Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationWed, 07 Dec 2016 15:23:12 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/07/t1481120676qlly8a7rkejkrd8.htm/, Retrieved Fri, 01 Nov 2024 03:47:04 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=298144, Retrieved Fri, 01 Nov 2024 03:47:04 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact105
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Multiple Regression] [Regressie analyse ] [2016-12-07 14:23:12] [6deb082de88ded72ec069288c69f9f98] [Current]
Feedback Forum

Post a new message
Dataseries X:
1	2	3	3
2	1	2	4
2	2	3	4
2	3	2	3
1	3	3	3
2	2	3	4
2	3	3	3
2	3	3	3
1	3	3	3
1	2	3	3
1	2	3	4
1	3	3	3
1	2	4	5
1	2	3	4
1	2	3	4
2	3	2	3
1	2	3	5
2	3	3	2
2	2	3	2
2	2	3	3
1	3	3	3
2	2	3	3
2	3	3	3
1	2	3	4
1	2	2	4
1	2	3	4
1	2	3	4
1	3	4	2
1	2	3	4
1	3	3	3
2	2	2	3
1	2	3	4
1	2	2	2
2	2	3	4
1	2	3	4
1	3	3	3
2	2	3	3
1	2	4	4
1	3	3	3
2	2	2	4
2	3	3	3
2	2	3	3
2	3	3	4
2	2	3	4
2	3	3	3
2	3	3	3
2	2	2	3
1	2	1	1
2	3	3	3
1	2	3	4
2	2	3	4
2	1	1	2
1	2	3	4
2	2	3	4
1	3	3	3
1	2	3	5
2	3	3	3
1	4	3	2
2	3	3	3
2	2	2	4
2	3	3	3
2	2	3	3
1	2	3	4
2	2	2	3
1	2	3	4
2	2	3	3
1	2	3	5
2	2	3	4
2	2	2	4
2	2	3	4
1	2	2	2
1	1	3	5
2	2	3	4
1	2	3	4
2	2	2	4
1	2	3	4
2	3	3	3
1	2	3	4
1	2	3	4
1	2	3	4
2	3	3	3
2	2	3	4
2	3	3	3
2	3	3	3
2	2	3	3
1	2	3	4
2	3	3	3
1	4	3	3
1	3	3	3
1	3	3	3
1	3	3	3
2	2	3	4
2	3	3	3
2	2	2	3
2	3	3	3
2	4	3	3
1	2	4	4
1	2	3	4
2	2	3	4
2	2	3	4
2	2	3	4
1	2	3	4
1	2	3	4
1	3	3	3
2	3	3	3
2	3	3	3
2	2	3	3
1	1	4	4
1	2	3	3
2	2	2	3
1	2	3	4
1	2	3	3
2	3	3	3
1	2	3	4
1	2	3	3
1	3	3	3
2	3	3	3
2	2	3	3
2	3	3	3
2	3	3	4
2	4	3	3
1	2	3	4
1	2	3	4
2	3	3	3
2	2	3	3
2	2	3	4
1	3	3	3
2	2	2	4
1	2	3	4
1	2	4	5
2	2	2	4
1	1	2	4
1	3	3	3
1	2	2	3
1	3	3	3
2	2	3	4
1	2	3	4
2	2	3	3
2	2	3	3
2	2	3	3
2	2	2	3
1	2	3	3
1	2	3	4
1	2	3	4
1	3	3	3
2	2	3	2
2	2	2	2
2	3	3	3
2	3	3	3
1	2	4	4
2	4	3	3
1	2	3	4
2	2	3	2
1	2	3	4
1	4	3	3
1	3	3	3
1	3	3	3
1	2	2	3
2	2	3	3
2	2	3	3
1	3	3	4




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time8 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time8 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298144&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]8 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=298144&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298144&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time8 seconds
R ServerBig Analytics Cloud Computing Center







Multiple Linear Regression - Estimated Regression Equation
ALG4[t] = + 2.38965 + 0.0474901GW1[t] -0.200423GW3[t] -0.122091GW4[t] + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
ALG4[t] =  +  2.38965 +  0.0474901GW1[t] -0.200423GW3[t] -0.122091GW4[t]  + e[t] \tabularnewline
 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298144&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]ALG4[t] =  +  2.38965 +  0.0474901GW1[t] -0.200423GW3[t] -0.122091GW4[t]  + e[t][/C][/ROW]
[ROW][C][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298144&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298144&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
ALG4[t] = + 2.38965 + 0.0474901GW1[t] -0.200423GW3[t] -0.122091GW4[t] + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)+2.39 0.3328+7.1800e+00 2.625e-11 1.313e-11
GW1+0.04749 0.07412+6.4070e-01 0.5227 0.2613
GW3-0.2004 0.09157-2.1890e+00 0.03009 0.01505
GW4-0.1221 0.06658-1.8340e+00 0.06859 0.03429

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & +2.39 &  0.3328 & +7.1800e+00 &  2.625e-11 &  1.313e-11 \tabularnewline
GW1 & +0.04749 &  0.07412 & +6.4070e-01 &  0.5227 &  0.2613 \tabularnewline
GW3 & -0.2004 &  0.09157 & -2.1890e+00 &  0.03009 &  0.01505 \tabularnewline
GW4 & -0.1221 &  0.06658 & -1.8340e+00 &  0.06859 &  0.03429 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298144&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]+2.39[/C][C] 0.3328[/C][C]+7.1800e+00[/C][C] 2.625e-11[/C][C] 1.313e-11[/C][/ROW]
[ROW][C]GW1[/C][C]+0.04749[/C][C] 0.07412[/C][C]+6.4070e-01[/C][C] 0.5227[/C][C] 0.2613[/C][/ROW]
[ROW][C]GW3[/C][C]-0.2004[/C][C] 0.09157[/C][C]-2.1890e+00[/C][C] 0.03009[/C][C] 0.01505[/C][/ROW]
[ROW][C]GW4[/C][C]-0.1221[/C][C] 0.06658[/C][C]-1.8340e+00[/C][C] 0.06859[/C][C] 0.03429[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298144&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298144&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)+2.39 0.3328+7.1800e+00 2.625e-11 1.313e-11
GW1+0.04749 0.07412+6.4070e-01 0.5227 0.2613
GW3-0.2004 0.09157-2.1890e+00 0.03009 0.01505
GW4-0.1221 0.06658-1.8340e+00 0.06859 0.03429







Multiple Linear Regression - Regression Statistics
Multiple R 0.2966
R-squared 0.08798
Adjusted R-squared 0.07055
F-TEST (value) 5.048
F-TEST (DF numerator)3
F-TEST (DF denominator)157
p-value 0.002294
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 0.4835
Sum Squared Residuals 36.7

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R &  0.2966 \tabularnewline
R-squared &  0.08798 \tabularnewline
Adjusted R-squared &  0.07055 \tabularnewline
F-TEST (value) &  5.048 \tabularnewline
F-TEST (DF numerator) & 3 \tabularnewline
F-TEST (DF denominator) & 157 \tabularnewline
p-value &  0.002294 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation &  0.4835 \tabularnewline
Sum Squared Residuals &  36.7 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298144&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C] 0.2966[/C][/ROW]
[ROW][C]R-squared[/C][C] 0.08798[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C] 0.07055[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C] 5.048[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]3[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]157[/C][/ROW]
[ROW][C]p-value[/C][C] 0.002294[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C] 0.4835[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C] 36.7[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298144&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298144&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R 0.2966
R-squared 0.08798
Adjusted R-squared 0.07055
F-TEST (value) 5.048
F-TEST (DF numerator)3
F-TEST (DF denominator)157
p-value 0.002294
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 0.4835
Sum Squared Residuals 36.7







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 1 1.517-0.5171
2 2 1.548 0.4521
3 2 1.395 0.605
4 2 1.765 0.235
5 1 1.565-0.5646
6 2 1.395 0.605
7 2 1.565 0.4354
8 2 1.565 0.4354
9 1 1.565-0.5646
10 1 1.517-0.5171
11 1 1.395-0.395
12 1 1.565-0.5646
13 1 1.072-0.07248
14 1 1.395-0.395
15 1 1.395-0.395
16 2 1.765 0.235
17 1 1.273-0.2729
18 2 1.687 0.3133
19 2 1.639 0.3608
20 2 1.517 0.4829
21 1 1.565-0.5646
22 2 1.517 0.4829
23 2 1.565 0.4354
24 1 1.395-0.395
25 1 1.595-0.5954
26 1 1.395-0.395
27 1 1.395-0.395
28 1 1.486-0.4862
29 1 1.395-0.395
30 1 1.565-0.5646
31 2 1.718 0.2825
32 1 1.395-0.395
33 1 1.84-0.8396
34 2 1.395 0.605
35 1 1.395-0.395
36 1 1.565-0.5646
37 2 1.517 0.4829
38 1 1.195-0.1946
39 1 1.565-0.5646
40 2 1.595 0.4046
41 2 1.565 0.4354
42 2 1.517 0.4829
43 2 1.442 0.5575
44 2 1.395 0.605
45 2 1.565 0.4354
46 2 1.565 0.4354
47 2 1.718 0.2825
48 1 2.162-1.162
49 2 1.565 0.4354
50 1 1.395-0.395
51 2 1.395 0.605
52 2 1.993 0.007464
53 1 1.395-0.395
54 2 1.395 0.605
55 1 1.565-0.5646
56 1 1.273-0.2729
57 2 1.565 0.4354
58 1 1.734-0.7342
59 2 1.565 0.4354
60 2 1.595 0.4046
61 2 1.565 0.4354
62 2 1.517 0.4829
63 1 1.395-0.395
64 2 1.718 0.2825
65 1 1.395-0.395
66 2 1.517 0.4829
67 1 1.273-0.2729
68 2 1.395 0.605
69 2 1.595 0.4046
70 2 1.395 0.605
71 1 1.84-0.8396
72 1 1.225-0.2254
73 2 1.395 0.605
74 1 1.395-0.395
75 2 1.595 0.4046
76 1 1.395-0.395
77 2 1.565 0.4354
78 1 1.395-0.395
79 1 1.395-0.395
80 1 1.395-0.395
81 2 1.565 0.4354
82 2 1.395 0.605
83 2 1.565 0.4354
84 2 1.565 0.4354
85 2 1.517 0.4829
86 1 1.395-0.395
87 2 1.565 0.4354
88 1 1.612-0.6121
89 1 1.565-0.5646
90 1 1.565-0.5646
91 1 1.565-0.5646
92 2 1.395 0.605
93 2 1.565 0.4354
94 2 1.718 0.2825
95 2 1.565 0.4354
96 2 1.612 0.3879
97 1 1.195-0.1946
98 1 1.395-0.395
99 2 1.395 0.605
100 2 1.395 0.605
101 2 1.395 0.605
102 1 1.395-0.395
103 1 1.395-0.395
104 1 1.565-0.5646
105 2 1.565 0.4354
106 2 1.565 0.4354
107 2 1.517 0.4829
108 1 1.147-0.1471
109 1 1.517-0.5171
110 2 1.718 0.2825
111 1 1.395-0.395
112 1 1.517-0.5171
113 2 1.565 0.4354
114 1 1.395-0.395
115 1 1.517-0.5171
116 1 1.565-0.5646
117 2 1.565 0.4354
118 2 1.517 0.4829
119 2 1.565 0.4354
120 2 1.442 0.5575
121 2 1.612 0.3879
122 1 1.395-0.395
123 1 1.395-0.395
124 2 1.565 0.4354
125 2 1.517 0.4829
126 2 1.395 0.605
127 1 1.565-0.5646
128 2 1.595 0.4046
129 1 1.395-0.395
130 1 1.072-0.07248
131 2 1.595 0.4046
132 1 1.548-0.5479
133 1 1.565-0.5646
134 1 1.718-0.7175
135 1 1.565-0.5646
136 2 1.395 0.605
137 1 1.395-0.395
138 2 1.517 0.4829
139 2 1.517 0.4829
140 2 1.517 0.4829
141 2 1.718 0.2825
142 1 1.517-0.5171
143 1 1.395-0.395
144 1 1.395-0.395
145 1 1.565-0.5646
146 2 1.639 0.3608
147 2 1.84 0.1604
148 2 1.565 0.4354
149 2 1.565 0.4354
150 1 1.195-0.1946
151 2 1.612 0.3879
152 1 1.395-0.395
153 2 1.639 0.3608
154 1 1.395-0.395
155 1 1.612-0.6121
156 1 1.565-0.5646
157 1 1.565-0.5646
158 1 1.718-0.7175
159 2 1.517 0.4829
160 2 1.517 0.4829
161 1 1.442-0.4425

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 &  1 &  1.517 & -0.5171 \tabularnewline
2 &  2 &  1.548 &  0.4521 \tabularnewline
3 &  2 &  1.395 &  0.605 \tabularnewline
4 &  2 &  1.765 &  0.235 \tabularnewline
5 &  1 &  1.565 & -0.5646 \tabularnewline
6 &  2 &  1.395 &  0.605 \tabularnewline
7 &  2 &  1.565 &  0.4354 \tabularnewline
8 &  2 &  1.565 &  0.4354 \tabularnewline
9 &  1 &  1.565 & -0.5646 \tabularnewline
10 &  1 &  1.517 & -0.5171 \tabularnewline
11 &  1 &  1.395 & -0.395 \tabularnewline
12 &  1 &  1.565 & -0.5646 \tabularnewline
13 &  1 &  1.072 & -0.07248 \tabularnewline
14 &  1 &  1.395 & -0.395 \tabularnewline
15 &  1 &  1.395 & -0.395 \tabularnewline
16 &  2 &  1.765 &  0.235 \tabularnewline
17 &  1 &  1.273 & -0.2729 \tabularnewline
18 &  2 &  1.687 &  0.3133 \tabularnewline
19 &  2 &  1.639 &  0.3608 \tabularnewline
20 &  2 &  1.517 &  0.4829 \tabularnewline
21 &  1 &  1.565 & -0.5646 \tabularnewline
22 &  2 &  1.517 &  0.4829 \tabularnewline
23 &  2 &  1.565 &  0.4354 \tabularnewline
24 &  1 &  1.395 & -0.395 \tabularnewline
25 &  1 &  1.595 & -0.5954 \tabularnewline
26 &  1 &  1.395 & -0.395 \tabularnewline
27 &  1 &  1.395 & -0.395 \tabularnewline
28 &  1 &  1.486 & -0.4862 \tabularnewline
29 &  1 &  1.395 & -0.395 \tabularnewline
30 &  1 &  1.565 & -0.5646 \tabularnewline
31 &  2 &  1.718 &  0.2825 \tabularnewline
32 &  1 &  1.395 & -0.395 \tabularnewline
33 &  1 &  1.84 & -0.8396 \tabularnewline
34 &  2 &  1.395 &  0.605 \tabularnewline
35 &  1 &  1.395 & -0.395 \tabularnewline
36 &  1 &  1.565 & -0.5646 \tabularnewline
37 &  2 &  1.517 &  0.4829 \tabularnewline
38 &  1 &  1.195 & -0.1946 \tabularnewline
39 &  1 &  1.565 & -0.5646 \tabularnewline
40 &  2 &  1.595 &  0.4046 \tabularnewline
41 &  2 &  1.565 &  0.4354 \tabularnewline
42 &  2 &  1.517 &  0.4829 \tabularnewline
43 &  2 &  1.442 &  0.5575 \tabularnewline
44 &  2 &  1.395 &  0.605 \tabularnewline
45 &  2 &  1.565 &  0.4354 \tabularnewline
46 &  2 &  1.565 &  0.4354 \tabularnewline
47 &  2 &  1.718 &  0.2825 \tabularnewline
48 &  1 &  2.162 & -1.162 \tabularnewline
49 &  2 &  1.565 &  0.4354 \tabularnewline
50 &  1 &  1.395 & -0.395 \tabularnewline
51 &  2 &  1.395 &  0.605 \tabularnewline
52 &  2 &  1.993 &  0.007464 \tabularnewline
53 &  1 &  1.395 & -0.395 \tabularnewline
54 &  2 &  1.395 &  0.605 \tabularnewline
55 &  1 &  1.565 & -0.5646 \tabularnewline
56 &  1 &  1.273 & -0.2729 \tabularnewline
57 &  2 &  1.565 &  0.4354 \tabularnewline
58 &  1 &  1.734 & -0.7342 \tabularnewline
59 &  2 &  1.565 &  0.4354 \tabularnewline
60 &  2 &  1.595 &  0.4046 \tabularnewline
61 &  2 &  1.565 &  0.4354 \tabularnewline
62 &  2 &  1.517 &  0.4829 \tabularnewline
63 &  1 &  1.395 & -0.395 \tabularnewline
64 &  2 &  1.718 &  0.2825 \tabularnewline
65 &  1 &  1.395 & -0.395 \tabularnewline
66 &  2 &  1.517 &  0.4829 \tabularnewline
67 &  1 &  1.273 & -0.2729 \tabularnewline
68 &  2 &  1.395 &  0.605 \tabularnewline
69 &  2 &  1.595 &  0.4046 \tabularnewline
70 &  2 &  1.395 &  0.605 \tabularnewline
71 &  1 &  1.84 & -0.8396 \tabularnewline
72 &  1 &  1.225 & -0.2254 \tabularnewline
73 &  2 &  1.395 &  0.605 \tabularnewline
74 &  1 &  1.395 & -0.395 \tabularnewline
75 &  2 &  1.595 &  0.4046 \tabularnewline
76 &  1 &  1.395 & -0.395 \tabularnewline
77 &  2 &  1.565 &  0.4354 \tabularnewline
78 &  1 &  1.395 & -0.395 \tabularnewline
79 &  1 &  1.395 & -0.395 \tabularnewline
80 &  1 &  1.395 & -0.395 \tabularnewline
81 &  2 &  1.565 &  0.4354 \tabularnewline
82 &  2 &  1.395 &  0.605 \tabularnewline
83 &  2 &  1.565 &  0.4354 \tabularnewline
84 &  2 &  1.565 &  0.4354 \tabularnewline
85 &  2 &  1.517 &  0.4829 \tabularnewline
86 &  1 &  1.395 & -0.395 \tabularnewline
87 &  2 &  1.565 &  0.4354 \tabularnewline
88 &  1 &  1.612 & -0.6121 \tabularnewline
89 &  1 &  1.565 & -0.5646 \tabularnewline
90 &  1 &  1.565 & -0.5646 \tabularnewline
91 &  1 &  1.565 & -0.5646 \tabularnewline
92 &  2 &  1.395 &  0.605 \tabularnewline
93 &  2 &  1.565 &  0.4354 \tabularnewline
94 &  2 &  1.718 &  0.2825 \tabularnewline
95 &  2 &  1.565 &  0.4354 \tabularnewline
96 &  2 &  1.612 &  0.3879 \tabularnewline
97 &  1 &  1.195 & -0.1946 \tabularnewline
98 &  1 &  1.395 & -0.395 \tabularnewline
99 &  2 &  1.395 &  0.605 \tabularnewline
100 &  2 &  1.395 &  0.605 \tabularnewline
101 &  2 &  1.395 &  0.605 \tabularnewline
102 &  1 &  1.395 & -0.395 \tabularnewline
103 &  1 &  1.395 & -0.395 \tabularnewline
104 &  1 &  1.565 & -0.5646 \tabularnewline
105 &  2 &  1.565 &  0.4354 \tabularnewline
106 &  2 &  1.565 &  0.4354 \tabularnewline
107 &  2 &  1.517 &  0.4829 \tabularnewline
108 &  1 &  1.147 & -0.1471 \tabularnewline
109 &  1 &  1.517 & -0.5171 \tabularnewline
110 &  2 &  1.718 &  0.2825 \tabularnewline
111 &  1 &  1.395 & -0.395 \tabularnewline
112 &  1 &  1.517 & -0.5171 \tabularnewline
113 &  2 &  1.565 &  0.4354 \tabularnewline
114 &  1 &  1.395 & -0.395 \tabularnewline
115 &  1 &  1.517 & -0.5171 \tabularnewline
116 &  1 &  1.565 & -0.5646 \tabularnewline
117 &  2 &  1.565 &  0.4354 \tabularnewline
118 &  2 &  1.517 &  0.4829 \tabularnewline
119 &  2 &  1.565 &  0.4354 \tabularnewline
120 &  2 &  1.442 &  0.5575 \tabularnewline
121 &  2 &  1.612 &  0.3879 \tabularnewline
122 &  1 &  1.395 & -0.395 \tabularnewline
123 &  1 &  1.395 & -0.395 \tabularnewline
124 &  2 &  1.565 &  0.4354 \tabularnewline
125 &  2 &  1.517 &  0.4829 \tabularnewline
126 &  2 &  1.395 &  0.605 \tabularnewline
127 &  1 &  1.565 & -0.5646 \tabularnewline
128 &  2 &  1.595 &  0.4046 \tabularnewline
129 &  1 &  1.395 & -0.395 \tabularnewline
130 &  1 &  1.072 & -0.07248 \tabularnewline
131 &  2 &  1.595 &  0.4046 \tabularnewline
132 &  1 &  1.548 & -0.5479 \tabularnewline
133 &  1 &  1.565 & -0.5646 \tabularnewline
134 &  1 &  1.718 & -0.7175 \tabularnewline
135 &  1 &  1.565 & -0.5646 \tabularnewline
136 &  2 &  1.395 &  0.605 \tabularnewline
137 &  1 &  1.395 & -0.395 \tabularnewline
138 &  2 &  1.517 &  0.4829 \tabularnewline
139 &  2 &  1.517 &  0.4829 \tabularnewline
140 &  2 &  1.517 &  0.4829 \tabularnewline
141 &  2 &  1.718 &  0.2825 \tabularnewline
142 &  1 &  1.517 & -0.5171 \tabularnewline
143 &  1 &  1.395 & -0.395 \tabularnewline
144 &  1 &  1.395 & -0.395 \tabularnewline
145 &  1 &  1.565 & -0.5646 \tabularnewline
146 &  2 &  1.639 &  0.3608 \tabularnewline
147 &  2 &  1.84 &  0.1604 \tabularnewline
148 &  2 &  1.565 &  0.4354 \tabularnewline
149 &  2 &  1.565 &  0.4354 \tabularnewline
150 &  1 &  1.195 & -0.1946 \tabularnewline
151 &  2 &  1.612 &  0.3879 \tabularnewline
152 &  1 &  1.395 & -0.395 \tabularnewline
153 &  2 &  1.639 &  0.3608 \tabularnewline
154 &  1 &  1.395 & -0.395 \tabularnewline
155 &  1 &  1.612 & -0.6121 \tabularnewline
156 &  1 &  1.565 & -0.5646 \tabularnewline
157 &  1 &  1.565 & -0.5646 \tabularnewline
158 &  1 &  1.718 & -0.7175 \tabularnewline
159 &  2 &  1.517 &  0.4829 \tabularnewline
160 &  2 &  1.517 &  0.4829 \tabularnewline
161 &  1 &  1.442 & -0.4425 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298144&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C] 1[/C][C] 1.517[/C][C]-0.5171[/C][/ROW]
[ROW][C]2[/C][C] 2[/C][C] 1.548[/C][C] 0.4521[/C][/ROW]
[ROW][C]3[/C][C] 2[/C][C] 1.395[/C][C] 0.605[/C][/ROW]
[ROW][C]4[/C][C] 2[/C][C] 1.765[/C][C] 0.235[/C][/ROW]
[ROW][C]5[/C][C] 1[/C][C] 1.565[/C][C]-0.5646[/C][/ROW]
[ROW][C]6[/C][C] 2[/C][C] 1.395[/C][C] 0.605[/C][/ROW]
[ROW][C]7[/C][C] 2[/C][C] 1.565[/C][C] 0.4354[/C][/ROW]
[ROW][C]8[/C][C] 2[/C][C] 1.565[/C][C] 0.4354[/C][/ROW]
[ROW][C]9[/C][C] 1[/C][C] 1.565[/C][C]-0.5646[/C][/ROW]
[ROW][C]10[/C][C] 1[/C][C] 1.517[/C][C]-0.5171[/C][/ROW]
[ROW][C]11[/C][C] 1[/C][C] 1.395[/C][C]-0.395[/C][/ROW]
[ROW][C]12[/C][C] 1[/C][C] 1.565[/C][C]-0.5646[/C][/ROW]
[ROW][C]13[/C][C] 1[/C][C] 1.072[/C][C]-0.07248[/C][/ROW]
[ROW][C]14[/C][C] 1[/C][C] 1.395[/C][C]-0.395[/C][/ROW]
[ROW][C]15[/C][C] 1[/C][C] 1.395[/C][C]-0.395[/C][/ROW]
[ROW][C]16[/C][C] 2[/C][C] 1.765[/C][C] 0.235[/C][/ROW]
[ROW][C]17[/C][C] 1[/C][C] 1.273[/C][C]-0.2729[/C][/ROW]
[ROW][C]18[/C][C] 2[/C][C] 1.687[/C][C] 0.3133[/C][/ROW]
[ROW][C]19[/C][C] 2[/C][C] 1.639[/C][C] 0.3608[/C][/ROW]
[ROW][C]20[/C][C] 2[/C][C] 1.517[/C][C] 0.4829[/C][/ROW]
[ROW][C]21[/C][C] 1[/C][C] 1.565[/C][C]-0.5646[/C][/ROW]
[ROW][C]22[/C][C] 2[/C][C] 1.517[/C][C] 0.4829[/C][/ROW]
[ROW][C]23[/C][C] 2[/C][C] 1.565[/C][C] 0.4354[/C][/ROW]
[ROW][C]24[/C][C] 1[/C][C] 1.395[/C][C]-0.395[/C][/ROW]
[ROW][C]25[/C][C] 1[/C][C] 1.595[/C][C]-0.5954[/C][/ROW]
[ROW][C]26[/C][C] 1[/C][C] 1.395[/C][C]-0.395[/C][/ROW]
[ROW][C]27[/C][C] 1[/C][C] 1.395[/C][C]-0.395[/C][/ROW]
[ROW][C]28[/C][C] 1[/C][C] 1.486[/C][C]-0.4862[/C][/ROW]
[ROW][C]29[/C][C] 1[/C][C] 1.395[/C][C]-0.395[/C][/ROW]
[ROW][C]30[/C][C] 1[/C][C] 1.565[/C][C]-0.5646[/C][/ROW]
[ROW][C]31[/C][C] 2[/C][C] 1.718[/C][C] 0.2825[/C][/ROW]
[ROW][C]32[/C][C] 1[/C][C] 1.395[/C][C]-0.395[/C][/ROW]
[ROW][C]33[/C][C] 1[/C][C] 1.84[/C][C]-0.8396[/C][/ROW]
[ROW][C]34[/C][C] 2[/C][C] 1.395[/C][C] 0.605[/C][/ROW]
[ROW][C]35[/C][C] 1[/C][C] 1.395[/C][C]-0.395[/C][/ROW]
[ROW][C]36[/C][C] 1[/C][C] 1.565[/C][C]-0.5646[/C][/ROW]
[ROW][C]37[/C][C] 2[/C][C] 1.517[/C][C] 0.4829[/C][/ROW]
[ROW][C]38[/C][C] 1[/C][C] 1.195[/C][C]-0.1946[/C][/ROW]
[ROW][C]39[/C][C] 1[/C][C] 1.565[/C][C]-0.5646[/C][/ROW]
[ROW][C]40[/C][C] 2[/C][C] 1.595[/C][C] 0.4046[/C][/ROW]
[ROW][C]41[/C][C] 2[/C][C] 1.565[/C][C] 0.4354[/C][/ROW]
[ROW][C]42[/C][C] 2[/C][C] 1.517[/C][C] 0.4829[/C][/ROW]
[ROW][C]43[/C][C] 2[/C][C] 1.442[/C][C] 0.5575[/C][/ROW]
[ROW][C]44[/C][C] 2[/C][C] 1.395[/C][C] 0.605[/C][/ROW]
[ROW][C]45[/C][C] 2[/C][C] 1.565[/C][C] 0.4354[/C][/ROW]
[ROW][C]46[/C][C] 2[/C][C] 1.565[/C][C] 0.4354[/C][/ROW]
[ROW][C]47[/C][C] 2[/C][C] 1.718[/C][C] 0.2825[/C][/ROW]
[ROW][C]48[/C][C] 1[/C][C] 2.162[/C][C]-1.162[/C][/ROW]
[ROW][C]49[/C][C] 2[/C][C] 1.565[/C][C] 0.4354[/C][/ROW]
[ROW][C]50[/C][C] 1[/C][C] 1.395[/C][C]-0.395[/C][/ROW]
[ROW][C]51[/C][C] 2[/C][C] 1.395[/C][C] 0.605[/C][/ROW]
[ROW][C]52[/C][C] 2[/C][C] 1.993[/C][C] 0.007464[/C][/ROW]
[ROW][C]53[/C][C] 1[/C][C] 1.395[/C][C]-0.395[/C][/ROW]
[ROW][C]54[/C][C] 2[/C][C] 1.395[/C][C] 0.605[/C][/ROW]
[ROW][C]55[/C][C] 1[/C][C] 1.565[/C][C]-0.5646[/C][/ROW]
[ROW][C]56[/C][C] 1[/C][C] 1.273[/C][C]-0.2729[/C][/ROW]
[ROW][C]57[/C][C] 2[/C][C] 1.565[/C][C] 0.4354[/C][/ROW]
[ROW][C]58[/C][C] 1[/C][C] 1.734[/C][C]-0.7342[/C][/ROW]
[ROW][C]59[/C][C] 2[/C][C] 1.565[/C][C] 0.4354[/C][/ROW]
[ROW][C]60[/C][C] 2[/C][C] 1.595[/C][C] 0.4046[/C][/ROW]
[ROW][C]61[/C][C] 2[/C][C] 1.565[/C][C] 0.4354[/C][/ROW]
[ROW][C]62[/C][C] 2[/C][C] 1.517[/C][C] 0.4829[/C][/ROW]
[ROW][C]63[/C][C] 1[/C][C] 1.395[/C][C]-0.395[/C][/ROW]
[ROW][C]64[/C][C] 2[/C][C] 1.718[/C][C] 0.2825[/C][/ROW]
[ROW][C]65[/C][C] 1[/C][C] 1.395[/C][C]-0.395[/C][/ROW]
[ROW][C]66[/C][C] 2[/C][C] 1.517[/C][C] 0.4829[/C][/ROW]
[ROW][C]67[/C][C] 1[/C][C] 1.273[/C][C]-0.2729[/C][/ROW]
[ROW][C]68[/C][C] 2[/C][C] 1.395[/C][C] 0.605[/C][/ROW]
[ROW][C]69[/C][C] 2[/C][C] 1.595[/C][C] 0.4046[/C][/ROW]
[ROW][C]70[/C][C] 2[/C][C] 1.395[/C][C] 0.605[/C][/ROW]
[ROW][C]71[/C][C] 1[/C][C] 1.84[/C][C]-0.8396[/C][/ROW]
[ROW][C]72[/C][C] 1[/C][C] 1.225[/C][C]-0.2254[/C][/ROW]
[ROW][C]73[/C][C] 2[/C][C] 1.395[/C][C] 0.605[/C][/ROW]
[ROW][C]74[/C][C] 1[/C][C] 1.395[/C][C]-0.395[/C][/ROW]
[ROW][C]75[/C][C] 2[/C][C] 1.595[/C][C] 0.4046[/C][/ROW]
[ROW][C]76[/C][C] 1[/C][C] 1.395[/C][C]-0.395[/C][/ROW]
[ROW][C]77[/C][C] 2[/C][C] 1.565[/C][C] 0.4354[/C][/ROW]
[ROW][C]78[/C][C] 1[/C][C] 1.395[/C][C]-0.395[/C][/ROW]
[ROW][C]79[/C][C] 1[/C][C] 1.395[/C][C]-0.395[/C][/ROW]
[ROW][C]80[/C][C] 1[/C][C] 1.395[/C][C]-0.395[/C][/ROW]
[ROW][C]81[/C][C] 2[/C][C] 1.565[/C][C] 0.4354[/C][/ROW]
[ROW][C]82[/C][C] 2[/C][C] 1.395[/C][C] 0.605[/C][/ROW]
[ROW][C]83[/C][C] 2[/C][C] 1.565[/C][C] 0.4354[/C][/ROW]
[ROW][C]84[/C][C] 2[/C][C] 1.565[/C][C] 0.4354[/C][/ROW]
[ROW][C]85[/C][C] 2[/C][C] 1.517[/C][C] 0.4829[/C][/ROW]
[ROW][C]86[/C][C] 1[/C][C] 1.395[/C][C]-0.395[/C][/ROW]
[ROW][C]87[/C][C] 2[/C][C] 1.565[/C][C] 0.4354[/C][/ROW]
[ROW][C]88[/C][C] 1[/C][C] 1.612[/C][C]-0.6121[/C][/ROW]
[ROW][C]89[/C][C] 1[/C][C] 1.565[/C][C]-0.5646[/C][/ROW]
[ROW][C]90[/C][C] 1[/C][C] 1.565[/C][C]-0.5646[/C][/ROW]
[ROW][C]91[/C][C] 1[/C][C] 1.565[/C][C]-0.5646[/C][/ROW]
[ROW][C]92[/C][C] 2[/C][C] 1.395[/C][C] 0.605[/C][/ROW]
[ROW][C]93[/C][C] 2[/C][C] 1.565[/C][C] 0.4354[/C][/ROW]
[ROW][C]94[/C][C] 2[/C][C] 1.718[/C][C] 0.2825[/C][/ROW]
[ROW][C]95[/C][C] 2[/C][C] 1.565[/C][C] 0.4354[/C][/ROW]
[ROW][C]96[/C][C] 2[/C][C] 1.612[/C][C] 0.3879[/C][/ROW]
[ROW][C]97[/C][C] 1[/C][C] 1.195[/C][C]-0.1946[/C][/ROW]
[ROW][C]98[/C][C] 1[/C][C] 1.395[/C][C]-0.395[/C][/ROW]
[ROW][C]99[/C][C] 2[/C][C] 1.395[/C][C] 0.605[/C][/ROW]
[ROW][C]100[/C][C] 2[/C][C] 1.395[/C][C] 0.605[/C][/ROW]
[ROW][C]101[/C][C] 2[/C][C] 1.395[/C][C] 0.605[/C][/ROW]
[ROW][C]102[/C][C] 1[/C][C] 1.395[/C][C]-0.395[/C][/ROW]
[ROW][C]103[/C][C] 1[/C][C] 1.395[/C][C]-0.395[/C][/ROW]
[ROW][C]104[/C][C] 1[/C][C] 1.565[/C][C]-0.5646[/C][/ROW]
[ROW][C]105[/C][C] 2[/C][C] 1.565[/C][C] 0.4354[/C][/ROW]
[ROW][C]106[/C][C] 2[/C][C] 1.565[/C][C] 0.4354[/C][/ROW]
[ROW][C]107[/C][C] 2[/C][C] 1.517[/C][C] 0.4829[/C][/ROW]
[ROW][C]108[/C][C] 1[/C][C] 1.147[/C][C]-0.1471[/C][/ROW]
[ROW][C]109[/C][C] 1[/C][C] 1.517[/C][C]-0.5171[/C][/ROW]
[ROW][C]110[/C][C] 2[/C][C] 1.718[/C][C] 0.2825[/C][/ROW]
[ROW][C]111[/C][C] 1[/C][C] 1.395[/C][C]-0.395[/C][/ROW]
[ROW][C]112[/C][C] 1[/C][C] 1.517[/C][C]-0.5171[/C][/ROW]
[ROW][C]113[/C][C] 2[/C][C] 1.565[/C][C] 0.4354[/C][/ROW]
[ROW][C]114[/C][C] 1[/C][C] 1.395[/C][C]-0.395[/C][/ROW]
[ROW][C]115[/C][C] 1[/C][C] 1.517[/C][C]-0.5171[/C][/ROW]
[ROW][C]116[/C][C] 1[/C][C] 1.565[/C][C]-0.5646[/C][/ROW]
[ROW][C]117[/C][C] 2[/C][C] 1.565[/C][C] 0.4354[/C][/ROW]
[ROW][C]118[/C][C] 2[/C][C] 1.517[/C][C] 0.4829[/C][/ROW]
[ROW][C]119[/C][C] 2[/C][C] 1.565[/C][C] 0.4354[/C][/ROW]
[ROW][C]120[/C][C] 2[/C][C] 1.442[/C][C] 0.5575[/C][/ROW]
[ROW][C]121[/C][C] 2[/C][C] 1.612[/C][C] 0.3879[/C][/ROW]
[ROW][C]122[/C][C] 1[/C][C] 1.395[/C][C]-0.395[/C][/ROW]
[ROW][C]123[/C][C] 1[/C][C] 1.395[/C][C]-0.395[/C][/ROW]
[ROW][C]124[/C][C] 2[/C][C] 1.565[/C][C] 0.4354[/C][/ROW]
[ROW][C]125[/C][C] 2[/C][C] 1.517[/C][C] 0.4829[/C][/ROW]
[ROW][C]126[/C][C] 2[/C][C] 1.395[/C][C] 0.605[/C][/ROW]
[ROW][C]127[/C][C] 1[/C][C] 1.565[/C][C]-0.5646[/C][/ROW]
[ROW][C]128[/C][C] 2[/C][C] 1.595[/C][C] 0.4046[/C][/ROW]
[ROW][C]129[/C][C] 1[/C][C] 1.395[/C][C]-0.395[/C][/ROW]
[ROW][C]130[/C][C] 1[/C][C] 1.072[/C][C]-0.07248[/C][/ROW]
[ROW][C]131[/C][C] 2[/C][C] 1.595[/C][C] 0.4046[/C][/ROW]
[ROW][C]132[/C][C] 1[/C][C] 1.548[/C][C]-0.5479[/C][/ROW]
[ROW][C]133[/C][C] 1[/C][C] 1.565[/C][C]-0.5646[/C][/ROW]
[ROW][C]134[/C][C] 1[/C][C] 1.718[/C][C]-0.7175[/C][/ROW]
[ROW][C]135[/C][C] 1[/C][C] 1.565[/C][C]-0.5646[/C][/ROW]
[ROW][C]136[/C][C] 2[/C][C] 1.395[/C][C] 0.605[/C][/ROW]
[ROW][C]137[/C][C] 1[/C][C] 1.395[/C][C]-0.395[/C][/ROW]
[ROW][C]138[/C][C] 2[/C][C] 1.517[/C][C] 0.4829[/C][/ROW]
[ROW][C]139[/C][C] 2[/C][C] 1.517[/C][C] 0.4829[/C][/ROW]
[ROW][C]140[/C][C] 2[/C][C] 1.517[/C][C] 0.4829[/C][/ROW]
[ROW][C]141[/C][C] 2[/C][C] 1.718[/C][C] 0.2825[/C][/ROW]
[ROW][C]142[/C][C] 1[/C][C] 1.517[/C][C]-0.5171[/C][/ROW]
[ROW][C]143[/C][C] 1[/C][C] 1.395[/C][C]-0.395[/C][/ROW]
[ROW][C]144[/C][C] 1[/C][C] 1.395[/C][C]-0.395[/C][/ROW]
[ROW][C]145[/C][C] 1[/C][C] 1.565[/C][C]-0.5646[/C][/ROW]
[ROW][C]146[/C][C] 2[/C][C] 1.639[/C][C] 0.3608[/C][/ROW]
[ROW][C]147[/C][C] 2[/C][C] 1.84[/C][C] 0.1604[/C][/ROW]
[ROW][C]148[/C][C] 2[/C][C] 1.565[/C][C] 0.4354[/C][/ROW]
[ROW][C]149[/C][C] 2[/C][C] 1.565[/C][C] 0.4354[/C][/ROW]
[ROW][C]150[/C][C] 1[/C][C] 1.195[/C][C]-0.1946[/C][/ROW]
[ROW][C]151[/C][C] 2[/C][C] 1.612[/C][C] 0.3879[/C][/ROW]
[ROW][C]152[/C][C] 1[/C][C] 1.395[/C][C]-0.395[/C][/ROW]
[ROW][C]153[/C][C] 2[/C][C] 1.639[/C][C] 0.3608[/C][/ROW]
[ROW][C]154[/C][C] 1[/C][C] 1.395[/C][C]-0.395[/C][/ROW]
[ROW][C]155[/C][C] 1[/C][C] 1.612[/C][C]-0.6121[/C][/ROW]
[ROW][C]156[/C][C] 1[/C][C] 1.565[/C][C]-0.5646[/C][/ROW]
[ROW][C]157[/C][C] 1[/C][C] 1.565[/C][C]-0.5646[/C][/ROW]
[ROW][C]158[/C][C] 1[/C][C] 1.718[/C][C]-0.7175[/C][/ROW]
[ROW][C]159[/C][C] 2[/C][C] 1.517[/C][C] 0.4829[/C][/ROW]
[ROW][C]160[/C][C] 2[/C][C] 1.517[/C][C] 0.4829[/C][/ROW]
[ROW][C]161[/C][C] 1[/C][C] 1.442[/C][C]-0.4425[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298144&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298144&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 1 1.517-0.5171
2 2 1.548 0.4521
3 2 1.395 0.605
4 2 1.765 0.235
5 1 1.565-0.5646
6 2 1.395 0.605
7 2 1.565 0.4354
8 2 1.565 0.4354
9 1 1.565-0.5646
10 1 1.517-0.5171
11 1 1.395-0.395
12 1 1.565-0.5646
13 1 1.072-0.07248
14 1 1.395-0.395
15 1 1.395-0.395
16 2 1.765 0.235
17 1 1.273-0.2729
18 2 1.687 0.3133
19 2 1.639 0.3608
20 2 1.517 0.4829
21 1 1.565-0.5646
22 2 1.517 0.4829
23 2 1.565 0.4354
24 1 1.395-0.395
25 1 1.595-0.5954
26 1 1.395-0.395
27 1 1.395-0.395
28 1 1.486-0.4862
29 1 1.395-0.395
30 1 1.565-0.5646
31 2 1.718 0.2825
32 1 1.395-0.395
33 1 1.84-0.8396
34 2 1.395 0.605
35 1 1.395-0.395
36 1 1.565-0.5646
37 2 1.517 0.4829
38 1 1.195-0.1946
39 1 1.565-0.5646
40 2 1.595 0.4046
41 2 1.565 0.4354
42 2 1.517 0.4829
43 2 1.442 0.5575
44 2 1.395 0.605
45 2 1.565 0.4354
46 2 1.565 0.4354
47 2 1.718 0.2825
48 1 2.162-1.162
49 2 1.565 0.4354
50 1 1.395-0.395
51 2 1.395 0.605
52 2 1.993 0.007464
53 1 1.395-0.395
54 2 1.395 0.605
55 1 1.565-0.5646
56 1 1.273-0.2729
57 2 1.565 0.4354
58 1 1.734-0.7342
59 2 1.565 0.4354
60 2 1.595 0.4046
61 2 1.565 0.4354
62 2 1.517 0.4829
63 1 1.395-0.395
64 2 1.718 0.2825
65 1 1.395-0.395
66 2 1.517 0.4829
67 1 1.273-0.2729
68 2 1.395 0.605
69 2 1.595 0.4046
70 2 1.395 0.605
71 1 1.84-0.8396
72 1 1.225-0.2254
73 2 1.395 0.605
74 1 1.395-0.395
75 2 1.595 0.4046
76 1 1.395-0.395
77 2 1.565 0.4354
78 1 1.395-0.395
79 1 1.395-0.395
80 1 1.395-0.395
81 2 1.565 0.4354
82 2 1.395 0.605
83 2 1.565 0.4354
84 2 1.565 0.4354
85 2 1.517 0.4829
86 1 1.395-0.395
87 2 1.565 0.4354
88 1 1.612-0.6121
89 1 1.565-0.5646
90 1 1.565-0.5646
91 1 1.565-0.5646
92 2 1.395 0.605
93 2 1.565 0.4354
94 2 1.718 0.2825
95 2 1.565 0.4354
96 2 1.612 0.3879
97 1 1.195-0.1946
98 1 1.395-0.395
99 2 1.395 0.605
100 2 1.395 0.605
101 2 1.395 0.605
102 1 1.395-0.395
103 1 1.395-0.395
104 1 1.565-0.5646
105 2 1.565 0.4354
106 2 1.565 0.4354
107 2 1.517 0.4829
108 1 1.147-0.1471
109 1 1.517-0.5171
110 2 1.718 0.2825
111 1 1.395-0.395
112 1 1.517-0.5171
113 2 1.565 0.4354
114 1 1.395-0.395
115 1 1.517-0.5171
116 1 1.565-0.5646
117 2 1.565 0.4354
118 2 1.517 0.4829
119 2 1.565 0.4354
120 2 1.442 0.5575
121 2 1.612 0.3879
122 1 1.395-0.395
123 1 1.395-0.395
124 2 1.565 0.4354
125 2 1.517 0.4829
126 2 1.395 0.605
127 1 1.565-0.5646
128 2 1.595 0.4046
129 1 1.395-0.395
130 1 1.072-0.07248
131 2 1.595 0.4046
132 1 1.548-0.5479
133 1 1.565-0.5646
134 1 1.718-0.7175
135 1 1.565-0.5646
136 2 1.395 0.605
137 1 1.395-0.395
138 2 1.517 0.4829
139 2 1.517 0.4829
140 2 1.517 0.4829
141 2 1.718 0.2825
142 1 1.517-0.5171
143 1 1.395-0.395
144 1 1.395-0.395
145 1 1.565-0.5646
146 2 1.639 0.3608
147 2 1.84 0.1604
148 2 1.565 0.4354
149 2 1.565 0.4354
150 1 1.195-0.1946
151 2 1.612 0.3879
152 1 1.395-0.395
153 2 1.639 0.3608
154 1 1.395-0.395
155 1 1.612-0.6121
156 1 1.565-0.5646
157 1 1.565-0.5646
158 1 1.718-0.7175
159 2 1.517 0.4829
160 2 1.517 0.4829
161 1 1.442-0.4425







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
7 0.4565 0.9131 0.5435
8 0.4342 0.8684 0.5658
9 0.4912 0.9823 0.5088
10 0.3648 0.7295 0.6352
11 0.5953 0.8093 0.4047
12 0.5682 0.8636 0.4318
13 0.5186 0.9627 0.4814
14 0.5207 0.9587 0.4793
15 0.5033 0.9933 0.4967
16 0.4191 0.8382 0.5809
17 0.4518 0.9035 0.5482
18 0.4908 0.9817 0.5092
19 0.4704 0.9409 0.5296
20 0.4618 0.9236 0.5382
21 0.4558 0.9115 0.5442
22 0.4372 0.8744 0.5628
23 0.4511 0.9022 0.5489
24 0.423 0.846 0.577
25 0.4793 0.9586 0.5207
26 0.4418 0.8837 0.5582
27 0.4034 0.8068 0.5966
28 0.3928 0.7857 0.6072
29 0.3554 0.7108 0.6446
30 0.3488 0.6975 0.6512
31 0.298 0.5959 0.702
32 0.2651 0.5303 0.7349
33 0.4572 0.9143 0.5428
34 0.5196 0.9608 0.4804
35 0.4863 0.9727 0.5137
36 0.4777 0.9555 0.5223
37 0.4862 0.9723 0.5138
38 0.434 0.868 0.566
39 0.4237 0.8474 0.5763
40 0.4111 0.8221 0.5889
41 0.4332 0.8664 0.5668
42 0.4351 0.8702 0.5649
43 0.4906 0.9812 0.5094
44 0.5267 0.9466 0.4733
45 0.5286 0.9427 0.4714
46 0.526 0.948 0.474
47 0.4862 0.9723 0.5138
48 0.6985 0.603 0.3015
49 0.6914 0.6172 0.3086
50 0.6751 0.6499 0.3249
51 0.6971 0.6057 0.3029
52 0.6609 0.6782 0.3391
53 0.6451 0.7099 0.3549
54 0.6672 0.6657 0.3328
55 0.6772 0.6456 0.3228
56 0.6508 0.6984 0.3492
57 0.6446 0.7108 0.3554
58 0.6882 0.6237 0.3118
59 0.6839 0.6323 0.3161
60 0.6685 0.6629 0.3315
61 0.6622 0.6756 0.3378
62 0.6622 0.6755 0.3378
63 0.6484 0.7033 0.3516
64 0.6188 0.7624 0.3812
65 0.6038 0.7923 0.3962
66 0.6029 0.7942 0.3971
67 0.5729 0.8541 0.4271
68 0.5959 0.8082 0.4041
69 0.5818 0.8364 0.4182
70 0.605 0.79 0.395
71 0.6973 0.6054 0.3027
72 0.6679 0.6642 0.3321
73 0.6933 0.6133 0.3067
74 0.6782 0.6437 0.3218
75 0.6684 0.6632 0.3316
76 0.6519 0.6961 0.3481
77 0.6426 0.7149 0.3574
78 0.6253 0.7493 0.3747
79 0.6076 0.7848 0.3924
80 0.5895 0.8211 0.4105
81 0.579 0.8419 0.421
82 0.6089 0.7822 0.3911
83 0.5982 0.8035 0.4018
84 0.5873 0.8253 0.4127
85 0.5855 0.829 0.4145
86 0.5668 0.8665 0.4332
87 0.556 0.888 0.444
88 0.5836 0.8329 0.4164
89 0.6004 0.7992 0.3996
90 0.6181 0.7638 0.3819
91 0.6372 0.7256 0.3628
92 0.669 0.6619 0.331
93 0.658 0.684 0.342
94 0.6284 0.7432 0.3716
95 0.617 0.766 0.383
96 0.5992 0.8017 0.4008
97 0.5588 0.8825 0.4412
98 0.5374 0.9251 0.4626
99 0.5744 0.8512 0.4256
100 0.6156 0.7689 0.3844
101 0.6613 0.6774 0.3387
102 0.6373 0.7253 0.3627
103 0.6128 0.7745 0.3872
104 0.6326 0.7347 0.3674
105 0.6214 0.7573 0.3786
106 0.6111 0.7777 0.3889
107 0.6094 0.7813 0.3906
108 0.5633 0.8735 0.4367
109 0.5726 0.8547 0.4274
110 0.5432 0.9136 0.4568
111 0.5157 0.9685 0.4843
112 0.5286 0.9427 0.4713
113 0.5182 0.9636 0.4818
114 0.491 0.9819 0.509
115 0.5086 0.9829 0.4914
116 0.5295 0.941 0.4705
117 0.5169 0.9662 0.4831
118 0.5065 0.9871 0.4935
119 0.4967 0.9933 0.5033
120 0.5603 0.8794 0.4397
121 0.5816 0.8367 0.4184
122 0.5512 0.8977 0.4488
123 0.5213 0.9575 0.4787
124 0.5315 0.9369 0.4685
125 0.5196 0.9608 0.4804
126 0.5847 0.8306 0.4153
127 0.5824 0.8351 0.4176
128 0.648 0.7039 0.352
129 0.6088 0.7825 0.3912
130 0.5546 0.8907 0.4454
131 0.6951 0.6098 0.3049
132 0.6547 0.6905 0.3453
133 0.6569 0.6861 0.3431
134 0.6799 0.6401 0.3201
135 0.6891 0.6218 0.3109
136 0.8196 0.3608 0.1804
137 0.7752 0.4495 0.2248
138 0.7639 0.4722 0.2361
139 0.7573 0.4854 0.2427
140 0.7579 0.4843 0.2421
141 0.7901 0.4197 0.2099
142 0.8146 0.3708 0.1854
143 0.7574 0.4851 0.2426
144 0.6899 0.6202 0.3101
145 0.7095 0.581 0.2905
146 0.6441 0.7118 0.3559
147 0.5553 0.8894 0.4447
148 0.5585 0.8831 0.4415
149 0.5888 0.8224 0.4112
150 0.5684 0.8632 0.4316
151 0.8938 0.2124 0.1062
152 0.8445 0.3111 0.1555
153 0.7634 0.4732 0.2366
154 0.7419 0.5163 0.2581

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
7 &  0.4565 &  0.9131 &  0.5435 \tabularnewline
8 &  0.4342 &  0.8684 &  0.5658 \tabularnewline
9 &  0.4912 &  0.9823 &  0.5088 \tabularnewline
10 &  0.3648 &  0.7295 &  0.6352 \tabularnewline
11 &  0.5953 &  0.8093 &  0.4047 \tabularnewline
12 &  0.5682 &  0.8636 &  0.4318 \tabularnewline
13 &  0.5186 &  0.9627 &  0.4814 \tabularnewline
14 &  0.5207 &  0.9587 &  0.4793 \tabularnewline
15 &  0.5033 &  0.9933 &  0.4967 \tabularnewline
16 &  0.4191 &  0.8382 &  0.5809 \tabularnewline
17 &  0.4518 &  0.9035 &  0.5482 \tabularnewline
18 &  0.4908 &  0.9817 &  0.5092 \tabularnewline
19 &  0.4704 &  0.9409 &  0.5296 \tabularnewline
20 &  0.4618 &  0.9236 &  0.5382 \tabularnewline
21 &  0.4558 &  0.9115 &  0.5442 \tabularnewline
22 &  0.4372 &  0.8744 &  0.5628 \tabularnewline
23 &  0.4511 &  0.9022 &  0.5489 \tabularnewline
24 &  0.423 &  0.846 &  0.577 \tabularnewline
25 &  0.4793 &  0.9586 &  0.5207 \tabularnewline
26 &  0.4418 &  0.8837 &  0.5582 \tabularnewline
27 &  0.4034 &  0.8068 &  0.5966 \tabularnewline
28 &  0.3928 &  0.7857 &  0.6072 \tabularnewline
29 &  0.3554 &  0.7108 &  0.6446 \tabularnewline
30 &  0.3488 &  0.6975 &  0.6512 \tabularnewline
31 &  0.298 &  0.5959 &  0.702 \tabularnewline
32 &  0.2651 &  0.5303 &  0.7349 \tabularnewline
33 &  0.4572 &  0.9143 &  0.5428 \tabularnewline
34 &  0.5196 &  0.9608 &  0.4804 \tabularnewline
35 &  0.4863 &  0.9727 &  0.5137 \tabularnewline
36 &  0.4777 &  0.9555 &  0.5223 \tabularnewline
37 &  0.4862 &  0.9723 &  0.5138 \tabularnewline
38 &  0.434 &  0.868 &  0.566 \tabularnewline
39 &  0.4237 &  0.8474 &  0.5763 \tabularnewline
40 &  0.4111 &  0.8221 &  0.5889 \tabularnewline
41 &  0.4332 &  0.8664 &  0.5668 \tabularnewline
42 &  0.4351 &  0.8702 &  0.5649 \tabularnewline
43 &  0.4906 &  0.9812 &  0.5094 \tabularnewline
44 &  0.5267 &  0.9466 &  0.4733 \tabularnewline
45 &  0.5286 &  0.9427 &  0.4714 \tabularnewline
46 &  0.526 &  0.948 &  0.474 \tabularnewline
47 &  0.4862 &  0.9723 &  0.5138 \tabularnewline
48 &  0.6985 &  0.603 &  0.3015 \tabularnewline
49 &  0.6914 &  0.6172 &  0.3086 \tabularnewline
50 &  0.6751 &  0.6499 &  0.3249 \tabularnewline
51 &  0.6971 &  0.6057 &  0.3029 \tabularnewline
52 &  0.6609 &  0.6782 &  0.3391 \tabularnewline
53 &  0.6451 &  0.7099 &  0.3549 \tabularnewline
54 &  0.6672 &  0.6657 &  0.3328 \tabularnewline
55 &  0.6772 &  0.6456 &  0.3228 \tabularnewline
56 &  0.6508 &  0.6984 &  0.3492 \tabularnewline
57 &  0.6446 &  0.7108 &  0.3554 \tabularnewline
58 &  0.6882 &  0.6237 &  0.3118 \tabularnewline
59 &  0.6839 &  0.6323 &  0.3161 \tabularnewline
60 &  0.6685 &  0.6629 &  0.3315 \tabularnewline
61 &  0.6622 &  0.6756 &  0.3378 \tabularnewline
62 &  0.6622 &  0.6755 &  0.3378 \tabularnewline
63 &  0.6484 &  0.7033 &  0.3516 \tabularnewline
64 &  0.6188 &  0.7624 &  0.3812 \tabularnewline
65 &  0.6038 &  0.7923 &  0.3962 \tabularnewline
66 &  0.6029 &  0.7942 &  0.3971 \tabularnewline
67 &  0.5729 &  0.8541 &  0.4271 \tabularnewline
68 &  0.5959 &  0.8082 &  0.4041 \tabularnewline
69 &  0.5818 &  0.8364 &  0.4182 \tabularnewline
70 &  0.605 &  0.79 &  0.395 \tabularnewline
71 &  0.6973 &  0.6054 &  0.3027 \tabularnewline
72 &  0.6679 &  0.6642 &  0.3321 \tabularnewline
73 &  0.6933 &  0.6133 &  0.3067 \tabularnewline
74 &  0.6782 &  0.6437 &  0.3218 \tabularnewline
75 &  0.6684 &  0.6632 &  0.3316 \tabularnewline
76 &  0.6519 &  0.6961 &  0.3481 \tabularnewline
77 &  0.6426 &  0.7149 &  0.3574 \tabularnewline
78 &  0.6253 &  0.7493 &  0.3747 \tabularnewline
79 &  0.6076 &  0.7848 &  0.3924 \tabularnewline
80 &  0.5895 &  0.8211 &  0.4105 \tabularnewline
81 &  0.579 &  0.8419 &  0.421 \tabularnewline
82 &  0.6089 &  0.7822 &  0.3911 \tabularnewline
83 &  0.5982 &  0.8035 &  0.4018 \tabularnewline
84 &  0.5873 &  0.8253 &  0.4127 \tabularnewline
85 &  0.5855 &  0.829 &  0.4145 \tabularnewline
86 &  0.5668 &  0.8665 &  0.4332 \tabularnewline
87 &  0.556 &  0.888 &  0.444 \tabularnewline
88 &  0.5836 &  0.8329 &  0.4164 \tabularnewline
89 &  0.6004 &  0.7992 &  0.3996 \tabularnewline
90 &  0.6181 &  0.7638 &  0.3819 \tabularnewline
91 &  0.6372 &  0.7256 &  0.3628 \tabularnewline
92 &  0.669 &  0.6619 &  0.331 \tabularnewline
93 &  0.658 &  0.684 &  0.342 \tabularnewline
94 &  0.6284 &  0.7432 &  0.3716 \tabularnewline
95 &  0.617 &  0.766 &  0.383 \tabularnewline
96 &  0.5992 &  0.8017 &  0.4008 \tabularnewline
97 &  0.5588 &  0.8825 &  0.4412 \tabularnewline
98 &  0.5374 &  0.9251 &  0.4626 \tabularnewline
99 &  0.5744 &  0.8512 &  0.4256 \tabularnewline
100 &  0.6156 &  0.7689 &  0.3844 \tabularnewline
101 &  0.6613 &  0.6774 &  0.3387 \tabularnewline
102 &  0.6373 &  0.7253 &  0.3627 \tabularnewline
103 &  0.6128 &  0.7745 &  0.3872 \tabularnewline
104 &  0.6326 &  0.7347 &  0.3674 \tabularnewline
105 &  0.6214 &  0.7573 &  0.3786 \tabularnewline
106 &  0.6111 &  0.7777 &  0.3889 \tabularnewline
107 &  0.6094 &  0.7813 &  0.3906 \tabularnewline
108 &  0.5633 &  0.8735 &  0.4367 \tabularnewline
109 &  0.5726 &  0.8547 &  0.4274 \tabularnewline
110 &  0.5432 &  0.9136 &  0.4568 \tabularnewline
111 &  0.5157 &  0.9685 &  0.4843 \tabularnewline
112 &  0.5286 &  0.9427 &  0.4713 \tabularnewline
113 &  0.5182 &  0.9636 &  0.4818 \tabularnewline
114 &  0.491 &  0.9819 &  0.509 \tabularnewline
115 &  0.5086 &  0.9829 &  0.4914 \tabularnewline
116 &  0.5295 &  0.941 &  0.4705 \tabularnewline
117 &  0.5169 &  0.9662 &  0.4831 \tabularnewline
118 &  0.5065 &  0.9871 &  0.4935 \tabularnewline
119 &  0.4967 &  0.9933 &  0.5033 \tabularnewline
120 &  0.5603 &  0.8794 &  0.4397 \tabularnewline
121 &  0.5816 &  0.8367 &  0.4184 \tabularnewline
122 &  0.5512 &  0.8977 &  0.4488 \tabularnewline
123 &  0.5213 &  0.9575 &  0.4787 \tabularnewline
124 &  0.5315 &  0.9369 &  0.4685 \tabularnewline
125 &  0.5196 &  0.9608 &  0.4804 \tabularnewline
126 &  0.5847 &  0.8306 &  0.4153 \tabularnewline
127 &  0.5824 &  0.8351 &  0.4176 \tabularnewline
128 &  0.648 &  0.7039 &  0.352 \tabularnewline
129 &  0.6088 &  0.7825 &  0.3912 \tabularnewline
130 &  0.5546 &  0.8907 &  0.4454 \tabularnewline
131 &  0.6951 &  0.6098 &  0.3049 \tabularnewline
132 &  0.6547 &  0.6905 &  0.3453 \tabularnewline
133 &  0.6569 &  0.6861 &  0.3431 \tabularnewline
134 &  0.6799 &  0.6401 &  0.3201 \tabularnewline
135 &  0.6891 &  0.6218 &  0.3109 \tabularnewline
136 &  0.8196 &  0.3608 &  0.1804 \tabularnewline
137 &  0.7752 &  0.4495 &  0.2248 \tabularnewline
138 &  0.7639 &  0.4722 &  0.2361 \tabularnewline
139 &  0.7573 &  0.4854 &  0.2427 \tabularnewline
140 &  0.7579 &  0.4843 &  0.2421 \tabularnewline
141 &  0.7901 &  0.4197 &  0.2099 \tabularnewline
142 &  0.8146 &  0.3708 &  0.1854 \tabularnewline
143 &  0.7574 &  0.4851 &  0.2426 \tabularnewline
144 &  0.6899 &  0.6202 &  0.3101 \tabularnewline
145 &  0.7095 &  0.581 &  0.2905 \tabularnewline
146 &  0.6441 &  0.7118 &  0.3559 \tabularnewline
147 &  0.5553 &  0.8894 &  0.4447 \tabularnewline
148 &  0.5585 &  0.8831 &  0.4415 \tabularnewline
149 &  0.5888 &  0.8224 &  0.4112 \tabularnewline
150 &  0.5684 &  0.8632 &  0.4316 \tabularnewline
151 &  0.8938 &  0.2124 &  0.1062 \tabularnewline
152 &  0.8445 &  0.3111 &  0.1555 \tabularnewline
153 &  0.7634 &  0.4732 &  0.2366 \tabularnewline
154 &  0.7419 &  0.5163 &  0.2581 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298144&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]7[/C][C] 0.4565[/C][C] 0.9131[/C][C] 0.5435[/C][/ROW]
[ROW][C]8[/C][C] 0.4342[/C][C] 0.8684[/C][C] 0.5658[/C][/ROW]
[ROW][C]9[/C][C] 0.4912[/C][C] 0.9823[/C][C] 0.5088[/C][/ROW]
[ROW][C]10[/C][C] 0.3648[/C][C] 0.7295[/C][C] 0.6352[/C][/ROW]
[ROW][C]11[/C][C] 0.5953[/C][C] 0.8093[/C][C] 0.4047[/C][/ROW]
[ROW][C]12[/C][C] 0.5682[/C][C] 0.8636[/C][C] 0.4318[/C][/ROW]
[ROW][C]13[/C][C] 0.5186[/C][C] 0.9627[/C][C] 0.4814[/C][/ROW]
[ROW][C]14[/C][C] 0.5207[/C][C] 0.9587[/C][C] 0.4793[/C][/ROW]
[ROW][C]15[/C][C] 0.5033[/C][C] 0.9933[/C][C] 0.4967[/C][/ROW]
[ROW][C]16[/C][C] 0.4191[/C][C] 0.8382[/C][C] 0.5809[/C][/ROW]
[ROW][C]17[/C][C] 0.4518[/C][C] 0.9035[/C][C] 0.5482[/C][/ROW]
[ROW][C]18[/C][C] 0.4908[/C][C] 0.9817[/C][C] 0.5092[/C][/ROW]
[ROW][C]19[/C][C] 0.4704[/C][C] 0.9409[/C][C] 0.5296[/C][/ROW]
[ROW][C]20[/C][C] 0.4618[/C][C] 0.9236[/C][C] 0.5382[/C][/ROW]
[ROW][C]21[/C][C] 0.4558[/C][C] 0.9115[/C][C] 0.5442[/C][/ROW]
[ROW][C]22[/C][C] 0.4372[/C][C] 0.8744[/C][C] 0.5628[/C][/ROW]
[ROW][C]23[/C][C] 0.4511[/C][C] 0.9022[/C][C] 0.5489[/C][/ROW]
[ROW][C]24[/C][C] 0.423[/C][C] 0.846[/C][C] 0.577[/C][/ROW]
[ROW][C]25[/C][C] 0.4793[/C][C] 0.9586[/C][C] 0.5207[/C][/ROW]
[ROW][C]26[/C][C] 0.4418[/C][C] 0.8837[/C][C] 0.5582[/C][/ROW]
[ROW][C]27[/C][C] 0.4034[/C][C] 0.8068[/C][C] 0.5966[/C][/ROW]
[ROW][C]28[/C][C] 0.3928[/C][C] 0.7857[/C][C] 0.6072[/C][/ROW]
[ROW][C]29[/C][C] 0.3554[/C][C] 0.7108[/C][C] 0.6446[/C][/ROW]
[ROW][C]30[/C][C] 0.3488[/C][C] 0.6975[/C][C] 0.6512[/C][/ROW]
[ROW][C]31[/C][C] 0.298[/C][C] 0.5959[/C][C] 0.702[/C][/ROW]
[ROW][C]32[/C][C] 0.2651[/C][C] 0.5303[/C][C] 0.7349[/C][/ROW]
[ROW][C]33[/C][C] 0.4572[/C][C] 0.9143[/C][C] 0.5428[/C][/ROW]
[ROW][C]34[/C][C] 0.5196[/C][C] 0.9608[/C][C] 0.4804[/C][/ROW]
[ROW][C]35[/C][C] 0.4863[/C][C] 0.9727[/C][C] 0.5137[/C][/ROW]
[ROW][C]36[/C][C] 0.4777[/C][C] 0.9555[/C][C] 0.5223[/C][/ROW]
[ROW][C]37[/C][C] 0.4862[/C][C] 0.9723[/C][C] 0.5138[/C][/ROW]
[ROW][C]38[/C][C] 0.434[/C][C] 0.868[/C][C] 0.566[/C][/ROW]
[ROW][C]39[/C][C] 0.4237[/C][C] 0.8474[/C][C] 0.5763[/C][/ROW]
[ROW][C]40[/C][C] 0.4111[/C][C] 0.8221[/C][C] 0.5889[/C][/ROW]
[ROW][C]41[/C][C] 0.4332[/C][C] 0.8664[/C][C] 0.5668[/C][/ROW]
[ROW][C]42[/C][C] 0.4351[/C][C] 0.8702[/C][C] 0.5649[/C][/ROW]
[ROW][C]43[/C][C] 0.4906[/C][C] 0.9812[/C][C] 0.5094[/C][/ROW]
[ROW][C]44[/C][C] 0.5267[/C][C] 0.9466[/C][C] 0.4733[/C][/ROW]
[ROW][C]45[/C][C] 0.5286[/C][C] 0.9427[/C][C] 0.4714[/C][/ROW]
[ROW][C]46[/C][C] 0.526[/C][C] 0.948[/C][C] 0.474[/C][/ROW]
[ROW][C]47[/C][C] 0.4862[/C][C] 0.9723[/C][C] 0.5138[/C][/ROW]
[ROW][C]48[/C][C] 0.6985[/C][C] 0.603[/C][C] 0.3015[/C][/ROW]
[ROW][C]49[/C][C] 0.6914[/C][C] 0.6172[/C][C] 0.3086[/C][/ROW]
[ROW][C]50[/C][C] 0.6751[/C][C] 0.6499[/C][C] 0.3249[/C][/ROW]
[ROW][C]51[/C][C] 0.6971[/C][C] 0.6057[/C][C] 0.3029[/C][/ROW]
[ROW][C]52[/C][C] 0.6609[/C][C] 0.6782[/C][C] 0.3391[/C][/ROW]
[ROW][C]53[/C][C] 0.6451[/C][C] 0.7099[/C][C] 0.3549[/C][/ROW]
[ROW][C]54[/C][C] 0.6672[/C][C] 0.6657[/C][C] 0.3328[/C][/ROW]
[ROW][C]55[/C][C] 0.6772[/C][C] 0.6456[/C][C] 0.3228[/C][/ROW]
[ROW][C]56[/C][C] 0.6508[/C][C] 0.6984[/C][C] 0.3492[/C][/ROW]
[ROW][C]57[/C][C] 0.6446[/C][C] 0.7108[/C][C] 0.3554[/C][/ROW]
[ROW][C]58[/C][C] 0.6882[/C][C] 0.6237[/C][C] 0.3118[/C][/ROW]
[ROW][C]59[/C][C] 0.6839[/C][C] 0.6323[/C][C] 0.3161[/C][/ROW]
[ROW][C]60[/C][C] 0.6685[/C][C] 0.6629[/C][C] 0.3315[/C][/ROW]
[ROW][C]61[/C][C] 0.6622[/C][C] 0.6756[/C][C] 0.3378[/C][/ROW]
[ROW][C]62[/C][C] 0.6622[/C][C] 0.6755[/C][C] 0.3378[/C][/ROW]
[ROW][C]63[/C][C] 0.6484[/C][C] 0.7033[/C][C] 0.3516[/C][/ROW]
[ROW][C]64[/C][C] 0.6188[/C][C] 0.7624[/C][C] 0.3812[/C][/ROW]
[ROW][C]65[/C][C] 0.6038[/C][C] 0.7923[/C][C] 0.3962[/C][/ROW]
[ROW][C]66[/C][C] 0.6029[/C][C] 0.7942[/C][C] 0.3971[/C][/ROW]
[ROW][C]67[/C][C] 0.5729[/C][C] 0.8541[/C][C] 0.4271[/C][/ROW]
[ROW][C]68[/C][C] 0.5959[/C][C] 0.8082[/C][C] 0.4041[/C][/ROW]
[ROW][C]69[/C][C] 0.5818[/C][C] 0.8364[/C][C] 0.4182[/C][/ROW]
[ROW][C]70[/C][C] 0.605[/C][C] 0.79[/C][C] 0.395[/C][/ROW]
[ROW][C]71[/C][C] 0.6973[/C][C] 0.6054[/C][C] 0.3027[/C][/ROW]
[ROW][C]72[/C][C] 0.6679[/C][C] 0.6642[/C][C] 0.3321[/C][/ROW]
[ROW][C]73[/C][C] 0.6933[/C][C] 0.6133[/C][C] 0.3067[/C][/ROW]
[ROW][C]74[/C][C] 0.6782[/C][C] 0.6437[/C][C] 0.3218[/C][/ROW]
[ROW][C]75[/C][C] 0.6684[/C][C] 0.6632[/C][C] 0.3316[/C][/ROW]
[ROW][C]76[/C][C] 0.6519[/C][C] 0.6961[/C][C] 0.3481[/C][/ROW]
[ROW][C]77[/C][C] 0.6426[/C][C] 0.7149[/C][C] 0.3574[/C][/ROW]
[ROW][C]78[/C][C] 0.6253[/C][C] 0.7493[/C][C] 0.3747[/C][/ROW]
[ROW][C]79[/C][C] 0.6076[/C][C] 0.7848[/C][C] 0.3924[/C][/ROW]
[ROW][C]80[/C][C] 0.5895[/C][C] 0.8211[/C][C] 0.4105[/C][/ROW]
[ROW][C]81[/C][C] 0.579[/C][C] 0.8419[/C][C] 0.421[/C][/ROW]
[ROW][C]82[/C][C] 0.6089[/C][C] 0.7822[/C][C] 0.3911[/C][/ROW]
[ROW][C]83[/C][C] 0.5982[/C][C] 0.8035[/C][C] 0.4018[/C][/ROW]
[ROW][C]84[/C][C] 0.5873[/C][C] 0.8253[/C][C] 0.4127[/C][/ROW]
[ROW][C]85[/C][C] 0.5855[/C][C] 0.829[/C][C] 0.4145[/C][/ROW]
[ROW][C]86[/C][C] 0.5668[/C][C] 0.8665[/C][C] 0.4332[/C][/ROW]
[ROW][C]87[/C][C] 0.556[/C][C] 0.888[/C][C] 0.444[/C][/ROW]
[ROW][C]88[/C][C] 0.5836[/C][C] 0.8329[/C][C] 0.4164[/C][/ROW]
[ROW][C]89[/C][C] 0.6004[/C][C] 0.7992[/C][C] 0.3996[/C][/ROW]
[ROW][C]90[/C][C] 0.6181[/C][C] 0.7638[/C][C] 0.3819[/C][/ROW]
[ROW][C]91[/C][C] 0.6372[/C][C] 0.7256[/C][C] 0.3628[/C][/ROW]
[ROW][C]92[/C][C] 0.669[/C][C] 0.6619[/C][C] 0.331[/C][/ROW]
[ROW][C]93[/C][C] 0.658[/C][C] 0.684[/C][C] 0.342[/C][/ROW]
[ROW][C]94[/C][C] 0.6284[/C][C] 0.7432[/C][C] 0.3716[/C][/ROW]
[ROW][C]95[/C][C] 0.617[/C][C] 0.766[/C][C] 0.383[/C][/ROW]
[ROW][C]96[/C][C] 0.5992[/C][C] 0.8017[/C][C] 0.4008[/C][/ROW]
[ROW][C]97[/C][C] 0.5588[/C][C] 0.8825[/C][C] 0.4412[/C][/ROW]
[ROW][C]98[/C][C] 0.5374[/C][C] 0.9251[/C][C] 0.4626[/C][/ROW]
[ROW][C]99[/C][C] 0.5744[/C][C] 0.8512[/C][C] 0.4256[/C][/ROW]
[ROW][C]100[/C][C] 0.6156[/C][C] 0.7689[/C][C] 0.3844[/C][/ROW]
[ROW][C]101[/C][C] 0.6613[/C][C] 0.6774[/C][C] 0.3387[/C][/ROW]
[ROW][C]102[/C][C] 0.6373[/C][C] 0.7253[/C][C] 0.3627[/C][/ROW]
[ROW][C]103[/C][C] 0.6128[/C][C] 0.7745[/C][C] 0.3872[/C][/ROW]
[ROW][C]104[/C][C] 0.6326[/C][C] 0.7347[/C][C] 0.3674[/C][/ROW]
[ROW][C]105[/C][C] 0.6214[/C][C] 0.7573[/C][C] 0.3786[/C][/ROW]
[ROW][C]106[/C][C] 0.6111[/C][C] 0.7777[/C][C] 0.3889[/C][/ROW]
[ROW][C]107[/C][C] 0.6094[/C][C] 0.7813[/C][C] 0.3906[/C][/ROW]
[ROW][C]108[/C][C] 0.5633[/C][C] 0.8735[/C][C] 0.4367[/C][/ROW]
[ROW][C]109[/C][C] 0.5726[/C][C] 0.8547[/C][C] 0.4274[/C][/ROW]
[ROW][C]110[/C][C] 0.5432[/C][C] 0.9136[/C][C] 0.4568[/C][/ROW]
[ROW][C]111[/C][C] 0.5157[/C][C] 0.9685[/C][C] 0.4843[/C][/ROW]
[ROW][C]112[/C][C] 0.5286[/C][C] 0.9427[/C][C] 0.4713[/C][/ROW]
[ROW][C]113[/C][C] 0.5182[/C][C] 0.9636[/C][C] 0.4818[/C][/ROW]
[ROW][C]114[/C][C] 0.491[/C][C] 0.9819[/C][C] 0.509[/C][/ROW]
[ROW][C]115[/C][C] 0.5086[/C][C] 0.9829[/C][C] 0.4914[/C][/ROW]
[ROW][C]116[/C][C] 0.5295[/C][C] 0.941[/C][C] 0.4705[/C][/ROW]
[ROW][C]117[/C][C] 0.5169[/C][C] 0.9662[/C][C] 0.4831[/C][/ROW]
[ROW][C]118[/C][C] 0.5065[/C][C] 0.9871[/C][C] 0.4935[/C][/ROW]
[ROW][C]119[/C][C] 0.4967[/C][C] 0.9933[/C][C] 0.5033[/C][/ROW]
[ROW][C]120[/C][C] 0.5603[/C][C] 0.8794[/C][C] 0.4397[/C][/ROW]
[ROW][C]121[/C][C] 0.5816[/C][C] 0.8367[/C][C] 0.4184[/C][/ROW]
[ROW][C]122[/C][C] 0.5512[/C][C] 0.8977[/C][C] 0.4488[/C][/ROW]
[ROW][C]123[/C][C] 0.5213[/C][C] 0.9575[/C][C] 0.4787[/C][/ROW]
[ROW][C]124[/C][C] 0.5315[/C][C] 0.9369[/C][C] 0.4685[/C][/ROW]
[ROW][C]125[/C][C] 0.5196[/C][C] 0.9608[/C][C] 0.4804[/C][/ROW]
[ROW][C]126[/C][C] 0.5847[/C][C] 0.8306[/C][C] 0.4153[/C][/ROW]
[ROW][C]127[/C][C] 0.5824[/C][C] 0.8351[/C][C] 0.4176[/C][/ROW]
[ROW][C]128[/C][C] 0.648[/C][C] 0.7039[/C][C] 0.352[/C][/ROW]
[ROW][C]129[/C][C] 0.6088[/C][C] 0.7825[/C][C] 0.3912[/C][/ROW]
[ROW][C]130[/C][C] 0.5546[/C][C] 0.8907[/C][C] 0.4454[/C][/ROW]
[ROW][C]131[/C][C] 0.6951[/C][C] 0.6098[/C][C] 0.3049[/C][/ROW]
[ROW][C]132[/C][C] 0.6547[/C][C] 0.6905[/C][C] 0.3453[/C][/ROW]
[ROW][C]133[/C][C] 0.6569[/C][C] 0.6861[/C][C] 0.3431[/C][/ROW]
[ROW][C]134[/C][C] 0.6799[/C][C] 0.6401[/C][C] 0.3201[/C][/ROW]
[ROW][C]135[/C][C] 0.6891[/C][C] 0.6218[/C][C] 0.3109[/C][/ROW]
[ROW][C]136[/C][C] 0.8196[/C][C] 0.3608[/C][C] 0.1804[/C][/ROW]
[ROW][C]137[/C][C] 0.7752[/C][C] 0.4495[/C][C] 0.2248[/C][/ROW]
[ROW][C]138[/C][C] 0.7639[/C][C] 0.4722[/C][C] 0.2361[/C][/ROW]
[ROW][C]139[/C][C] 0.7573[/C][C] 0.4854[/C][C] 0.2427[/C][/ROW]
[ROW][C]140[/C][C] 0.7579[/C][C] 0.4843[/C][C] 0.2421[/C][/ROW]
[ROW][C]141[/C][C] 0.7901[/C][C] 0.4197[/C][C] 0.2099[/C][/ROW]
[ROW][C]142[/C][C] 0.8146[/C][C] 0.3708[/C][C] 0.1854[/C][/ROW]
[ROW][C]143[/C][C] 0.7574[/C][C] 0.4851[/C][C] 0.2426[/C][/ROW]
[ROW][C]144[/C][C] 0.6899[/C][C] 0.6202[/C][C] 0.3101[/C][/ROW]
[ROW][C]145[/C][C] 0.7095[/C][C] 0.581[/C][C] 0.2905[/C][/ROW]
[ROW][C]146[/C][C] 0.6441[/C][C] 0.7118[/C][C] 0.3559[/C][/ROW]
[ROW][C]147[/C][C] 0.5553[/C][C] 0.8894[/C][C] 0.4447[/C][/ROW]
[ROW][C]148[/C][C] 0.5585[/C][C] 0.8831[/C][C] 0.4415[/C][/ROW]
[ROW][C]149[/C][C] 0.5888[/C][C] 0.8224[/C][C] 0.4112[/C][/ROW]
[ROW][C]150[/C][C] 0.5684[/C][C] 0.8632[/C][C] 0.4316[/C][/ROW]
[ROW][C]151[/C][C] 0.8938[/C][C] 0.2124[/C][C] 0.1062[/C][/ROW]
[ROW][C]152[/C][C] 0.8445[/C][C] 0.3111[/C][C] 0.1555[/C][/ROW]
[ROW][C]153[/C][C] 0.7634[/C][C] 0.4732[/C][C] 0.2366[/C][/ROW]
[ROW][C]154[/C][C] 0.7419[/C][C] 0.5163[/C][C] 0.2581[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298144&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298144&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
7 0.4565 0.9131 0.5435
8 0.4342 0.8684 0.5658
9 0.4912 0.9823 0.5088
10 0.3648 0.7295 0.6352
11 0.5953 0.8093 0.4047
12 0.5682 0.8636 0.4318
13 0.5186 0.9627 0.4814
14 0.5207 0.9587 0.4793
15 0.5033 0.9933 0.4967
16 0.4191 0.8382 0.5809
17 0.4518 0.9035 0.5482
18 0.4908 0.9817 0.5092
19 0.4704 0.9409 0.5296
20 0.4618 0.9236 0.5382
21 0.4558 0.9115 0.5442
22 0.4372 0.8744 0.5628
23 0.4511 0.9022 0.5489
24 0.423 0.846 0.577
25 0.4793 0.9586 0.5207
26 0.4418 0.8837 0.5582
27 0.4034 0.8068 0.5966
28 0.3928 0.7857 0.6072
29 0.3554 0.7108 0.6446
30 0.3488 0.6975 0.6512
31 0.298 0.5959 0.702
32 0.2651 0.5303 0.7349
33 0.4572 0.9143 0.5428
34 0.5196 0.9608 0.4804
35 0.4863 0.9727 0.5137
36 0.4777 0.9555 0.5223
37 0.4862 0.9723 0.5138
38 0.434 0.868 0.566
39 0.4237 0.8474 0.5763
40 0.4111 0.8221 0.5889
41 0.4332 0.8664 0.5668
42 0.4351 0.8702 0.5649
43 0.4906 0.9812 0.5094
44 0.5267 0.9466 0.4733
45 0.5286 0.9427 0.4714
46 0.526 0.948 0.474
47 0.4862 0.9723 0.5138
48 0.6985 0.603 0.3015
49 0.6914 0.6172 0.3086
50 0.6751 0.6499 0.3249
51 0.6971 0.6057 0.3029
52 0.6609 0.6782 0.3391
53 0.6451 0.7099 0.3549
54 0.6672 0.6657 0.3328
55 0.6772 0.6456 0.3228
56 0.6508 0.6984 0.3492
57 0.6446 0.7108 0.3554
58 0.6882 0.6237 0.3118
59 0.6839 0.6323 0.3161
60 0.6685 0.6629 0.3315
61 0.6622 0.6756 0.3378
62 0.6622 0.6755 0.3378
63 0.6484 0.7033 0.3516
64 0.6188 0.7624 0.3812
65 0.6038 0.7923 0.3962
66 0.6029 0.7942 0.3971
67 0.5729 0.8541 0.4271
68 0.5959 0.8082 0.4041
69 0.5818 0.8364 0.4182
70 0.605 0.79 0.395
71 0.6973 0.6054 0.3027
72 0.6679 0.6642 0.3321
73 0.6933 0.6133 0.3067
74 0.6782 0.6437 0.3218
75 0.6684 0.6632 0.3316
76 0.6519 0.6961 0.3481
77 0.6426 0.7149 0.3574
78 0.6253 0.7493 0.3747
79 0.6076 0.7848 0.3924
80 0.5895 0.8211 0.4105
81 0.579 0.8419 0.421
82 0.6089 0.7822 0.3911
83 0.5982 0.8035 0.4018
84 0.5873 0.8253 0.4127
85 0.5855 0.829 0.4145
86 0.5668 0.8665 0.4332
87 0.556 0.888 0.444
88 0.5836 0.8329 0.4164
89 0.6004 0.7992 0.3996
90 0.6181 0.7638 0.3819
91 0.6372 0.7256 0.3628
92 0.669 0.6619 0.331
93 0.658 0.684 0.342
94 0.6284 0.7432 0.3716
95 0.617 0.766 0.383
96 0.5992 0.8017 0.4008
97 0.5588 0.8825 0.4412
98 0.5374 0.9251 0.4626
99 0.5744 0.8512 0.4256
100 0.6156 0.7689 0.3844
101 0.6613 0.6774 0.3387
102 0.6373 0.7253 0.3627
103 0.6128 0.7745 0.3872
104 0.6326 0.7347 0.3674
105 0.6214 0.7573 0.3786
106 0.6111 0.7777 0.3889
107 0.6094 0.7813 0.3906
108 0.5633 0.8735 0.4367
109 0.5726 0.8547 0.4274
110 0.5432 0.9136 0.4568
111 0.5157 0.9685 0.4843
112 0.5286 0.9427 0.4713
113 0.5182 0.9636 0.4818
114 0.491 0.9819 0.509
115 0.5086 0.9829 0.4914
116 0.5295 0.941 0.4705
117 0.5169 0.9662 0.4831
118 0.5065 0.9871 0.4935
119 0.4967 0.9933 0.5033
120 0.5603 0.8794 0.4397
121 0.5816 0.8367 0.4184
122 0.5512 0.8977 0.4488
123 0.5213 0.9575 0.4787
124 0.5315 0.9369 0.4685
125 0.5196 0.9608 0.4804
126 0.5847 0.8306 0.4153
127 0.5824 0.8351 0.4176
128 0.648 0.7039 0.352
129 0.6088 0.7825 0.3912
130 0.5546 0.8907 0.4454
131 0.6951 0.6098 0.3049
132 0.6547 0.6905 0.3453
133 0.6569 0.6861 0.3431
134 0.6799 0.6401 0.3201
135 0.6891 0.6218 0.3109
136 0.8196 0.3608 0.1804
137 0.7752 0.4495 0.2248
138 0.7639 0.4722 0.2361
139 0.7573 0.4854 0.2427
140 0.7579 0.4843 0.2421
141 0.7901 0.4197 0.2099
142 0.8146 0.3708 0.1854
143 0.7574 0.4851 0.2426
144 0.6899 0.6202 0.3101
145 0.7095 0.581 0.2905
146 0.6441 0.7118 0.3559
147 0.5553 0.8894 0.4447
148 0.5585 0.8831 0.4415
149 0.5888 0.8224 0.4112
150 0.5684 0.8632 0.4316
151 0.8938 0.2124 0.1062
152 0.8445 0.3111 0.1555
153 0.7634 0.4732 0.2366
154 0.7419 0.5163 0.2581







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level0 0OK
5% type I error level00OK
10% type I error level00OK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 0 &  0 & OK \tabularnewline
5% type I error level & 0 & 0 & OK \tabularnewline
10% type I error level & 0 & 0 & OK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298144&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]0[/C][C] 0[/C][C]OK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]0[/C][C]0[/C][C]OK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]0[/C][C]0[/C][C]OK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298144&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298144&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level0 0OK
5% type I error level00OK
10% type I error level00OK







Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 6.039, df1 = 2, df2 = 155, p-value = 0.002982
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = 1.8575, df1 = 6, df2 = 151, p-value = 0.09172
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 5.9077, df1 = 2, df2 = 155, p-value = 0.003368

\begin{tabular}{lllllllll}
\hline
Ramsey RESET F-Test for powers (2 and 3) of fitted values \tabularnewline
> reset_test_fitted
	RESET test
data:  mylm
RESET = 6.039, df1 = 2, df2 = 155, p-value = 0.002982
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of regressors \tabularnewline
> reset_test_regressors
	RESET test
data:  mylm
RESET = 1.8575, df1 = 6, df2 = 151, p-value = 0.09172
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of principal components \tabularnewline
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 5.9077, df1 = 2, df2 = 155, p-value = 0.003368
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=298144&T=7

[TABLE]
[ROW][C]Ramsey RESET F-Test for powers (2 and 3) of fitted values[/C][/ROW]
[ROW][C]
> reset_test_fitted
	RESET test
data:  mylm
RESET = 6.039, df1 = 2, df2 = 155, p-value = 0.002982
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of regressors[/C][/ROW] [ROW][C]
> reset_test_regressors
	RESET test
data:  mylm
RESET = 1.8575, df1 = 6, df2 = 151, p-value = 0.09172
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of principal components[/C][/ROW] [ROW][C]
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 5.9077, df1 = 2, df2 = 155, p-value = 0.003368
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=298144&T=7

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298144&T=7

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 6.039, df1 = 2, df2 = 155, p-value = 0.002982
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = 1.8575, df1 = 6, df2 = 151, p-value = 0.09172
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 5.9077, df1 = 2, df2 = 155, p-value = 0.003368







Variance Inflation Factors (Multicollinearity)
> vif
     GW1      GW3      GW4 
1.389379 1.246938 1.452037 

\begin{tabular}{lllllllll}
\hline
Variance Inflation Factors (Multicollinearity) \tabularnewline
> vif
     GW1      GW3      GW4 
1.389379 1.246938 1.452037 
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=298144&T=8

[TABLE]
[ROW][C]Variance Inflation Factors (Multicollinearity)[/C][/ROW]
[ROW][C]
> vif
     GW1      GW3      GW4 
1.389379 1.246938 1.452037 
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=298144&T=8

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298144&T=8

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Variance Inflation Factors (Multicollinearity)
> vif
     GW1      GW3      GW4 
1.389379 1.246938 1.452037 



Parameters (Session):
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ; par4 = 0 ; par5 = 0 ;
Parameters (R input):
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ; par4 = 0 ; par5 = 0 ;
R code (references can be found in the software module):
par5 <- '0'
par4 <- '0'
par3 <- 'No Linear Trend'
par2 <- 'Do not include Seasonal Dummies'
par1 <- '1'
library(lattice)
library(lmtest)
library(car)
library(MASS)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
mywarning <- ''
par1 <- as.numeric(par1)
if(is.na(par1)) {
par1 <- 1
mywarning = 'Warning: you did not specify the column number of the endogenous series! The first column was selected by default.'
}
if (par4=='') par4 <- 0
par4 <- as.numeric(par4)
if (par5=='') par5 <- 0
par5 <- as.numeric(par5)
x <- na.omit(t(y))
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'Seasonal Differences (s=12)'){
(n <- n - 12)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+12,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'First and Seasonal Differences (s=12)'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
(n <- n - 12)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+12,j] - x[i,j]
}
}
x <- x2
}
if(par4 > 0) {
x2 <- array(0, dim=c(n-par4,par4), dimnames=list(1:(n-par4), paste(colnames(x)[par1],'(t-',1:par4,')',sep='')))
for (i in 1:(n-par4)) {
for (j in 1:par4) {
x2[i,j] <- x[i+par4-j,par1]
}
}
x <- cbind(x[(par4+1):n,], x2)
n <- n - par4
}
if(par5 > 0) {
x2 <- array(0, dim=c(n-par5*12,par5), dimnames=list(1:(n-par5*12), paste(colnames(x)[par1],'(t-',1:par5,'s)',sep='')))
for (i in 1:(n-par5*12)) {
for (j in 1:par5) {
x2[i,j] <- x[i+par5*12-j*12,par1]
}
}
x <- cbind(x[(par5*12+1):n,], x2)
n <- n - par5*12
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
(k <- length(x[n,]))
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
print(x)
(k <- length(x[n,]))
head(x)
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
sresid <- studres(mylm)
hist(sresid, freq=FALSE, main='Distribution of Studentized Residuals')
xfit<-seq(min(sresid),max(sresid),length=40)
yfit<-dnorm(xfit)
lines(xfit, yfit)
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqPlot(mylm, main='QQ Plot')
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
print(z)
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, signif(mysum$coefficients[i,1],6), sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, mywarning)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Multiple Linear Regression - Ordinary Least Squares', 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,formatC(signif(mysum$coefficients[i,1],5),format='g',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,2],5),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,3],4),format='e',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4],4),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4]/2,4),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a,formatC(signif(sqrt(mysum$r.squared),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$adj.r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a,formatC(signif(mysum$fstatistic[1],6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[2],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[3],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a,formatC(signif(1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a,formatC(signif(mysum$sigma,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a,formatC(signif(sum(myerror*myerror),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
myr <- as.numeric(mysum$resid)
myr
if(n < 200) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,formatC(signif(x[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(x[i]-mysum$resid[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$resid[i],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,1],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,2],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,3],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant1,6))
a<-table.element(a,formatC(signif(numsignificant1/numgqtests,6),format='g',flag=' '))
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant5,6))
a<-table.element(a,signif(numsignificant5/numgqtests,6))
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant10,6))
a<-table.element(a,signif(numsignificant10/numgqtests,6))
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}
}
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of fitted values',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_fitted <- resettest(mylm,power=2:3,type='fitted')
a<-table.element(a,paste('
',RC.texteval('reset_test_fitted'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of regressors',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_regressors <- resettest(mylm,power=2:3,type='regressor')
a<-table.element(a,paste('
',RC.texteval('reset_test_regressors'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of principal components',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_principal_components <- resettest(mylm,power=2:3,type='princomp')
a<-table.element(a,paste('
',RC.texteval('reset_test_principal_components'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable8.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Variance Inflation Factors (Multicollinearity)',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
vif <- vif(mylm)
a<-table.element(a,paste('
',RC.texteval('vif'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable9.tab')