Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_decompose.wasp
Title produced by softwareClassical Decomposition
Date of computationWed, 07 Dec 2016 15:38:09 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/07/t1481121893xdj5cpn00ew9sv6.htm/, Retrieved Fri, 01 Nov 2024 03:38:13 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=298160, Retrieved Fri, 01 Nov 2024 03:38:13 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact86
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Classical Decomposition] [Paper N2503] [2016-12-07 14:38:09] [3146b6c9a81fba6ba78c11f749c05198] [Current]
Feedback Forum

Post a new message
Dataseries X:
3500
3400
3600
3650
3950
3850
3450
3650
3900
3900
4100
3900
3700
3600
3750
3800
4050
3950
3600
3650
3800
4050
4100
4000
3700
3650
3750
4050
4300
4150
3750
3900
4100
4300
4500
4400
4050
4050
4300
4450
4650
4600
4150
4350
4550
4700
5050
4900
4250
4400
4600
4650
4800
4750
4300
4350
4750
4900
5100
4950
4450
4600
4700
4850
4800
4900
4400
4550
4950
5050
5250
4950
4500
4600
4800
4950
5150
5250
4550
4800
5200
5350
5750
5200
4950
5150
5200
5300
5800
5500
5000
5100
5500
5800
6000
5600
5400
5350
5300
5550
5750
5800




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time2 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298160&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]2 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=298160&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298160&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center







Classical Decomposition by Moving Averages
tObservationsFitTrendSeasonalRandom
13500NANA-264.658NA
23400NANA-218.229NA
33600NANA-86.3839NA
43650NANA28.497NA
53950NANA220.164NA
63850NANA134.449NA
734503389.883745.83-355.95260.119
836503530.253762.5-232.254119.754
939003825.823777.0848.735174.1815
1039003982.073789.58192.485-82.0685
1141004198.213800398.214-98.2143
1239003943.273808.33134.933-43.2664
1337003554.093818.75-264.658145.908
1436003606.773825-218.229-6.77083
1537503734.453820.83-86.383915.5506
1638003851.413822.9228.497-51.4137
1740504049.333829.17220.1640.669643
1839503967.783833.33134.449-17.7827
1936003481.553837.5-355.952118.452
2036503607.333839.58-232.25442.6711
2138003890.43841.6748.7351-90.4018
2240504044.573852.08192.4855.43155
2341004271.133872.92398.214-171.131
2440004026.63891.67134.933-26.5997
2537003641.593906.25-264.65858.4077
2636503704.693922.92-218.229-54.6875
2737503859.453945.83-86.3839-109.449
2840503997.253968.7528.49752.753
29430042163995.83220.16484.003
3041504163.624029.17134.449-13.6161
3137503704.464060.42-355.95245.5357
3239003859.414091.67-232.25440.5878
3341004179.994131.2548.7351-79.9851
3443004363.324170.83192.485-63.3185
3545004600.34202.08398.214-100.298
3644004370.354235.42134.93329.6503
3740504006.184270.83-264.65843.8244
3840504088.024306.25-218.229-38.0208
3943004257.374343.75-86.383942.6339
4044504407.664379.1728.49742.3363
4146504638.914418.75220.16411.0863
4246004596.954462.5134.4493.0506
4341504135.714491.67-355.95214.2857
4443504282.334514.58-232.25467.6711
4545504590.44541.6748.7351-40.4018
4647004754.994562.5192.485-54.9851
4750504975.34577.08398.21474.7024
4849004724.524589.58134.933175.484
4942504337.434602.08-264.658-87.4256
5044004390.14608.33-218.2299.89583
5146004530.284616.67-86.383969.7173
5246504661.834633.3328.497-11.8304
5348004863.914643.75220.164-63.9137
5447504782.374647.92134.449-32.3661
5543004302.384658.33-355.952-2.38095
5643504442.754675-232.254-92.7455
5747504736.244687.548.735113.7649
5849004892.494700192.4857.51488
5951005106.554708.33398.214-6.54762
6049504849.524714.58134.933100.484
6144504460.344725-264.658-10.3423
6246004519.274737.5-218.22980.7292
6347004667.784754.17-86.383932.2173
6448504797.254768.7528.49752.753
6548005001.414781.25220.164-201.414
6649004921.954787.5134.449-21.9494
6744004433.634789.58-355.952-33.631
6845504559.414791.67-232.254-9.4122
6949504844.574795.8348.7351105.432
7050504996.654804.17192.48553.3482
7152505221.134822.92398.21428.869
7249504987.024852.08134.933-37.0164
7345004608.264872.92-264.658-108.259
7446004671.354889.58-218.229-71.3542
7548004824.034910.42-86.3839-24.0327
7649504961.834933.3328.497-11.8304
7751505186.834966.67220.164-36.8304
7852505132.374997.92134.449117.634
7945504671.135027.08-355.952-121.131
8048004836.55068.75-232.254-36.4955
8152005157.075108.3348.735142.9315
8253505332.075139.58192.48517.9315
8357505579.465181.25398.214170.536
8452005353.685218.75134.933-153.683
8549504983.265247.92-264.658-33.2589
8651505060.945279.17-218.22989.0625
8752005217.785304.17-86.3839-17.7827
8853005363.915335.4228.497-63.9137
8958005584.755364.58220.164215.253
9055005526.125391.67134.449-26.1161
9150005071.135427.08-355.952-71.131
9251005221.915454.17-232.254-121.912
9355005515.45466.6748.7351-15.4018
9458005673.745481.25192.485126.265
9560005887.85489.58398.214112.202
9656005634.935500134.933-34.933
975400NANA-264.658NA
985350NANA-218.229NA
995300NANA-86.3839NA
1005550NANA28.497NA
1015750NANA220.164NA
1025800NANA134.449NA

\begin{tabular}{lllllllll}
\hline
Classical Decomposition by Moving Averages \tabularnewline
t & Observations & Fit & Trend & Seasonal & Random \tabularnewline
1 & 3500 & NA & NA & -264.658 & NA \tabularnewline
2 & 3400 & NA & NA & -218.229 & NA \tabularnewline
3 & 3600 & NA & NA & -86.3839 & NA \tabularnewline
4 & 3650 & NA & NA & 28.497 & NA \tabularnewline
5 & 3950 & NA & NA & 220.164 & NA \tabularnewline
6 & 3850 & NA & NA & 134.449 & NA \tabularnewline
7 & 3450 & 3389.88 & 3745.83 & -355.952 & 60.119 \tabularnewline
8 & 3650 & 3530.25 & 3762.5 & -232.254 & 119.754 \tabularnewline
9 & 3900 & 3825.82 & 3777.08 & 48.7351 & 74.1815 \tabularnewline
10 & 3900 & 3982.07 & 3789.58 & 192.485 & -82.0685 \tabularnewline
11 & 4100 & 4198.21 & 3800 & 398.214 & -98.2143 \tabularnewline
12 & 3900 & 3943.27 & 3808.33 & 134.933 & -43.2664 \tabularnewline
13 & 3700 & 3554.09 & 3818.75 & -264.658 & 145.908 \tabularnewline
14 & 3600 & 3606.77 & 3825 & -218.229 & -6.77083 \tabularnewline
15 & 3750 & 3734.45 & 3820.83 & -86.3839 & 15.5506 \tabularnewline
16 & 3800 & 3851.41 & 3822.92 & 28.497 & -51.4137 \tabularnewline
17 & 4050 & 4049.33 & 3829.17 & 220.164 & 0.669643 \tabularnewline
18 & 3950 & 3967.78 & 3833.33 & 134.449 & -17.7827 \tabularnewline
19 & 3600 & 3481.55 & 3837.5 & -355.952 & 118.452 \tabularnewline
20 & 3650 & 3607.33 & 3839.58 & -232.254 & 42.6711 \tabularnewline
21 & 3800 & 3890.4 & 3841.67 & 48.7351 & -90.4018 \tabularnewline
22 & 4050 & 4044.57 & 3852.08 & 192.485 & 5.43155 \tabularnewline
23 & 4100 & 4271.13 & 3872.92 & 398.214 & -171.131 \tabularnewline
24 & 4000 & 4026.6 & 3891.67 & 134.933 & -26.5997 \tabularnewline
25 & 3700 & 3641.59 & 3906.25 & -264.658 & 58.4077 \tabularnewline
26 & 3650 & 3704.69 & 3922.92 & -218.229 & -54.6875 \tabularnewline
27 & 3750 & 3859.45 & 3945.83 & -86.3839 & -109.449 \tabularnewline
28 & 4050 & 3997.25 & 3968.75 & 28.497 & 52.753 \tabularnewline
29 & 4300 & 4216 & 3995.83 & 220.164 & 84.003 \tabularnewline
30 & 4150 & 4163.62 & 4029.17 & 134.449 & -13.6161 \tabularnewline
31 & 3750 & 3704.46 & 4060.42 & -355.952 & 45.5357 \tabularnewline
32 & 3900 & 3859.41 & 4091.67 & -232.254 & 40.5878 \tabularnewline
33 & 4100 & 4179.99 & 4131.25 & 48.7351 & -79.9851 \tabularnewline
34 & 4300 & 4363.32 & 4170.83 & 192.485 & -63.3185 \tabularnewline
35 & 4500 & 4600.3 & 4202.08 & 398.214 & -100.298 \tabularnewline
36 & 4400 & 4370.35 & 4235.42 & 134.933 & 29.6503 \tabularnewline
37 & 4050 & 4006.18 & 4270.83 & -264.658 & 43.8244 \tabularnewline
38 & 4050 & 4088.02 & 4306.25 & -218.229 & -38.0208 \tabularnewline
39 & 4300 & 4257.37 & 4343.75 & -86.3839 & 42.6339 \tabularnewline
40 & 4450 & 4407.66 & 4379.17 & 28.497 & 42.3363 \tabularnewline
41 & 4650 & 4638.91 & 4418.75 & 220.164 & 11.0863 \tabularnewline
42 & 4600 & 4596.95 & 4462.5 & 134.449 & 3.0506 \tabularnewline
43 & 4150 & 4135.71 & 4491.67 & -355.952 & 14.2857 \tabularnewline
44 & 4350 & 4282.33 & 4514.58 & -232.254 & 67.6711 \tabularnewline
45 & 4550 & 4590.4 & 4541.67 & 48.7351 & -40.4018 \tabularnewline
46 & 4700 & 4754.99 & 4562.5 & 192.485 & -54.9851 \tabularnewline
47 & 5050 & 4975.3 & 4577.08 & 398.214 & 74.7024 \tabularnewline
48 & 4900 & 4724.52 & 4589.58 & 134.933 & 175.484 \tabularnewline
49 & 4250 & 4337.43 & 4602.08 & -264.658 & -87.4256 \tabularnewline
50 & 4400 & 4390.1 & 4608.33 & -218.229 & 9.89583 \tabularnewline
51 & 4600 & 4530.28 & 4616.67 & -86.3839 & 69.7173 \tabularnewline
52 & 4650 & 4661.83 & 4633.33 & 28.497 & -11.8304 \tabularnewline
53 & 4800 & 4863.91 & 4643.75 & 220.164 & -63.9137 \tabularnewline
54 & 4750 & 4782.37 & 4647.92 & 134.449 & -32.3661 \tabularnewline
55 & 4300 & 4302.38 & 4658.33 & -355.952 & -2.38095 \tabularnewline
56 & 4350 & 4442.75 & 4675 & -232.254 & -92.7455 \tabularnewline
57 & 4750 & 4736.24 & 4687.5 & 48.7351 & 13.7649 \tabularnewline
58 & 4900 & 4892.49 & 4700 & 192.485 & 7.51488 \tabularnewline
59 & 5100 & 5106.55 & 4708.33 & 398.214 & -6.54762 \tabularnewline
60 & 4950 & 4849.52 & 4714.58 & 134.933 & 100.484 \tabularnewline
61 & 4450 & 4460.34 & 4725 & -264.658 & -10.3423 \tabularnewline
62 & 4600 & 4519.27 & 4737.5 & -218.229 & 80.7292 \tabularnewline
63 & 4700 & 4667.78 & 4754.17 & -86.3839 & 32.2173 \tabularnewline
64 & 4850 & 4797.25 & 4768.75 & 28.497 & 52.753 \tabularnewline
65 & 4800 & 5001.41 & 4781.25 & 220.164 & -201.414 \tabularnewline
66 & 4900 & 4921.95 & 4787.5 & 134.449 & -21.9494 \tabularnewline
67 & 4400 & 4433.63 & 4789.58 & -355.952 & -33.631 \tabularnewline
68 & 4550 & 4559.41 & 4791.67 & -232.254 & -9.4122 \tabularnewline
69 & 4950 & 4844.57 & 4795.83 & 48.7351 & 105.432 \tabularnewline
70 & 5050 & 4996.65 & 4804.17 & 192.485 & 53.3482 \tabularnewline
71 & 5250 & 5221.13 & 4822.92 & 398.214 & 28.869 \tabularnewline
72 & 4950 & 4987.02 & 4852.08 & 134.933 & -37.0164 \tabularnewline
73 & 4500 & 4608.26 & 4872.92 & -264.658 & -108.259 \tabularnewline
74 & 4600 & 4671.35 & 4889.58 & -218.229 & -71.3542 \tabularnewline
75 & 4800 & 4824.03 & 4910.42 & -86.3839 & -24.0327 \tabularnewline
76 & 4950 & 4961.83 & 4933.33 & 28.497 & -11.8304 \tabularnewline
77 & 5150 & 5186.83 & 4966.67 & 220.164 & -36.8304 \tabularnewline
78 & 5250 & 5132.37 & 4997.92 & 134.449 & 117.634 \tabularnewline
79 & 4550 & 4671.13 & 5027.08 & -355.952 & -121.131 \tabularnewline
80 & 4800 & 4836.5 & 5068.75 & -232.254 & -36.4955 \tabularnewline
81 & 5200 & 5157.07 & 5108.33 & 48.7351 & 42.9315 \tabularnewline
82 & 5350 & 5332.07 & 5139.58 & 192.485 & 17.9315 \tabularnewline
83 & 5750 & 5579.46 & 5181.25 & 398.214 & 170.536 \tabularnewline
84 & 5200 & 5353.68 & 5218.75 & 134.933 & -153.683 \tabularnewline
85 & 4950 & 4983.26 & 5247.92 & -264.658 & -33.2589 \tabularnewline
86 & 5150 & 5060.94 & 5279.17 & -218.229 & 89.0625 \tabularnewline
87 & 5200 & 5217.78 & 5304.17 & -86.3839 & -17.7827 \tabularnewline
88 & 5300 & 5363.91 & 5335.42 & 28.497 & -63.9137 \tabularnewline
89 & 5800 & 5584.75 & 5364.58 & 220.164 & 215.253 \tabularnewline
90 & 5500 & 5526.12 & 5391.67 & 134.449 & -26.1161 \tabularnewline
91 & 5000 & 5071.13 & 5427.08 & -355.952 & -71.131 \tabularnewline
92 & 5100 & 5221.91 & 5454.17 & -232.254 & -121.912 \tabularnewline
93 & 5500 & 5515.4 & 5466.67 & 48.7351 & -15.4018 \tabularnewline
94 & 5800 & 5673.74 & 5481.25 & 192.485 & 126.265 \tabularnewline
95 & 6000 & 5887.8 & 5489.58 & 398.214 & 112.202 \tabularnewline
96 & 5600 & 5634.93 & 5500 & 134.933 & -34.933 \tabularnewline
97 & 5400 & NA & NA & -264.658 & NA \tabularnewline
98 & 5350 & NA & NA & -218.229 & NA \tabularnewline
99 & 5300 & NA & NA & -86.3839 & NA \tabularnewline
100 & 5550 & NA & NA & 28.497 & NA \tabularnewline
101 & 5750 & NA & NA & 220.164 & NA \tabularnewline
102 & 5800 & NA & NA & 134.449 & NA \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298160&T=1

[TABLE]
[ROW][C]Classical Decomposition by Moving Averages[/C][/ROW]
[ROW][C]t[/C][C]Observations[/C][C]Fit[/C][C]Trend[/C][C]Seasonal[/C][C]Random[/C][/ROW]
[ROW][C]1[/C][C]3500[/C][C]NA[/C][C]NA[/C][C]-264.658[/C][C]NA[/C][/ROW]
[ROW][C]2[/C][C]3400[/C][C]NA[/C][C]NA[/C][C]-218.229[/C][C]NA[/C][/ROW]
[ROW][C]3[/C][C]3600[/C][C]NA[/C][C]NA[/C][C]-86.3839[/C][C]NA[/C][/ROW]
[ROW][C]4[/C][C]3650[/C][C]NA[/C][C]NA[/C][C]28.497[/C][C]NA[/C][/ROW]
[ROW][C]5[/C][C]3950[/C][C]NA[/C][C]NA[/C][C]220.164[/C][C]NA[/C][/ROW]
[ROW][C]6[/C][C]3850[/C][C]NA[/C][C]NA[/C][C]134.449[/C][C]NA[/C][/ROW]
[ROW][C]7[/C][C]3450[/C][C]3389.88[/C][C]3745.83[/C][C]-355.952[/C][C]60.119[/C][/ROW]
[ROW][C]8[/C][C]3650[/C][C]3530.25[/C][C]3762.5[/C][C]-232.254[/C][C]119.754[/C][/ROW]
[ROW][C]9[/C][C]3900[/C][C]3825.82[/C][C]3777.08[/C][C]48.7351[/C][C]74.1815[/C][/ROW]
[ROW][C]10[/C][C]3900[/C][C]3982.07[/C][C]3789.58[/C][C]192.485[/C][C]-82.0685[/C][/ROW]
[ROW][C]11[/C][C]4100[/C][C]4198.21[/C][C]3800[/C][C]398.214[/C][C]-98.2143[/C][/ROW]
[ROW][C]12[/C][C]3900[/C][C]3943.27[/C][C]3808.33[/C][C]134.933[/C][C]-43.2664[/C][/ROW]
[ROW][C]13[/C][C]3700[/C][C]3554.09[/C][C]3818.75[/C][C]-264.658[/C][C]145.908[/C][/ROW]
[ROW][C]14[/C][C]3600[/C][C]3606.77[/C][C]3825[/C][C]-218.229[/C][C]-6.77083[/C][/ROW]
[ROW][C]15[/C][C]3750[/C][C]3734.45[/C][C]3820.83[/C][C]-86.3839[/C][C]15.5506[/C][/ROW]
[ROW][C]16[/C][C]3800[/C][C]3851.41[/C][C]3822.92[/C][C]28.497[/C][C]-51.4137[/C][/ROW]
[ROW][C]17[/C][C]4050[/C][C]4049.33[/C][C]3829.17[/C][C]220.164[/C][C]0.669643[/C][/ROW]
[ROW][C]18[/C][C]3950[/C][C]3967.78[/C][C]3833.33[/C][C]134.449[/C][C]-17.7827[/C][/ROW]
[ROW][C]19[/C][C]3600[/C][C]3481.55[/C][C]3837.5[/C][C]-355.952[/C][C]118.452[/C][/ROW]
[ROW][C]20[/C][C]3650[/C][C]3607.33[/C][C]3839.58[/C][C]-232.254[/C][C]42.6711[/C][/ROW]
[ROW][C]21[/C][C]3800[/C][C]3890.4[/C][C]3841.67[/C][C]48.7351[/C][C]-90.4018[/C][/ROW]
[ROW][C]22[/C][C]4050[/C][C]4044.57[/C][C]3852.08[/C][C]192.485[/C][C]5.43155[/C][/ROW]
[ROW][C]23[/C][C]4100[/C][C]4271.13[/C][C]3872.92[/C][C]398.214[/C][C]-171.131[/C][/ROW]
[ROW][C]24[/C][C]4000[/C][C]4026.6[/C][C]3891.67[/C][C]134.933[/C][C]-26.5997[/C][/ROW]
[ROW][C]25[/C][C]3700[/C][C]3641.59[/C][C]3906.25[/C][C]-264.658[/C][C]58.4077[/C][/ROW]
[ROW][C]26[/C][C]3650[/C][C]3704.69[/C][C]3922.92[/C][C]-218.229[/C][C]-54.6875[/C][/ROW]
[ROW][C]27[/C][C]3750[/C][C]3859.45[/C][C]3945.83[/C][C]-86.3839[/C][C]-109.449[/C][/ROW]
[ROW][C]28[/C][C]4050[/C][C]3997.25[/C][C]3968.75[/C][C]28.497[/C][C]52.753[/C][/ROW]
[ROW][C]29[/C][C]4300[/C][C]4216[/C][C]3995.83[/C][C]220.164[/C][C]84.003[/C][/ROW]
[ROW][C]30[/C][C]4150[/C][C]4163.62[/C][C]4029.17[/C][C]134.449[/C][C]-13.6161[/C][/ROW]
[ROW][C]31[/C][C]3750[/C][C]3704.46[/C][C]4060.42[/C][C]-355.952[/C][C]45.5357[/C][/ROW]
[ROW][C]32[/C][C]3900[/C][C]3859.41[/C][C]4091.67[/C][C]-232.254[/C][C]40.5878[/C][/ROW]
[ROW][C]33[/C][C]4100[/C][C]4179.99[/C][C]4131.25[/C][C]48.7351[/C][C]-79.9851[/C][/ROW]
[ROW][C]34[/C][C]4300[/C][C]4363.32[/C][C]4170.83[/C][C]192.485[/C][C]-63.3185[/C][/ROW]
[ROW][C]35[/C][C]4500[/C][C]4600.3[/C][C]4202.08[/C][C]398.214[/C][C]-100.298[/C][/ROW]
[ROW][C]36[/C][C]4400[/C][C]4370.35[/C][C]4235.42[/C][C]134.933[/C][C]29.6503[/C][/ROW]
[ROW][C]37[/C][C]4050[/C][C]4006.18[/C][C]4270.83[/C][C]-264.658[/C][C]43.8244[/C][/ROW]
[ROW][C]38[/C][C]4050[/C][C]4088.02[/C][C]4306.25[/C][C]-218.229[/C][C]-38.0208[/C][/ROW]
[ROW][C]39[/C][C]4300[/C][C]4257.37[/C][C]4343.75[/C][C]-86.3839[/C][C]42.6339[/C][/ROW]
[ROW][C]40[/C][C]4450[/C][C]4407.66[/C][C]4379.17[/C][C]28.497[/C][C]42.3363[/C][/ROW]
[ROW][C]41[/C][C]4650[/C][C]4638.91[/C][C]4418.75[/C][C]220.164[/C][C]11.0863[/C][/ROW]
[ROW][C]42[/C][C]4600[/C][C]4596.95[/C][C]4462.5[/C][C]134.449[/C][C]3.0506[/C][/ROW]
[ROW][C]43[/C][C]4150[/C][C]4135.71[/C][C]4491.67[/C][C]-355.952[/C][C]14.2857[/C][/ROW]
[ROW][C]44[/C][C]4350[/C][C]4282.33[/C][C]4514.58[/C][C]-232.254[/C][C]67.6711[/C][/ROW]
[ROW][C]45[/C][C]4550[/C][C]4590.4[/C][C]4541.67[/C][C]48.7351[/C][C]-40.4018[/C][/ROW]
[ROW][C]46[/C][C]4700[/C][C]4754.99[/C][C]4562.5[/C][C]192.485[/C][C]-54.9851[/C][/ROW]
[ROW][C]47[/C][C]5050[/C][C]4975.3[/C][C]4577.08[/C][C]398.214[/C][C]74.7024[/C][/ROW]
[ROW][C]48[/C][C]4900[/C][C]4724.52[/C][C]4589.58[/C][C]134.933[/C][C]175.484[/C][/ROW]
[ROW][C]49[/C][C]4250[/C][C]4337.43[/C][C]4602.08[/C][C]-264.658[/C][C]-87.4256[/C][/ROW]
[ROW][C]50[/C][C]4400[/C][C]4390.1[/C][C]4608.33[/C][C]-218.229[/C][C]9.89583[/C][/ROW]
[ROW][C]51[/C][C]4600[/C][C]4530.28[/C][C]4616.67[/C][C]-86.3839[/C][C]69.7173[/C][/ROW]
[ROW][C]52[/C][C]4650[/C][C]4661.83[/C][C]4633.33[/C][C]28.497[/C][C]-11.8304[/C][/ROW]
[ROW][C]53[/C][C]4800[/C][C]4863.91[/C][C]4643.75[/C][C]220.164[/C][C]-63.9137[/C][/ROW]
[ROW][C]54[/C][C]4750[/C][C]4782.37[/C][C]4647.92[/C][C]134.449[/C][C]-32.3661[/C][/ROW]
[ROW][C]55[/C][C]4300[/C][C]4302.38[/C][C]4658.33[/C][C]-355.952[/C][C]-2.38095[/C][/ROW]
[ROW][C]56[/C][C]4350[/C][C]4442.75[/C][C]4675[/C][C]-232.254[/C][C]-92.7455[/C][/ROW]
[ROW][C]57[/C][C]4750[/C][C]4736.24[/C][C]4687.5[/C][C]48.7351[/C][C]13.7649[/C][/ROW]
[ROW][C]58[/C][C]4900[/C][C]4892.49[/C][C]4700[/C][C]192.485[/C][C]7.51488[/C][/ROW]
[ROW][C]59[/C][C]5100[/C][C]5106.55[/C][C]4708.33[/C][C]398.214[/C][C]-6.54762[/C][/ROW]
[ROW][C]60[/C][C]4950[/C][C]4849.52[/C][C]4714.58[/C][C]134.933[/C][C]100.484[/C][/ROW]
[ROW][C]61[/C][C]4450[/C][C]4460.34[/C][C]4725[/C][C]-264.658[/C][C]-10.3423[/C][/ROW]
[ROW][C]62[/C][C]4600[/C][C]4519.27[/C][C]4737.5[/C][C]-218.229[/C][C]80.7292[/C][/ROW]
[ROW][C]63[/C][C]4700[/C][C]4667.78[/C][C]4754.17[/C][C]-86.3839[/C][C]32.2173[/C][/ROW]
[ROW][C]64[/C][C]4850[/C][C]4797.25[/C][C]4768.75[/C][C]28.497[/C][C]52.753[/C][/ROW]
[ROW][C]65[/C][C]4800[/C][C]5001.41[/C][C]4781.25[/C][C]220.164[/C][C]-201.414[/C][/ROW]
[ROW][C]66[/C][C]4900[/C][C]4921.95[/C][C]4787.5[/C][C]134.449[/C][C]-21.9494[/C][/ROW]
[ROW][C]67[/C][C]4400[/C][C]4433.63[/C][C]4789.58[/C][C]-355.952[/C][C]-33.631[/C][/ROW]
[ROW][C]68[/C][C]4550[/C][C]4559.41[/C][C]4791.67[/C][C]-232.254[/C][C]-9.4122[/C][/ROW]
[ROW][C]69[/C][C]4950[/C][C]4844.57[/C][C]4795.83[/C][C]48.7351[/C][C]105.432[/C][/ROW]
[ROW][C]70[/C][C]5050[/C][C]4996.65[/C][C]4804.17[/C][C]192.485[/C][C]53.3482[/C][/ROW]
[ROW][C]71[/C][C]5250[/C][C]5221.13[/C][C]4822.92[/C][C]398.214[/C][C]28.869[/C][/ROW]
[ROW][C]72[/C][C]4950[/C][C]4987.02[/C][C]4852.08[/C][C]134.933[/C][C]-37.0164[/C][/ROW]
[ROW][C]73[/C][C]4500[/C][C]4608.26[/C][C]4872.92[/C][C]-264.658[/C][C]-108.259[/C][/ROW]
[ROW][C]74[/C][C]4600[/C][C]4671.35[/C][C]4889.58[/C][C]-218.229[/C][C]-71.3542[/C][/ROW]
[ROW][C]75[/C][C]4800[/C][C]4824.03[/C][C]4910.42[/C][C]-86.3839[/C][C]-24.0327[/C][/ROW]
[ROW][C]76[/C][C]4950[/C][C]4961.83[/C][C]4933.33[/C][C]28.497[/C][C]-11.8304[/C][/ROW]
[ROW][C]77[/C][C]5150[/C][C]5186.83[/C][C]4966.67[/C][C]220.164[/C][C]-36.8304[/C][/ROW]
[ROW][C]78[/C][C]5250[/C][C]5132.37[/C][C]4997.92[/C][C]134.449[/C][C]117.634[/C][/ROW]
[ROW][C]79[/C][C]4550[/C][C]4671.13[/C][C]5027.08[/C][C]-355.952[/C][C]-121.131[/C][/ROW]
[ROW][C]80[/C][C]4800[/C][C]4836.5[/C][C]5068.75[/C][C]-232.254[/C][C]-36.4955[/C][/ROW]
[ROW][C]81[/C][C]5200[/C][C]5157.07[/C][C]5108.33[/C][C]48.7351[/C][C]42.9315[/C][/ROW]
[ROW][C]82[/C][C]5350[/C][C]5332.07[/C][C]5139.58[/C][C]192.485[/C][C]17.9315[/C][/ROW]
[ROW][C]83[/C][C]5750[/C][C]5579.46[/C][C]5181.25[/C][C]398.214[/C][C]170.536[/C][/ROW]
[ROW][C]84[/C][C]5200[/C][C]5353.68[/C][C]5218.75[/C][C]134.933[/C][C]-153.683[/C][/ROW]
[ROW][C]85[/C][C]4950[/C][C]4983.26[/C][C]5247.92[/C][C]-264.658[/C][C]-33.2589[/C][/ROW]
[ROW][C]86[/C][C]5150[/C][C]5060.94[/C][C]5279.17[/C][C]-218.229[/C][C]89.0625[/C][/ROW]
[ROW][C]87[/C][C]5200[/C][C]5217.78[/C][C]5304.17[/C][C]-86.3839[/C][C]-17.7827[/C][/ROW]
[ROW][C]88[/C][C]5300[/C][C]5363.91[/C][C]5335.42[/C][C]28.497[/C][C]-63.9137[/C][/ROW]
[ROW][C]89[/C][C]5800[/C][C]5584.75[/C][C]5364.58[/C][C]220.164[/C][C]215.253[/C][/ROW]
[ROW][C]90[/C][C]5500[/C][C]5526.12[/C][C]5391.67[/C][C]134.449[/C][C]-26.1161[/C][/ROW]
[ROW][C]91[/C][C]5000[/C][C]5071.13[/C][C]5427.08[/C][C]-355.952[/C][C]-71.131[/C][/ROW]
[ROW][C]92[/C][C]5100[/C][C]5221.91[/C][C]5454.17[/C][C]-232.254[/C][C]-121.912[/C][/ROW]
[ROW][C]93[/C][C]5500[/C][C]5515.4[/C][C]5466.67[/C][C]48.7351[/C][C]-15.4018[/C][/ROW]
[ROW][C]94[/C][C]5800[/C][C]5673.74[/C][C]5481.25[/C][C]192.485[/C][C]126.265[/C][/ROW]
[ROW][C]95[/C][C]6000[/C][C]5887.8[/C][C]5489.58[/C][C]398.214[/C][C]112.202[/C][/ROW]
[ROW][C]96[/C][C]5600[/C][C]5634.93[/C][C]5500[/C][C]134.933[/C][C]-34.933[/C][/ROW]
[ROW][C]97[/C][C]5400[/C][C]NA[/C][C]NA[/C][C]-264.658[/C][C]NA[/C][/ROW]
[ROW][C]98[/C][C]5350[/C][C]NA[/C][C]NA[/C][C]-218.229[/C][C]NA[/C][/ROW]
[ROW][C]99[/C][C]5300[/C][C]NA[/C][C]NA[/C][C]-86.3839[/C][C]NA[/C][/ROW]
[ROW][C]100[/C][C]5550[/C][C]NA[/C][C]NA[/C][C]28.497[/C][C]NA[/C][/ROW]
[ROW][C]101[/C][C]5750[/C][C]NA[/C][C]NA[/C][C]220.164[/C][C]NA[/C][/ROW]
[ROW][C]102[/C][C]5800[/C][C]NA[/C][C]NA[/C][C]134.449[/C][C]NA[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298160&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298160&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Classical Decomposition by Moving Averages
tObservationsFitTrendSeasonalRandom
13500NANA-264.658NA
23400NANA-218.229NA
33600NANA-86.3839NA
43650NANA28.497NA
53950NANA220.164NA
63850NANA134.449NA
734503389.883745.83-355.95260.119
836503530.253762.5-232.254119.754
939003825.823777.0848.735174.1815
1039003982.073789.58192.485-82.0685
1141004198.213800398.214-98.2143
1239003943.273808.33134.933-43.2664
1337003554.093818.75-264.658145.908
1436003606.773825-218.229-6.77083
1537503734.453820.83-86.383915.5506
1638003851.413822.9228.497-51.4137
1740504049.333829.17220.1640.669643
1839503967.783833.33134.449-17.7827
1936003481.553837.5-355.952118.452
2036503607.333839.58-232.25442.6711
2138003890.43841.6748.7351-90.4018
2240504044.573852.08192.4855.43155
2341004271.133872.92398.214-171.131
2440004026.63891.67134.933-26.5997
2537003641.593906.25-264.65858.4077
2636503704.693922.92-218.229-54.6875
2737503859.453945.83-86.3839-109.449
2840503997.253968.7528.49752.753
29430042163995.83220.16484.003
3041504163.624029.17134.449-13.6161
3137503704.464060.42-355.95245.5357
3239003859.414091.67-232.25440.5878
3341004179.994131.2548.7351-79.9851
3443004363.324170.83192.485-63.3185
3545004600.34202.08398.214-100.298
3644004370.354235.42134.93329.6503
3740504006.184270.83-264.65843.8244
3840504088.024306.25-218.229-38.0208
3943004257.374343.75-86.383942.6339
4044504407.664379.1728.49742.3363
4146504638.914418.75220.16411.0863
4246004596.954462.5134.4493.0506
4341504135.714491.67-355.95214.2857
4443504282.334514.58-232.25467.6711
4545504590.44541.6748.7351-40.4018
4647004754.994562.5192.485-54.9851
4750504975.34577.08398.21474.7024
4849004724.524589.58134.933175.484
4942504337.434602.08-264.658-87.4256
5044004390.14608.33-218.2299.89583
5146004530.284616.67-86.383969.7173
5246504661.834633.3328.497-11.8304
5348004863.914643.75220.164-63.9137
5447504782.374647.92134.449-32.3661
5543004302.384658.33-355.952-2.38095
5643504442.754675-232.254-92.7455
5747504736.244687.548.735113.7649
5849004892.494700192.4857.51488
5951005106.554708.33398.214-6.54762
6049504849.524714.58134.933100.484
6144504460.344725-264.658-10.3423
6246004519.274737.5-218.22980.7292
6347004667.784754.17-86.383932.2173
6448504797.254768.7528.49752.753
6548005001.414781.25220.164-201.414
6649004921.954787.5134.449-21.9494
6744004433.634789.58-355.952-33.631
6845504559.414791.67-232.254-9.4122
6949504844.574795.8348.7351105.432
7050504996.654804.17192.48553.3482
7152505221.134822.92398.21428.869
7249504987.024852.08134.933-37.0164
7345004608.264872.92-264.658-108.259
7446004671.354889.58-218.229-71.3542
7548004824.034910.42-86.3839-24.0327
7649504961.834933.3328.497-11.8304
7751505186.834966.67220.164-36.8304
7852505132.374997.92134.449117.634
7945504671.135027.08-355.952-121.131
8048004836.55068.75-232.254-36.4955
8152005157.075108.3348.735142.9315
8253505332.075139.58192.48517.9315
8357505579.465181.25398.214170.536
8452005353.685218.75134.933-153.683
8549504983.265247.92-264.658-33.2589
8651505060.945279.17-218.22989.0625
8752005217.785304.17-86.3839-17.7827
8853005363.915335.4228.497-63.9137
8958005584.755364.58220.164215.253
9055005526.125391.67134.449-26.1161
9150005071.135427.08-355.952-71.131
9251005221.915454.17-232.254-121.912
9355005515.45466.6748.7351-15.4018
9458005673.745481.25192.485126.265
9560005887.85489.58398.214112.202
9656005634.935500134.933-34.933
975400NANA-264.658NA
985350NANA-218.229NA
995300NANA-86.3839NA
1005550NANA28.497NA
1015750NANA220.164NA
1025800NANA134.449NA



Parameters (Session):
par1 = 12 ; par2 = Double ; par3 = additive ; par4 = 18 ;
Parameters (R input):
par1 = additive ; par2 = 12 ;
R code (references can be found in the software module):
par2 <- as.numeric(par2)
x <- ts(x,freq=par2)
m <- decompose(x,type=par1)
m$figure
bitmap(file='test1.png')
plot(m)
dev.off()
mylagmax <- length(x)/2
bitmap(file='test2.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(x),lag.max = mylagmax,main='Observed')
acf(as.numeric(m$trend),na.action=na.pass,lag.max = mylagmax,main='Trend')
acf(as.numeric(m$seasonal),na.action=na.pass,lag.max = mylagmax,main='Seasonal')
acf(as.numeric(m$random),na.action=na.pass,lag.max = mylagmax,main='Random')
par(op)
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
spectrum(as.numeric(x),main='Observed')
spectrum(as.numeric(m$trend[!is.na(m$trend)]),main='Trend')
spectrum(as.numeric(m$seasonal[!is.na(m$seasonal)]),main='Seasonal')
spectrum(as.numeric(m$random[!is.na(m$random)]),main='Random')
par(op)
dev.off()
bitmap(file='test4.png')
op <- par(mfrow = c(2,2))
cpgram(as.numeric(x),main='Observed')
cpgram(as.numeric(m$trend[!is.na(m$trend)]),main='Trend')
cpgram(as.numeric(m$seasonal[!is.na(m$seasonal)]),main='Seasonal')
cpgram(as.numeric(m$random[!is.na(m$random)]),main='Random')
par(op)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Classical Decomposition by Moving Averages',6,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observations',header=TRUE)
a<-table.element(a,'Fit',header=TRUE)
a<-table.element(a,'Trend',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,'Random',header=TRUE)
a<-table.row.end(a)
for (i in 1:length(m$trend)) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
if (par1 == 'additive') a<-table.element(a,signif(m$trend[i]+m$seasonal[i],6)) else a<-table.element(a,signif(m$trend[i]*m$seasonal[i],6))
a<-table.element(a,signif(m$trend[i],6))
a<-table.element(a,signif(m$seasonal[i],6))
a<-table.element(a,signif(m$random[i],6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')