][/ROW]
[ROW][C]33[/C][C]4470[/C][C]4452.42[/C][C]4454.79[/C][C]-2.37534[/C][C]17.5837[/C][/ROW]
[ROW][C]34[/C][C]4430[/C][C]4463.09[/C][C]4465.21[/C][C]-2.12071[/C][C]-33.0876[/C][/ROW]
[ROW][C]35[/C][C]4450[/C][C]4469.45[/C][C]4475[/C][C]-5.54663[/C][C]-19.4534[/C][/ROW]
[ROW][C]36[/C][C]4480[/C][C]4479.11[/C][C]4484.38[/C][C]-5.26886[/C][C]0.893856[/C][/ROW]
[ROW][C]37[/C][C]4565[/C][C]4502.95[/C][C]4496.88[/C][C]6.07374[/C][C]62.0513[/C][/ROW]
[ROW][C]38[/C][C]4515[/C][C]4499.94[/C][C]4510.42[/C][C]-10.4772[/C][C]15.0605[/C][/ROW]
[ROW][C]39[/C][C]4490[/C][C]4518.14[/C][C]4521.67[/C][C]-3.52985[/C][C]-28.1368[/C][/ROW]
[ROW][C]40[/C][C]4535[/C][C]4537.62[/C][C]4537.92[/C][C]-0.300685[/C][C]-2.61598[/C][/ROW]
[ROW][C]41[/C][C]4545[/C][C]4568.19[/C][C]4560[/C][C]8.1889[/C][C]-23.1889[/C][/ROW]
[ROW][C]42[/C][C]4555[/C][C]4591.29[/C][C]4583.75[/C][C]7.53786[/C][C]-36.2879[/C][/ROW]
[ROW][C]43[/C][C]4575[/C][C]4605.68[/C][C]4605[/C][C]0.680218[/C][C]-30.6802[/C][/ROW]
[ROW][C]44[/C][C]4585[/C][C]4634.01[/C][C]4626.88[/C][C]7.13855[/C][C]-49.0136[/C][/ROW]
[ROW][C]45[/C][C]4600[/C][C]4653.25[/C][C]4655.62[/C][C]-2.37534[/C][C]-53.2497[/C][/ROW]
[ROW][C]46[/C][C]4690[/C][C]4686.21[/C][C]4688.33[/C][C]-2.12071[/C][C]3.78737[/C][/ROW]
[ROW][C]47[/C][C]4720[/C][C]4719.04[/C][C]4724.58[/C][C]-5.54663[/C][C]0.963301[/C][/ROW]
[ROW][C]48[/C][C]4780[/C][C]4759.73[/C][C]4765[/C][C]-5.26886[/C][C]20.2689[/C][/ROW]
[ROW][C]49[/C][C]4775[/C][C]4814.41[/C][C]4808.33[/C][C]6.07374[/C][C]-39.4071[/C][/ROW]
[ROW][C]50[/C][C]4830[/C][C]4840.56[/C][C]4851.04[/C][C]-10.4772[/C][C]-10.5645[/C][/ROW]
[ROW][C]51[/C][C]4865[/C][C]4886.68[/C][C]4890.21[/C][C]-3.52985[/C][C]-21.6785[/C][/ROW]
[ROW][C]52[/C][C]4945[/C][C]4926.16[/C][C]4926.46[/C][C]-0.300685[/C][C]18.8424[/C][/ROW]
[ROW][C]53[/C][C]5005[/C][C]4967.98[/C][C]4959.79[/C][C]8.1889[/C][C]37.0194[/C][/ROW]
[ROW][C]54[/C][C]5065[/C][C]4995.25[/C][C]4987.71[/C][C]7.53786[/C][C]69.7538[/C][/ROW]
[ROW][C]55[/C][C]5105[/C][C]5013.39[/C][C]5012.71[/C][C]0.680218[/C][C]91.6114[/C][/ROW]
[ROW][C]56[/C][C]5080[/C][C]5044.43[/C][C]5037.29[/C][C]7.13855[/C][C]35.5698[/C][/ROW]
[ROW][C]57[/C][C]5045[/C][C]5057.21[/C][C]5059.58[/C][C]-2.37534[/C][C]-12.208[/C][/ROW]
[ROW][C]58[/C][C]5115[/C][C]5074.96[/C][C]5077.08[/C][C]-2.12071[/C][C]40.0374[/C][/ROW]
[ROW][C]59[/C][C]5095[/C][C]5081.12[/C][C]5086.67[/C][C]-5.54663[/C][C]13.88[/C][/ROW]
[ROW][C]60[/C][C]5075[/C][C]5083.06[/C][C]5088.33[/C][C]-5.26886[/C][C]-8.06448[/C][/ROW]
[ROW][C]61[/C][C]5080[/C][C]5092.53[/C][C]5086.46[/C][C]6.07374[/C][C]-12.5321[/C][/ROW]
[ROW][C]62[/C][C]5115[/C][C]5076.4[/C][C]5086.88[/C][C]-10.4772[/C][C]38.6022[/C][/ROW]
[ROW][C]63[/C][C]5115[/C][C]5086.26[/C][C]5089.79[/C][C]-3.52985[/C][C]28.7382[/C][/ROW]
[ROW][C]64[/C][C]5115[/C][C]5090.32[/C][C]5090.62[/C][C]-0.300685[/C][C]24.6757[/C][/ROW]
[ROW][C]65[/C][C]5065[/C][C]5097.77[/C][C]5089.58[/C][C]8.1889[/C][C]-32.7722[/C][/ROW]
[ROW][C]66[/C][C]5045[/C][C]5098.58[/C][C]5091.04[/C][C]7.53786[/C][C]-53.5795[/C][/ROW]
[ROW][C]67[/C][C]5080[/C][C]5098.39[/C][C]5097.71[/C][C]0.680218[/C][C]-18.3886[/C][/ROW]
[ROW][C]68[/C][C]5115[/C][C]5110.47[/C][C]5103.33[/C][C]7.13855[/C][C]4.52812[/C][/ROW]
[ROW][C]69[/C][C]5080[/C][C]5105.33[/C][C]5107.71[/C][C]-2.37534[/C][C]-25.333[/C][/ROW]
[ROW][C]70[/C][C]5100[/C][C]5110.59[/C][C]5112.71[/C][C]-2.12071[/C][C]-10.5876[/C][/ROW]
[ROW][C]71[/C][C]5085[/C][C]5110.29[/C][C]5115.83[/C][C]-5.54663[/C][C]-25.2867[/C][/ROW]
[ROW][C]72[/C][C]5120[/C][C]5114.73[/C][C]5120[/C][C]-5.26886[/C][C]5.26886[/C][/ROW]
[ROW][C]73[/C][C]5195[/C][C]5126.49[/C][C]5120.42[/C][C]6.07374[/C][C]68.5096[/C][/ROW]
[ROW][C]74[/C][C]5135[/C][C]5105.56[/C][C]5116.04[/C][C]-10.4772[/C][C]29.4355[/C][/ROW]
[ROW][C]75[/C][C]5200[/C][C]5110.01[/C][C]5113.54[/C][C]-3.52985[/C][C]89.9882[/C][/ROW]
[ROW][C]76[/C][C]5150[/C][C]5110.12[/C][C]5110.42[/C][C]-0.300685[/C][C]39.884[/C][/ROW]
[ROW][C]77[/C][C]5105[/C][C]5115.9[/C][C]5107.71[/C][C]8.1889[/C][C]-10.8972[/C][/ROW]
[ROW][C]78[/C][C]5105[/C][C]5113.37[/C][C]5105.83[/C][C]7.53786[/C][C]-8.37119[/C][/ROW]
[ROW][C]79[/C][C]5030[/C][C]5102.97[/C][C]5102.29[/C][C]0.680218[/C][C]-72.9719[/C][/ROW]
[ROW][C]80[/C][C]5060[/C][C]5106.93[/C][C]5099.79[/C][C]7.13855[/C][C]-46.9302[/C][/ROW]
[ROW][C]81[/C][C]5075[/C][C]5094.08[/C][C]5096.46[/C][C]-2.37534[/C][C]-19.083[/C][/ROW]
[ROW][C]82[/C][C]5030[/C][C]5088.92[/C][C]5091.04[/C][C]-2.12071[/C][C]-58.921[/C][/ROW]
[ROW][C]83[/C][C]5090[/C][C]5083.2[/C][C]5088.75[/C][C]-5.54663[/C][C]6.79663[/C][/ROW]
[ROW][C]84[/C][C]5070[/C][C]5082.23[/C][C]5087.5[/C][C]-5.26886[/C][C]-12.2311[/C][/ROW]
[ROW][C]85[/C][C]5160[/C][C]5092.32[/C][C]5086.25[/C][C]6.07374[/C][C]67.6763[/C][/ROW]
[ROW][C]86[/C][C]5110[/C][C]5075.77[/C][C]5086.25[/C][C]-10.4772[/C][C]34.2272[/C][/ROW]
[ROW][C]87[/C][C]5145[/C][C]5079.6[/C][C]5083.12[/C][C]-3.52985[/C][C]65.4049[/C][/ROW]
[ROW][C]88[/C][C]5075[/C][C]5080.32[/C][C]5080.62[/C][C]-0.300685[/C][C]-5.32432[/C][/ROW]
[ROW][C]89[/C][C]5125[/C][C]5083.19[/C][C]5075[/C][C]8.1889[/C][C]41.8111[/C][/ROW]
[ROW][C]90[/C][C]5055[/C][C]5072.75[/C][C]5065.21[/C][C]7.53786[/C][C]-17.7462[/C][/ROW]
[ROW][C]91[/C][C]5050[/C][C]5049.64[/C][C]5048.96[/C][C]0.680218[/C][C]0.361449[/C][/ROW]
[ROW][C]92[/C][C]5040[/C][C]5031.51[/C][C]5024.38[/C][C]7.13855[/C][C]8.48645[/C][/ROW]
[ROW][C]93[/C][C]5020[/C][C]4992.21[/C][C]4994.58[/C][C]-2.37534[/C][C]27.792[/C][/ROW]
[ROW][C]94[/C][C]5025[/C][C]4962.88[/C][C]4965[/C][C]-2.12071[/C][C]62.1207[/C][/ROW]
[ROW][C]95[/C][C]4960[/C][C]4934.04[/C][C]4939.58[/C][C]-5.54663[/C][C]25.9633[/C][/ROW]
[ROW][C]96[/C][C]4965[/C][C]4913.69[/C][C]4918.96[/C][C]-5.26886[/C][C]51.3105[/C][/ROW]
[ROW][C]97[/C][C]4875[/C][C]4909.41[/C][C]4903.33[/C][C]6.07374[/C][C]-34.4071[/C][/ROW]
[ROW][C]98[/C][C]4805[/C][C]4878.06[/C][C]4888.54[/C][C]-10.4772[/C][C]-73.0645[/C][/ROW]
[ROW][C]99[/C][C]4735[/C][C]4873.14[/C][C]4876.67[/C][C]-3.52985[/C][C]-138.137[/C][/ROW]
[ROW][C]100[/C][C]4775[/C][C]4864.28[/C][C]4864.58[/C][C]-0.300685[/C][C]-89.2826[/C][/ROW]
[ROW][C]101[/C][C]4815[/C][C]4862.36[/C][C]4854.17[/C][C]8.1889[/C][C]-47.3556[/C][/ROW]
[ROW][C]102[/C][C]4870[/C][C]4853.58[/C][C]4846.04[/C][C]7.53786[/C][C]16.4205[/C][/ROW]
[ROW][C]103[/C][C]4860[/C][C]4842.14[/C][C]4841.46[/C][C]0.680218[/C][C]17.8614[/C][/ROW]
[ROW][C]104[/C][C]4875[/C][C]4852.76[/C][C]4845.62[/C][C]7.13855[/C][C]22.2364[/C][/ROW]
[ROW][C]105[/C][C]4900[/C][C]4854.5[/C][C]4856.88[/C][C]-2.37534[/C][C]45.5003[/C][/ROW]
[ROW][C]106[/C][C]4855[/C][C]4868.71[/C][C]4870.83[/C][C]-2.12071[/C][C]-13.7126[/C][/ROW]
[ROW][C]107[/C][C]4880[/C][C]4878.2[/C][C]4883.75[/C][C]-5.54663[/C][C]1.79663[/C][/ROW]
[ROW][C]108[/C][C]4850[/C][C]4887.86[/C][C]4893.12[/C][C]-5.26886[/C][C]-37.8561[/C][/ROW]
[ROW][C]109[/C][C]4880[/C][C]4906.7[/C][C]4900.62[/C][C]6.07374[/C][C]-26.6987[/C][/ROW]
[ROW][C]110[/C][C]4900[/C][C]4897.65[/C][C]4908.12[/C][C]-10.4772[/C][C]2.35219[/C][/ROW]
[ROW][C]111[/C][C]4910[/C][C]NA[/C][C]NA[/C][C]-3.52985[/C][C]NA[/C][/ROW]
[ROW][C]112[/C][C]4935[/C][C]NA[/C][C]NA[/C][C]-0.300685[/C][C]NA[/C][/ROW]
[ROW][C]113[/C][C]4965[/C][C]NA[/C][C]NA[/C][C]8.1889[/C][C]NA[/C][/ROW]
[ROW][C]114[/C][C]4945[/C][C]NA[/C][C]NA[/C][C]7.53786[/C][C]NA[/C][/ROW]
[ROW][C]115[/C][C]4965[/C][C]NA[/C][C]NA[/C][C]0.680218[/C][C]NA[/C][/ROW]
[ROW][C]116[/C][C]4950[/C][C]NA[/C][C]NA[/C][C]7.13855[/C][C]NA[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298271&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298271&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Classical Decomposition by Moving Averages
tObservationsFitTrendSeasonalRandom
13780NANA6.07374NA
23795NANA-10.4772NA
33840NANA-3.52985NA
43900NANA-0.300685NA
53940NANA8.1889NA
63990NANA7.53786NA
740504029.434028.750.68021820.5698
840904072.974065.837.1385517.0281
941454101.174103.54-2.3753443.8337
1041904136.634138.75-2.1207153.3707
1141754165.54171.04-5.546639.50497
1242304196.194201.46-5.2688633.8105
1342204234.824228.756.07374-14.8237
1442454242.444252.92-10.47722.56052
1542954267.934271.46-3.5298527.0715
1642904283.454283.75-0.3006856.55068
1743254304.024295.838.188920.9778
18433543144306.467.5378621.0038
1943604314.644313.960.68021845.3614
2043604328.814321.677.1385531.1948
2143204325.964328.33-2.37534-5.958
2243104334.134336.25-2.12071-24.1293
2343454340.294345.83-5.546634.7133
2443154349.524354.79-5.26886-34.5228
2543154366.494360.426.07374-51.4904
2643354354.734365.21-10.4772-19.7311
2743654371.474375-3.52985-6.47015
2844104385.954386.25-0.30068524.0507
2944354403.814395.628.188931.1861
3044404414.414406.887.5378625.5871
3143904424.854424.170.680218-34.8469
3244454449.224442.087.13855-4.22188
3344704452.424454.79-2.3753417.5837
3444304463.094465.21-2.12071-33.0876
3544504469.454475-5.54663-19.4534
3644804479.114484.38-5.268860.893856
3745654502.954496.886.0737462.0513
3845154499.944510.42-10.477215.0605
3944904518.144521.67-3.52985-28.1368
4045354537.624537.92-0.300685-2.61598
4145454568.1945608.1889-23.1889
4245554591.294583.757.53786-36.2879
4345754605.6846050.680218-30.6802
4445854634.014626.887.13855-49.0136
4546004653.254655.62-2.37534-53.2497
4646904686.214688.33-2.120713.78737
4747204719.044724.58-5.546630.963301
4847804759.734765-5.2688620.2689
4947754814.414808.336.07374-39.4071
5048304840.564851.04-10.4772-10.5645
5148654886.684890.21-3.52985-21.6785
5249454926.164926.46-0.30068518.8424
5350054967.984959.798.188937.0194
5450654995.254987.717.5378669.7538
5551055013.395012.710.68021891.6114
5650805044.435037.297.1385535.5698
5750455057.215059.58-2.37534-12.208
5851155074.965077.08-2.1207140.0374
5950955081.125086.67-5.5466313.88
6050755083.065088.33-5.26886-8.06448
6150805092.535086.466.07374-12.5321
6251155076.45086.88-10.477238.6022
6351155086.265089.79-3.5298528.7382
6451155090.325090.62-0.30068524.6757
6550655097.775089.588.1889-32.7722
6650455098.585091.047.53786-53.5795
6750805098.395097.710.680218-18.3886
6851155110.475103.337.138554.52812
6950805105.335107.71-2.37534-25.333
7051005110.595112.71-2.12071-10.5876
7150855110.295115.83-5.54663-25.2867
7251205114.735120-5.268865.26886
7351955126.495120.426.0737468.5096
7451355105.565116.04-10.477229.4355
7552005110.015113.54-3.5298589.9882
7651505110.125110.42-0.30068539.884
7751055115.95107.718.1889-10.8972
7851055113.375105.837.53786-8.37119
7950305102.975102.290.680218-72.9719
8050605106.935099.797.13855-46.9302
8150755094.085096.46-2.37534-19.083
8250305088.925091.04-2.12071-58.921
8350905083.25088.75-5.546636.79663
8450705082.235087.5-5.26886-12.2311
8551605092.325086.256.0737467.6763
8651105075.775086.25-10.477234.2272
8751455079.65083.12-3.5298565.4049
8850755080.325080.62-0.300685-5.32432
8951255083.1950758.188941.8111
9050555072.755065.217.53786-17.7462
9150505049.645048.960.6802180.361449
9250405031.515024.387.138558.48645
9350204992.214994.58-2.3753427.792
9450254962.884965-2.1207162.1207
9549604934.044939.58-5.5466325.9633
9649654913.694918.96-5.2688651.3105
9748754909.414903.336.07374-34.4071
9848054878.064888.54-10.4772-73.0645
9947354873.144876.67-3.52985-138.137
10047754864.284864.58-0.300685-89.2826
10148154862.364854.178.1889-47.3556
10248704853.584846.047.5378616.4205
10348604842.144841.460.68021817.8614
10448754852.764845.627.1385522.2364
10549004854.54856.88-2.3753445.5003
10648554868.714870.83-2.12071-13.7126
10748804878.24883.75-5.546631.79663
10848504887.864893.12-5.26886-37.8561
10948804906.74900.626.07374-26.6987
11049004897.654908.12-10.47722.35219
1114910NANA-3.52985NA
1124935NANA-0.300685NA
1134965NANA8.1889NA
1144945NANA7.53786NA
1154965NANA0.680218NA
1164950NANA7.13855NA



Parameters (Session):
Parameters (R input):
par1 = additive ; par2 = 12 ;
R code (references can be found in the software module):
par2 <- as.numeric(par2)
x <- ts(x,freq=par2)
m <- decompose(x,type=par1)
m$figure
bitmap(file='test1.png')
plot(m)
dev.off()
mylagmax <- length(x)/2
bitmap(file='test2.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(x),lag.max = mylagmax,main='Observed')
acf(as.numeric(m$trend),na.action=na.pass,lag.max = mylagmax,main='Trend')
acf(as.numeric(m$seasonal),na.action=na.pass,lag.max = mylagmax,main='Seasonal')
acf(as.numeric(m$random),na.action=na.pass,lag.max = mylagmax,main='Random')
par(op)
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
spectrum(as.numeric(x),main='Observed')
spectrum(as.numeric(m$trend[!is.na(m$trend)]),main='Trend')
spectrum(as.numeric(m$seasonal[!is.na(m$seasonal)]),main='Seasonal')
spectrum(as.numeric(m$random[!is.na(m$random)]),main='Random')
par(op)
dev.off()
bitmap(file='test4.png')
op <- par(mfrow = c(2,2))
cpgram(as.numeric(x),main='Observed')
cpgram(as.numeric(m$trend[!is.na(m$trend)]),main='Trend')
cpgram(as.numeric(m$seasonal[!is.na(m$seasonal)]),main='Seasonal')
cpgram(as.numeric(m$random[!is.na(m$random)]),main='Random')
par(op)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Classical Decomposition by Moving Averages',6,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observations',header=TRUE)
a<-table.element(a,'Fit',header=TRUE)
a<-table.element(a,'Trend',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,'Random',header=TRUE)
a<-table.row.end(a)
for (i in 1:length(m$trend)) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
if (par1 == 'additive') a<-table.element(a,signif(m$trend[i]+m$seasonal[i],6)) else a<-table.element(a,signif(m$trend[i]*m$seasonal[i],6))
a<-table.element(a,signif(m$trend[i],6))
a<-table.element(a,signif(m$seasonal[i],6))
a<-table.element(a,signif(m$random[i],6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')