Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationWed, 07 Dec 2016 15:41:59 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/07/t1481121813aqhpxkhcaabqm5p.htm/, Retrieved Fri, 01 Nov 2024 03:40:51 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=298158, Retrieved Fri, 01 Nov 2024 03:40:51 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact116
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Multiple Regression] [MR] [2016-12-07 14:41:59] [6deb082de88ded72ec069288c69f9f98] [Current]
Feedback Forum

Post a new message
Dataseries X:
3	4	3	4	13
5	5	5	4	16
5	4	4	4	17
5	4	4	4	15
4	4	3	4	16
5	5	5	5	16
5	4	3	3	18
5	5	5	4	16
5	5	4	1	17
5	4	3	3	17
5	5	5	4	17
4	4	5	3	15
5	5	5	5	16
5	5	4	4	14
4	4	3	4	16
3	4	4	3	17
5	5	5	5	16
5	4	3	4	15
5	3	3	5	17
4	4	4	4	16
2	5	1	2	15
5	5	4	5	16
5	5	4	5	15
5	5	4	2	17
4	4	4	3	14
4	5	5	4	16
4	5	4	4	15
5	5	4	5	16
5	5	4	3	16
4	4	4	2	13
5	5	4	5	15
5	5	5	5	17
1	1	1	2	15
5	5	4	5	13
4	5	4	3	17
4	4	4	3	15
4	4	4	4	14
5	5	4	4	14
4	4	5	3	18
4	4	4	3	15
5	4	4	4	17
3	3	4	4	13
5	5	5	5	16
5	5	5	4	15
2	2	1	2	15
3	3	3	4	16
4	4	3	5	15
4	5	3	4	13
5	5	4	4	17
5	5	5	3	18
4	4	4	4	18
5	5	3	4	11
5	5	5	4	14
4	4	4	4	13
5	5	4	5	15
4	5	3	1	17
4	4	4	4	16
3	4	3	3	15
4	4	3	1	17
4	5	4	4	16
5	4	4	4	16
4	5	4	4	16
4	5	4	3	15
4	4	4	4	12
4	3	3	4	17
4	4	4	4	14
2	4	4	3	14
4	5	4	3	16
4	4	3	3	15
5	5	5	5	15
3	3	3	3	14
3	4	3	3	13
5	4	5	4	18
4	3	3	4	15
5	5	5	4	16
4	5	4	5	14
4	3	3	4	15
5	5	3	5	17
5	5	5	4	16
5	4	3	3	10
4	4	3	3	16
5	4	4	4	17
5	5	5	4	17
2	5	4	2	20
5	4	5	5	17
5	5	4	4	18
5	5	5	5	15
5	4	4	2	17
4	4	4	3	14
4	4	4	3	15
5	5	5	5	17
4	4	4	3	16
5	5	5	4	17
5	5	4	4	15
5	4	5	4	16
4	4	4	3	18
5	5	5	5	18
5	5	5	2	16
5	4	5	4	17
5	5	5	4	15
5	5	5	5	13
4	3	3	3	15
4	4	5	4	17
4	4	4	3	16
4	4	4	4	16
5	5	5	3	15
5	5	4	4	16
4	4	2	4	16
3	4	4	4	14
3	4	3	2	15
4	4	5	4	12
4	4	3	3	19
5	5	4	4	16
5	4	4	4	16
4	4	5	4	17
5	5	5	5	16
5	4	4	3	14
4	4	3	3	15
4	4	3	4	14
5	5	4	4	16
5	5	5	5	15
5	5	3	4	17
5	5	3	4	15
4	5	4	4	16
5	4	4	4	16
3	4	4	4	15
5	5	4	3	15
5	4	5	4	11
4	5	4	4	16
5	5	5	5	18
4	4	4	3	12
4	4	4	4	12
4	4	4	3	16
4	4	5	5	18
4	4	4	3	15
5	4	5	4	19
5	5	5	5	17
5	5	5	4	13
4	4	4	2	14
4	5	4	3	16
5	4	4	2	13
5	4	4	4	17
5	4	5	4	14
5	5	5	5	19
5	3	5	4	14
5	4	5	4	16
4	4	4	3	12
5	4	4	3	16
3	3	3	2	16
3	4	4	4	15
4	5	4	5	12
4	5	4	4	15
3	5	3	5	17
3	4	3	2	14
5	5	5	4	15
5	5	4	4	18
5	4	4	2	15
5	4	4	4	18
5	5	5	4	15
5	4	5	4	15
5	5	5	4	16
5	4	5	2	13
4	4	4	4	16
4	4	5	3	14
2	4	5	3	16




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time8 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time8 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298158&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]8 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=298158&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298158&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time8 seconds
R ServerBig Analytics Cloud Computing Center







Multiple Linear Regression - Estimated Regression Equation
TVDCSOM[t] = + 13.62 + 0.151051ITH1[t] + 0.216275ITH2[t] + 0.0996896ITH3[t] -0.0337601ITH4[t] + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
TVDCSOM[t] =  +  13.62 +  0.151051ITH1[t] +  0.216275ITH2[t] +  0.0996896ITH3[t] -0.0337601ITH4[t]  + e[t] \tabularnewline
 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298158&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]TVDCSOM[t] =  +  13.62 +  0.151051ITH1[t] +  0.216275ITH2[t] +  0.0996896ITH3[t] -0.0337601ITH4[t]  + e[t][/C][/ROW]
[ROW][C][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298158&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298158&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
TVDCSOM[t] = + 13.62 + 0.151051ITH1[t] + 0.216275ITH2[t] + 0.0996896ITH3[t] -0.0337601ITH4[t] + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)+13.62 0.9467+1.4390e+01 1.206e-30 6.028e-31
ITH1+0.151 0.2085+7.2460e-01 0.4698 0.2349
ITH2+0.2163 0.2328+9.2890e-01 0.3544 0.1772
ITH3+0.09969 0.1945+5.1250e-01 0.609 0.3045
ITH4-0.03376 0.1592-2.1200e-01 0.8324 0.4162

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & +13.62 &  0.9467 & +1.4390e+01 &  1.206e-30 &  6.028e-31 \tabularnewline
ITH1 & +0.151 &  0.2085 & +7.2460e-01 &  0.4698 &  0.2349 \tabularnewline
ITH2 & +0.2163 &  0.2328 & +9.2890e-01 &  0.3544 &  0.1772 \tabularnewline
ITH3 & +0.09969 &  0.1945 & +5.1250e-01 &  0.609 &  0.3045 \tabularnewline
ITH4 & -0.03376 &  0.1592 & -2.1200e-01 &  0.8324 &  0.4162 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298158&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]+13.62[/C][C] 0.9467[/C][C]+1.4390e+01[/C][C] 1.206e-30[/C][C] 6.028e-31[/C][/ROW]
[ROW][C]ITH1[/C][C]+0.151[/C][C] 0.2085[/C][C]+7.2460e-01[/C][C] 0.4698[/C][C] 0.2349[/C][/ROW]
[ROW][C]ITH2[/C][C]+0.2163[/C][C] 0.2328[/C][C]+9.2890e-01[/C][C] 0.3544[/C][C] 0.1772[/C][/ROW]
[ROW][C]ITH3[/C][C]+0.09969[/C][C] 0.1945[/C][C]+5.1250e-01[/C][C] 0.609[/C][C] 0.3045[/C][/ROW]
[ROW][C]ITH4[/C][C]-0.03376[/C][C] 0.1592[/C][C]-2.1200e-01[/C][C] 0.8324[/C][C] 0.4162[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298158&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298158&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)+13.62 0.9467+1.4390e+01 1.206e-30 6.028e-31
ITH1+0.151 0.2085+7.2460e-01 0.4698 0.2349
ITH2+0.2163 0.2328+9.2890e-01 0.3544 0.1772
ITH3+0.09969 0.1945+5.1250e-01 0.609 0.3045
ITH4-0.03376 0.1592-2.1200e-01 0.8324 0.4162







Multiple Linear Regression - Regression Statistics
Multiple R 0.1634
R-squared 0.0267
Adjusted R-squared 0.002366
F-TEST (value) 1.097
F-TEST (DF numerator)4
F-TEST (DF denominator)160
p-value 0.3599
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 1.69
Sum Squared Residuals 456.7

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R &  0.1634 \tabularnewline
R-squared &  0.0267 \tabularnewline
Adjusted R-squared &  0.002366 \tabularnewline
F-TEST (value) &  1.097 \tabularnewline
F-TEST (DF numerator) & 4 \tabularnewline
F-TEST (DF denominator) & 160 \tabularnewline
p-value &  0.3599 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation &  1.69 \tabularnewline
Sum Squared Residuals &  456.7 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298158&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C] 0.1634[/C][/ROW]
[ROW][C]R-squared[/C][C] 0.0267[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C] 0.002366[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C] 1.097[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]4[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]160[/C][/ROW]
[ROW][C]p-value[/C][C] 0.3599[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C] 1.69[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C] 456.7[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298158&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298158&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R 0.1634
R-squared 0.0267
Adjusted R-squared 0.002366
F-TEST (value) 1.097
F-TEST (DF numerator)4
F-TEST (DF denominator)160
p-value 0.3599
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 1.69
Sum Squared Residuals 456.7







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 13 15.1-2.102
2 16 15.82 0.18
3 17 15.5 1.496
4 15 15.5-0.504
5 16 15.25 0.7467
6 16 15.79 0.2138
7 18 15.44 2.562
8 16 15.82 0.18
9 17 15.82 1.178
10 17 15.44 1.562
11 17 15.82 1.18
12 15 15.49-0.4864
13 16 15.79 0.2138
14 14 15.72-1.72
15 16 15.25 0.7467
16 17 15.24 1.764
17 16 15.79 0.2138
18 15 15.4-0.4044
19 17 15.15 1.846
20 16 15.35 0.647
21 15 15.04-0.03561
22 16 15.69 0.3134
23 15 15.69-0.6866
24 17 15.79 1.212
25 14 15.39-1.387
26 16 15.67 0.331
27 15 15.57-0.5693
28 16 15.69 0.3134
29 16 15.75 0.2459
30 13 15.42-2.421
31 15 15.69-0.6866
32 17 15.79 1.214
33 15 14.02 0.9805
34 13 15.69-2.687
35 17 15.6 1.397
36 15 15.39-0.3867
37 14 15.35-1.353
38 14 15.72-1.72
39 18 15.49 2.514
40 15 15.39-0.3867
41 17 15.5 1.496
42 13 14.99-1.986
43 16 15.79 0.2138
44 15 15.82-0.82
45 15 14.39 0.6132
46 16 14.89 1.114
47 15 15.22-0.2195
48 13 15.47-2.47
49 17 15.72 1.28
50 18 15.85 2.146
51 18 15.35 2.647
52 11 15.62-4.621
53 14 15.82-1.82
54 13 15.35-2.353
55 15 15.69-0.6866
56 17 15.57 1.429
57 16 15.35 0.647
58 15 15.14-0.136
59 17 15.35 1.645
60 16 15.57 0.4307
61 16 15.5 0.496
62 16 15.57 0.4307
63 15 15.6-0.603
64 12 15.35-3.353
65 17 15.04 1.963
66 14 15.35-1.353
67 14 15.08-1.085
68 16 15.6 0.397
69 15 15.29-0.2871
70 15 15.79-0.7862
71 14 14.92-0.9197
72 13 15.14-2.136
73 18 15.6 2.396
74 15 15.04-0.03703
75 16 15.82 0.18
76 14 15.54-1.536
77 15 15.04-0.03703
78 17 15.59 1.413
79 16 15.82 0.18
80 10 15.44-5.438
81 16 15.29 0.7129
82 17 15.5 1.496
83 17 15.82 1.18
84 20 15.33 4.665
85 17 15.57 1.43
86 18 15.72 2.28
87 15 15.79-0.7862
88 17 15.57 1.428
89 14 15.39-1.387
90 15 15.39-0.3867
91 17 15.79 1.214
92 16 15.39 0.6132
93 17 15.82 1.18
94 15 15.72-0.7203
95 16 15.6 0.3963
96 18 15.39 2.613
97 18 15.79 2.214
98 16 15.89 0.1125
99 17 15.6 1.396
100 15 15.82-0.82
101 13 15.79-2.786
102 15 15.07-0.07079
103 17 15.45 1.547
104 16 15.39 0.6132
105 16 15.35 0.647
106 15 15.85-0.8538
107 16 15.72 0.2797
108 16 15.15 0.8464
109 14 15.2-1.202
110 15 15.17-0.1698
111 12 15.45-3.453
112 19 15.29 3.713
113 16 15.72 0.2797
114 16 15.5 0.496
115 17 15.45 1.547
116 16 15.79 0.2138
117 14 15.54-1.538
118 15 15.29-0.2871
119 14 15.25-1.253
120 16 15.72 0.2797
121 15 15.79-0.7862
122 17 15.62 1.379
123 15 15.62-0.6206
124 16 15.57 0.4307
125 16 15.5 0.496
126 15 15.2-0.2019
127 15 15.75-0.7541
128 11 15.6-4.604
129 16 15.57 0.4307
130 18 15.79 2.214
131 12 15.39-3.387
132 12 15.35-3.353
133 16 15.39 0.6132
134 18 15.42 2.581
135 15 15.39-0.3867
136 19 15.6 3.396
137 17 15.79 1.214
138 13 15.82-2.82
139 14 15.42-1.421
140 16 15.6 0.397
141 13 15.57-2.572
142 17 15.5 1.496
143 14 15.6-1.604
144 19 15.79 3.214
145 14 15.39-1.387
146 16 15.6 0.3963
147 12 15.39-3.387
148 16 15.54 0.4622
149 16 14.95 1.047
150 15 15.2-0.2019
151 12 15.54-3.535
152 15 15.57-0.5693
153 17 15.28 1.715
154 14 15.17-1.17
155 15 15.82-0.82
156 18 15.72 2.28
157 15 15.57-0.5716
158 18 15.5 2.496
159 15 15.82-0.82
160 15 15.6-0.6037
161 16 15.82 0.18
162 13 15.67-2.671
163 16 15.35 0.647
164 14 15.49-1.486
165 16 15.18 0.8157

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 &  13 &  15.1 & -2.102 \tabularnewline
2 &  16 &  15.82 &  0.18 \tabularnewline
3 &  17 &  15.5 &  1.496 \tabularnewline
4 &  15 &  15.5 & -0.504 \tabularnewline
5 &  16 &  15.25 &  0.7467 \tabularnewline
6 &  16 &  15.79 &  0.2138 \tabularnewline
7 &  18 &  15.44 &  2.562 \tabularnewline
8 &  16 &  15.82 &  0.18 \tabularnewline
9 &  17 &  15.82 &  1.178 \tabularnewline
10 &  17 &  15.44 &  1.562 \tabularnewline
11 &  17 &  15.82 &  1.18 \tabularnewline
12 &  15 &  15.49 & -0.4864 \tabularnewline
13 &  16 &  15.79 &  0.2138 \tabularnewline
14 &  14 &  15.72 & -1.72 \tabularnewline
15 &  16 &  15.25 &  0.7467 \tabularnewline
16 &  17 &  15.24 &  1.764 \tabularnewline
17 &  16 &  15.79 &  0.2138 \tabularnewline
18 &  15 &  15.4 & -0.4044 \tabularnewline
19 &  17 &  15.15 &  1.846 \tabularnewline
20 &  16 &  15.35 &  0.647 \tabularnewline
21 &  15 &  15.04 & -0.03561 \tabularnewline
22 &  16 &  15.69 &  0.3134 \tabularnewline
23 &  15 &  15.69 & -0.6866 \tabularnewline
24 &  17 &  15.79 &  1.212 \tabularnewline
25 &  14 &  15.39 & -1.387 \tabularnewline
26 &  16 &  15.67 &  0.331 \tabularnewline
27 &  15 &  15.57 & -0.5693 \tabularnewline
28 &  16 &  15.69 &  0.3134 \tabularnewline
29 &  16 &  15.75 &  0.2459 \tabularnewline
30 &  13 &  15.42 & -2.421 \tabularnewline
31 &  15 &  15.69 & -0.6866 \tabularnewline
32 &  17 &  15.79 &  1.214 \tabularnewline
33 &  15 &  14.02 &  0.9805 \tabularnewline
34 &  13 &  15.69 & -2.687 \tabularnewline
35 &  17 &  15.6 &  1.397 \tabularnewline
36 &  15 &  15.39 & -0.3867 \tabularnewline
37 &  14 &  15.35 & -1.353 \tabularnewline
38 &  14 &  15.72 & -1.72 \tabularnewline
39 &  18 &  15.49 &  2.514 \tabularnewline
40 &  15 &  15.39 & -0.3867 \tabularnewline
41 &  17 &  15.5 &  1.496 \tabularnewline
42 &  13 &  14.99 & -1.986 \tabularnewline
43 &  16 &  15.79 &  0.2138 \tabularnewline
44 &  15 &  15.82 & -0.82 \tabularnewline
45 &  15 &  14.39 &  0.6132 \tabularnewline
46 &  16 &  14.89 &  1.114 \tabularnewline
47 &  15 &  15.22 & -0.2195 \tabularnewline
48 &  13 &  15.47 & -2.47 \tabularnewline
49 &  17 &  15.72 &  1.28 \tabularnewline
50 &  18 &  15.85 &  2.146 \tabularnewline
51 &  18 &  15.35 &  2.647 \tabularnewline
52 &  11 &  15.62 & -4.621 \tabularnewline
53 &  14 &  15.82 & -1.82 \tabularnewline
54 &  13 &  15.35 & -2.353 \tabularnewline
55 &  15 &  15.69 & -0.6866 \tabularnewline
56 &  17 &  15.57 &  1.429 \tabularnewline
57 &  16 &  15.35 &  0.647 \tabularnewline
58 &  15 &  15.14 & -0.136 \tabularnewline
59 &  17 &  15.35 &  1.645 \tabularnewline
60 &  16 &  15.57 &  0.4307 \tabularnewline
61 &  16 &  15.5 &  0.496 \tabularnewline
62 &  16 &  15.57 &  0.4307 \tabularnewline
63 &  15 &  15.6 & -0.603 \tabularnewline
64 &  12 &  15.35 & -3.353 \tabularnewline
65 &  17 &  15.04 &  1.963 \tabularnewline
66 &  14 &  15.35 & -1.353 \tabularnewline
67 &  14 &  15.08 & -1.085 \tabularnewline
68 &  16 &  15.6 &  0.397 \tabularnewline
69 &  15 &  15.29 & -0.2871 \tabularnewline
70 &  15 &  15.79 & -0.7862 \tabularnewline
71 &  14 &  14.92 & -0.9197 \tabularnewline
72 &  13 &  15.14 & -2.136 \tabularnewline
73 &  18 &  15.6 &  2.396 \tabularnewline
74 &  15 &  15.04 & -0.03703 \tabularnewline
75 &  16 &  15.82 &  0.18 \tabularnewline
76 &  14 &  15.54 & -1.536 \tabularnewline
77 &  15 &  15.04 & -0.03703 \tabularnewline
78 &  17 &  15.59 &  1.413 \tabularnewline
79 &  16 &  15.82 &  0.18 \tabularnewline
80 &  10 &  15.44 & -5.438 \tabularnewline
81 &  16 &  15.29 &  0.7129 \tabularnewline
82 &  17 &  15.5 &  1.496 \tabularnewline
83 &  17 &  15.82 &  1.18 \tabularnewline
84 &  20 &  15.33 &  4.665 \tabularnewline
85 &  17 &  15.57 &  1.43 \tabularnewline
86 &  18 &  15.72 &  2.28 \tabularnewline
87 &  15 &  15.79 & -0.7862 \tabularnewline
88 &  17 &  15.57 &  1.428 \tabularnewline
89 &  14 &  15.39 & -1.387 \tabularnewline
90 &  15 &  15.39 & -0.3867 \tabularnewline
91 &  17 &  15.79 &  1.214 \tabularnewline
92 &  16 &  15.39 &  0.6132 \tabularnewline
93 &  17 &  15.82 &  1.18 \tabularnewline
94 &  15 &  15.72 & -0.7203 \tabularnewline
95 &  16 &  15.6 &  0.3963 \tabularnewline
96 &  18 &  15.39 &  2.613 \tabularnewline
97 &  18 &  15.79 &  2.214 \tabularnewline
98 &  16 &  15.89 &  0.1125 \tabularnewline
99 &  17 &  15.6 &  1.396 \tabularnewline
100 &  15 &  15.82 & -0.82 \tabularnewline
101 &  13 &  15.79 & -2.786 \tabularnewline
102 &  15 &  15.07 & -0.07079 \tabularnewline
103 &  17 &  15.45 &  1.547 \tabularnewline
104 &  16 &  15.39 &  0.6132 \tabularnewline
105 &  16 &  15.35 &  0.647 \tabularnewline
106 &  15 &  15.85 & -0.8538 \tabularnewline
107 &  16 &  15.72 &  0.2797 \tabularnewline
108 &  16 &  15.15 &  0.8464 \tabularnewline
109 &  14 &  15.2 & -1.202 \tabularnewline
110 &  15 &  15.17 & -0.1698 \tabularnewline
111 &  12 &  15.45 & -3.453 \tabularnewline
112 &  19 &  15.29 &  3.713 \tabularnewline
113 &  16 &  15.72 &  0.2797 \tabularnewline
114 &  16 &  15.5 &  0.496 \tabularnewline
115 &  17 &  15.45 &  1.547 \tabularnewline
116 &  16 &  15.79 &  0.2138 \tabularnewline
117 &  14 &  15.54 & -1.538 \tabularnewline
118 &  15 &  15.29 & -0.2871 \tabularnewline
119 &  14 &  15.25 & -1.253 \tabularnewline
120 &  16 &  15.72 &  0.2797 \tabularnewline
121 &  15 &  15.79 & -0.7862 \tabularnewline
122 &  17 &  15.62 &  1.379 \tabularnewline
123 &  15 &  15.62 & -0.6206 \tabularnewline
124 &  16 &  15.57 &  0.4307 \tabularnewline
125 &  16 &  15.5 &  0.496 \tabularnewline
126 &  15 &  15.2 & -0.2019 \tabularnewline
127 &  15 &  15.75 & -0.7541 \tabularnewline
128 &  11 &  15.6 & -4.604 \tabularnewline
129 &  16 &  15.57 &  0.4307 \tabularnewline
130 &  18 &  15.79 &  2.214 \tabularnewline
131 &  12 &  15.39 & -3.387 \tabularnewline
132 &  12 &  15.35 & -3.353 \tabularnewline
133 &  16 &  15.39 &  0.6132 \tabularnewline
134 &  18 &  15.42 &  2.581 \tabularnewline
135 &  15 &  15.39 & -0.3867 \tabularnewline
136 &  19 &  15.6 &  3.396 \tabularnewline
137 &  17 &  15.79 &  1.214 \tabularnewline
138 &  13 &  15.82 & -2.82 \tabularnewline
139 &  14 &  15.42 & -1.421 \tabularnewline
140 &  16 &  15.6 &  0.397 \tabularnewline
141 &  13 &  15.57 & -2.572 \tabularnewline
142 &  17 &  15.5 &  1.496 \tabularnewline
143 &  14 &  15.6 & -1.604 \tabularnewline
144 &  19 &  15.79 &  3.214 \tabularnewline
145 &  14 &  15.39 & -1.387 \tabularnewline
146 &  16 &  15.6 &  0.3963 \tabularnewline
147 &  12 &  15.39 & -3.387 \tabularnewline
148 &  16 &  15.54 &  0.4622 \tabularnewline
149 &  16 &  14.95 &  1.047 \tabularnewline
150 &  15 &  15.2 & -0.2019 \tabularnewline
151 &  12 &  15.54 & -3.535 \tabularnewline
152 &  15 &  15.57 & -0.5693 \tabularnewline
153 &  17 &  15.28 &  1.715 \tabularnewline
154 &  14 &  15.17 & -1.17 \tabularnewline
155 &  15 &  15.82 & -0.82 \tabularnewline
156 &  18 &  15.72 &  2.28 \tabularnewline
157 &  15 &  15.57 & -0.5716 \tabularnewline
158 &  18 &  15.5 &  2.496 \tabularnewline
159 &  15 &  15.82 & -0.82 \tabularnewline
160 &  15 &  15.6 & -0.6037 \tabularnewline
161 &  16 &  15.82 &  0.18 \tabularnewline
162 &  13 &  15.67 & -2.671 \tabularnewline
163 &  16 &  15.35 &  0.647 \tabularnewline
164 &  14 &  15.49 & -1.486 \tabularnewline
165 &  16 &  15.18 &  0.8157 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298158&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C] 13[/C][C] 15.1[/C][C]-2.102[/C][/ROW]
[ROW][C]2[/C][C] 16[/C][C] 15.82[/C][C] 0.18[/C][/ROW]
[ROW][C]3[/C][C] 17[/C][C] 15.5[/C][C] 1.496[/C][/ROW]
[ROW][C]4[/C][C] 15[/C][C] 15.5[/C][C]-0.504[/C][/ROW]
[ROW][C]5[/C][C] 16[/C][C] 15.25[/C][C] 0.7467[/C][/ROW]
[ROW][C]6[/C][C] 16[/C][C] 15.79[/C][C] 0.2138[/C][/ROW]
[ROW][C]7[/C][C] 18[/C][C] 15.44[/C][C] 2.562[/C][/ROW]
[ROW][C]8[/C][C] 16[/C][C] 15.82[/C][C] 0.18[/C][/ROW]
[ROW][C]9[/C][C] 17[/C][C] 15.82[/C][C] 1.178[/C][/ROW]
[ROW][C]10[/C][C] 17[/C][C] 15.44[/C][C] 1.562[/C][/ROW]
[ROW][C]11[/C][C] 17[/C][C] 15.82[/C][C] 1.18[/C][/ROW]
[ROW][C]12[/C][C] 15[/C][C] 15.49[/C][C]-0.4864[/C][/ROW]
[ROW][C]13[/C][C] 16[/C][C] 15.79[/C][C] 0.2138[/C][/ROW]
[ROW][C]14[/C][C] 14[/C][C] 15.72[/C][C]-1.72[/C][/ROW]
[ROW][C]15[/C][C] 16[/C][C] 15.25[/C][C] 0.7467[/C][/ROW]
[ROW][C]16[/C][C] 17[/C][C] 15.24[/C][C] 1.764[/C][/ROW]
[ROW][C]17[/C][C] 16[/C][C] 15.79[/C][C] 0.2138[/C][/ROW]
[ROW][C]18[/C][C] 15[/C][C] 15.4[/C][C]-0.4044[/C][/ROW]
[ROW][C]19[/C][C] 17[/C][C] 15.15[/C][C] 1.846[/C][/ROW]
[ROW][C]20[/C][C] 16[/C][C] 15.35[/C][C] 0.647[/C][/ROW]
[ROW][C]21[/C][C] 15[/C][C] 15.04[/C][C]-0.03561[/C][/ROW]
[ROW][C]22[/C][C] 16[/C][C] 15.69[/C][C] 0.3134[/C][/ROW]
[ROW][C]23[/C][C] 15[/C][C] 15.69[/C][C]-0.6866[/C][/ROW]
[ROW][C]24[/C][C] 17[/C][C] 15.79[/C][C] 1.212[/C][/ROW]
[ROW][C]25[/C][C] 14[/C][C] 15.39[/C][C]-1.387[/C][/ROW]
[ROW][C]26[/C][C] 16[/C][C] 15.67[/C][C] 0.331[/C][/ROW]
[ROW][C]27[/C][C] 15[/C][C] 15.57[/C][C]-0.5693[/C][/ROW]
[ROW][C]28[/C][C] 16[/C][C] 15.69[/C][C] 0.3134[/C][/ROW]
[ROW][C]29[/C][C] 16[/C][C] 15.75[/C][C] 0.2459[/C][/ROW]
[ROW][C]30[/C][C] 13[/C][C] 15.42[/C][C]-2.421[/C][/ROW]
[ROW][C]31[/C][C] 15[/C][C] 15.69[/C][C]-0.6866[/C][/ROW]
[ROW][C]32[/C][C] 17[/C][C] 15.79[/C][C] 1.214[/C][/ROW]
[ROW][C]33[/C][C] 15[/C][C] 14.02[/C][C] 0.9805[/C][/ROW]
[ROW][C]34[/C][C] 13[/C][C] 15.69[/C][C]-2.687[/C][/ROW]
[ROW][C]35[/C][C] 17[/C][C] 15.6[/C][C] 1.397[/C][/ROW]
[ROW][C]36[/C][C] 15[/C][C] 15.39[/C][C]-0.3867[/C][/ROW]
[ROW][C]37[/C][C] 14[/C][C] 15.35[/C][C]-1.353[/C][/ROW]
[ROW][C]38[/C][C] 14[/C][C] 15.72[/C][C]-1.72[/C][/ROW]
[ROW][C]39[/C][C] 18[/C][C] 15.49[/C][C] 2.514[/C][/ROW]
[ROW][C]40[/C][C] 15[/C][C] 15.39[/C][C]-0.3867[/C][/ROW]
[ROW][C]41[/C][C] 17[/C][C] 15.5[/C][C] 1.496[/C][/ROW]
[ROW][C]42[/C][C] 13[/C][C] 14.99[/C][C]-1.986[/C][/ROW]
[ROW][C]43[/C][C] 16[/C][C] 15.79[/C][C] 0.2138[/C][/ROW]
[ROW][C]44[/C][C] 15[/C][C] 15.82[/C][C]-0.82[/C][/ROW]
[ROW][C]45[/C][C] 15[/C][C] 14.39[/C][C] 0.6132[/C][/ROW]
[ROW][C]46[/C][C] 16[/C][C] 14.89[/C][C] 1.114[/C][/ROW]
[ROW][C]47[/C][C] 15[/C][C] 15.22[/C][C]-0.2195[/C][/ROW]
[ROW][C]48[/C][C] 13[/C][C] 15.47[/C][C]-2.47[/C][/ROW]
[ROW][C]49[/C][C] 17[/C][C] 15.72[/C][C] 1.28[/C][/ROW]
[ROW][C]50[/C][C] 18[/C][C] 15.85[/C][C] 2.146[/C][/ROW]
[ROW][C]51[/C][C] 18[/C][C] 15.35[/C][C] 2.647[/C][/ROW]
[ROW][C]52[/C][C] 11[/C][C] 15.62[/C][C]-4.621[/C][/ROW]
[ROW][C]53[/C][C] 14[/C][C] 15.82[/C][C]-1.82[/C][/ROW]
[ROW][C]54[/C][C] 13[/C][C] 15.35[/C][C]-2.353[/C][/ROW]
[ROW][C]55[/C][C] 15[/C][C] 15.69[/C][C]-0.6866[/C][/ROW]
[ROW][C]56[/C][C] 17[/C][C] 15.57[/C][C] 1.429[/C][/ROW]
[ROW][C]57[/C][C] 16[/C][C] 15.35[/C][C] 0.647[/C][/ROW]
[ROW][C]58[/C][C] 15[/C][C] 15.14[/C][C]-0.136[/C][/ROW]
[ROW][C]59[/C][C] 17[/C][C] 15.35[/C][C] 1.645[/C][/ROW]
[ROW][C]60[/C][C] 16[/C][C] 15.57[/C][C] 0.4307[/C][/ROW]
[ROW][C]61[/C][C] 16[/C][C] 15.5[/C][C] 0.496[/C][/ROW]
[ROW][C]62[/C][C] 16[/C][C] 15.57[/C][C] 0.4307[/C][/ROW]
[ROW][C]63[/C][C] 15[/C][C] 15.6[/C][C]-0.603[/C][/ROW]
[ROW][C]64[/C][C] 12[/C][C] 15.35[/C][C]-3.353[/C][/ROW]
[ROW][C]65[/C][C] 17[/C][C] 15.04[/C][C] 1.963[/C][/ROW]
[ROW][C]66[/C][C] 14[/C][C] 15.35[/C][C]-1.353[/C][/ROW]
[ROW][C]67[/C][C] 14[/C][C] 15.08[/C][C]-1.085[/C][/ROW]
[ROW][C]68[/C][C] 16[/C][C] 15.6[/C][C] 0.397[/C][/ROW]
[ROW][C]69[/C][C] 15[/C][C] 15.29[/C][C]-0.2871[/C][/ROW]
[ROW][C]70[/C][C] 15[/C][C] 15.79[/C][C]-0.7862[/C][/ROW]
[ROW][C]71[/C][C] 14[/C][C] 14.92[/C][C]-0.9197[/C][/ROW]
[ROW][C]72[/C][C] 13[/C][C] 15.14[/C][C]-2.136[/C][/ROW]
[ROW][C]73[/C][C] 18[/C][C] 15.6[/C][C] 2.396[/C][/ROW]
[ROW][C]74[/C][C] 15[/C][C] 15.04[/C][C]-0.03703[/C][/ROW]
[ROW][C]75[/C][C] 16[/C][C] 15.82[/C][C] 0.18[/C][/ROW]
[ROW][C]76[/C][C] 14[/C][C] 15.54[/C][C]-1.536[/C][/ROW]
[ROW][C]77[/C][C] 15[/C][C] 15.04[/C][C]-0.03703[/C][/ROW]
[ROW][C]78[/C][C] 17[/C][C] 15.59[/C][C] 1.413[/C][/ROW]
[ROW][C]79[/C][C] 16[/C][C] 15.82[/C][C] 0.18[/C][/ROW]
[ROW][C]80[/C][C] 10[/C][C] 15.44[/C][C]-5.438[/C][/ROW]
[ROW][C]81[/C][C] 16[/C][C] 15.29[/C][C] 0.7129[/C][/ROW]
[ROW][C]82[/C][C] 17[/C][C] 15.5[/C][C] 1.496[/C][/ROW]
[ROW][C]83[/C][C] 17[/C][C] 15.82[/C][C] 1.18[/C][/ROW]
[ROW][C]84[/C][C] 20[/C][C] 15.33[/C][C] 4.665[/C][/ROW]
[ROW][C]85[/C][C] 17[/C][C] 15.57[/C][C] 1.43[/C][/ROW]
[ROW][C]86[/C][C] 18[/C][C] 15.72[/C][C] 2.28[/C][/ROW]
[ROW][C]87[/C][C] 15[/C][C] 15.79[/C][C]-0.7862[/C][/ROW]
[ROW][C]88[/C][C] 17[/C][C] 15.57[/C][C] 1.428[/C][/ROW]
[ROW][C]89[/C][C] 14[/C][C] 15.39[/C][C]-1.387[/C][/ROW]
[ROW][C]90[/C][C] 15[/C][C] 15.39[/C][C]-0.3867[/C][/ROW]
[ROW][C]91[/C][C] 17[/C][C] 15.79[/C][C] 1.214[/C][/ROW]
[ROW][C]92[/C][C] 16[/C][C] 15.39[/C][C] 0.6132[/C][/ROW]
[ROW][C]93[/C][C] 17[/C][C] 15.82[/C][C] 1.18[/C][/ROW]
[ROW][C]94[/C][C] 15[/C][C] 15.72[/C][C]-0.7203[/C][/ROW]
[ROW][C]95[/C][C] 16[/C][C] 15.6[/C][C] 0.3963[/C][/ROW]
[ROW][C]96[/C][C] 18[/C][C] 15.39[/C][C] 2.613[/C][/ROW]
[ROW][C]97[/C][C] 18[/C][C] 15.79[/C][C] 2.214[/C][/ROW]
[ROW][C]98[/C][C] 16[/C][C] 15.89[/C][C] 0.1125[/C][/ROW]
[ROW][C]99[/C][C] 17[/C][C] 15.6[/C][C] 1.396[/C][/ROW]
[ROW][C]100[/C][C] 15[/C][C] 15.82[/C][C]-0.82[/C][/ROW]
[ROW][C]101[/C][C] 13[/C][C] 15.79[/C][C]-2.786[/C][/ROW]
[ROW][C]102[/C][C] 15[/C][C] 15.07[/C][C]-0.07079[/C][/ROW]
[ROW][C]103[/C][C] 17[/C][C] 15.45[/C][C] 1.547[/C][/ROW]
[ROW][C]104[/C][C] 16[/C][C] 15.39[/C][C] 0.6132[/C][/ROW]
[ROW][C]105[/C][C] 16[/C][C] 15.35[/C][C] 0.647[/C][/ROW]
[ROW][C]106[/C][C] 15[/C][C] 15.85[/C][C]-0.8538[/C][/ROW]
[ROW][C]107[/C][C] 16[/C][C] 15.72[/C][C] 0.2797[/C][/ROW]
[ROW][C]108[/C][C] 16[/C][C] 15.15[/C][C] 0.8464[/C][/ROW]
[ROW][C]109[/C][C] 14[/C][C] 15.2[/C][C]-1.202[/C][/ROW]
[ROW][C]110[/C][C] 15[/C][C] 15.17[/C][C]-0.1698[/C][/ROW]
[ROW][C]111[/C][C] 12[/C][C] 15.45[/C][C]-3.453[/C][/ROW]
[ROW][C]112[/C][C] 19[/C][C] 15.29[/C][C] 3.713[/C][/ROW]
[ROW][C]113[/C][C] 16[/C][C] 15.72[/C][C] 0.2797[/C][/ROW]
[ROW][C]114[/C][C] 16[/C][C] 15.5[/C][C] 0.496[/C][/ROW]
[ROW][C]115[/C][C] 17[/C][C] 15.45[/C][C] 1.547[/C][/ROW]
[ROW][C]116[/C][C] 16[/C][C] 15.79[/C][C] 0.2138[/C][/ROW]
[ROW][C]117[/C][C] 14[/C][C] 15.54[/C][C]-1.538[/C][/ROW]
[ROW][C]118[/C][C] 15[/C][C] 15.29[/C][C]-0.2871[/C][/ROW]
[ROW][C]119[/C][C] 14[/C][C] 15.25[/C][C]-1.253[/C][/ROW]
[ROW][C]120[/C][C] 16[/C][C] 15.72[/C][C] 0.2797[/C][/ROW]
[ROW][C]121[/C][C] 15[/C][C] 15.79[/C][C]-0.7862[/C][/ROW]
[ROW][C]122[/C][C] 17[/C][C] 15.62[/C][C] 1.379[/C][/ROW]
[ROW][C]123[/C][C] 15[/C][C] 15.62[/C][C]-0.6206[/C][/ROW]
[ROW][C]124[/C][C] 16[/C][C] 15.57[/C][C] 0.4307[/C][/ROW]
[ROW][C]125[/C][C] 16[/C][C] 15.5[/C][C] 0.496[/C][/ROW]
[ROW][C]126[/C][C] 15[/C][C] 15.2[/C][C]-0.2019[/C][/ROW]
[ROW][C]127[/C][C] 15[/C][C] 15.75[/C][C]-0.7541[/C][/ROW]
[ROW][C]128[/C][C] 11[/C][C] 15.6[/C][C]-4.604[/C][/ROW]
[ROW][C]129[/C][C] 16[/C][C] 15.57[/C][C] 0.4307[/C][/ROW]
[ROW][C]130[/C][C] 18[/C][C] 15.79[/C][C] 2.214[/C][/ROW]
[ROW][C]131[/C][C] 12[/C][C] 15.39[/C][C]-3.387[/C][/ROW]
[ROW][C]132[/C][C] 12[/C][C] 15.35[/C][C]-3.353[/C][/ROW]
[ROW][C]133[/C][C] 16[/C][C] 15.39[/C][C] 0.6132[/C][/ROW]
[ROW][C]134[/C][C] 18[/C][C] 15.42[/C][C] 2.581[/C][/ROW]
[ROW][C]135[/C][C] 15[/C][C] 15.39[/C][C]-0.3867[/C][/ROW]
[ROW][C]136[/C][C] 19[/C][C] 15.6[/C][C] 3.396[/C][/ROW]
[ROW][C]137[/C][C] 17[/C][C] 15.79[/C][C] 1.214[/C][/ROW]
[ROW][C]138[/C][C] 13[/C][C] 15.82[/C][C]-2.82[/C][/ROW]
[ROW][C]139[/C][C] 14[/C][C] 15.42[/C][C]-1.421[/C][/ROW]
[ROW][C]140[/C][C] 16[/C][C] 15.6[/C][C] 0.397[/C][/ROW]
[ROW][C]141[/C][C] 13[/C][C] 15.57[/C][C]-2.572[/C][/ROW]
[ROW][C]142[/C][C] 17[/C][C] 15.5[/C][C] 1.496[/C][/ROW]
[ROW][C]143[/C][C] 14[/C][C] 15.6[/C][C]-1.604[/C][/ROW]
[ROW][C]144[/C][C] 19[/C][C] 15.79[/C][C] 3.214[/C][/ROW]
[ROW][C]145[/C][C] 14[/C][C] 15.39[/C][C]-1.387[/C][/ROW]
[ROW][C]146[/C][C] 16[/C][C] 15.6[/C][C] 0.3963[/C][/ROW]
[ROW][C]147[/C][C] 12[/C][C] 15.39[/C][C]-3.387[/C][/ROW]
[ROW][C]148[/C][C] 16[/C][C] 15.54[/C][C] 0.4622[/C][/ROW]
[ROW][C]149[/C][C] 16[/C][C] 14.95[/C][C] 1.047[/C][/ROW]
[ROW][C]150[/C][C] 15[/C][C] 15.2[/C][C]-0.2019[/C][/ROW]
[ROW][C]151[/C][C] 12[/C][C] 15.54[/C][C]-3.535[/C][/ROW]
[ROW][C]152[/C][C] 15[/C][C] 15.57[/C][C]-0.5693[/C][/ROW]
[ROW][C]153[/C][C] 17[/C][C] 15.28[/C][C] 1.715[/C][/ROW]
[ROW][C]154[/C][C] 14[/C][C] 15.17[/C][C]-1.17[/C][/ROW]
[ROW][C]155[/C][C] 15[/C][C] 15.82[/C][C]-0.82[/C][/ROW]
[ROW][C]156[/C][C] 18[/C][C] 15.72[/C][C] 2.28[/C][/ROW]
[ROW][C]157[/C][C] 15[/C][C] 15.57[/C][C]-0.5716[/C][/ROW]
[ROW][C]158[/C][C] 18[/C][C] 15.5[/C][C] 2.496[/C][/ROW]
[ROW][C]159[/C][C] 15[/C][C] 15.82[/C][C]-0.82[/C][/ROW]
[ROW][C]160[/C][C] 15[/C][C] 15.6[/C][C]-0.6037[/C][/ROW]
[ROW][C]161[/C][C] 16[/C][C] 15.82[/C][C] 0.18[/C][/ROW]
[ROW][C]162[/C][C] 13[/C][C] 15.67[/C][C]-2.671[/C][/ROW]
[ROW][C]163[/C][C] 16[/C][C] 15.35[/C][C] 0.647[/C][/ROW]
[ROW][C]164[/C][C] 14[/C][C] 15.49[/C][C]-1.486[/C][/ROW]
[ROW][C]165[/C][C] 16[/C][C] 15.18[/C][C] 0.8157[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298158&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298158&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 13 15.1-2.102
2 16 15.82 0.18
3 17 15.5 1.496
4 15 15.5-0.504
5 16 15.25 0.7467
6 16 15.79 0.2138
7 18 15.44 2.562
8 16 15.82 0.18
9 17 15.82 1.178
10 17 15.44 1.562
11 17 15.82 1.18
12 15 15.49-0.4864
13 16 15.79 0.2138
14 14 15.72-1.72
15 16 15.25 0.7467
16 17 15.24 1.764
17 16 15.79 0.2138
18 15 15.4-0.4044
19 17 15.15 1.846
20 16 15.35 0.647
21 15 15.04-0.03561
22 16 15.69 0.3134
23 15 15.69-0.6866
24 17 15.79 1.212
25 14 15.39-1.387
26 16 15.67 0.331
27 15 15.57-0.5693
28 16 15.69 0.3134
29 16 15.75 0.2459
30 13 15.42-2.421
31 15 15.69-0.6866
32 17 15.79 1.214
33 15 14.02 0.9805
34 13 15.69-2.687
35 17 15.6 1.397
36 15 15.39-0.3867
37 14 15.35-1.353
38 14 15.72-1.72
39 18 15.49 2.514
40 15 15.39-0.3867
41 17 15.5 1.496
42 13 14.99-1.986
43 16 15.79 0.2138
44 15 15.82-0.82
45 15 14.39 0.6132
46 16 14.89 1.114
47 15 15.22-0.2195
48 13 15.47-2.47
49 17 15.72 1.28
50 18 15.85 2.146
51 18 15.35 2.647
52 11 15.62-4.621
53 14 15.82-1.82
54 13 15.35-2.353
55 15 15.69-0.6866
56 17 15.57 1.429
57 16 15.35 0.647
58 15 15.14-0.136
59 17 15.35 1.645
60 16 15.57 0.4307
61 16 15.5 0.496
62 16 15.57 0.4307
63 15 15.6-0.603
64 12 15.35-3.353
65 17 15.04 1.963
66 14 15.35-1.353
67 14 15.08-1.085
68 16 15.6 0.397
69 15 15.29-0.2871
70 15 15.79-0.7862
71 14 14.92-0.9197
72 13 15.14-2.136
73 18 15.6 2.396
74 15 15.04-0.03703
75 16 15.82 0.18
76 14 15.54-1.536
77 15 15.04-0.03703
78 17 15.59 1.413
79 16 15.82 0.18
80 10 15.44-5.438
81 16 15.29 0.7129
82 17 15.5 1.496
83 17 15.82 1.18
84 20 15.33 4.665
85 17 15.57 1.43
86 18 15.72 2.28
87 15 15.79-0.7862
88 17 15.57 1.428
89 14 15.39-1.387
90 15 15.39-0.3867
91 17 15.79 1.214
92 16 15.39 0.6132
93 17 15.82 1.18
94 15 15.72-0.7203
95 16 15.6 0.3963
96 18 15.39 2.613
97 18 15.79 2.214
98 16 15.89 0.1125
99 17 15.6 1.396
100 15 15.82-0.82
101 13 15.79-2.786
102 15 15.07-0.07079
103 17 15.45 1.547
104 16 15.39 0.6132
105 16 15.35 0.647
106 15 15.85-0.8538
107 16 15.72 0.2797
108 16 15.15 0.8464
109 14 15.2-1.202
110 15 15.17-0.1698
111 12 15.45-3.453
112 19 15.29 3.713
113 16 15.72 0.2797
114 16 15.5 0.496
115 17 15.45 1.547
116 16 15.79 0.2138
117 14 15.54-1.538
118 15 15.29-0.2871
119 14 15.25-1.253
120 16 15.72 0.2797
121 15 15.79-0.7862
122 17 15.62 1.379
123 15 15.62-0.6206
124 16 15.57 0.4307
125 16 15.5 0.496
126 15 15.2-0.2019
127 15 15.75-0.7541
128 11 15.6-4.604
129 16 15.57 0.4307
130 18 15.79 2.214
131 12 15.39-3.387
132 12 15.35-3.353
133 16 15.39 0.6132
134 18 15.42 2.581
135 15 15.39-0.3867
136 19 15.6 3.396
137 17 15.79 1.214
138 13 15.82-2.82
139 14 15.42-1.421
140 16 15.6 0.397
141 13 15.57-2.572
142 17 15.5 1.496
143 14 15.6-1.604
144 19 15.79 3.214
145 14 15.39-1.387
146 16 15.6 0.3963
147 12 15.39-3.387
148 16 15.54 0.4622
149 16 14.95 1.047
150 15 15.2-0.2019
151 12 15.54-3.535
152 15 15.57-0.5693
153 17 15.28 1.715
154 14 15.17-1.17
155 15 15.82-0.82
156 18 15.72 2.28
157 15 15.57-0.5716
158 18 15.5 2.496
159 15 15.82-0.82
160 15 15.6-0.6037
161 16 15.82 0.18
162 13 15.67-2.671
163 16 15.35 0.647
164 14 15.49-1.486
165 16 15.18 0.8157







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
8 0.1349 0.2698 0.8651
9 0.05499 0.11 0.945
10 0.03553 0.07105 0.9645
11 0.02795 0.0559 0.972
12 0.02729 0.05459 0.9727
13 0.01196 0.02392 0.988
14 0.06011 0.1202 0.9399
15 0.04303 0.08607 0.957
16 0.1047 0.2095 0.8953
17 0.0697 0.1394 0.9303
18 0.06046 0.1209 0.9395
19 0.04217 0.08434 0.9578
20 0.02626 0.05252 0.9737
21 0.01981 0.03962 0.9802
22 0.01244 0.02487 0.9876
23 0.007773 0.01555 0.9922
24 0.00456 0.00912 0.9954
25 0.008825 0.01765 0.9912
26 0.00597 0.01194 0.994
27 0.003563 0.007125 0.9964
28 0.0021 0.004201 0.9979
29 0.001217 0.002433 0.9988
30 0.007561 0.01512 0.9924
31 0.005568 0.01114 0.9944
32 0.004906 0.009812 0.9951
33 0.003388 0.006775 0.9966
34 0.01065 0.02131 0.9893
35 0.01071 0.02142 0.9893
36 0.007733 0.01547 0.9923
37 0.007444 0.01489 0.9926
38 0.009072 0.01814 0.9909
39 0.01418 0.02835 0.9858
40 0.01066 0.02132 0.9893
41 0.008765 0.01753 0.9912
42 0.0118 0.02361 0.9882
43 0.008307 0.01661 0.9917
44 0.006422 0.01284 0.9936
45 0.004391 0.008781 0.9956
46 0.003691 0.007383 0.9963
47 0.002426 0.004851 0.9976
48 0.003589 0.007179 0.9964
49 0.003156 0.006312 0.9968
50 0.003709 0.007418 0.9963
51 0.007418 0.01484 0.9926
52 0.06373 0.1275 0.9363
53 0.07182 0.1436 0.9282
54 0.0961 0.1922 0.9039
55 0.07846 0.1569 0.9215
56 0.07098 0.142 0.929
57 0.05756 0.1151 0.9424
58 0.04466 0.08932 0.9553
59 0.04013 0.08026 0.9599
60 0.03318 0.06635 0.9668
61 0.02535 0.0507 0.9747
62 0.02049 0.04097 0.9795
63 0.01575 0.03149 0.9843
64 0.04205 0.08411 0.9579
65 0.04362 0.08723 0.9564
66 0.0407 0.0814 0.9593
67 0.03349 0.06698 0.9665
68 0.0263 0.0526 0.9737
69 0.02038 0.04076 0.9796
70 0.0162 0.03241 0.9838
71 0.01389 0.02777 0.9861
72 0.01613 0.03226 0.9839
73 0.0193 0.03859 0.9807
74 0.01466 0.02932 0.9853
75 0.01086 0.02172 0.9891
76 0.01012 0.02024 0.9899
77 0.007495 0.01499 0.9925
78 0.008098 0.0162 0.9919
79 0.005871 0.01174 0.9941
80 0.1144 0.2289 0.8856
81 0.09658 0.1932 0.9034
82 0.08971 0.1794 0.9103
83 0.0798 0.1596 0.9202
84 0.2918 0.5837 0.7082
85 0.2726 0.5452 0.7274
86 0.3041 0.6082 0.6959
87 0.2761 0.5522 0.7239
88 0.2734 0.5469 0.7266
89 0.2663 0.5326 0.7337
90 0.2344 0.4687 0.7656
91 0.2157 0.4314 0.7843
92 0.1891 0.3782 0.8109
93 0.1745 0.349 0.8255
94 0.1519 0.3038 0.8481
95 0.1284 0.2567 0.8716
96 0.1686 0.3372 0.8314
97 0.1868 0.3737 0.8132
98 0.1789 0.3577 0.8211
99 0.1703 0.3405 0.8297
100 0.1487 0.2975 0.8513
101 0.2103 0.4207 0.7897
102 0.1793 0.3586 0.8207
103 0.1777 0.3553 0.8223
104 0.1572 0.3144 0.8428
105 0.1333 0.2665 0.8667
106 0.1173 0.2345 0.8827
107 0.09618 0.1924 0.9038
108 0.08378 0.1676 0.9162
109 0.07611 0.1522 0.9239
110 0.06191 0.1238 0.9381
111 0.1212 0.2424 0.8788
112 0.252 0.504 0.748
113 0.2157 0.4314 0.7843
114 0.1833 0.3667 0.8167
115 0.1809 0.3618 0.8191
116 0.1508 0.3017 0.8492
117 0.1414 0.2827 0.8586
118 0.1157 0.2314 0.8843
119 0.1122 0.2245 0.8878
120 0.09031 0.1806 0.9097
121 0.07866 0.1573 0.9213
122 0.06945 0.1389 0.9305
123 0.05816 0.1163 0.9418
124 0.04526 0.09053 0.9547
125 0.03435 0.0687 0.9657
126 0.02574 0.05149 0.9743
127 0.01946 0.03892 0.9805
128 0.1062 0.2124 0.8938
129 0.08451 0.169 0.9155
130 0.0867 0.1734 0.9133
131 0.1427 0.2853 0.8573
132 0.301 0.602 0.699
133 0.2642 0.5284 0.7358
134 0.272 0.5439 0.728
135 0.2251 0.4503 0.7749
136 0.3904 0.7808 0.6096
137 0.3542 0.7084 0.6458
138 0.4155 0.831 0.5845
139 0.3642 0.7284 0.6358
140 0.3207 0.6415 0.6793
141 0.3256 0.6513 0.6744
142 0.291 0.5821 0.709
143 0.27 0.54 0.73
144 0.4278 0.8556 0.5722
145 0.4222 0.8443 0.5778
146 0.3509 0.7017 0.6491
147 0.5564 0.8873 0.4436
148 0.4745 0.949 0.5255
149 0.3951 0.7901 0.6049
150 0.3198 0.6395 0.6802
151 0.8732 0.2537 0.1268
152 0.8423 0.3154 0.1577
153 0.8395 0.3211 0.1605
154 0.9513 0.0973 0.04865
155 0.9116 0.1767 0.08837
156 0.8394 0.3213 0.1606
157 0.6996 0.6008 0.3004

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
8 &  0.1349 &  0.2698 &  0.8651 \tabularnewline
9 &  0.05499 &  0.11 &  0.945 \tabularnewline
10 &  0.03553 &  0.07105 &  0.9645 \tabularnewline
11 &  0.02795 &  0.0559 &  0.972 \tabularnewline
12 &  0.02729 &  0.05459 &  0.9727 \tabularnewline
13 &  0.01196 &  0.02392 &  0.988 \tabularnewline
14 &  0.06011 &  0.1202 &  0.9399 \tabularnewline
15 &  0.04303 &  0.08607 &  0.957 \tabularnewline
16 &  0.1047 &  0.2095 &  0.8953 \tabularnewline
17 &  0.0697 &  0.1394 &  0.9303 \tabularnewline
18 &  0.06046 &  0.1209 &  0.9395 \tabularnewline
19 &  0.04217 &  0.08434 &  0.9578 \tabularnewline
20 &  0.02626 &  0.05252 &  0.9737 \tabularnewline
21 &  0.01981 &  0.03962 &  0.9802 \tabularnewline
22 &  0.01244 &  0.02487 &  0.9876 \tabularnewline
23 &  0.007773 &  0.01555 &  0.9922 \tabularnewline
24 &  0.00456 &  0.00912 &  0.9954 \tabularnewline
25 &  0.008825 &  0.01765 &  0.9912 \tabularnewline
26 &  0.00597 &  0.01194 &  0.994 \tabularnewline
27 &  0.003563 &  0.007125 &  0.9964 \tabularnewline
28 &  0.0021 &  0.004201 &  0.9979 \tabularnewline
29 &  0.001217 &  0.002433 &  0.9988 \tabularnewline
30 &  0.007561 &  0.01512 &  0.9924 \tabularnewline
31 &  0.005568 &  0.01114 &  0.9944 \tabularnewline
32 &  0.004906 &  0.009812 &  0.9951 \tabularnewline
33 &  0.003388 &  0.006775 &  0.9966 \tabularnewline
34 &  0.01065 &  0.02131 &  0.9893 \tabularnewline
35 &  0.01071 &  0.02142 &  0.9893 \tabularnewline
36 &  0.007733 &  0.01547 &  0.9923 \tabularnewline
37 &  0.007444 &  0.01489 &  0.9926 \tabularnewline
38 &  0.009072 &  0.01814 &  0.9909 \tabularnewline
39 &  0.01418 &  0.02835 &  0.9858 \tabularnewline
40 &  0.01066 &  0.02132 &  0.9893 \tabularnewline
41 &  0.008765 &  0.01753 &  0.9912 \tabularnewline
42 &  0.0118 &  0.02361 &  0.9882 \tabularnewline
43 &  0.008307 &  0.01661 &  0.9917 \tabularnewline
44 &  0.006422 &  0.01284 &  0.9936 \tabularnewline
45 &  0.004391 &  0.008781 &  0.9956 \tabularnewline
46 &  0.003691 &  0.007383 &  0.9963 \tabularnewline
47 &  0.002426 &  0.004851 &  0.9976 \tabularnewline
48 &  0.003589 &  0.007179 &  0.9964 \tabularnewline
49 &  0.003156 &  0.006312 &  0.9968 \tabularnewline
50 &  0.003709 &  0.007418 &  0.9963 \tabularnewline
51 &  0.007418 &  0.01484 &  0.9926 \tabularnewline
52 &  0.06373 &  0.1275 &  0.9363 \tabularnewline
53 &  0.07182 &  0.1436 &  0.9282 \tabularnewline
54 &  0.0961 &  0.1922 &  0.9039 \tabularnewline
55 &  0.07846 &  0.1569 &  0.9215 \tabularnewline
56 &  0.07098 &  0.142 &  0.929 \tabularnewline
57 &  0.05756 &  0.1151 &  0.9424 \tabularnewline
58 &  0.04466 &  0.08932 &  0.9553 \tabularnewline
59 &  0.04013 &  0.08026 &  0.9599 \tabularnewline
60 &  0.03318 &  0.06635 &  0.9668 \tabularnewline
61 &  0.02535 &  0.0507 &  0.9747 \tabularnewline
62 &  0.02049 &  0.04097 &  0.9795 \tabularnewline
63 &  0.01575 &  0.03149 &  0.9843 \tabularnewline
64 &  0.04205 &  0.08411 &  0.9579 \tabularnewline
65 &  0.04362 &  0.08723 &  0.9564 \tabularnewline
66 &  0.0407 &  0.0814 &  0.9593 \tabularnewline
67 &  0.03349 &  0.06698 &  0.9665 \tabularnewline
68 &  0.0263 &  0.0526 &  0.9737 \tabularnewline
69 &  0.02038 &  0.04076 &  0.9796 \tabularnewline
70 &  0.0162 &  0.03241 &  0.9838 \tabularnewline
71 &  0.01389 &  0.02777 &  0.9861 \tabularnewline
72 &  0.01613 &  0.03226 &  0.9839 \tabularnewline
73 &  0.0193 &  0.03859 &  0.9807 \tabularnewline
74 &  0.01466 &  0.02932 &  0.9853 \tabularnewline
75 &  0.01086 &  0.02172 &  0.9891 \tabularnewline
76 &  0.01012 &  0.02024 &  0.9899 \tabularnewline
77 &  0.007495 &  0.01499 &  0.9925 \tabularnewline
78 &  0.008098 &  0.0162 &  0.9919 \tabularnewline
79 &  0.005871 &  0.01174 &  0.9941 \tabularnewline
80 &  0.1144 &  0.2289 &  0.8856 \tabularnewline
81 &  0.09658 &  0.1932 &  0.9034 \tabularnewline
82 &  0.08971 &  0.1794 &  0.9103 \tabularnewline
83 &  0.0798 &  0.1596 &  0.9202 \tabularnewline
84 &  0.2918 &  0.5837 &  0.7082 \tabularnewline
85 &  0.2726 &  0.5452 &  0.7274 \tabularnewline
86 &  0.3041 &  0.6082 &  0.6959 \tabularnewline
87 &  0.2761 &  0.5522 &  0.7239 \tabularnewline
88 &  0.2734 &  0.5469 &  0.7266 \tabularnewline
89 &  0.2663 &  0.5326 &  0.7337 \tabularnewline
90 &  0.2344 &  0.4687 &  0.7656 \tabularnewline
91 &  0.2157 &  0.4314 &  0.7843 \tabularnewline
92 &  0.1891 &  0.3782 &  0.8109 \tabularnewline
93 &  0.1745 &  0.349 &  0.8255 \tabularnewline
94 &  0.1519 &  0.3038 &  0.8481 \tabularnewline
95 &  0.1284 &  0.2567 &  0.8716 \tabularnewline
96 &  0.1686 &  0.3372 &  0.8314 \tabularnewline
97 &  0.1868 &  0.3737 &  0.8132 \tabularnewline
98 &  0.1789 &  0.3577 &  0.8211 \tabularnewline
99 &  0.1703 &  0.3405 &  0.8297 \tabularnewline
100 &  0.1487 &  0.2975 &  0.8513 \tabularnewline
101 &  0.2103 &  0.4207 &  0.7897 \tabularnewline
102 &  0.1793 &  0.3586 &  0.8207 \tabularnewline
103 &  0.1777 &  0.3553 &  0.8223 \tabularnewline
104 &  0.1572 &  0.3144 &  0.8428 \tabularnewline
105 &  0.1333 &  0.2665 &  0.8667 \tabularnewline
106 &  0.1173 &  0.2345 &  0.8827 \tabularnewline
107 &  0.09618 &  0.1924 &  0.9038 \tabularnewline
108 &  0.08378 &  0.1676 &  0.9162 \tabularnewline
109 &  0.07611 &  0.1522 &  0.9239 \tabularnewline
110 &  0.06191 &  0.1238 &  0.9381 \tabularnewline
111 &  0.1212 &  0.2424 &  0.8788 \tabularnewline
112 &  0.252 &  0.504 &  0.748 \tabularnewline
113 &  0.2157 &  0.4314 &  0.7843 \tabularnewline
114 &  0.1833 &  0.3667 &  0.8167 \tabularnewline
115 &  0.1809 &  0.3618 &  0.8191 \tabularnewline
116 &  0.1508 &  0.3017 &  0.8492 \tabularnewline
117 &  0.1414 &  0.2827 &  0.8586 \tabularnewline
118 &  0.1157 &  0.2314 &  0.8843 \tabularnewline
119 &  0.1122 &  0.2245 &  0.8878 \tabularnewline
120 &  0.09031 &  0.1806 &  0.9097 \tabularnewline
121 &  0.07866 &  0.1573 &  0.9213 \tabularnewline
122 &  0.06945 &  0.1389 &  0.9305 \tabularnewline
123 &  0.05816 &  0.1163 &  0.9418 \tabularnewline
124 &  0.04526 &  0.09053 &  0.9547 \tabularnewline
125 &  0.03435 &  0.0687 &  0.9657 \tabularnewline
126 &  0.02574 &  0.05149 &  0.9743 \tabularnewline
127 &  0.01946 &  0.03892 &  0.9805 \tabularnewline
128 &  0.1062 &  0.2124 &  0.8938 \tabularnewline
129 &  0.08451 &  0.169 &  0.9155 \tabularnewline
130 &  0.0867 &  0.1734 &  0.9133 \tabularnewline
131 &  0.1427 &  0.2853 &  0.8573 \tabularnewline
132 &  0.301 &  0.602 &  0.699 \tabularnewline
133 &  0.2642 &  0.5284 &  0.7358 \tabularnewline
134 &  0.272 &  0.5439 &  0.728 \tabularnewline
135 &  0.2251 &  0.4503 &  0.7749 \tabularnewline
136 &  0.3904 &  0.7808 &  0.6096 \tabularnewline
137 &  0.3542 &  0.7084 &  0.6458 \tabularnewline
138 &  0.4155 &  0.831 &  0.5845 \tabularnewline
139 &  0.3642 &  0.7284 &  0.6358 \tabularnewline
140 &  0.3207 &  0.6415 &  0.6793 \tabularnewline
141 &  0.3256 &  0.6513 &  0.6744 \tabularnewline
142 &  0.291 &  0.5821 &  0.709 \tabularnewline
143 &  0.27 &  0.54 &  0.73 \tabularnewline
144 &  0.4278 &  0.8556 &  0.5722 \tabularnewline
145 &  0.4222 &  0.8443 &  0.5778 \tabularnewline
146 &  0.3509 &  0.7017 &  0.6491 \tabularnewline
147 &  0.5564 &  0.8873 &  0.4436 \tabularnewline
148 &  0.4745 &  0.949 &  0.5255 \tabularnewline
149 &  0.3951 &  0.7901 &  0.6049 \tabularnewline
150 &  0.3198 &  0.6395 &  0.6802 \tabularnewline
151 &  0.8732 &  0.2537 &  0.1268 \tabularnewline
152 &  0.8423 &  0.3154 &  0.1577 \tabularnewline
153 &  0.8395 &  0.3211 &  0.1605 \tabularnewline
154 &  0.9513 &  0.0973 &  0.04865 \tabularnewline
155 &  0.9116 &  0.1767 &  0.08837 \tabularnewline
156 &  0.8394 &  0.3213 &  0.1606 \tabularnewline
157 &  0.6996 &  0.6008 &  0.3004 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298158&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]8[/C][C] 0.1349[/C][C] 0.2698[/C][C] 0.8651[/C][/ROW]
[ROW][C]9[/C][C] 0.05499[/C][C] 0.11[/C][C] 0.945[/C][/ROW]
[ROW][C]10[/C][C] 0.03553[/C][C] 0.07105[/C][C] 0.9645[/C][/ROW]
[ROW][C]11[/C][C] 0.02795[/C][C] 0.0559[/C][C] 0.972[/C][/ROW]
[ROW][C]12[/C][C] 0.02729[/C][C] 0.05459[/C][C] 0.9727[/C][/ROW]
[ROW][C]13[/C][C] 0.01196[/C][C] 0.02392[/C][C] 0.988[/C][/ROW]
[ROW][C]14[/C][C] 0.06011[/C][C] 0.1202[/C][C] 0.9399[/C][/ROW]
[ROW][C]15[/C][C] 0.04303[/C][C] 0.08607[/C][C] 0.957[/C][/ROW]
[ROW][C]16[/C][C] 0.1047[/C][C] 0.2095[/C][C] 0.8953[/C][/ROW]
[ROW][C]17[/C][C] 0.0697[/C][C] 0.1394[/C][C] 0.9303[/C][/ROW]
[ROW][C]18[/C][C] 0.06046[/C][C] 0.1209[/C][C] 0.9395[/C][/ROW]
[ROW][C]19[/C][C] 0.04217[/C][C] 0.08434[/C][C] 0.9578[/C][/ROW]
[ROW][C]20[/C][C] 0.02626[/C][C] 0.05252[/C][C] 0.9737[/C][/ROW]
[ROW][C]21[/C][C] 0.01981[/C][C] 0.03962[/C][C] 0.9802[/C][/ROW]
[ROW][C]22[/C][C] 0.01244[/C][C] 0.02487[/C][C] 0.9876[/C][/ROW]
[ROW][C]23[/C][C] 0.007773[/C][C] 0.01555[/C][C] 0.9922[/C][/ROW]
[ROW][C]24[/C][C] 0.00456[/C][C] 0.00912[/C][C] 0.9954[/C][/ROW]
[ROW][C]25[/C][C] 0.008825[/C][C] 0.01765[/C][C] 0.9912[/C][/ROW]
[ROW][C]26[/C][C] 0.00597[/C][C] 0.01194[/C][C] 0.994[/C][/ROW]
[ROW][C]27[/C][C] 0.003563[/C][C] 0.007125[/C][C] 0.9964[/C][/ROW]
[ROW][C]28[/C][C] 0.0021[/C][C] 0.004201[/C][C] 0.9979[/C][/ROW]
[ROW][C]29[/C][C] 0.001217[/C][C] 0.002433[/C][C] 0.9988[/C][/ROW]
[ROW][C]30[/C][C] 0.007561[/C][C] 0.01512[/C][C] 0.9924[/C][/ROW]
[ROW][C]31[/C][C] 0.005568[/C][C] 0.01114[/C][C] 0.9944[/C][/ROW]
[ROW][C]32[/C][C] 0.004906[/C][C] 0.009812[/C][C] 0.9951[/C][/ROW]
[ROW][C]33[/C][C] 0.003388[/C][C] 0.006775[/C][C] 0.9966[/C][/ROW]
[ROW][C]34[/C][C] 0.01065[/C][C] 0.02131[/C][C] 0.9893[/C][/ROW]
[ROW][C]35[/C][C] 0.01071[/C][C] 0.02142[/C][C] 0.9893[/C][/ROW]
[ROW][C]36[/C][C] 0.007733[/C][C] 0.01547[/C][C] 0.9923[/C][/ROW]
[ROW][C]37[/C][C] 0.007444[/C][C] 0.01489[/C][C] 0.9926[/C][/ROW]
[ROW][C]38[/C][C] 0.009072[/C][C] 0.01814[/C][C] 0.9909[/C][/ROW]
[ROW][C]39[/C][C] 0.01418[/C][C] 0.02835[/C][C] 0.9858[/C][/ROW]
[ROW][C]40[/C][C] 0.01066[/C][C] 0.02132[/C][C] 0.9893[/C][/ROW]
[ROW][C]41[/C][C] 0.008765[/C][C] 0.01753[/C][C] 0.9912[/C][/ROW]
[ROW][C]42[/C][C] 0.0118[/C][C] 0.02361[/C][C] 0.9882[/C][/ROW]
[ROW][C]43[/C][C] 0.008307[/C][C] 0.01661[/C][C] 0.9917[/C][/ROW]
[ROW][C]44[/C][C] 0.006422[/C][C] 0.01284[/C][C] 0.9936[/C][/ROW]
[ROW][C]45[/C][C] 0.004391[/C][C] 0.008781[/C][C] 0.9956[/C][/ROW]
[ROW][C]46[/C][C] 0.003691[/C][C] 0.007383[/C][C] 0.9963[/C][/ROW]
[ROW][C]47[/C][C] 0.002426[/C][C] 0.004851[/C][C] 0.9976[/C][/ROW]
[ROW][C]48[/C][C] 0.003589[/C][C] 0.007179[/C][C] 0.9964[/C][/ROW]
[ROW][C]49[/C][C] 0.003156[/C][C] 0.006312[/C][C] 0.9968[/C][/ROW]
[ROW][C]50[/C][C] 0.003709[/C][C] 0.007418[/C][C] 0.9963[/C][/ROW]
[ROW][C]51[/C][C] 0.007418[/C][C] 0.01484[/C][C] 0.9926[/C][/ROW]
[ROW][C]52[/C][C] 0.06373[/C][C] 0.1275[/C][C] 0.9363[/C][/ROW]
[ROW][C]53[/C][C] 0.07182[/C][C] 0.1436[/C][C] 0.9282[/C][/ROW]
[ROW][C]54[/C][C] 0.0961[/C][C] 0.1922[/C][C] 0.9039[/C][/ROW]
[ROW][C]55[/C][C] 0.07846[/C][C] 0.1569[/C][C] 0.9215[/C][/ROW]
[ROW][C]56[/C][C] 0.07098[/C][C] 0.142[/C][C] 0.929[/C][/ROW]
[ROW][C]57[/C][C] 0.05756[/C][C] 0.1151[/C][C] 0.9424[/C][/ROW]
[ROW][C]58[/C][C] 0.04466[/C][C] 0.08932[/C][C] 0.9553[/C][/ROW]
[ROW][C]59[/C][C] 0.04013[/C][C] 0.08026[/C][C] 0.9599[/C][/ROW]
[ROW][C]60[/C][C] 0.03318[/C][C] 0.06635[/C][C] 0.9668[/C][/ROW]
[ROW][C]61[/C][C] 0.02535[/C][C] 0.0507[/C][C] 0.9747[/C][/ROW]
[ROW][C]62[/C][C] 0.02049[/C][C] 0.04097[/C][C] 0.9795[/C][/ROW]
[ROW][C]63[/C][C] 0.01575[/C][C] 0.03149[/C][C] 0.9843[/C][/ROW]
[ROW][C]64[/C][C] 0.04205[/C][C] 0.08411[/C][C] 0.9579[/C][/ROW]
[ROW][C]65[/C][C] 0.04362[/C][C] 0.08723[/C][C] 0.9564[/C][/ROW]
[ROW][C]66[/C][C] 0.0407[/C][C] 0.0814[/C][C] 0.9593[/C][/ROW]
[ROW][C]67[/C][C] 0.03349[/C][C] 0.06698[/C][C] 0.9665[/C][/ROW]
[ROW][C]68[/C][C] 0.0263[/C][C] 0.0526[/C][C] 0.9737[/C][/ROW]
[ROW][C]69[/C][C] 0.02038[/C][C] 0.04076[/C][C] 0.9796[/C][/ROW]
[ROW][C]70[/C][C] 0.0162[/C][C] 0.03241[/C][C] 0.9838[/C][/ROW]
[ROW][C]71[/C][C] 0.01389[/C][C] 0.02777[/C][C] 0.9861[/C][/ROW]
[ROW][C]72[/C][C] 0.01613[/C][C] 0.03226[/C][C] 0.9839[/C][/ROW]
[ROW][C]73[/C][C] 0.0193[/C][C] 0.03859[/C][C] 0.9807[/C][/ROW]
[ROW][C]74[/C][C] 0.01466[/C][C] 0.02932[/C][C] 0.9853[/C][/ROW]
[ROW][C]75[/C][C] 0.01086[/C][C] 0.02172[/C][C] 0.9891[/C][/ROW]
[ROW][C]76[/C][C] 0.01012[/C][C] 0.02024[/C][C] 0.9899[/C][/ROW]
[ROW][C]77[/C][C] 0.007495[/C][C] 0.01499[/C][C] 0.9925[/C][/ROW]
[ROW][C]78[/C][C] 0.008098[/C][C] 0.0162[/C][C] 0.9919[/C][/ROW]
[ROW][C]79[/C][C] 0.005871[/C][C] 0.01174[/C][C] 0.9941[/C][/ROW]
[ROW][C]80[/C][C] 0.1144[/C][C] 0.2289[/C][C] 0.8856[/C][/ROW]
[ROW][C]81[/C][C] 0.09658[/C][C] 0.1932[/C][C] 0.9034[/C][/ROW]
[ROW][C]82[/C][C] 0.08971[/C][C] 0.1794[/C][C] 0.9103[/C][/ROW]
[ROW][C]83[/C][C] 0.0798[/C][C] 0.1596[/C][C] 0.9202[/C][/ROW]
[ROW][C]84[/C][C] 0.2918[/C][C] 0.5837[/C][C] 0.7082[/C][/ROW]
[ROW][C]85[/C][C] 0.2726[/C][C] 0.5452[/C][C] 0.7274[/C][/ROW]
[ROW][C]86[/C][C] 0.3041[/C][C] 0.6082[/C][C] 0.6959[/C][/ROW]
[ROW][C]87[/C][C] 0.2761[/C][C] 0.5522[/C][C] 0.7239[/C][/ROW]
[ROW][C]88[/C][C] 0.2734[/C][C] 0.5469[/C][C] 0.7266[/C][/ROW]
[ROW][C]89[/C][C] 0.2663[/C][C] 0.5326[/C][C] 0.7337[/C][/ROW]
[ROW][C]90[/C][C] 0.2344[/C][C] 0.4687[/C][C] 0.7656[/C][/ROW]
[ROW][C]91[/C][C] 0.2157[/C][C] 0.4314[/C][C] 0.7843[/C][/ROW]
[ROW][C]92[/C][C] 0.1891[/C][C] 0.3782[/C][C] 0.8109[/C][/ROW]
[ROW][C]93[/C][C] 0.1745[/C][C] 0.349[/C][C] 0.8255[/C][/ROW]
[ROW][C]94[/C][C] 0.1519[/C][C] 0.3038[/C][C] 0.8481[/C][/ROW]
[ROW][C]95[/C][C] 0.1284[/C][C] 0.2567[/C][C] 0.8716[/C][/ROW]
[ROW][C]96[/C][C] 0.1686[/C][C] 0.3372[/C][C] 0.8314[/C][/ROW]
[ROW][C]97[/C][C] 0.1868[/C][C] 0.3737[/C][C] 0.8132[/C][/ROW]
[ROW][C]98[/C][C] 0.1789[/C][C] 0.3577[/C][C] 0.8211[/C][/ROW]
[ROW][C]99[/C][C] 0.1703[/C][C] 0.3405[/C][C] 0.8297[/C][/ROW]
[ROW][C]100[/C][C] 0.1487[/C][C] 0.2975[/C][C] 0.8513[/C][/ROW]
[ROW][C]101[/C][C] 0.2103[/C][C] 0.4207[/C][C] 0.7897[/C][/ROW]
[ROW][C]102[/C][C] 0.1793[/C][C] 0.3586[/C][C] 0.8207[/C][/ROW]
[ROW][C]103[/C][C] 0.1777[/C][C] 0.3553[/C][C] 0.8223[/C][/ROW]
[ROW][C]104[/C][C] 0.1572[/C][C] 0.3144[/C][C] 0.8428[/C][/ROW]
[ROW][C]105[/C][C] 0.1333[/C][C] 0.2665[/C][C] 0.8667[/C][/ROW]
[ROW][C]106[/C][C] 0.1173[/C][C] 0.2345[/C][C] 0.8827[/C][/ROW]
[ROW][C]107[/C][C] 0.09618[/C][C] 0.1924[/C][C] 0.9038[/C][/ROW]
[ROW][C]108[/C][C] 0.08378[/C][C] 0.1676[/C][C] 0.9162[/C][/ROW]
[ROW][C]109[/C][C] 0.07611[/C][C] 0.1522[/C][C] 0.9239[/C][/ROW]
[ROW][C]110[/C][C] 0.06191[/C][C] 0.1238[/C][C] 0.9381[/C][/ROW]
[ROW][C]111[/C][C] 0.1212[/C][C] 0.2424[/C][C] 0.8788[/C][/ROW]
[ROW][C]112[/C][C] 0.252[/C][C] 0.504[/C][C] 0.748[/C][/ROW]
[ROW][C]113[/C][C] 0.2157[/C][C] 0.4314[/C][C] 0.7843[/C][/ROW]
[ROW][C]114[/C][C] 0.1833[/C][C] 0.3667[/C][C] 0.8167[/C][/ROW]
[ROW][C]115[/C][C] 0.1809[/C][C] 0.3618[/C][C] 0.8191[/C][/ROW]
[ROW][C]116[/C][C] 0.1508[/C][C] 0.3017[/C][C] 0.8492[/C][/ROW]
[ROW][C]117[/C][C] 0.1414[/C][C] 0.2827[/C][C] 0.8586[/C][/ROW]
[ROW][C]118[/C][C] 0.1157[/C][C] 0.2314[/C][C] 0.8843[/C][/ROW]
[ROW][C]119[/C][C] 0.1122[/C][C] 0.2245[/C][C] 0.8878[/C][/ROW]
[ROW][C]120[/C][C] 0.09031[/C][C] 0.1806[/C][C] 0.9097[/C][/ROW]
[ROW][C]121[/C][C] 0.07866[/C][C] 0.1573[/C][C] 0.9213[/C][/ROW]
[ROW][C]122[/C][C] 0.06945[/C][C] 0.1389[/C][C] 0.9305[/C][/ROW]
[ROW][C]123[/C][C] 0.05816[/C][C] 0.1163[/C][C] 0.9418[/C][/ROW]
[ROW][C]124[/C][C] 0.04526[/C][C] 0.09053[/C][C] 0.9547[/C][/ROW]
[ROW][C]125[/C][C] 0.03435[/C][C] 0.0687[/C][C] 0.9657[/C][/ROW]
[ROW][C]126[/C][C] 0.02574[/C][C] 0.05149[/C][C] 0.9743[/C][/ROW]
[ROW][C]127[/C][C] 0.01946[/C][C] 0.03892[/C][C] 0.9805[/C][/ROW]
[ROW][C]128[/C][C] 0.1062[/C][C] 0.2124[/C][C] 0.8938[/C][/ROW]
[ROW][C]129[/C][C] 0.08451[/C][C] 0.169[/C][C] 0.9155[/C][/ROW]
[ROW][C]130[/C][C] 0.0867[/C][C] 0.1734[/C][C] 0.9133[/C][/ROW]
[ROW][C]131[/C][C] 0.1427[/C][C] 0.2853[/C][C] 0.8573[/C][/ROW]
[ROW][C]132[/C][C] 0.301[/C][C] 0.602[/C][C] 0.699[/C][/ROW]
[ROW][C]133[/C][C] 0.2642[/C][C] 0.5284[/C][C] 0.7358[/C][/ROW]
[ROW][C]134[/C][C] 0.272[/C][C] 0.5439[/C][C] 0.728[/C][/ROW]
[ROW][C]135[/C][C] 0.2251[/C][C] 0.4503[/C][C] 0.7749[/C][/ROW]
[ROW][C]136[/C][C] 0.3904[/C][C] 0.7808[/C][C] 0.6096[/C][/ROW]
[ROW][C]137[/C][C] 0.3542[/C][C] 0.7084[/C][C] 0.6458[/C][/ROW]
[ROW][C]138[/C][C] 0.4155[/C][C] 0.831[/C][C] 0.5845[/C][/ROW]
[ROW][C]139[/C][C] 0.3642[/C][C] 0.7284[/C][C] 0.6358[/C][/ROW]
[ROW][C]140[/C][C] 0.3207[/C][C] 0.6415[/C][C] 0.6793[/C][/ROW]
[ROW][C]141[/C][C] 0.3256[/C][C] 0.6513[/C][C] 0.6744[/C][/ROW]
[ROW][C]142[/C][C] 0.291[/C][C] 0.5821[/C][C] 0.709[/C][/ROW]
[ROW][C]143[/C][C] 0.27[/C][C] 0.54[/C][C] 0.73[/C][/ROW]
[ROW][C]144[/C][C] 0.4278[/C][C] 0.8556[/C][C] 0.5722[/C][/ROW]
[ROW][C]145[/C][C] 0.4222[/C][C] 0.8443[/C][C] 0.5778[/C][/ROW]
[ROW][C]146[/C][C] 0.3509[/C][C] 0.7017[/C][C] 0.6491[/C][/ROW]
[ROW][C]147[/C][C] 0.5564[/C][C] 0.8873[/C][C] 0.4436[/C][/ROW]
[ROW][C]148[/C][C] 0.4745[/C][C] 0.949[/C][C] 0.5255[/C][/ROW]
[ROW][C]149[/C][C] 0.3951[/C][C] 0.7901[/C][C] 0.6049[/C][/ROW]
[ROW][C]150[/C][C] 0.3198[/C][C] 0.6395[/C][C] 0.6802[/C][/ROW]
[ROW][C]151[/C][C] 0.8732[/C][C] 0.2537[/C][C] 0.1268[/C][/ROW]
[ROW][C]152[/C][C] 0.8423[/C][C] 0.3154[/C][C] 0.1577[/C][/ROW]
[ROW][C]153[/C][C] 0.8395[/C][C] 0.3211[/C][C] 0.1605[/C][/ROW]
[ROW][C]154[/C][C] 0.9513[/C][C] 0.0973[/C][C] 0.04865[/C][/ROW]
[ROW][C]155[/C][C] 0.9116[/C][C] 0.1767[/C][C] 0.08837[/C][/ROW]
[ROW][C]156[/C][C] 0.8394[/C][C] 0.3213[/C][C] 0.1606[/C][/ROW]
[ROW][C]157[/C][C] 0.6996[/C][C] 0.6008[/C][C] 0.3004[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298158&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298158&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
8 0.1349 0.2698 0.8651
9 0.05499 0.11 0.945
10 0.03553 0.07105 0.9645
11 0.02795 0.0559 0.972
12 0.02729 0.05459 0.9727
13 0.01196 0.02392 0.988
14 0.06011 0.1202 0.9399
15 0.04303 0.08607 0.957
16 0.1047 0.2095 0.8953
17 0.0697 0.1394 0.9303
18 0.06046 0.1209 0.9395
19 0.04217 0.08434 0.9578
20 0.02626 0.05252 0.9737
21 0.01981 0.03962 0.9802
22 0.01244 0.02487 0.9876
23 0.007773 0.01555 0.9922
24 0.00456 0.00912 0.9954
25 0.008825 0.01765 0.9912
26 0.00597 0.01194 0.994
27 0.003563 0.007125 0.9964
28 0.0021 0.004201 0.9979
29 0.001217 0.002433 0.9988
30 0.007561 0.01512 0.9924
31 0.005568 0.01114 0.9944
32 0.004906 0.009812 0.9951
33 0.003388 0.006775 0.9966
34 0.01065 0.02131 0.9893
35 0.01071 0.02142 0.9893
36 0.007733 0.01547 0.9923
37 0.007444 0.01489 0.9926
38 0.009072 0.01814 0.9909
39 0.01418 0.02835 0.9858
40 0.01066 0.02132 0.9893
41 0.008765 0.01753 0.9912
42 0.0118 0.02361 0.9882
43 0.008307 0.01661 0.9917
44 0.006422 0.01284 0.9936
45 0.004391 0.008781 0.9956
46 0.003691 0.007383 0.9963
47 0.002426 0.004851 0.9976
48 0.003589 0.007179 0.9964
49 0.003156 0.006312 0.9968
50 0.003709 0.007418 0.9963
51 0.007418 0.01484 0.9926
52 0.06373 0.1275 0.9363
53 0.07182 0.1436 0.9282
54 0.0961 0.1922 0.9039
55 0.07846 0.1569 0.9215
56 0.07098 0.142 0.929
57 0.05756 0.1151 0.9424
58 0.04466 0.08932 0.9553
59 0.04013 0.08026 0.9599
60 0.03318 0.06635 0.9668
61 0.02535 0.0507 0.9747
62 0.02049 0.04097 0.9795
63 0.01575 0.03149 0.9843
64 0.04205 0.08411 0.9579
65 0.04362 0.08723 0.9564
66 0.0407 0.0814 0.9593
67 0.03349 0.06698 0.9665
68 0.0263 0.0526 0.9737
69 0.02038 0.04076 0.9796
70 0.0162 0.03241 0.9838
71 0.01389 0.02777 0.9861
72 0.01613 0.03226 0.9839
73 0.0193 0.03859 0.9807
74 0.01466 0.02932 0.9853
75 0.01086 0.02172 0.9891
76 0.01012 0.02024 0.9899
77 0.007495 0.01499 0.9925
78 0.008098 0.0162 0.9919
79 0.005871 0.01174 0.9941
80 0.1144 0.2289 0.8856
81 0.09658 0.1932 0.9034
82 0.08971 0.1794 0.9103
83 0.0798 0.1596 0.9202
84 0.2918 0.5837 0.7082
85 0.2726 0.5452 0.7274
86 0.3041 0.6082 0.6959
87 0.2761 0.5522 0.7239
88 0.2734 0.5469 0.7266
89 0.2663 0.5326 0.7337
90 0.2344 0.4687 0.7656
91 0.2157 0.4314 0.7843
92 0.1891 0.3782 0.8109
93 0.1745 0.349 0.8255
94 0.1519 0.3038 0.8481
95 0.1284 0.2567 0.8716
96 0.1686 0.3372 0.8314
97 0.1868 0.3737 0.8132
98 0.1789 0.3577 0.8211
99 0.1703 0.3405 0.8297
100 0.1487 0.2975 0.8513
101 0.2103 0.4207 0.7897
102 0.1793 0.3586 0.8207
103 0.1777 0.3553 0.8223
104 0.1572 0.3144 0.8428
105 0.1333 0.2665 0.8667
106 0.1173 0.2345 0.8827
107 0.09618 0.1924 0.9038
108 0.08378 0.1676 0.9162
109 0.07611 0.1522 0.9239
110 0.06191 0.1238 0.9381
111 0.1212 0.2424 0.8788
112 0.252 0.504 0.748
113 0.2157 0.4314 0.7843
114 0.1833 0.3667 0.8167
115 0.1809 0.3618 0.8191
116 0.1508 0.3017 0.8492
117 0.1414 0.2827 0.8586
118 0.1157 0.2314 0.8843
119 0.1122 0.2245 0.8878
120 0.09031 0.1806 0.9097
121 0.07866 0.1573 0.9213
122 0.06945 0.1389 0.9305
123 0.05816 0.1163 0.9418
124 0.04526 0.09053 0.9547
125 0.03435 0.0687 0.9657
126 0.02574 0.05149 0.9743
127 0.01946 0.03892 0.9805
128 0.1062 0.2124 0.8938
129 0.08451 0.169 0.9155
130 0.0867 0.1734 0.9133
131 0.1427 0.2853 0.8573
132 0.301 0.602 0.699
133 0.2642 0.5284 0.7358
134 0.272 0.5439 0.728
135 0.2251 0.4503 0.7749
136 0.3904 0.7808 0.6096
137 0.3542 0.7084 0.6458
138 0.4155 0.831 0.5845
139 0.3642 0.7284 0.6358
140 0.3207 0.6415 0.6793
141 0.3256 0.6513 0.6744
142 0.291 0.5821 0.709
143 0.27 0.54 0.73
144 0.4278 0.8556 0.5722
145 0.4222 0.8443 0.5778
146 0.3509 0.7017 0.6491
147 0.5564 0.8873 0.4436
148 0.4745 0.949 0.5255
149 0.3951 0.7901 0.6049
150 0.3198 0.6395 0.6802
151 0.8732 0.2537 0.1268
152 0.8423 0.3154 0.1577
153 0.8395 0.3211 0.1605
154 0.9513 0.0973 0.04865
155 0.9116 0.1767 0.08837
156 0.8394 0.3213 0.1606
157 0.6996 0.6008 0.3004







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level12 0.08NOK
5% type I error level460.306667NOK
10% type I error level650.433333NOK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 12 &  0.08 & NOK \tabularnewline
5% type I error level & 46 & 0.306667 & NOK \tabularnewline
10% type I error level & 65 & 0.433333 & NOK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298158&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]12[/C][C] 0.08[/C][C]NOK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]46[/C][C]0.306667[/C][C]NOK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]65[/C][C]0.433333[/C][C]NOK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298158&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298158&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level12 0.08NOK
5% type I error level460.306667NOK
10% type I error level650.433333NOK







Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 0.43706, df1 = 2, df2 = 158, p-value = 0.6467
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = 0.86499, df1 = 8, df2 = 152, p-value = 0.5475
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 1.0788, df1 = 2, df2 = 158, p-value = 0.3425

\begin{tabular}{lllllllll}
\hline
Ramsey RESET F-Test for powers (2 and 3) of fitted values \tabularnewline
> reset_test_fitted
	RESET test
data:  mylm
RESET = 0.43706, df1 = 2, df2 = 158, p-value = 0.6467
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of regressors \tabularnewline
> reset_test_regressors
	RESET test
data:  mylm
RESET = 0.86499, df1 = 8, df2 = 152, p-value = 0.5475
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of principal components \tabularnewline
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 1.0788, df1 = 2, df2 = 158, p-value = 0.3425
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=298158&T=7

[TABLE]
[ROW][C]Ramsey RESET F-Test for powers (2 and 3) of fitted values[/C][/ROW]
[ROW][C]
> reset_test_fitted
	RESET test
data:  mylm
RESET = 0.43706, df1 = 2, df2 = 158, p-value = 0.6467
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of regressors[/C][/ROW] [ROW][C]
> reset_test_regressors
	RESET test
data:  mylm
RESET = 0.86499, df1 = 8, df2 = 152, p-value = 0.5475
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of principal components[/C][/ROW] [ROW][C]
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 1.0788, df1 = 2, df2 = 158, p-value = 0.3425
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=298158&T=7

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298158&T=7

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 0.43706, df1 = 2, df2 = 158, p-value = 0.6467
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = 0.86499, df1 = 8, df2 = 152, p-value = 0.5475
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 1.0788, df1 = 2, df2 = 158, p-value = 0.3425







Variance Inflation Factors (Multicollinearity)
> vif
    ITH1     ITH2     ITH3     ITH4 
1.638469 1.436005 1.532150 1.247648 

\begin{tabular}{lllllllll}
\hline
Variance Inflation Factors (Multicollinearity) \tabularnewline
> vif
    ITH1     ITH2     ITH3     ITH4 
1.638469 1.436005 1.532150 1.247648 
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=298158&T=8

[TABLE]
[ROW][C]Variance Inflation Factors (Multicollinearity)[/C][/ROW]
[ROW][C]
> vif
    ITH1     ITH2     ITH3     ITH4 
1.638469 1.436005 1.532150 1.247648 
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=298158&T=8

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298158&T=8

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Variance Inflation Factors (Multicollinearity)
> vif
    ITH1     ITH2     ITH3     ITH4 
1.638469 1.436005 1.532150 1.247648 



Parameters (Session):
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ; par4 = 0 ; par5 = 0 ;
Parameters (R input):
par1 = 5 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ; par4 = 0 ; par5 = 0 ;
R code (references can be found in the software module):
par5 <- '0'
par4 <- '0'
par3 <- 'No Linear Trend'
par2 <- 'Do not include Seasonal Dummies'
par1 <- '5'
library(lattice)
library(lmtest)
library(car)
library(MASS)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
mywarning <- ''
par1 <- as.numeric(par1)
if(is.na(par1)) {
par1 <- 1
mywarning = 'Warning: you did not specify the column number of the endogenous series! The first column was selected by default.'
}
if (par4=='') par4 <- 0
par4 <- as.numeric(par4)
if (par5=='') par5 <- 0
par5 <- as.numeric(par5)
x <- na.omit(t(y))
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'Seasonal Differences (s=12)'){
(n <- n - 12)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+12,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'First and Seasonal Differences (s=12)'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
(n <- n - 12)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+12,j] - x[i,j]
}
}
x <- x2
}
if(par4 > 0) {
x2 <- array(0, dim=c(n-par4,par4), dimnames=list(1:(n-par4), paste(colnames(x)[par1],'(t-',1:par4,')',sep='')))
for (i in 1:(n-par4)) {
for (j in 1:par4) {
x2[i,j] <- x[i+par4-j,par1]
}
}
x <- cbind(x[(par4+1):n,], x2)
n <- n - par4
}
if(par5 > 0) {
x2 <- array(0, dim=c(n-par5*12,par5), dimnames=list(1:(n-par5*12), paste(colnames(x)[par1],'(t-',1:par5,'s)',sep='')))
for (i in 1:(n-par5*12)) {
for (j in 1:par5) {
x2[i,j] <- x[i+par5*12-j*12,par1]
}
}
x <- cbind(x[(par5*12+1):n,], x2)
n <- n - par5*12
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
(k <- length(x[n,]))
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
print(x)
(k <- length(x[n,]))
head(x)
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
sresid <- studres(mylm)
hist(sresid, freq=FALSE, main='Distribution of Studentized Residuals')
xfit<-seq(min(sresid),max(sresid),length=40)
yfit<-dnorm(xfit)
lines(xfit, yfit)
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqPlot(mylm, main='QQ Plot')
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
print(z)
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, signif(mysum$coefficients[i,1],6), sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, mywarning)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Multiple Linear Regression - Ordinary Least Squares', 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,formatC(signif(mysum$coefficients[i,1],5),format='g',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,2],5),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,3],4),format='e',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4],4),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4]/2,4),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a,formatC(signif(sqrt(mysum$r.squared),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$adj.r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a,formatC(signif(mysum$fstatistic[1],6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[2],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[3],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a,formatC(signif(1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a,formatC(signif(mysum$sigma,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a,formatC(signif(sum(myerror*myerror),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
myr <- as.numeric(mysum$resid)
myr
if(n < 200) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,formatC(signif(x[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(x[i]-mysum$resid[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$resid[i],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,1],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,2],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,3],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant1,6))
a<-table.element(a,formatC(signif(numsignificant1/numgqtests,6),format='g',flag=' '))
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant5,6))
a<-table.element(a,signif(numsignificant5/numgqtests,6))
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant10,6))
a<-table.element(a,signif(numsignificant10/numgqtests,6))
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}
}
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of fitted values',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_fitted <- resettest(mylm,power=2:3,type='fitted')
a<-table.element(a,paste('
',RC.texteval('reset_test_fitted'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of regressors',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_regressors <- resettest(mylm,power=2:3,type='regressor')
a<-table.element(a,paste('
',RC.texteval('reset_test_regressors'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of principal components',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_principal_components <- resettest(mylm,power=2:3,type='princomp')
a<-table.element(a,paste('
',RC.texteval('reset_test_principal_components'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable8.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Variance Inflation Factors (Multicollinearity)',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
vif <- vif(mylm)
a<-table.element(a,paste('
',RC.texteval('vif'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable9.tab')