Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_structuraltimeseries.wasp
Title produced by softwareStructural Time Series Models
Date of computationWed, 07 Dec 2016 15:50:46 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/07/t14811224764fd5xz3131v7ufs.htm/, Retrieved Fri, 01 Nov 2024 03:43:38 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=298174, Retrieved Fri, 01 Nov 2024 03:43:38 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact84
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Structural Time Series Models] [Paper N2503] [2016-12-07 14:50:46] [3146b6c9a81fba6ba78c11f749c05198] [Current]
Feedback Forum

Post a new message
Dataseries X:
3500
3400
3600
3650
3950
3850
3450
3650
3900
3900
4100
3900
3700
3600
3750
3800
4050
3950
3600
3650
3800
4050
4100
4000
3700
3650
3750
4050
4300
4150
3750
3900
4100
4300
4500
4400
4050
4050
4300
4450
4650
4600
4150
4350
4550
4700
5050
4900
4250
4400
4600
4650
4800
4750
4300
4350
4750
4900
5100
4950
4450
4600
4700
4850
4800
4900
4400
4550
4950
5050
5250
4950
4500
4600
4800
4950
5150
5250
4550
4800
5200
5350
5750
5200
4950
5150
5200
5300
5800
5500
5000
5100
5500
5800
6000
5600
5400
5350
5300
5550
5750
5800




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time3 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298174&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]3 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=298174&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298174&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R ServerBig Analytics Cloud Computing Center







Structural Time Series Model -- Interpolation
tObservedLevelSlopeSeasonalStand. Residuals
135003500000
234003475.071208170321.15984812896357-75.0712081703164-0.889330950793144
336003507.87628248343.3686756264113392.12371751660220.52152502134788
436503569.572518511697.997888317241680.42748148830821.05717495730784
539503708.1362107023916.9875755363356241.8637892976122.86855019352494
638503795.1304733971220.665231928631554.86952660288391.7043855578222
734503724.534360084917.1333954026597-274.534360084899-2.31231167743861
836503678.1430442010615.2414490985435-28.1430442010588-1.63148993443749
939003727.2249149843216.0899521282192172.7750850156760.87256669698828
1039003796.8229158234317.3240354777846103.1770841765671.38013838782054
1141003912.5393970379919.5310344422681187.4606029620112.53532946174878
1239003952.0980490814519.9778207671515-52.09804908145090.515469456026822
1337003918.8661336575320.3343014912189-218.866133657527-1.42316194344683
1436003876.3050635506820.6818832115575-276.305063550681-1.69859482284874
1537503835.0606650948919.9668606623423-85.0606650948873-1.56099673794926
1638003820.1520941053119.0588641177761-20.1520941053104-0.827355243111736
1740503817.0545815133918.3310352661385232.945418486608-0.522982188871799
1839503820.7940762810817.8441816125745129.205923718917-0.35384925286333
1936003838.6860431292617.8456260108351-238.6860431292580.00119236790488781
2036503823.2947199685916.9892122053331-173.294719968587-0.845089494636119
2138003792.1707776020415.96364486200527.82922239795758-1.23534812000966
2240503852.7057943849316.7310526269279197.2942056150681.14920063299299
2341003891.2199977117817.0208651005667208.7800022882150.562560349065463
2440003934.8424959884517.274315440548665.15750401155210.688131911768106
2537003928.6475430145717.1176072767306-228.647543014567-0.608405296469937
2636503913.7973585027716.8880175958504-263.797358502765-0.824487872038722
2737503881.2256850138216.3441363646329-131.22568501382-1.25469424586573
2840503924.8753378374216.7794365967158125.1246621625780.680009594323859
2943003981.4997854856417.5707242620752318.5002145143610.984301709971706
3041504011.5973002363917.8428892460767138.4026997636120.310884169109126
3137504011.5686678133417.4581197665918-261.568667813342-0.448509984498452
3239004033.2870895679517.5424579942495-133.2870895679460.108103129565905
3341004076.305974223817.980626964256323.69402577620460.651467025615259
3443004109.5343687303318.1991476152972190.4656312696680.391629636868227
3545004178.6118808705318.7930443504168321.3881191294751.30976997826304
3644004241.77555094719.2215661814385158.2244490529981.14331863689512
3740504269.876511860419.2988303481705-219.8765118604020.228595356004433
3840504294.5727189832919.3477467375822-244.5727189832850.138399811988713
3943004360.318200829619.8384601163001-60.31820082959951.18147313423652
4044504387.5957985283819.932557253090662.40420147161770.18806040951262
4146504388.724715966619.6588885525417261.2752840334-0.473429221795999
4246004416.8960222587919.7928667270467183.1039777412120.214464545829208
4341504438.3956300226819.8201158787892-288.3956300226850.0431816811107571
4443504476.8919988636320.1056860321394-126.8919988636290.475065548744407
4545504522.958323315220.468423185087927.04167668479610.663446030896419
4647004557.9629251706820.6481515822726142.0370748293170.372697822292268
4750504637.0069683030921.2803772715782412.9930316969111.500097069506
4849004704.997331802721.7321073673954195.0026681972971.2007298047883
4942504673.7824979356921.2497161065286-423.782497935686-1.3601396026595
5044004673.1511559206721.048121688358-273.151155920674-0.560874217740835
5146004678.2504916419320.8907071390646-78.2504916419295-0.40747215887347
5246504660.7498211857120.4750703096381-10.7498211857054-0.977627407572666
5348004633.0163870235419.9078386398488166.983612976464-1.22514504104766
5447504619.5036422263919.4929317105945130.49635777361-0.849293659308982
5543004625.080313201119.317449437629-325.080313201104-0.354241953799787
5643504604.5047450225618.8256615111157-254.504745022555-1.01810917596474
5747504651.6123420839519.155583038579698.38765791605110.723658903044197
5849004718.428501288319.6703059865062181.5714987117021.22203925354045
5951004738.7516933317819.6767923364953361.2483066682190.0167628558423643
6049504740.9014742871919.5145930237898209.098525712814-0.450254318241608
6144504776.5478164423519.657865476746-326.5478164423470.414293191923094
6246004811.0540425065219.789350638222-211.0540425065210.380925152272306
6347004803.6586888872819.5412944160503-103.658688887283-0.696303516984662
6448504809.932549512119.414344892699940.0674504878951-0.339292195832241
6548004759.5758692415718.714449955807940.4241307584276-1.78244740512402
6649004750.2515491251518.4236933661406149.748450874846-0.716212442582866
6744004746.9145831734318.1954629342772-346.914583173427-0.556250779856694
6845504781.9382820095318.369757253435-231.9382820095340.430715885378212
6949504829.9350494748718.6664244926015120.064950525130.759377974370478
7050504862.3542505041418.7976546234076187.6457494958560.352941878697154
7152504885.2697796753218.8349268936218364.7302203246780.105771892435333
7249504860.620569203718.459075440665289.3794307963035-1.11741293621916
7345004847.2065567115218.1916389340345-347.206556711517-0.818997822964828
7446004828.1553330716217.8817568756898-228.155333071622-0.956513043937533
7548004838.4616144934217.8180261913052-38.4616144934214-0.194415292068791
7649504851.838971708517.779799604533398.1610282915005-0.113876731040311
7751504930.8650975262118.3204955418675219.1349024737911.56978804758914
7852505010.8739664805218.8754234611598239.126033519481.58096225373195
7945505017.2000672367618.761787723925-467.200067236763-0.321725875055466
8048005036.1201047325418.7632094682056-236.1201047325440.0040597043429495
8152005061.0020290343318.8170268168401138.9979709656710.157092142165472
8253505097.5504019849918.968278413283252.4495980150120.45557414024861
8357505183.3065661032519.5189001579801566.693433896751.71696771560552
8452005185.8669160864319.383333318156314.133083913567-0.436105879673715
8549505218.9232711649819.4902729649684-268.9232711649810.351632119752683
8651505285.634505287419.8559924434426-135.6345052874021.21415910703508
8752005310.6521107954619.8960371459742-110.6521107954630.132671379298067
8853005314.1247252908919.7673946599964-14.1247252908906-0.421985054519989
8958005410.6555639831620.375993747309389.3444360168391.97186900149008
9055005404.9818351316520.16752596010195.0181648683452-0.669122487195049
9150005431.9375313724120.2219956802261-431.9375313724110.174394393909715
9251005428.5047170273820.0332899828088-328.504717027377-0.607931808166568
9355005427.875889319719.870762986694172.1241106802974-0.531258827312706
9458005483.9714601054820.1500241341647316.0285398945170.931820331849541
9560005496.7449488464220.0944338164805503.255051153576-0.189818204187655
9656005543.0709444705520.287955276838356.92905552944840.675167502864374
9754005612.4712206656820.6443779144418-212.4712206656761.26419626214523
9853505608.8315963631520.4698208236026-258.831596363148-0.625060944724782
9953005563.069270961819.9950228687391-263.069270961797-1.70455338457582
10055505569.6260691683119.8984624409764-19.6260691683079-0.345791521271311
10157505514.9700244396319.3603591686868235.029975560368-1.91821989492437
10258005559.1006101057419.5397534505439240.8993898942560.637309071188476

\begin{tabular}{lllllllll}
\hline
Structural Time Series Model -- Interpolation \tabularnewline
t & Observed & Level & Slope & Seasonal & Stand. Residuals \tabularnewline
1 & 3500 & 3500 & 0 & 0 & 0 \tabularnewline
2 & 3400 & 3475.07120817032 & 1.15984812896357 & -75.0712081703164 & -0.889330950793144 \tabularnewline
3 & 3600 & 3507.8762824834 & 3.36867562641133 & 92.1237175166022 & 0.52152502134788 \tabularnewline
4 & 3650 & 3569.57251851169 & 7.9978883172416 & 80.4274814883082 & 1.05717495730784 \tabularnewline
5 & 3950 & 3708.13621070239 & 16.9875755363356 & 241.863789297612 & 2.86855019352494 \tabularnewline
6 & 3850 & 3795.13047339712 & 20.6652319286315 & 54.8695266028839 & 1.7043855578222 \tabularnewline
7 & 3450 & 3724.5343600849 & 17.1333954026597 & -274.534360084899 & -2.31231167743861 \tabularnewline
8 & 3650 & 3678.14304420106 & 15.2414490985435 & -28.1430442010588 & -1.63148993443749 \tabularnewline
9 & 3900 & 3727.22491498432 & 16.0899521282192 & 172.775085015676 & 0.87256669698828 \tabularnewline
10 & 3900 & 3796.82291582343 & 17.3240354777846 & 103.177084176567 & 1.38013838782054 \tabularnewline
11 & 4100 & 3912.53939703799 & 19.5310344422681 & 187.460602962011 & 2.53532946174878 \tabularnewline
12 & 3900 & 3952.09804908145 & 19.9778207671515 & -52.0980490814509 & 0.515469456026822 \tabularnewline
13 & 3700 & 3918.86613365753 & 20.3343014912189 & -218.866133657527 & -1.42316194344683 \tabularnewline
14 & 3600 & 3876.30506355068 & 20.6818832115575 & -276.305063550681 & -1.69859482284874 \tabularnewline
15 & 3750 & 3835.06066509489 & 19.9668606623423 & -85.0606650948873 & -1.56099673794926 \tabularnewline
16 & 3800 & 3820.15209410531 & 19.0588641177761 & -20.1520941053104 & -0.827355243111736 \tabularnewline
17 & 4050 & 3817.05458151339 & 18.3310352661385 & 232.945418486608 & -0.522982188871799 \tabularnewline
18 & 3950 & 3820.79407628108 & 17.8441816125745 & 129.205923718917 & -0.35384925286333 \tabularnewline
19 & 3600 & 3838.68604312926 & 17.8456260108351 & -238.686043129258 & 0.00119236790488781 \tabularnewline
20 & 3650 & 3823.29471996859 & 16.9892122053331 & -173.294719968587 & -0.845089494636119 \tabularnewline
21 & 3800 & 3792.17077760204 & 15.9636448620052 & 7.82922239795758 & -1.23534812000966 \tabularnewline
22 & 4050 & 3852.70579438493 & 16.7310526269279 & 197.294205615068 & 1.14920063299299 \tabularnewline
23 & 4100 & 3891.21999771178 & 17.0208651005667 & 208.780002288215 & 0.562560349065463 \tabularnewline
24 & 4000 & 3934.84249598845 & 17.2743154405486 & 65.1575040115521 & 0.688131911768106 \tabularnewline
25 & 3700 & 3928.64754301457 & 17.1176072767306 & -228.647543014567 & -0.608405296469937 \tabularnewline
26 & 3650 & 3913.79735850277 & 16.8880175958504 & -263.797358502765 & -0.824487872038722 \tabularnewline
27 & 3750 & 3881.22568501382 & 16.3441363646329 & -131.22568501382 & -1.25469424586573 \tabularnewline
28 & 4050 & 3924.87533783742 & 16.7794365967158 & 125.124662162578 & 0.680009594323859 \tabularnewline
29 & 4300 & 3981.49978548564 & 17.5707242620752 & 318.500214514361 & 0.984301709971706 \tabularnewline
30 & 4150 & 4011.59730023639 & 17.8428892460767 & 138.402699763612 & 0.310884169109126 \tabularnewline
31 & 3750 & 4011.56866781334 & 17.4581197665918 & -261.568667813342 & -0.448509984498452 \tabularnewline
32 & 3900 & 4033.28708956795 & 17.5424579942495 & -133.287089567946 & 0.108103129565905 \tabularnewline
33 & 4100 & 4076.3059742238 & 17.9806269642563 & 23.6940257762046 & 0.651467025615259 \tabularnewline
34 & 4300 & 4109.53436873033 & 18.1991476152972 & 190.465631269668 & 0.391629636868227 \tabularnewline
35 & 4500 & 4178.61188087053 & 18.7930443504168 & 321.388119129475 & 1.30976997826304 \tabularnewline
36 & 4400 & 4241.775550947 & 19.2215661814385 & 158.224449052998 & 1.14331863689512 \tabularnewline
37 & 4050 & 4269.8765118604 & 19.2988303481705 & -219.876511860402 & 0.228595356004433 \tabularnewline
38 & 4050 & 4294.57271898329 & 19.3477467375822 & -244.572718983285 & 0.138399811988713 \tabularnewline
39 & 4300 & 4360.3182008296 & 19.8384601163001 & -60.3182008295995 & 1.18147313423652 \tabularnewline
40 & 4450 & 4387.59579852838 & 19.9325572530906 & 62.4042014716177 & 0.18806040951262 \tabularnewline
41 & 4650 & 4388.7247159666 & 19.6588885525417 & 261.2752840334 & -0.473429221795999 \tabularnewline
42 & 4600 & 4416.89602225879 & 19.7928667270467 & 183.103977741212 & 0.214464545829208 \tabularnewline
43 & 4150 & 4438.39563002268 & 19.8201158787892 & -288.395630022685 & 0.0431816811107571 \tabularnewline
44 & 4350 & 4476.89199886363 & 20.1056860321394 & -126.891998863629 & 0.475065548744407 \tabularnewline
45 & 4550 & 4522.9583233152 & 20.4684231850879 & 27.0416766847961 & 0.663446030896419 \tabularnewline
46 & 4700 & 4557.96292517068 & 20.6481515822726 & 142.037074829317 & 0.372697822292268 \tabularnewline
47 & 5050 & 4637.00696830309 & 21.2803772715782 & 412.993031696911 & 1.500097069506 \tabularnewline
48 & 4900 & 4704.9973318027 & 21.7321073673954 & 195.002668197297 & 1.2007298047883 \tabularnewline
49 & 4250 & 4673.78249793569 & 21.2497161065286 & -423.782497935686 & -1.3601396026595 \tabularnewline
50 & 4400 & 4673.15115592067 & 21.048121688358 & -273.151155920674 & -0.560874217740835 \tabularnewline
51 & 4600 & 4678.25049164193 & 20.8907071390646 & -78.2504916419295 & -0.40747215887347 \tabularnewline
52 & 4650 & 4660.74982118571 & 20.4750703096381 & -10.7498211857054 & -0.977627407572666 \tabularnewline
53 & 4800 & 4633.01638702354 & 19.9078386398488 & 166.983612976464 & -1.22514504104766 \tabularnewline
54 & 4750 & 4619.50364222639 & 19.4929317105945 & 130.49635777361 & -0.849293659308982 \tabularnewline
55 & 4300 & 4625.0803132011 & 19.317449437629 & -325.080313201104 & -0.354241953799787 \tabularnewline
56 & 4350 & 4604.50474502256 & 18.8256615111157 & -254.504745022555 & -1.01810917596474 \tabularnewline
57 & 4750 & 4651.61234208395 & 19.1555830385796 & 98.3876579160511 & 0.723658903044197 \tabularnewline
58 & 4900 & 4718.4285012883 & 19.6703059865062 & 181.571498711702 & 1.22203925354045 \tabularnewline
59 & 5100 & 4738.75169333178 & 19.6767923364953 & 361.248306668219 & 0.0167628558423643 \tabularnewline
60 & 4950 & 4740.90147428719 & 19.5145930237898 & 209.098525712814 & -0.450254318241608 \tabularnewline
61 & 4450 & 4776.54781644235 & 19.657865476746 & -326.547816442347 & 0.414293191923094 \tabularnewline
62 & 4600 & 4811.05404250652 & 19.789350638222 & -211.054042506521 & 0.380925152272306 \tabularnewline
63 & 4700 & 4803.65868888728 & 19.5412944160503 & -103.658688887283 & -0.696303516984662 \tabularnewline
64 & 4850 & 4809.9325495121 & 19.4143448926999 & 40.0674504878951 & -0.339292195832241 \tabularnewline
65 & 4800 & 4759.57586924157 & 18.7144499558079 & 40.4241307584276 & -1.78244740512402 \tabularnewline
66 & 4900 & 4750.25154912515 & 18.4236933661406 & 149.748450874846 & -0.716212442582866 \tabularnewline
67 & 4400 & 4746.91458317343 & 18.1954629342772 & -346.914583173427 & -0.556250779856694 \tabularnewline
68 & 4550 & 4781.93828200953 & 18.369757253435 & -231.938282009534 & 0.430715885378212 \tabularnewline
69 & 4950 & 4829.93504947487 & 18.6664244926015 & 120.06495052513 & 0.759377974370478 \tabularnewline
70 & 5050 & 4862.35425050414 & 18.7976546234076 & 187.645749495856 & 0.352941878697154 \tabularnewline
71 & 5250 & 4885.26977967532 & 18.8349268936218 & 364.730220324678 & 0.105771892435333 \tabularnewline
72 & 4950 & 4860.6205692037 & 18.4590754406652 & 89.3794307963035 & -1.11741293621916 \tabularnewline
73 & 4500 & 4847.20655671152 & 18.1916389340345 & -347.206556711517 & -0.818997822964828 \tabularnewline
74 & 4600 & 4828.15533307162 & 17.8817568756898 & -228.155333071622 & -0.956513043937533 \tabularnewline
75 & 4800 & 4838.46161449342 & 17.8180261913052 & -38.4616144934214 & -0.194415292068791 \tabularnewline
76 & 4950 & 4851.8389717085 & 17.7797996045333 & 98.1610282915005 & -0.113876731040311 \tabularnewline
77 & 5150 & 4930.86509752621 & 18.3204955418675 & 219.134902473791 & 1.56978804758914 \tabularnewline
78 & 5250 & 5010.87396648052 & 18.8754234611598 & 239.12603351948 & 1.58096225373195 \tabularnewline
79 & 4550 & 5017.20006723676 & 18.761787723925 & -467.200067236763 & -0.321725875055466 \tabularnewline
80 & 4800 & 5036.12010473254 & 18.7632094682056 & -236.120104732544 & 0.0040597043429495 \tabularnewline
81 & 5200 & 5061.00202903433 & 18.8170268168401 & 138.997970965671 & 0.157092142165472 \tabularnewline
82 & 5350 & 5097.55040198499 & 18.968278413283 & 252.449598015012 & 0.45557414024861 \tabularnewline
83 & 5750 & 5183.30656610325 & 19.5189001579801 & 566.69343389675 & 1.71696771560552 \tabularnewline
84 & 5200 & 5185.86691608643 & 19.3833333181563 & 14.133083913567 & -0.436105879673715 \tabularnewline
85 & 4950 & 5218.92327116498 & 19.4902729649684 & -268.923271164981 & 0.351632119752683 \tabularnewline
86 & 5150 & 5285.6345052874 & 19.8559924434426 & -135.634505287402 & 1.21415910703508 \tabularnewline
87 & 5200 & 5310.65211079546 & 19.8960371459742 & -110.652110795463 & 0.132671379298067 \tabularnewline
88 & 5300 & 5314.12472529089 & 19.7673946599964 & -14.1247252908906 & -0.421985054519989 \tabularnewline
89 & 5800 & 5410.65556398316 & 20.375993747309 & 389.344436016839 & 1.97186900149008 \tabularnewline
90 & 5500 & 5404.98183513165 & 20.167525960101 & 95.0181648683452 & -0.669122487195049 \tabularnewline
91 & 5000 & 5431.93753137241 & 20.2219956802261 & -431.937531372411 & 0.174394393909715 \tabularnewline
92 & 5100 & 5428.50471702738 & 20.0332899828088 & -328.504717027377 & -0.607931808166568 \tabularnewline
93 & 5500 & 5427.8758893197 & 19.8707629866941 & 72.1241106802974 & -0.531258827312706 \tabularnewline
94 & 5800 & 5483.97146010548 & 20.1500241341647 & 316.028539894517 & 0.931820331849541 \tabularnewline
95 & 6000 & 5496.74494884642 & 20.0944338164805 & 503.255051153576 & -0.189818204187655 \tabularnewline
96 & 5600 & 5543.07094447055 & 20.2879552768383 & 56.9290555294484 & 0.675167502864374 \tabularnewline
97 & 5400 & 5612.47122066568 & 20.6443779144418 & -212.471220665676 & 1.26419626214523 \tabularnewline
98 & 5350 & 5608.83159636315 & 20.4698208236026 & -258.831596363148 & -0.625060944724782 \tabularnewline
99 & 5300 & 5563.0692709618 & 19.9950228687391 & -263.069270961797 & -1.70455338457582 \tabularnewline
100 & 5550 & 5569.62606916831 & 19.8984624409764 & -19.6260691683079 & -0.345791521271311 \tabularnewline
101 & 5750 & 5514.97002443963 & 19.3603591686868 & 235.029975560368 & -1.91821989492437 \tabularnewline
102 & 5800 & 5559.10061010574 & 19.5397534505439 & 240.899389894256 & 0.637309071188476 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298174&T=1

[TABLE]
[ROW][C]Structural Time Series Model -- Interpolation[/C][/ROW]
[ROW][C]t[/C][C]Observed[/C][C]Level[/C][C]Slope[/C][C]Seasonal[/C][C]Stand. Residuals[/C][/ROW]
[ROW][C]1[/C][C]3500[/C][C]3500[/C][C]0[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]2[/C][C]3400[/C][C]3475.07120817032[/C][C]1.15984812896357[/C][C]-75.0712081703164[/C][C]-0.889330950793144[/C][/ROW]
[ROW][C]3[/C][C]3600[/C][C]3507.8762824834[/C][C]3.36867562641133[/C][C]92.1237175166022[/C][C]0.52152502134788[/C][/ROW]
[ROW][C]4[/C][C]3650[/C][C]3569.57251851169[/C][C]7.9978883172416[/C][C]80.4274814883082[/C][C]1.05717495730784[/C][/ROW]
[ROW][C]5[/C][C]3950[/C][C]3708.13621070239[/C][C]16.9875755363356[/C][C]241.863789297612[/C][C]2.86855019352494[/C][/ROW]
[ROW][C]6[/C][C]3850[/C][C]3795.13047339712[/C][C]20.6652319286315[/C][C]54.8695266028839[/C][C]1.7043855578222[/C][/ROW]
[ROW][C]7[/C][C]3450[/C][C]3724.5343600849[/C][C]17.1333954026597[/C][C]-274.534360084899[/C][C]-2.31231167743861[/C][/ROW]
[ROW][C]8[/C][C]3650[/C][C]3678.14304420106[/C][C]15.2414490985435[/C][C]-28.1430442010588[/C][C]-1.63148993443749[/C][/ROW]
[ROW][C]9[/C][C]3900[/C][C]3727.22491498432[/C][C]16.0899521282192[/C][C]172.775085015676[/C][C]0.87256669698828[/C][/ROW]
[ROW][C]10[/C][C]3900[/C][C]3796.82291582343[/C][C]17.3240354777846[/C][C]103.177084176567[/C][C]1.38013838782054[/C][/ROW]
[ROW][C]11[/C][C]4100[/C][C]3912.53939703799[/C][C]19.5310344422681[/C][C]187.460602962011[/C][C]2.53532946174878[/C][/ROW]
[ROW][C]12[/C][C]3900[/C][C]3952.09804908145[/C][C]19.9778207671515[/C][C]-52.0980490814509[/C][C]0.515469456026822[/C][/ROW]
[ROW][C]13[/C][C]3700[/C][C]3918.86613365753[/C][C]20.3343014912189[/C][C]-218.866133657527[/C][C]-1.42316194344683[/C][/ROW]
[ROW][C]14[/C][C]3600[/C][C]3876.30506355068[/C][C]20.6818832115575[/C][C]-276.305063550681[/C][C]-1.69859482284874[/C][/ROW]
[ROW][C]15[/C][C]3750[/C][C]3835.06066509489[/C][C]19.9668606623423[/C][C]-85.0606650948873[/C][C]-1.56099673794926[/C][/ROW]
[ROW][C]16[/C][C]3800[/C][C]3820.15209410531[/C][C]19.0588641177761[/C][C]-20.1520941053104[/C][C]-0.827355243111736[/C][/ROW]
[ROW][C]17[/C][C]4050[/C][C]3817.05458151339[/C][C]18.3310352661385[/C][C]232.945418486608[/C][C]-0.522982188871799[/C][/ROW]
[ROW][C]18[/C][C]3950[/C][C]3820.79407628108[/C][C]17.8441816125745[/C][C]129.205923718917[/C][C]-0.35384925286333[/C][/ROW]
[ROW][C]19[/C][C]3600[/C][C]3838.68604312926[/C][C]17.8456260108351[/C][C]-238.686043129258[/C][C]0.00119236790488781[/C][/ROW]
[ROW][C]20[/C][C]3650[/C][C]3823.29471996859[/C][C]16.9892122053331[/C][C]-173.294719968587[/C][C]-0.845089494636119[/C][/ROW]
[ROW][C]21[/C][C]3800[/C][C]3792.17077760204[/C][C]15.9636448620052[/C][C]7.82922239795758[/C][C]-1.23534812000966[/C][/ROW]
[ROW][C]22[/C][C]4050[/C][C]3852.70579438493[/C][C]16.7310526269279[/C][C]197.294205615068[/C][C]1.14920063299299[/C][/ROW]
[ROW][C]23[/C][C]4100[/C][C]3891.21999771178[/C][C]17.0208651005667[/C][C]208.780002288215[/C][C]0.562560349065463[/C][/ROW]
[ROW][C]24[/C][C]4000[/C][C]3934.84249598845[/C][C]17.2743154405486[/C][C]65.1575040115521[/C][C]0.688131911768106[/C][/ROW]
[ROW][C]25[/C][C]3700[/C][C]3928.64754301457[/C][C]17.1176072767306[/C][C]-228.647543014567[/C][C]-0.608405296469937[/C][/ROW]
[ROW][C]26[/C][C]3650[/C][C]3913.79735850277[/C][C]16.8880175958504[/C][C]-263.797358502765[/C][C]-0.824487872038722[/C][/ROW]
[ROW][C]27[/C][C]3750[/C][C]3881.22568501382[/C][C]16.3441363646329[/C][C]-131.22568501382[/C][C]-1.25469424586573[/C][/ROW]
[ROW][C]28[/C][C]4050[/C][C]3924.87533783742[/C][C]16.7794365967158[/C][C]125.124662162578[/C][C]0.680009594323859[/C][/ROW]
[ROW][C]29[/C][C]4300[/C][C]3981.49978548564[/C][C]17.5707242620752[/C][C]318.500214514361[/C][C]0.984301709971706[/C][/ROW]
[ROW][C]30[/C][C]4150[/C][C]4011.59730023639[/C][C]17.8428892460767[/C][C]138.402699763612[/C][C]0.310884169109126[/C][/ROW]
[ROW][C]31[/C][C]3750[/C][C]4011.56866781334[/C][C]17.4581197665918[/C][C]-261.568667813342[/C][C]-0.448509984498452[/C][/ROW]
[ROW][C]32[/C][C]3900[/C][C]4033.28708956795[/C][C]17.5424579942495[/C][C]-133.287089567946[/C][C]0.108103129565905[/C][/ROW]
[ROW][C]33[/C][C]4100[/C][C]4076.3059742238[/C][C]17.9806269642563[/C][C]23.6940257762046[/C][C]0.651467025615259[/C][/ROW]
[ROW][C]34[/C][C]4300[/C][C]4109.53436873033[/C][C]18.1991476152972[/C][C]190.465631269668[/C][C]0.391629636868227[/C][/ROW]
[ROW][C]35[/C][C]4500[/C][C]4178.61188087053[/C][C]18.7930443504168[/C][C]321.388119129475[/C][C]1.30976997826304[/C][/ROW]
[ROW][C]36[/C][C]4400[/C][C]4241.775550947[/C][C]19.2215661814385[/C][C]158.224449052998[/C][C]1.14331863689512[/C][/ROW]
[ROW][C]37[/C][C]4050[/C][C]4269.8765118604[/C][C]19.2988303481705[/C][C]-219.876511860402[/C][C]0.228595356004433[/C][/ROW]
[ROW][C]38[/C][C]4050[/C][C]4294.57271898329[/C][C]19.3477467375822[/C][C]-244.572718983285[/C][C]0.138399811988713[/C][/ROW]
[ROW][C]39[/C][C]4300[/C][C]4360.3182008296[/C][C]19.8384601163001[/C][C]-60.3182008295995[/C][C]1.18147313423652[/C][/ROW]
[ROW][C]40[/C][C]4450[/C][C]4387.59579852838[/C][C]19.9325572530906[/C][C]62.4042014716177[/C][C]0.18806040951262[/C][/ROW]
[ROW][C]41[/C][C]4650[/C][C]4388.7247159666[/C][C]19.6588885525417[/C][C]261.2752840334[/C][C]-0.473429221795999[/C][/ROW]
[ROW][C]42[/C][C]4600[/C][C]4416.89602225879[/C][C]19.7928667270467[/C][C]183.103977741212[/C][C]0.214464545829208[/C][/ROW]
[ROW][C]43[/C][C]4150[/C][C]4438.39563002268[/C][C]19.8201158787892[/C][C]-288.395630022685[/C][C]0.0431816811107571[/C][/ROW]
[ROW][C]44[/C][C]4350[/C][C]4476.89199886363[/C][C]20.1056860321394[/C][C]-126.891998863629[/C][C]0.475065548744407[/C][/ROW]
[ROW][C]45[/C][C]4550[/C][C]4522.9583233152[/C][C]20.4684231850879[/C][C]27.0416766847961[/C][C]0.663446030896419[/C][/ROW]
[ROW][C]46[/C][C]4700[/C][C]4557.96292517068[/C][C]20.6481515822726[/C][C]142.037074829317[/C][C]0.372697822292268[/C][/ROW]
[ROW][C]47[/C][C]5050[/C][C]4637.00696830309[/C][C]21.2803772715782[/C][C]412.993031696911[/C][C]1.500097069506[/C][/ROW]
[ROW][C]48[/C][C]4900[/C][C]4704.9973318027[/C][C]21.7321073673954[/C][C]195.002668197297[/C][C]1.2007298047883[/C][/ROW]
[ROW][C]49[/C][C]4250[/C][C]4673.78249793569[/C][C]21.2497161065286[/C][C]-423.782497935686[/C][C]-1.3601396026595[/C][/ROW]
[ROW][C]50[/C][C]4400[/C][C]4673.15115592067[/C][C]21.048121688358[/C][C]-273.151155920674[/C][C]-0.560874217740835[/C][/ROW]
[ROW][C]51[/C][C]4600[/C][C]4678.25049164193[/C][C]20.8907071390646[/C][C]-78.2504916419295[/C][C]-0.40747215887347[/C][/ROW]
[ROW][C]52[/C][C]4650[/C][C]4660.74982118571[/C][C]20.4750703096381[/C][C]-10.7498211857054[/C][C]-0.977627407572666[/C][/ROW]
[ROW][C]53[/C][C]4800[/C][C]4633.01638702354[/C][C]19.9078386398488[/C][C]166.983612976464[/C][C]-1.22514504104766[/C][/ROW]
[ROW][C]54[/C][C]4750[/C][C]4619.50364222639[/C][C]19.4929317105945[/C][C]130.49635777361[/C][C]-0.849293659308982[/C][/ROW]
[ROW][C]55[/C][C]4300[/C][C]4625.0803132011[/C][C]19.317449437629[/C][C]-325.080313201104[/C][C]-0.354241953799787[/C][/ROW]
[ROW][C]56[/C][C]4350[/C][C]4604.50474502256[/C][C]18.8256615111157[/C][C]-254.504745022555[/C][C]-1.01810917596474[/C][/ROW]
[ROW][C]57[/C][C]4750[/C][C]4651.61234208395[/C][C]19.1555830385796[/C][C]98.3876579160511[/C][C]0.723658903044197[/C][/ROW]
[ROW][C]58[/C][C]4900[/C][C]4718.4285012883[/C][C]19.6703059865062[/C][C]181.571498711702[/C][C]1.22203925354045[/C][/ROW]
[ROW][C]59[/C][C]5100[/C][C]4738.75169333178[/C][C]19.6767923364953[/C][C]361.248306668219[/C][C]0.0167628558423643[/C][/ROW]
[ROW][C]60[/C][C]4950[/C][C]4740.90147428719[/C][C]19.5145930237898[/C][C]209.098525712814[/C][C]-0.450254318241608[/C][/ROW]
[ROW][C]61[/C][C]4450[/C][C]4776.54781644235[/C][C]19.657865476746[/C][C]-326.547816442347[/C][C]0.414293191923094[/C][/ROW]
[ROW][C]62[/C][C]4600[/C][C]4811.05404250652[/C][C]19.789350638222[/C][C]-211.054042506521[/C][C]0.380925152272306[/C][/ROW]
[ROW][C]63[/C][C]4700[/C][C]4803.65868888728[/C][C]19.5412944160503[/C][C]-103.658688887283[/C][C]-0.696303516984662[/C][/ROW]
[ROW][C]64[/C][C]4850[/C][C]4809.9325495121[/C][C]19.4143448926999[/C][C]40.0674504878951[/C][C]-0.339292195832241[/C][/ROW]
[ROW][C]65[/C][C]4800[/C][C]4759.57586924157[/C][C]18.7144499558079[/C][C]40.4241307584276[/C][C]-1.78244740512402[/C][/ROW]
[ROW][C]66[/C][C]4900[/C][C]4750.25154912515[/C][C]18.4236933661406[/C][C]149.748450874846[/C][C]-0.716212442582866[/C][/ROW]
[ROW][C]67[/C][C]4400[/C][C]4746.91458317343[/C][C]18.1954629342772[/C][C]-346.914583173427[/C][C]-0.556250779856694[/C][/ROW]
[ROW][C]68[/C][C]4550[/C][C]4781.93828200953[/C][C]18.369757253435[/C][C]-231.938282009534[/C][C]0.430715885378212[/C][/ROW]
[ROW][C]69[/C][C]4950[/C][C]4829.93504947487[/C][C]18.6664244926015[/C][C]120.06495052513[/C][C]0.759377974370478[/C][/ROW]
[ROW][C]70[/C][C]5050[/C][C]4862.35425050414[/C][C]18.7976546234076[/C][C]187.645749495856[/C][C]0.352941878697154[/C][/ROW]
[ROW][C]71[/C][C]5250[/C][C]4885.26977967532[/C][C]18.8349268936218[/C][C]364.730220324678[/C][C]0.105771892435333[/C][/ROW]
[ROW][C]72[/C][C]4950[/C][C]4860.6205692037[/C][C]18.4590754406652[/C][C]89.3794307963035[/C][C]-1.11741293621916[/C][/ROW]
[ROW][C]73[/C][C]4500[/C][C]4847.20655671152[/C][C]18.1916389340345[/C][C]-347.206556711517[/C][C]-0.818997822964828[/C][/ROW]
[ROW][C]74[/C][C]4600[/C][C]4828.15533307162[/C][C]17.8817568756898[/C][C]-228.155333071622[/C][C]-0.956513043937533[/C][/ROW]
[ROW][C]75[/C][C]4800[/C][C]4838.46161449342[/C][C]17.8180261913052[/C][C]-38.4616144934214[/C][C]-0.194415292068791[/C][/ROW]
[ROW][C]76[/C][C]4950[/C][C]4851.8389717085[/C][C]17.7797996045333[/C][C]98.1610282915005[/C][C]-0.113876731040311[/C][/ROW]
[ROW][C]77[/C][C]5150[/C][C]4930.86509752621[/C][C]18.3204955418675[/C][C]219.134902473791[/C][C]1.56978804758914[/C][/ROW]
[ROW][C]78[/C][C]5250[/C][C]5010.87396648052[/C][C]18.8754234611598[/C][C]239.12603351948[/C][C]1.58096225373195[/C][/ROW]
[ROW][C]79[/C][C]4550[/C][C]5017.20006723676[/C][C]18.761787723925[/C][C]-467.200067236763[/C][C]-0.321725875055466[/C][/ROW]
[ROW][C]80[/C][C]4800[/C][C]5036.12010473254[/C][C]18.7632094682056[/C][C]-236.120104732544[/C][C]0.0040597043429495[/C][/ROW]
[ROW][C]81[/C][C]5200[/C][C]5061.00202903433[/C][C]18.8170268168401[/C][C]138.997970965671[/C][C]0.157092142165472[/C][/ROW]
[ROW][C]82[/C][C]5350[/C][C]5097.55040198499[/C][C]18.968278413283[/C][C]252.449598015012[/C][C]0.45557414024861[/C][/ROW]
[ROW][C]83[/C][C]5750[/C][C]5183.30656610325[/C][C]19.5189001579801[/C][C]566.69343389675[/C][C]1.71696771560552[/C][/ROW]
[ROW][C]84[/C][C]5200[/C][C]5185.86691608643[/C][C]19.3833333181563[/C][C]14.133083913567[/C][C]-0.436105879673715[/C][/ROW]
[ROW][C]85[/C][C]4950[/C][C]5218.92327116498[/C][C]19.4902729649684[/C][C]-268.923271164981[/C][C]0.351632119752683[/C][/ROW]
[ROW][C]86[/C][C]5150[/C][C]5285.6345052874[/C][C]19.8559924434426[/C][C]-135.634505287402[/C][C]1.21415910703508[/C][/ROW]
[ROW][C]87[/C][C]5200[/C][C]5310.65211079546[/C][C]19.8960371459742[/C][C]-110.652110795463[/C][C]0.132671379298067[/C][/ROW]
[ROW][C]88[/C][C]5300[/C][C]5314.12472529089[/C][C]19.7673946599964[/C][C]-14.1247252908906[/C][C]-0.421985054519989[/C][/ROW]
[ROW][C]89[/C][C]5800[/C][C]5410.65556398316[/C][C]20.375993747309[/C][C]389.344436016839[/C][C]1.97186900149008[/C][/ROW]
[ROW][C]90[/C][C]5500[/C][C]5404.98183513165[/C][C]20.167525960101[/C][C]95.0181648683452[/C][C]-0.669122487195049[/C][/ROW]
[ROW][C]91[/C][C]5000[/C][C]5431.93753137241[/C][C]20.2219956802261[/C][C]-431.937531372411[/C][C]0.174394393909715[/C][/ROW]
[ROW][C]92[/C][C]5100[/C][C]5428.50471702738[/C][C]20.0332899828088[/C][C]-328.504717027377[/C][C]-0.607931808166568[/C][/ROW]
[ROW][C]93[/C][C]5500[/C][C]5427.8758893197[/C][C]19.8707629866941[/C][C]72.1241106802974[/C][C]-0.531258827312706[/C][/ROW]
[ROW][C]94[/C][C]5800[/C][C]5483.97146010548[/C][C]20.1500241341647[/C][C]316.028539894517[/C][C]0.931820331849541[/C][/ROW]
[ROW][C]95[/C][C]6000[/C][C]5496.74494884642[/C][C]20.0944338164805[/C][C]503.255051153576[/C][C]-0.189818204187655[/C][/ROW]
[ROW][C]96[/C][C]5600[/C][C]5543.07094447055[/C][C]20.2879552768383[/C][C]56.9290555294484[/C][C]0.675167502864374[/C][/ROW]
[ROW][C]97[/C][C]5400[/C][C]5612.47122066568[/C][C]20.6443779144418[/C][C]-212.471220665676[/C][C]1.26419626214523[/C][/ROW]
[ROW][C]98[/C][C]5350[/C][C]5608.83159636315[/C][C]20.4698208236026[/C][C]-258.831596363148[/C][C]-0.625060944724782[/C][/ROW]
[ROW][C]99[/C][C]5300[/C][C]5563.0692709618[/C][C]19.9950228687391[/C][C]-263.069270961797[/C][C]-1.70455338457582[/C][/ROW]
[ROW][C]100[/C][C]5550[/C][C]5569.62606916831[/C][C]19.8984624409764[/C][C]-19.6260691683079[/C][C]-0.345791521271311[/C][/ROW]
[ROW][C]101[/C][C]5750[/C][C]5514.97002443963[/C][C]19.3603591686868[/C][C]235.029975560368[/C][C]-1.91821989492437[/C][/ROW]
[ROW][C]102[/C][C]5800[/C][C]5559.10061010574[/C][C]19.5397534505439[/C][C]240.899389894256[/C][C]0.637309071188476[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298174&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298174&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Structural Time Series Model -- Interpolation
tObservedLevelSlopeSeasonalStand. Residuals
135003500000
234003475.071208170321.15984812896357-75.0712081703164-0.889330950793144
336003507.87628248343.3686756264113392.12371751660220.52152502134788
436503569.572518511697.997888317241680.42748148830821.05717495730784
539503708.1362107023916.9875755363356241.8637892976122.86855019352494
638503795.1304733971220.665231928631554.86952660288391.7043855578222
734503724.534360084917.1333954026597-274.534360084899-2.31231167743861
836503678.1430442010615.2414490985435-28.1430442010588-1.63148993443749
939003727.2249149843216.0899521282192172.7750850156760.87256669698828
1039003796.8229158234317.3240354777846103.1770841765671.38013838782054
1141003912.5393970379919.5310344422681187.4606029620112.53532946174878
1239003952.0980490814519.9778207671515-52.09804908145090.515469456026822
1337003918.8661336575320.3343014912189-218.866133657527-1.42316194344683
1436003876.3050635506820.6818832115575-276.305063550681-1.69859482284874
1537503835.0606650948919.9668606623423-85.0606650948873-1.56099673794926
1638003820.1520941053119.0588641177761-20.1520941053104-0.827355243111736
1740503817.0545815133918.3310352661385232.945418486608-0.522982188871799
1839503820.7940762810817.8441816125745129.205923718917-0.35384925286333
1936003838.6860431292617.8456260108351-238.6860431292580.00119236790488781
2036503823.2947199685916.9892122053331-173.294719968587-0.845089494636119
2138003792.1707776020415.96364486200527.82922239795758-1.23534812000966
2240503852.7057943849316.7310526269279197.2942056150681.14920063299299
2341003891.2199977117817.0208651005667208.7800022882150.562560349065463
2440003934.8424959884517.274315440548665.15750401155210.688131911768106
2537003928.6475430145717.1176072767306-228.647543014567-0.608405296469937
2636503913.7973585027716.8880175958504-263.797358502765-0.824487872038722
2737503881.2256850138216.3441363646329-131.22568501382-1.25469424586573
2840503924.8753378374216.7794365967158125.1246621625780.680009594323859
2943003981.4997854856417.5707242620752318.5002145143610.984301709971706
3041504011.5973002363917.8428892460767138.4026997636120.310884169109126
3137504011.5686678133417.4581197665918-261.568667813342-0.448509984498452
3239004033.2870895679517.5424579942495-133.2870895679460.108103129565905
3341004076.305974223817.980626964256323.69402577620460.651467025615259
3443004109.5343687303318.1991476152972190.4656312696680.391629636868227
3545004178.6118808705318.7930443504168321.3881191294751.30976997826304
3644004241.77555094719.2215661814385158.2244490529981.14331863689512
3740504269.876511860419.2988303481705-219.8765118604020.228595356004433
3840504294.5727189832919.3477467375822-244.5727189832850.138399811988713
3943004360.318200829619.8384601163001-60.31820082959951.18147313423652
4044504387.5957985283819.932557253090662.40420147161770.18806040951262
4146504388.724715966619.6588885525417261.2752840334-0.473429221795999
4246004416.8960222587919.7928667270467183.1039777412120.214464545829208
4341504438.3956300226819.8201158787892-288.3956300226850.0431816811107571
4443504476.8919988636320.1056860321394-126.8919988636290.475065548744407
4545504522.958323315220.468423185087927.04167668479610.663446030896419
4647004557.9629251706820.6481515822726142.0370748293170.372697822292268
4750504637.0069683030921.2803772715782412.9930316969111.500097069506
4849004704.997331802721.7321073673954195.0026681972971.2007298047883
4942504673.7824979356921.2497161065286-423.782497935686-1.3601396026595
5044004673.1511559206721.048121688358-273.151155920674-0.560874217740835
5146004678.2504916419320.8907071390646-78.2504916419295-0.40747215887347
5246504660.7498211857120.4750703096381-10.7498211857054-0.977627407572666
5348004633.0163870235419.9078386398488166.983612976464-1.22514504104766
5447504619.5036422263919.4929317105945130.49635777361-0.849293659308982
5543004625.080313201119.317449437629-325.080313201104-0.354241953799787
5643504604.5047450225618.8256615111157-254.504745022555-1.01810917596474
5747504651.6123420839519.155583038579698.38765791605110.723658903044197
5849004718.428501288319.6703059865062181.5714987117021.22203925354045
5951004738.7516933317819.6767923364953361.2483066682190.0167628558423643
6049504740.9014742871919.5145930237898209.098525712814-0.450254318241608
6144504776.5478164423519.657865476746-326.5478164423470.414293191923094
6246004811.0540425065219.789350638222-211.0540425065210.380925152272306
6347004803.6586888872819.5412944160503-103.658688887283-0.696303516984662
6448504809.932549512119.414344892699940.0674504878951-0.339292195832241
6548004759.5758692415718.714449955807940.4241307584276-1.78244740512402
6649004750.2515491251518.4236933661406149.748450874846-0.716212442582866
6744004746.9145831734318.1954629342772-346.914583173427-0.556250779856694
6845504781.9382820095318.369757253435-231.9382820095340.430715885378212
6949504829.9350494748718.6664244926015120.064950525130.759377974370478
7050504862.3542505041418.7976546234076187.6457494958560.352941878697154
7152504885.2697796753218.8349268936218364.7302203246780.105771892435333
7249504860.620569203718.459075440665289.3794307963035-1.11741293621916
7345004847.2065567115218.1916389340345-347.206556711517-0.818997822964828
7446004828.1553330716217.8817568756898-228.155333071622-0.956513043937533
7548004838.4616144934217.8180261913052-38.4616144934214-0.194415292068791
7649504851.838971708517.779799604533398.1610282915005-0.113876731040311
7751504930.8650975262118.3204955418675219.1349024737911.56978804758914
7852505010.8739664805218.8754234611598239.126033519481.58096225373195
7945505017.2000672367618.761787723925-467.200067236763-0.321725875055466
8048005036.1201047325418.7632094682056-236.1201047325440.0040597043429495
8152005061.0020290343318.8170268168401138.9979709656710.157092142165472
8253505097.5504019849918.968278413283252.4495980150120.45557414024861
8357505183.3065661032519.5189001579801566.693433896751.71696771560552
8452005185.8669160864319.383333318156314.133083913567-0.436105879673715
8549505218.9232711649819.4902729649684-268.9232711649810.351632119752683
8651505285.634505287419.8559924434426-135.6345052874021.21415910703508
8752005310.6521107954619.8960371459742-110.6521107954630.132671379298067
8853005314.1247252908919.7673946599964-14.1247252908906-0.421985054519989
8958005410.6555639831620.375993747309389.3444360168391.97186900149008
9055005404.9818351316520.16752596010195.0181648683452-0.669122487195049
9150005431.9375313724120.2219956802261-431.9375313724110.174394393909715
9251005428.5047170273820.0332899828088-328.504717027377-0.607931808166568
9355005427.875889319719.870762986694172.1241106802974-0.531258827312706
9458005483.9714601054820.1500241341647316.0285398945170.931820331849541
9560005496.7449488464220.0944338164805503.255051153576-0.189818204187655
9656005543.0709444705520.287955276838356.92905552944840.675167502864374
9754005612.4712206656820.6443779144418-212.4712206656761.26419626214523
9853505608.8315963631520.4698208236026-258.831596363148-0.625060944724782
9953005563.069270961819.9950228687391-263.069270961797-1.70455338457582
10055505569.6260691683119.8984624409764-19.6260691683079-0.345791521271311
10157505514.9700244396319.3603591686868235.029975560368-1.91821989492437
10258005559.1006101057419.5397534505439240.8993898942560.637309071188476







Structural Time Series Model -- Extrapolation
tObservedLevelSeasonal
15129.5139386365578.78273052034-449.26879188434
25266.436209431275597.9674888892-331.531279457932
35658.198655141965617.1522472580741.0464078838867
45940.94209952575636.33700562694304.605093898764
56132.4802222395655.52176399581476.958458243196
65724.484197457115674.7065223646749.7776750924318
75535.421433305045693.89128073354-158.469847428497
85522.086028364215713.07603910241-190.990010738195
95506.913546135135732.26079747128-225.34725133615
105775.822239394535751.4455558401524.376683554387
115989.071148532935770.63031420901218.440834323916
126030.217100426415789.81507257788240.402027848532
135359.731039062415808.99983094675-449.26879188434
145496.653309857685828.18458931562-331.531279457932
155888.415755568375847.3693476844841.0464078838868
166171.159199952125866.55410605335304.605093898764
176362.697322665425885.73886442222476.958458243196
185954.701297883525904.9236227910949.7776750924319

\begin{tabular}{lllllllll}
\hline
Structural Time Series Model -- Extrapolation \tabularnewline
t & Observed & Level & Seasonal \tabularnewline
1 & 5129.513938636 & 5578.78273052034 & -449.26879188434 \tabularnewline
2 & 5266.43620943127 & 5597.9674888892 & -331.531279457932 \tabularnewline
3 & 5658.19865514196 & 5617.15224725807 & 41.0464078838867 \tabularnewline
4 & 5940.9420995257 & 5636.33700562694 & 304.605093898764 \tabularnewline
5 & 6132.480222239 & 5655.52176399581 & 476.958458243196 \tabularnewline
6 & 5724.48419745711 & 5674.70652236467 & 49.7776750924318 \tabularnewline
7 & 5535.42143330504 & 5693.89128073354 & -158.469847428497 \tabularnewline
8 & 5522.08602836421 & 5713.07603910241 & -190.990010738195 \tabularnewline
9 & 5506.91354613513 & 5732.26079747128 & -225.34725133615 \tabularnewline
10 & 5775.82223939453 & 5751.44555584015 & 24.376683554387 \tabularnewline
11 & 5989.07114853293 & 5770.63031420901 & 218.440834323916 \tabularnewline
12 & 6030.21710042641 & 5789.81507257788 & 240.402027848532 \tabularnewline
13 & 5359.73103906241 & 5808.99983094675 & -449.26879188434 \tabularnewline
14 & 5496.65330985768 & 5828.18458931562 & -331.531279457932 \tabularnewline
15 & 5888.41575556837 & 5847.36934768448 & 41.0464078838868 \tabularnewline
16 & 6171.15919995212 & 5866.55410605335 & 304.605093898764 \tabularnewline
17 & 6362.69732266542 & 5885.73886442222 & 476.958458243196 \tabularnewline
18 & 5954.70129788352 & 5904.92362279109 & 49.7776750924319 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298174&T=2

[TABLE]
[ROW][C]Structural Time Series Model -- Extrapolation[/C][/ROW]
[ROW][C]t[/C][C]Observed[/C][C]Level[/C][C]Seasonal[/C][/ROW]
[ROW][C]1[/C][C]5129.513938636[/C][C]5578.78273052034[/C][C]-449.26879188434[/C][/ROW]
[ROW][C]2[/C][C]5266.43620943127[/C][C]5597.9674888892[/C][C]-331.531279457932[/C][/ROW]
[ROW][C]3[/C][C]5658.19865514196[/C][C]5617.15224725807[/C][C]41.0464078838867[/C][/ROW]
[ROW][C]4[/C][C]5940.9420995257[/C][C]5636.33700562694[/C][C]304.605093898764[/C][/ROW]
[ROW][C]5[/C][C]6132.480222239[/C][C]5655.52176399581[/C][C]476.958458243196[/C][/ROW]
[ROW][C]6[/C][C]5724.48419745711[/C][C]5674.70652236467[/C][C]49.7776750924318[/C][/ROW]
[ROW][C]7[/C][C]5535.42143330504[/C][C]5693.89128073354[/C][C]-158.469847428497[/C][/ROW]
[ROW][C]8[/C][C]5522.08602836421[/C][C]5713.07603910241[/C][C]-190.990010738195[/C][/ROW]
[ROW][C]9[/C][C]5506.91354613513[/C][C]5732.26079747128[/C][C]-225.34725133615[/C][/ROW]
[ROW][C]10[/C][C]5775.82223939453[/C][C]5751.44555584015[/C][C]24.376683554387[/C][/ROW]
[ROW][C]11[/C][C]5989.07114853293[/C][C]5770.63031420901[/C][C]218.440834323916[/C][/ROW]
[ROW][C]12[/C][C]6030.21710042641[/C][C]5789.81507257788[/C][C]240.402027848532[/C][/ROW]
[ROW][C]13[/C][C]5359.73103906241[/C][C]5808.99983094675[/C][C]-449.26879188434[/C][/ROW]
[ROW][C]14[/C][C]5496.65330985768[/C][C]5828.18458931562[/C][C]-331.531279457932[/C][/ROW]
[ROW][C]15[/C][C]5888.41575556837[/C][C]5847.36934768448[/C][C]41.0464078838868[/C][/ROW]
[ROW][C]16[/C][C]6171.15919995212[/C][C]5866.55410605335[/C][C]304.605093898764[/C][/ROW]
[ROW][C]17[/C][C]6362.69732266542[/C][C]5885.73886442222[/C][C]476.958458243196[/C][/ROW]
[ROW][C]18[/C][C]5954.70129788352[/C][C]5904.92362279109[/C][C]49.7776750924319[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298174&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298174&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Structural Time Series Model -- Extrapolation
tObservedLevelSeasonal
15129.5139386365578.78273052034-449.26879188434
25266.436209431275597.9674888892-331.531279457932
35658.198655141965617.1522472580741.0464078838867
45940.94209952575636.33700562694304.605093898764
56132.4802222395655.52176399581476.958458243196
65724.484197457115674.7065223646749.7776750924318
75535.421433305045693.89128073354-158.469847428497
85522.086028364215713.07603910241-190.990010738195
95506.913546135135732.26079747128-225.34725133615
105775.822239394535751.4455558401524.376683554387
115989.071148532935770.63031420901218.440834323916
126030.217100426415789.81507257788240.402027848532
135359.731039062415808.99983094675-449.26879188434
145496.653309857685828.18458931562-331.531279457932
155888.415755568375847.3693476844841.0464078838868
166171.159199952125866.55410605335304.605093898764
176362.697322665425885.73886442222476.958458243196
185954.701297883525904.9236227910949.7776750924319



Parameters (Session):
par1 = 12 ; par2 = Double ; par3 = additive ; par4 = 18 ;
Parameters (R input):
par1 = 12 ; par2 = 18 ; par3 = BFGS ;
R code (references can be found in the software module):
require('stsm')
require('stsm.class')
require('KFKSDS')
par1 <- as.numeric(par1)
par2 <- as.numeric(par2)
nx <- length(x)
x <- ts(x,frequency=par1)
m <- StructTS(x,type='BSM')
print(m$coef)
print(m$fitted)
print(m$resid)
mylevel <- as.numeric(m$fitted[,'level'])
myslope <- as.numeric(m$fitted[,'slope'])
myseas <- as.numeric(m$fitted[,'sea'])
myresid <- as.numeric(m$resid)
myfit <- mylevel+myseas
mm <- stsm.model(model = 'BSM', y = x, transPars = 'StructTS')
fit2 <- stsmFit(mm, stsm.method = 'maxlik.td.optim', method = par3, KF.args = list(P0cov = TRUE))
(fit2.comps <- tsSmooth(fit2, P0cov = FALSE)$states)
m2 <- set.pars(mm, pmax(fit2$par, .Machine$double.eps))
(ss <- char2numeric(m2))
(pred <- predict(ss, x, n.ahead = par2))
mylagmax <- nx/2
bitmap(file='test2.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(x),lag.max = mylagmax,main='Observed')
acf(mylevel,na.action=na.pass,lag.max = mylagmax,main='Level')
acf(myseas,na.action=na.pass,lag.max = mylagmax,main='Seasonal')
acf(myresid,na.action=na.pass,lag.max = mylagmax,main='Standardized Residals')
par(op)
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
spectrum(as.numeric(x),main='Observed')
spectrum(mylevel,main='Level')
spectrum(myseas,main='Seasonal')
spectrum(myresid,main='Standardized Residals')
par(op)
dev.off()
bitmap(file='test4.png')
op <- par(mfrow = c(2,2))
cpgram(as.numeric(x),main='Observed')
cpgram(mylevel,main='Level')
cpgram(myseas,main='Seasonal')
cpgram(myresid,main='Standardized Residals')
par(op)
dev.off()
bitmap(file='test1.png')
plot(as.numeric(m$resid),main='Standardized Residuals',ylab='Residuals',xlab='time',type='b')
grid()
dev.off()
bitmap(file='test5.png')
op <- par(mfrow = c(2,2))
hist(m$resid,main='Residual Histogram')
plot(density(m$resid),main='Residual Kernel Density')
qqnorm(m$resid,main='Residual Normal QQ Plot')
qqline(m$resid)
plot(m$resid^2, myfit^2,main='Sq.Resid vs. Sq.Fit',xlab='Squared residuals',ylab='Squared Fit')
par(op)
dev.off()
bitmap(file='test6.png')
par(mfrow = c(3,1), mar = c(3,3,3,3))
plot(cbind(x, pred$pred), type = 'n', plot.type = 'single', ylab = '')
lines(x)
polygon(c(time(pred$pred), rev(time(pred$pred))), c(pred$pred + 2 * pred$se, rev(pred$pred)), col = 'gray85', border = NA)
polygon(c(time(pred$pred), rev(time(pred$pred))), c(pred$pred - 2 * pred$se, rev(pred$pred)), col = ' gray85', border = NA)
lines(pred$pred, col = 'blue', lwd = 1.5)
mtext(text = 'forecasts of the observed series', side = 3, adj = 0)
plot(cbind(x, pred$a[,1]), type = 'n', plot.type = 'single', ylab = '')
lines(x)
polygon(c(time(pred$a[,1]), rev(time(pred$a[,1]))), c(pred$a[,1] + 2 * sqrt(pred$P[,1]), rev(pred$a[,1])), col = 'gray85', border = NA)
polygon(c(time(pred$a[,1]), rev(time(pred$a[,1]))), c(pred$a[,1] - 2 * sqrt(pred$P[,1]), rev(pred$a[,1])), col = ' gray85', border = NA)
lines(pred$a[,1], col = 'blue', lwd = 1.5)
mtext(text = 'forecasts of the level component', side = 3, adj = 0)
plot(cbind(fit2.comps[,3], pred$a[,3]), type = 'n', plot.type = 'single', ylab = '')
lines(fit2.comps[,3])
polygon(c(time(pred$a[,3]), rev(time(pred$a[,3]))), c(pred$a[,3] + 2 * sqrt(pred$P[,3]), rev(pred$a[,3])), col = 'gray85', border = NA)
polygon(c(time(pred$a[,3]), rev(time(pred$a[,3]))), c(pred$a[,3] - 2 * sqrt(pred$P[,3]), rev(pred$a[,3])), col = ' gray85', border = NA)
lines(pred$a[,3], col = 'blue', lwd = 1.5)
mtext(text = 'forecasts of the seasonal component', side = 3, adj = 0)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Structural Time Series Model -- Interpolation',6,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observed',header=TRUE)
a<-table.element(a,'Level',header=TRUE)
a<-table.element(a,'Slope',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,'Stand. Residuals',header=TRUE)
a<-table.row.end(a)
for (i in 1:nx) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
a<-table.element(a,mylevel[i])
a<-table.element(a,myslope[i])
a<-table.element(a,myseas[i])
a<-table.element(a,myresid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Structural Time Series Model -- Extrapolation',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observed',header=TRUE)
a<-table.element(a,'Level',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.row.end(a)
for (i in 1:par2) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,pred$pred[i])
a<-table.element(a,pred$a[i,1])
a<-table.element(a,pred$a[i,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')