Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_exponentialsmoothing.wasp
Title produced by softwareExponential Smoothing
Date of computationWed, 07 Dec 2016 16:26:53 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/07/t148112446759zrp450ud724sg.htm/, Retrieved Fri, 01 Nov 2024 03:41:46 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=298196, Retrieved Fri, 01 Nov 2024 03:41:46 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact84
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Exponential Smoothing] [F1 Competitie Exp...] [2016-12-07 15:26:53] [15b172d40fa89b8c3dac8ac54fed18ba] [Current]
Feedback Forum

Post a new message
Dataseries X:
7984
7937
7821
7749
7785
7632
7533
7536
7470
7367
7246
7150
7050
6907
6803
6626
6512
6509
6419
6365
6395
6360
6386
6360
6259
6198
6103
6064
5968
5908
5805
5728
5678
5274
5166
5106
5008
5034
4901
4853
4790
4703
4640
4544
4465
4335
4345
4246
4131
4112
4111
4096
3970
3970
3908
3861
3819
3781
3684
3664
3648
3564
3490




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time1 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298196&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]1 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=298196&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298196&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center







Estimated Parameters of Exponential Smoothing
ParameterValue
alpha1
beta0.0533782715603036
gammaFALSE

\begin{tabular}{lllllllll}
\hline
Estimated Parameters of Exponential Smoothing \tabularnewline
Parameter & Value \tabularnewline
alpha & 1 \tabularnewline
beta & 0.0533782715603036 \tabularnewline
gamma & FALSE \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298196&T=1

[TABLE]
[ROW][C]Estimated Parameters of Exponential Smoothing[/C][/ROW]
[ROW][C]Parameter[/C][C]Value[/C][/ROW]
[ROW][C]alpha[/C][C]1[/C][/ROW]
[ROW][C]beta[/C][C]0.0533782715603036[/C][/ROW]
[ROW][C]gamma[/C][C]FALSE[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298196&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298196&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Estimated Parameters of Exponential Smoothing
ParameterValue
alpha1
beta0.0533782715603036
gammaFALSE







Interpolation Forecasts of Exponential Smoothing
tObservedFittedResiduals
378217890-69
477497770.31689926234-21.3168992623387
577857697.1790400246987.82095997531
676327737.86677107494-105.866771074939
775337579.21578581929-46.2157858192886
875367477.7488670534558.251132946546
974707483.85821184657-13.8582118465692
1073677417.11848445128-50.1184844512836
1172467311.44324637805-65.4432463780522
1271507186.9499990011-36.9499990010963
1370507088.97767192026-38.9776719202628
1469076986.89711116371-79.8971111637147
1568036839.63234146713-36.6323414671342
1666266733.67697039641-107.676970396412
1765126550.9293598298-38.9293598298009
1865096434.8513778891474.1486221108626
1964196435.80930317599-16.8093031759936
2063656344.9120516263320.0879483736744
2163956291.9843115897103.015688410295
2263606327.4831109806432.516889019359
2363866294.2188063130191.7811936869875
2463606325.1179277937734.8820722062346
2562596300.97987251658-41.9798725165765
2661986197.739059481320.2609405186804
2761036136.75298803519-33.7529880351867
2860646039.9513118738724.0486881261268
2959686002.23498927934-34.2349892793382
3059085904.407584724723.59241527527865
3158055844.59934164284-39.5993416428428
3257285739.48559723102-11.4855972310215
3356785661.8725159029916.1274840970082
3452745612.73337312871-338.733373128707
3551665190.65237115131-24.6523711513055
3651065081.3364701893924.6635298106148
3750085022.65296678125-14.652966781252
3850344923.87081674124110.129183258762
3949014955.74932219194-54.7493221919385
4048534819.8268980042333.1731019957651
4147904773.5976208510616.4023791489371
4247034711.47315149951-8.47315149950919
4346404624.020869317815.9791306822026
4445444561.87380769465-17.8738076946493
4544654464.919734733710.080265266292372
4643354385.92401915489-50.9240191548888
4743454253.205783031591.794216968503
4842464268.10559967251-22.1055996725072
4941314167.92564097018-36.9256409701848
5041124050.9546140789461.0453859210602
5141114035.2131112661475.7868887338623
5240964038.2584843936857.7415156063157
5339704026.34062669402-56.3406266940219
5439703897.3332614224772.6667385775295
5539083901.212086327666.78791367233634
5638613839.5744134269921.4255865730065
5738193793.7180742054325.2819257945739
5837813753.0675797060627.9324202939433
5936843716.55856402184-32.5585640218433
6036643617.8206441498746.1793558501286
6136483600.2856183469247.7143816530802
6235643586.83252956813-22.8325295681298
6334903501.61376860443-11.6137686044335

\begin{tabular}{lllllllll}
\hline
Interpolation Forecasts of Exponential Smoothing \tabularnewline
t & Observed & Fitted & Residuals \tabularnewline
3 & 7821 & 7890 & -69 \tabularnewline
4 & 7749 & 7770.31689926234 & -21.3168992623387 \tabularnewline
5 & 7785 & 7697.17904002469 & 87.82095997531 \tabularnewline
6 & 7632 & 7737.86677107494 & -105.866771074939 \tabularnewline
7 & 7533 & 7579.21578581929 & -46.2157858192886 \tabularnewline
8 & 7536 & 7477.74886705345 & 58.251132946546 \tabularnewline
9 & 7470 & 7483.85821184657 & -13.8582118465692 \tabularnewline
10 & 7367 & 7417.11848445128 & -50.1184844512836 \tabularnewline
11 & 7246 & 7311.44324637805 & -65.4432463780522 \tabularnewline
12 & 7150 & 7186.9499990011 & -36.9499990010963 \tabularnewline
13 & 7050 & 7088.97767192026 & -38.9776719202628 \tabularnewline
14 & 6907 & 6986.89711116371 & -79.8971111637147 \tabularnewline
15 & 6803 & 6839.63234146713 & -36.6323414671342 \tabularnewline
16 & 6626 & 6733.67697039641 & -107.676970396412 \tabularnewline
17 & 6512 & 6550.9293598298 & -38.9293598298009 \tabularnewline
18 & 6509 & 6434.85137788914 & 74.1486221108626 \tabularnewline
19 & 6419 & 6435.80930317599 & -16.8093031759936 \tabularnewline
20 & 6365 & 6344.91205162633 & 20.0879483736744 \tabularnewline
21 & 6395 & 6291.9843115897 & 103.015688410295 \tabularnewline
22 & 6360 & 6327.48311098064 & 32.516889019359 \tabularnewline
23 & 6386 & 6294.21880631301 & 91.7811936869875 \tabularnewline
24 & 6360 & 6325.11792779377 & 34.8820722062346 \tabularnewline
25 & 6259 & 6300.97987251658 & -41.9798725165765 \tabularnewline
26 & 6198 & 6197.73905948132 & 0.2609405186804 \tabularnewline
27 & 6103 & 6136.75298803519 & -33.7529880351867 \tabularnewline
28 & 6064 & 6039.95131187387 & 24.0486881261268 \tabularnewline
29 & 5968 & 6002.23498927934 & -34.2349892793382 \tabularnewline
30 & 5908 & 5904.40758472472 & 3.59241527527865 \tabularnewline
31 & 5805 & 5844.59934164284 & -39.5993416428428 \tabularnewline
32 & 5728 & 5739.48559723102 & -11.4855972310215 \tabularnewline
33 & 5678 & 5661.87251590299 & 16.1274840970082 \tabularnewline
34 & 5274 & 5612.73337312871 & -338.733373128707 \tabularnewline
35 & 5166 & 5190.65237115131 & -24.6523711513055 \tabularnewline
36 & 5106 & 5081.33647018939 & 24.6635298106148 \tabularnewline
37 & 5008 & 5022.65296678125 & -14.652966781252 \tabularnewline
38 & 5034 & 4923.87081674124 & 110.129183258762 \tabularnewline
39 & 4901 & 4955.74932219194 & -54.7493221919385 \tabularnewline
40 & 4853 & 4819.82689800423 & 33.1731019957651 \tabularnewline
41 & 4790 & 4773.59762085106 & 16.4023791489371 \tabularnewline
42 & 4703 & 4711.47315149951 & -8.47315149950919 \tabularnewline
43 & 4640 & 4624.0208693178 & 15.9791306822026 \tabularnewline
44 & 4544 & 4561.87380769465 & -17.8738076946493 \tabularnewline
45 & 4465 & 4464.91973473371 & 0.080265266292372 \tabularnewline
46 & 4335 & 4385.92401915489 & -50.9240191548888 \tabularnewline
47 & 4345 & 4253.2057830315 & 91.794216968503 \tabularnewline
48 & 4246 & 4268.10559967251 & -22.1055996725072 \tabularnewline
49 & 4131 & 4167.92564097018 & -36.9256409701848 \tabularnewline
50 & 4112 & 4050.95461407894 & 61.0453859210602 \tabularnewline
51 & 4111 & 4035.21311126614 & 75.7868887338623 \tabularnewline
52 & 4096 & 4038.25848439368 & 57.7415156063157 \tabularnewline
53 & 3970 & 4026.34062669402 & -56.3406266940219 \tabularnewline
54 & 3970 & 3897.33326142247 & 72.6667385775295 \tabularnewline
55 & 3908 & 3901.21208632766 & 6.78791367233634 \tabularnewline
56 & 3861 & 3839.57441342699 & 21.4255865730065 \tabularnewline
57 & 3819 & 3793.71807420543 & 25.2819257945739 \tabularnewline
58 & 3781 & 3753.06757970606 & 27.9324202939433 \tabularnewline
59 & 3684 & 3716.55856402184 & -32.5585640218433 \tabularnewline
60 & 3664 & 3617.82064414987 & 46.1793558501286 \tabularnewline
61 & 3648 & 3600.28561834692 & 47.7143816530802 \tabularnewline
62 & 3564 & 3586.83252956813 & -22.8325295681298 \tabularnewline
63 & 3490 & 3501.61376860443 & -11.6137686044335 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298196&T=2

[TABLE]
[ROW][C]Interpolation Forecasts of Exponential Smoothing[/C][/ROW]
[ROW][C]t[/C][C]Observed[/C][C]Fitted[/C][C]Residuals[/C][/ROW]
[ROW][C]3[/C][C]7821[/C][C]7890[/C][C]-69[/C][/ROW]
[ROW][C]4[/C][C]7749[/C][C]7770.31689926234[/C][C]-21.3168992623387[/C][/ROW]
[ROW][C]5[/C][C]7785[/C][C]7697.17904002469[/C][C]87.82095997531[/C][/ROW]
[ROW][C]6[/C][C]7632[/C][C]7737.86677107494[/C][C]-105.866771074939[/C][/ROW]
[ROW][C]7[/C][C]7533[/C][C]7579.21578581929[/C][C]-46.2157858192886[/C][/ROW]
[ROW][C]8[/C][C]7536[/C][C]7477.74886705345[/C][C]58.251132946546[/C][/ROW]
[ROW][C]9[/C][C]7470[/C][C]7483.85821184657[/C][C]-13.8582118465692[/C][/ROW]
[ROW][C]10[/C][C]7367[/C][C]7417.11848445128[/C][C]-50.1184844512836[/C][/ROW]
[ROW][C]11[/C][C]7246[/C][C]7311.44324637805[/C][C]-65.4432463780522[/C][/ROW]
[ROW][C]12[/C][C]7150[/C][C]7186.9499990011[/C][C]-36.9499990010963[/C][/ROW]
[ROW][C]13[/C][C]7050[/C][C]7088.97767192026[/C][C]-38.9776719202628[/C][/ROW]
[ROW][C]14[/C][C]6907[/C][C]6986.89711116371[/C][C]-79.8971111637147[/C][/ROW]
[ROW][C]15[/C][C]6803[/C][C]6839.63234146713[/C][C]-36.6323414671342[/C][/ROW]
[ROW][C]16[/C][C]6626[/C][C]6733.67697039641[/C][C]-107.676970396412[/C][/ROW]
[ROW][C]17[/C][C]6512[/C][C]6550.9293598298[/C][C]-38.9293598298009[/C][/ROW]
[ROW][C]18[/C][C]6509[/C][C]6434.85137788914[/C][C]74.1486221108626[/C][/ROW]
[ROW][C]19[/C][C]6419[/C][C]6435.80930317599[/C][C]-16.8093031759936[/C][/ROW]
[ROW][C]20[/C][C]6365[/C][C]6344.91205162633[/C][C]20.0879483736744[/C][/ROW]
[ROW][C]21[/C][C]6395[/C][C]6291.9843115897[/C][C]103.015688410295[/C][/ROW]
[ROW][C]22[/C][C]6360[/C][C]6327.48311098064[/C][C]32.516889019359[/C][/ROW]
[ROW][C]23[/C][C]6386[/C][C]6294.21880631301[/C][C]91.7811936869875[/C][/ROW]
[ROW][C]24[/C][C]6360[/C][C]6325.11792779377[/C][C]34.8820722062346[/C][/ROW]
[ROW][C]25[/C][C]6259[/C][C]6300.97987251658[/C][C]-41.9798725165765[/C][/ROW]
[ROW][C]26[/C][C]6198[/C][C]6197.73905948132[/C][C]0.2609405186804[/C][/ROW]
[ROW][C]27[/C][C]6103[/C][C]6136.75298803519[/C][C]-33.7529880351867[/C][/ROW]
[ROW][C]28[/C][C]6064[/C][C]6039.95131187387[/C][C]24.0486881261268[/C][/ROW]
[ROW][C]29[/C][C]5968[/C][C]6002.23498927934[/C][C]-34.2349892793382[/C][/ROW]
[ROW][C]30[/C][C]5908[/C][C]5904.40758472472[/C][C]3.59241527527865[/C][/ROW]
[ROW][C]31[/C][C]5805[/C][C]5844.59934164284[/C][C]-39.5993416428428[/C][/ROW]
[ROW][C]32[/C][C]5728[/C][C]5739.48559723102[/C][C]-11.4855972310215[/C][/ROW]
[ROW][C]33[/C][C]5678[/C][C]5661.87251590299[/C][C]16.1274840970082[/C][/ROW]
[ROW][C]34[/C][C]5274[/C][C]5612.73337312871[/C][C]-338.733373128707[/C][/ROW]
[ROW][C]35[/C][C]5166[/C][C]5190.65237115131[/C][C]-24.6523711513055[/C][/ROW]
[ROW][C]36[/C][C]5106[/C][C]5081.33647018939[/C][C]24.6635298106148[/C][/ROW]
[ROW][C]37[/C][C]5008[/C][C]5022.65296678125[/C][C]-14.652966781252[/C][/ROW]
[ROW][C]38[/C][C]5034[/C][C]4923.87081674124[/C][C]110.129183258762[/C][/ROW]
[ROW][C]39[/C][C]4901[/C][C]4955.74932219194[/C][C]-54.7493221919385[/C][/ROW]
[ROW][C]40[/C][C]4853[/C][C]4819.82689800423[/C][C]33.1731019957651[/C][/ROW]
[ROW][C]41[/C][C]4790[/C][C]4773.59762085106[/C][C]16.4023791489371[/C][/ROW]
[ROW][C]42[/C][C]4703[/C][C]4711.47315149951[/C][C]-8.47315149950919[/C][/ROW]
[ROW][C]43[/C][C]4640[/C][C]4624.0208693178[/C][C]15.9791306822026[/C][/ROW]
[ROW][C]44[/C][C]4544[/C][C]4561.87380769465[/C][C]-17.8738076946493[/C][/ROW]
[ROW][C]45[/C][C]4465[/C][C]4464.91973473371[/C][C]0.080265266292372[/C][/ROW]
[ROW][C]46[/C][C]4335[/C][C]4385.92401915489[/C][C]-50.9240191548888[/C][/ROW]
[ROW][C]47[/C][C]4345[/C][C]4253.2057830315[/C][C]91.794216968503[/C][/ROW]
[ROW][C]48[/C][C]4246[/C][C]4268.10559967251[/C][C]-22.1055996725072[/C][/ROW]
[ROW][C]49[/C][C]4131[/C][C]4167.92564097018[/C][C]-36.9256409701848[/C][/ROW]
[ROW][C]50[/C][C]4112[/C][C]4050.95461407894[/C][C]61.0453859210602[/C][/ROW]
[ROW][C]51[/C][C]4111[/C][C]4035.21311126614[/C][C]75.7868887338623[/C][/ROW]
[ROW][C]52[/C][C]4096[/C][C]4038.25848439368[/C][C]57.7415156063157[/C][/ROW]
[ROW][C]53[/C][C]3970[/C][C]4026.34062669402[/C][C]-56.3406266940219[/C][/ROW]
[ROW][C]54[/C][C]3970[/C][C]3897.33326142247[/C][C]72.6667385775295[/C][/ROW]
[ROW][C]55[/C][C]3908[/C][C]3901.21208632766[/C][C]6.78791367233634[/C][/ROW]
[ROW][C]56[/C][C]3861[/C][C]3839.57441342699[/C][C]21.4255865730065[/C][/ROW]
[ROW][C]57[/C][C]3819[/C][C]3793.71807420543[/C][C]25.2819257945739[/C][/ROW]
[ROW][C]58[/C][C]3781[/C][C]3753.06757970606[/C][C]27.9324202939433[/C][/ROW]
[ROW][C]59[/C][C]3684[/C][C]3716.55856402184[/C][C]-32.5585640218433[/C][/ROW]
[ROW][C]60[/C][C]3664[/C][C]3617.82064414987[/C][C]46.1793558501286[/C][/ROW]
[ROW][C]61[/C][C]3648[/C][C]3600.28561834692[/C][C]47.7143816530802[/C][/ROW]
[ROW][C]62[/C][C]3564[/C][C]3586.83252956813[/C][C]-22.8325295681298[/C][/ROW]
[ROW][C]63[/C][C]3490[/C][C]3501.61376860443[/C][C]-11.6137686044335[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298196&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298196&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Interpolation Forecasts of Exponential Smoothing
tObservedFittedResiduals
378217890-69
477497770.31689926234-21.3168992623387
577857697.1790400246987.82095997531
676327737.86677107494-105.866771074939
775337579.21578581929-46.2157858192886
875367477.7488670534558.251132946546
974707483.85821184657-13.8582118465692
1073677417.11848445128-50.1184844512836
1172467311.44324637805-65.4432463780522
1271507186.9499990011-36.9499990010963
1370507088.97767192026-38.9776719202628
1469076986.89711116371-79.8971111637147
1568036839.63234146713-36.6323414671342
1666266733.67697039641-107.676970396412
1765126550.9293598298-38.9293598298009
1865096434.8513778891474.1486221108626
1964196435.80930317599-16.8093031759936
2063656344.9120516263320.0879483736744
2163956291.9843115897103.015688410295
2263606327.4831109806432.516889019359
2363866294.2188063130191.7811936869875
2463606325.1179277937734.8820722062346
2562596300.97987251658-41.9798725165765
2661986197.739059481320.2609405186804
2761036136.75298803519-33.7529880351867
2860646039.9513118738724.0486881261268
2959686002.23498927934-34.2349892793382
3059085904.407584724723.59241527527865
3158055844.59934164284-39.5993416428428
3257285739.48559723102-11.4855972310215
3356785661.8725159029916.1274840970082
3452745612.73337312871-338.733373128707
3551665190.65237115131-24.6523711513055
3651065081.3364701893924.6635298106148
3750085022.65296678125-14.652966781252
3850344923.87081674124110.129183258762
3949014955.74932219194-54.7493221919385
4048534819.8268980042333.1731019957651
4147904773.5976208510616.4023791489371
4247034711.47315149951-8.47315149950919
4346404624.020869317815.9791306822026
4445444561.87380769465-17.8738076946493
4544654464.919734733710.080265266292372
4643354385.92401915489-50.9240191548888
4743454253.205783031591.794216968503
4842464268.10559967251-22.1055996725072
4941314167.92564097018-36.9256409701848
5041124050.9546140789461.0453859210602
5141114035.2131112661475.7868887338623
5240964038.2584843936857.7415156063157
5339704026.34062669402-56.3406266940219
5439703897.3332614224772.6667385775295
5539083901.212086327666.78791367233634
5638613839.5744134269921.4255865730065
5738193793.7180742054325.2819257945739
5837813753.0675797060627.9324202939433
5936843716.55856402184-32.5585640218433
6036643617.8206441498746.1793558501286
6136483600.2856183469247.7143816530802
6235643586.83252956813-22.8325295681298
6334903501.61376860443-11.6137686044335







Extrapolation Forecasts of Exponential Smoothing
tForecast95% Lower Bound95% Upper Bound
643426.993845710033295.878691716253558.1089997038
653363.987691420053173.549721588763554.42566125135
663300.981537130083061.556655692053540.40641856811
673237.975382840112954.316947899583521.63381778064
683174.969228550142849.733797594323500.20465950595
693111.963074260162746.764264060063477.16188446027
703048.956919970192644.808027119743453.10581282065
712985.950765680222543.486621344573428.41491001587
722922.944611390252442.546121723043403.34310105746
732859.938457100282341.808298974483378.06861522608
742796.93230281032241.143729439893352.72087618072
752733.926148520332140.455925952123327.39637108854

\begin{tabular}{lllllllll}
\hline
Extrapolation Forecasts of Exponential Smoothing \tabularnewline
t & Forecast & 95% Lower Bound & 95% Upper Bound \tabularnewline
64 & 3426.99384571003 & 3295.87869171625 & 3558.1089997038 \tabularnewline
65 & 3363.98769142005 & 3173.54972158876 & 3554.42566125135 \tabularnewline
66 & 3300.98153713008 & 3061.55665569205 & 3540.40641856811 \tabularnewline
67 & 3237.97538284011 & 2954.31694789958 & 3521.63381778064 \tabularnewline
68 & 3174.96922855014 & 2849.73379759432 & 3500.20465950595 \tabularnewline
69 & 3111.96307426016 & 2746.76426406006 & 3477.16188446027 \tabularnewline
70 & 3048.95691997019 & 2644.80802711974 & 3453.10581282065 \tabularnewline
71 & 2985.95076568022 & 2543.48662134457 & 3428.41491001587 \tabularnewline
72 & 2922.94461139025 & 2442.54612172304 & 3403.34310105746 \tabularnewline
73 & 2859.93845710028 & 2341.80829897448 & 3378.06861522608 \tabularnewline
74 & 2796.9323028103 & 2241.14372943989 & 3352.72087618072 \tabularnewline
75 & 2733.92614852033 & 2140.45592595212 & 3327.39637108854 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298196&T=3

[TABLE]
[ROW][C]Extrapolation Forecasts of Exponential Smoothing[/C][/ROW]
[ROW][C]t[/C][C]Forecast[/C][C]95% Lower Bound[/C][C]95% Upper Bound[/C][/ROW]
[ROW][C]64[/C][C]3426.99384571003[/C][C]3295.87869171625[/C][C]3558.1089997038[/C][/ROW]
[ROW][C]65[/C][C]3363.98769142005[/C][C]3173.54972158876[/C][C]3554.42566125135[/C][/ROW]
[ROW][C]66[/C][C]3300.98153713008[/C][C]3061.55665569205[/C][C]3540.40641856811[/C][/ROW]
[ROW][C]67[/C][C]3237.97538284011[/C][C]2954.31694789958[/C][C]3521.63381778064[/C][/ROW]
[ROW][C]68[/C][C]3174.96922855014[/C][C]2849.73379759432[/C][C]3500.20465950595[/C][/ROW]
[ROW][C]69[/C][C]3111.96307426016[/C][C]2746.76426406006[/C][C]3477.16188446027[/C][/ROW]
[ROW][C]70[/C][C]3048.95691997019[/C][C]2644.80802711974[/C][C]3453.10581282065[/C][/ROW]
[ROW][C]71[/C][C]2985.95076568022[/C][C]2543.48662134457[/C][C]3428.41491001587[/C][/ROW]
[ROW][C]72[/C][C]2922.94461139025[/C][C]2442.54612172304[/C][C]3403.34310105746[/C][/ROW]
[ROW][C]73[/C][C]2859.93845710028[/C][C]2341.80829897448[/C][C]3378.06861522608[/C][/ROW]
[ROW][C]74[/C][C]2796.9323028103[/C][C]2241.14372943989[/C][C]3352.72087618072[/C][/ROW]
[ROW][C]75[/C][C]2733.92614852033[/C][C]2140.45592595212[/C][C]3327.39637108854[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298196&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298196&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Extrapolation Forecasts of Exponential Smoothing
tForecast95% Lower Bound95% Upper Bound
643426.993845710033295.878691716253558.1089997038
653363.987691420053173.549721588763554.42566125135
663300.981537130083061.556655692053540.40641856811
673237.975382840112954.316947899583521.63381778064
683174.969228550142849.733797594323500.20465950595
693111.963074260162746.764264060063477.16188446027
703048.956919970192644.808027119743453.10581282065
712985.950765680222543.486621344573428.41491001587
722922.944611390252442.546121723043403.34310105746
732859.938457100282341.808298974483378.06861522608
742796.93230281032241.143729439893352.72087618072
752733.926148520332140.455925952123327.39637108854



Parameters (Session):
par1 = 12 ; par2 = Double ; par3 = additive ; par4 = 12 ;
Parameters (R input):
par1 = 12 ; par2 = Double ; par3 = additive ; par4 = 12 ;
R code (references can be found in the software module):
par1 <- as.numeric(par1)
par4 <- as.numeric(par4)
if (par2 == 'Single') K <- 1
if (par2 == 'Double') K <- 2
if (par2 == 'Triple') K <- par1
nx <- length(x)
nxmK <- nx - K
x <- ts(x, frequency = par1)
if (par2 == 'Single') fit <- HoltWinters(x, gamma=F, beta=F)
if (par2 == 'Double') fit <- HoltWinters(x, gamma=F)
if (par2 == 'Triple') fit <- HoltWinters(x, seasonal=par3)
fit
myresid <- x - fit$fitted[,'xhat']
bitmap(file='test1.png')
op <- par(mfrow=c(2,1))
plot(fit,ylab='Observed (black) / Fitted (red)',main='Interpolation Fit of Exponential Smoothing')
plot(myresid,ylab='Residuals',main='Interpolation Prediction Errors')
par(op)
dev.off()
bitmap(file='test2.png')
p <- predict(fit, par4, prediction.interval=TRUE)
np <- length(p[,1])
plot(fit,p,ylab='Observed (black) / Fitted (red)',main='Extrapolation Fit of Exponential Smoothing')
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(myresid),lag.max = nx/2,main='Residual ACF')
spectrum(myresid,main='Residals Periodogram')
cpgram(myresid,main='Residal Cumulative Periodogram')
qqnorm(myresid,main='Residual Normal QQ Plot')
qqline(myresid)
par(op)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Estimated Parameters of Exponential Smoothing',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'Value',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'alpha',header=TRUE)
a<-table.element(a,fit$alpha)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'beta',header=TRUE)
a<-table.element(a,fit$beta)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'gamma',header=TRUE)
a<-table.element(a,fit$gamma)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Interpolation Forecasts of Exponential Smoothing',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observed',header=TRUE)
a<-table.element(a,'Fitted',header=TRUE)
a<-table.element(a,'Residuals',header=TRUE)
a<-table.row.end(a)
for (i in 1:nxmK) {
a<-table.row.start(a)
a<-table.element(a,i+K,header=TRUE)
a<-table.element(a,x[i+K])
a<-table.element(a,fit$fitted[i,'xhat'])
a<-table.element(a,myresid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Extrapolation Forecasts of Exponential Smoothing',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Forecast',header=TRUE)
a<-table.element(a,'95% Lower Bound',header=TRUE)
a<-table.element(a,'95% Upper Bound',header=TRUE)
a<-table.row.end(a)
for (i in 1:np) {
a<-table.row.start(a)
a<-table.element(a,nx+i,header=TRUE)
a<-table.element(a,p[i,'fit'])
a<-table.element(a,p[i,'lwr'])
a<-table.element(a,p[i,'upr'])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')