Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_pairs.wasp
Title produced by softwareKendall tau Correlation Matrix
Date of computationWed, 07 Dec 2016 15:05:41 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/07/t1481119608sbbz3hsfu0frjhj.htm/, Retrieved Fri, 01 Nov 2024 03:38:17 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=298126, Retrieved Fri, 01 Nov 2024 03:38:17 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact92
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Kendall tau Correlation Matrix] [] [2016-12-07 14:05:41] [67fe698233d7575d27222b521501ef35] [Current]
Feedback Forum

Post a new message
Dataseries X:
5	5	4	1	15
3	3	2	5	13
5	5	3	1	14
5	4	2	2	NA
5	4	2	1	NA
5	5	3	4	17
5	3	3	1	NA
5	5	2	1	NA
5	5	2	1	NA
5	5	4	2	16
4	5	2	1	12
2	4	2	4	12
5	4	3	1	13
4	5	2	5	16
5	5	3	2	15
4	5	2	1	12
5	4	2	2	NA
5	5	3	2	NA
4	5	2	1	NA
4	5	2	4	15
3	4	3	1	NA
5	5	1	2	13
4	4	2	3	NA
5	5	3	1	NA
4	4	2	4	NA
5	5	2	2	14
5	4	3	3	15
5	5	5	1	16
5	5	2	4	16
5	5	5	1	16
5	5	2	1	13
5	5	2	1	13
5	4	4	1	NA
5	4	1	3	13
4	4	2	4	14
4	4	2	2	NA
5	5	3	4	17
5	5	2	2	14
5	5	3	2	15
5	5	2	1	NA
5	5	3	1	14
5	5	4	1	15
5	5	4	5	19
5	5	3	1	14
5	5	2	1	13
5	4	2	1	NA
4	5	4	1	14
5	5	4	1	NA
5	5	3	2	15
4	4	2	2	NA
5	5	2	2	NA
3	4	2	2	11
4	3	2	3	12
3	3	3	1	10
5	4	2	2	NA
5	5	2	2	14
5	5	3	1	14
5	4	3	3	NA
5	5	2	3	15
5	5	2	1	13
5	5	4	1	15
5	5	4	2	16
4	4	3	1	12
5	5	4	3	17
4	4	4	3	15
5	5	4	4	18
2	2	4	4	12
4	3	5	4	16
5	5	3	2	NA
5	5	4	1	NA
4	3	4	1	NA
5	5	2	1	NA
2	3	2	3	NA
5	4	3	2	14
3	3	4	1	11
4	5	2	1	12
4	4	5	1	14
5	5	1	1	12
5	5	3	1	NA
4	4	3	1	12
4	4	2	3	NA
5	5	2	1	13
4	5	1	4	NA
4	4	2	2	12
5	5	1	4	15
5	5	2	1	13
5	5	2	1	NA
4	4	2	1	11
4	4	2	2	12
4	4	3	5	NA
3	3	2	3	11
4	4	1	4	NA
5	5	1	1	12
5	5	3	4	NA
4	4	2	4	14
5	5	3	2	15
2	2	1	3	8
5	5	2	1	13
5	5	2	1	NA
4	4	3	4	NA
3	5	2	4	14
5	5	2	1	13
4	4	3	3	NA
5	5	1	1	NA
5	5	4	5	NA
5	5	3	2	NA
5	5	2	2	NA
5	5	3	1	14
4	5	3	3	NA
5	4	3	1	NA
5	5	4	1	NA
5	3	3	3	14
4	4	2	1	NA
5	5	3	4	17
5	5	2	1	13
2	1	1	5	NA
5	5	1	1	12
5	5	2	1	13
5	4	4	4	17
5	4	3	2	14
5	5	2	1	NA
5	5	2	4	16
5	5	3	1	NA
5	5	3	1	14
4	5	3	2	14
3	3	2	2	NA
5	4	2	1	NA
5	5	2	1	NA
5	5	3	1	14
5	5	4	4	NA
4	4	2	4	14
4	5	2	3	NA
4	4	1	4	13
5	4	3	1	NA
4	4	3	5	16
4	4	3	2	13
5	5	1	3	14
2	2	1	3	8
5	5	2	1	NA
4	4	1	4	13
5	5	5	1	NA
5	5	3	1	14
4	4	2	3	13
5	4	2	3	14
4	2	4	2	12
5	5	2	4	16
5	5	4	4	NA
5	5	4	2	NA
4	4	3	4	15
5	5	4	4	18
5	5	3	2	15
5	4	4	1	14
5	5	3	1	NA
5	5	4	1	15
2	2	2	3	NA
5	5	4	3	NA
3	3	1	4	11
5	5	4	1	15
5	4	3	3	15
5	5	2	3	15
4	4	2	3	NA
5	5	2	2	NA
5	5	4	1	NA
5	5	3	2	15
5	4	3	2	NA
5	2	2	4	13




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time1 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298126&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]1 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=298126&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298126&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center







Correlations for all pairs of data series (method=kendall)
EP1EP2EP3EP4TVDC
EP110.6190.148-0.2380.45
EP20.61910.038-0.290.389
EP30.1480.0381-0.1380.448
EP4-0.238-0.29-0.13810.29
TVDC0.450.3890.4480.291

\begin{tabular}{lllllllll}
\hline
Correlations for all pairs of data series (method=kendall) \tabularnewline
  & EP1 & EP2 & EP3 & EP4 & TVDC \tabularnewline
EP1 & 1 & 0.619 & 0.148 & -0.238 & 0.45 \tabularnewline
EP2 & 0.619 & 1 & 0.038 & -0.29 & 0.389 \tabularnewline
EP3 & 0.148 & 0.038 & 1 & -0.138 & 0.448 \tabularnewline
EP4 & -0.238 & -0.29 & -0.138 & 1 & 0.29 \tabularnewline
TVDC & 0.45 & 0.389 & 0.448 & 0.29 & 1 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298126&T=1

[TABLE]
[ROW][C]Correlations for all pairs of data series (method=kendall)[/C][/ROW]
[ROW][C] [/C][C]EP1[/C][C]EP2[/C][C]EP3[/C][C]EP4[/C][C]TVDC[/C][/ROW]
[ROW][C]EP1[/C][C]1[/C][C]0.619[/C][C]0.148[/C][C]-0.238[/C][C]0.45[/C][/ROW]
[ROW][C]EP2[/C][C]0.619[/C][C]1[/C][C]0.038[/C][C]-0.29[/C][C]0.389[/C][/ROW]
[ROW][C]EP3[/C][C]0.148[/C][C]0.038[/C][C]1[/C][C]-0.138[/C][C]0.448[/C][/ROW]
[ROW][C]EP4[/C][C]-0.238[/C][C]-0.29[/C][C]-0.138[/C][C]1[/C][C]0.29[/C][/ROW]
[ROW][C]TVDC[/C][C]0.45[/C][C]0.389[/C][C]0.448[/C][C]0.29[/C][C]1[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298126&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298126&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Correlations for all pairs of data series (method=kendall)
EP1EP2EP3EP4TVDC
EP110.6190.148-0.2380.45
EP20.61910.038-0.290.389
EP30.1480.0381-0.1380.448
EP4-0.238-0.29-0.13810.29
TVDC0.450.3890.4480.291







Correlations for all pairs of data series with p-values
pairPearson rSpearman rhoKendall tau
EP1;EP20.67660.64580.6188
p-value(0)(0)(0)
EP1;EP30.16530.16440.1477
p-value(0.0968)(0.0986)(0.0917)
EP1;EP4-0.2885-0.2733-0.2378
p-value(0.0033)(0.0055)(0.0065)
EP1;TVDC0.60460.51810.45
p-value(0)(0)(0)
EP2;EP30.04040.04260.0379
p-value(0.6866)(0.6709)(0.6634)
EP2;EP4-0.3095-0.3312-0.2903
p-value(0.0016)(7e-04)(8e-04)
EP2;TVDC0.53050.45150.3885
p-value(0)(0)(0)
EP3;EP4-0.157-0.1628-0.1381
p-value(0.115)(0.1021)(0.0971)
EP3;TVDC0.51910.52860.4478
p-value(0)(0)(0)
EP4;TVDC0.34380.3530.2897
p-value(4e-04)(3e-04)(3e-04)

\begin{tabular}{lllllllll}
\hline
Correlations for all pairs of data series with p-values \tabularnewline
pair & Pearson r & Spearman rho & Kendall tau \tabularnewline
EP1;EP2 & 0.6766 & 0.6458 & 0.6188 \tabularnewline
p-value & (0) & (0) & (0) \tabularnewline
EP1;EP3 & 0.1653 & 0.1644 & 0.1477 \tabularnewline
p-value & (0.0968) & (0.0986) & (0.0917) \tabularnewline
EP1;EP4 & -0.2885 & -0.2733 & -0.2378 \tabularnewline
p-value & (0.0033) & (0.0055) & (0.0065) \tabularnewline
EP1;TVDC & 0.6046 & 0.5181 & 0.45 \tabularnewline
p-value & (0) & (0) & (0) \tabularnewline
EP2;EP3 & 0.0404 & 0.0426 & 0.0379 \tabularnewline
p-value & (0.6866) & (0.6709) & (0.6634) \tabularnewline
EP2;EP4 & -0.3095 & -0.3312 & -0.2903 \tabularnewline
p-value & (0.0016) & (7e-04) & (8e-04) \tabularnewline
EP2;TVDC & 0.5305 & 0.4515 & 0.3885 \tabularnewline
p-value & (0) & (0) & (0) \tabularnewline
EP3;EP4 & -0.157 & -0.1628 & -0.1381 \tabularnewline
p-value & (0.115) & (0.1021) & (0.0971) \tabularnewline
EP3;TVDC & 0.5191 & 0.5286 & 0.4478 \tabularnewline
p-value & (0) & (0) & (0) \tabularnewline
EP4;TVDC & 0.3438 & 0.353 & 0.2897 \tabularnewline
p-value & (4e-04) & (3e-04) & (3e-04) \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298126&T=2

[TABLE]
[ROW][C]Correlations for all pairs of data series with p-values[/C][/ROW]
[ROW][C]pair[/C][C]Pearson r[/C][C]Spearman rho[/C][C]Kendall tau[/C][/ROW]
[ROW][C]EP1;EP2[/C][C]0.6766[/C][C]0.6458[/C][C]0.6188[/C][/ROW]
[ROW][C]p-value[/C][C](0)[/C][C](0)[/C][C](0)[/C][/ROW]
[ROW][C]EP1;EP3[/C][C]0.1653[/C][C]0.1644[/C][C]0.1477[/C][/ROW]
[ROW][C]p-value[/C][C](0.0968)[/C][C](0.0986)[/C][C](0.0917)[/C][/ROW]
[ROW][C]EP1;EP4[/C][C]-0.2885[/C][C]-0.2733[/C][C]-0.2378[/C][/ROW]
[ROW][C]p-value[/C][C](0.0033)[/C][C](0.0055)[/C][C](0.0065)[/C][/ROW]
[ROW][C]EP1;TVDC[/C][C]0.6046[/C][C]0.5181[/C][C]0.45[/C][/ROW]
[ROW][C]p-value[/C][C](0)[/C][C](0)[/C][C](0)[/C][/ROW]
[ROW][C]EP2;EP3[/C][C]0.0404[/C][C]0.0426[/C][C]0.0379[/C][/ROW]
[ROW][C]p-value[/C][C](0.6866)[/C][C](0.6709)[/C][C](0.6634)[/C][/ROW]
[ROW][C]EP2;EP4[/C][C]-0.3095[/C][C]-0.3312[/C][C]-0.2903[/C][/ROW]
[ROW][C]p-value[/C][C](0.0016)[/C][C](7e-04)[/C][C](8e-04)[/C][/ROW]
[ROW][C]EP2;TVDC[/C][C]0.5305[/C][C]0.4515[/C][C]0.3885[/C][/ROW]
[ROW][C]p-value[/C][C](0)[/C][C](0)[/C][C](0)[/C][/ROW]
[ROW][C]EP3;EP4[/C][C]-0.157[/C][C]-0.1628[/C][C]-0.1381[/C][/ROW]
[ROW][C]p-value[/C][C](0.115)[/C][C](0.1021)[/C][C](0.0971)[/C][/ROW]
[ROW][C]EP3;TVDC[/C][C]0.5191[/C][C]0.5286[/C][C]0.4478[/C][/ROW]
[ROW][C]p-value[/C][C](0)[/C][C](0)[/C][C](0)[/C][/ROW]
[ROW][C]EP4;TVDC[/C][C]0.3438[/C][C]0.353[/C][C]0.2897[/C][/ROW]
[ROW][C]p-value[/C][C](4e-04)[/C][C](3e-04)[/C][C](3e-04)[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298126&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298126&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Correlations for all pairs of data series with p-values
pairPearson rSpearman rhoKendall tau
EP1;EP20.67660.64580.6188
p-value(0)(0)(0)
EP1;EP30.16530.16440.1477
p-value(0.0968)(0.0986)(0.0917)
EP1;EP4-0.2885-0.2733-0.2378
p-value(0.0033)(0.0055)(0.0065)
EP1;TVDC0.60460.51810.45
p-value(0)(0)(0)
EP2;EP30.04040.04260.0379
p-value(0.6866)(0.6709)(0.6634)
EP2;EP4-0.3095-0.3312-0.2903
p-value(0.0016)(7e-04)(8e-04)
EP2;TVDC0.53050.45150.3885
p-value(0)(0)(0)
EP3;EP4-0.157-0.1628-0.1381
p-value(0.115)(0.1021)(0.0971)
EP3;TVDC0.51910.52860.4478
p-value(0)(0)(0)
EP4;TVDC0.34380.3530.2897
p-value(4e-04)(3e-04)(3e-04)







Meta Analysis of Correlation Tests
Number of significant by total number of Correlations
Type I errorPearson rSpearman rhoKendall tau
0.010.70.70.7
0.020.70.70.7
0.030.70.70.7
0.040.70.70.7
0.050.70.70.7
0.060.70.70.7
0.070.70.70.7
0.080.70.70.7
0.090.70.70.7
0.10.80.80.9

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Correlation Tests \tabularnewline
Number of significant by total number of Correlations \tabularnewline
Type I error & Pearson r & Spearman rho & Kendall tau \tabularnewline
0.01 & 0.7 & 0.7 & 0.7 \tabularnewline
0.02 & 0.7 & 0.7 & 0.7 \tabularnewline
0.03 & 0.7 & 0.7 & 0.7 \tabularnewline
0.04 & 0.7 & 0.7 & 0.7 \tabularnewline
0.05 & 0.7 & 0.7 & 0.7 \tabularnewline
0.06 & 0.7 & 0.7 & 0.7 \tabularnewline
0.07 & 0.7 & 0.7 & 0.7 \tabularnewline
0.08 & 0.7 & 0.7 & 0.7 \tabularnewline
0.09 & 0.7 & 0.7 & 0.7 \tabularnewline
0.1 & 0.8 & 0.8 & 0.9 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298126&T=3

[TABLE]
[ROW][C]Meta Analysis of Correlation Tests[/C][/ROW]
[ROW][C]Number of significant by total number of Correlations[/C][/ROW]
[ROW][C]Type I error[/C][C]Pearson r[/C][C]Spearman rho[/C][C]Kendall tau[/C][/ROW]
[ROW][C]0.01[/C][C]0.7[/C][C]0.7[/C][C]0.7[/C][/ROW]
[ROW][C]0.02[/C][C]0.7[/C][C]0.7[/C][C]0.7[/C][/ROW]
[ROW][C]0.03[/C][C]0.7[/C][C]0.7[/C][C]0.7[/C][/ROW]
[ROW][C]0.04[/C][C]0.7[/C][C]0.7[/C][C]0.7[/C][/ROW]
[ROW][C]0.05[/C][C]0.7[/C][C]0.7[/C][C]0.7[/C][/ROW]
[ROW][C]0.06[/C][C]0.7[/C][C]0.7[/C][C]0.7[/C][/ROW]
[ROW][C]0.07[/C][C]0.7[/C][C]0.7[/C][C]0.7[/C][/ROW]
[ROW][C]0.08[/C][C]0.7[/C][C]0.7[/C][C]0.7[/C][/ROW]
[ROW][C]0.09[/C][C]0.7[/C][C]0.7[/C][C]0.7[/C][/ROW]
[ROW][C]0.1[/C][C]0.8[/C][C]0.8[/C][C]0.9[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298126&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298126&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Correlation Tests
Number of significant by total number of Correlations
Type I errorPearson rSpearman rhoKendall tau
0.010.70.70.7
0.020.70.70.7
0.030.70.70.7
0.040.70.70.7
0.050.70.70.7
0.060.70.70.7
0.070.70.70.7
0.080.70.70.7
0.090.70.70.7
0.10.80.80.9



Parameters (Session):
par1 = kendall ;
Parameters (R input):
par1 = kendall ;
R code (references can be found in the software module):
panel.tau <- function(x, y, digits=2, prefix='', cex.cor)
{
usr <- par('usr'); on.exit(par(usr))
par(usr = c(0, 1, 0, 1))
rr <- cor.test(x, y, method=par1)
r <- round(rr$p.value,2)
txt <- format(c(r, 0.123456789), digits=digits)[1]
txt <- paste(prefix, txt, sep='')
if(missing(cex.cor)) cex <- 0.5/strwidth(txt)
text(0.5, 0.5, txt, cex = cex)
}
panel.hist <- function(x, ...)
{
usr <- par('usr'); on.exit(par(usr))
par(usr = c(usr[1:2], 0, 1.5) )
h <- hist(x, plot = FALSE)
breaks <- h$breaks; nB <- length(breaks)
y <- h$counts; y <- y/max(y)
rect(breaks[-nB], 0, breaks[-1], y, col='grey', ...)
}
x <- na.omit(x)
y <- t(na.omit(t(y)))
bitmap(file='test1.png')
pairs(t(y),diag.panel=panel.hist, upper.panel=panel.smooth, lower.panel=panel.tau, main=main)
dev.off()
load(file='createtable')
n <- length(y[,1])
print(n)
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,paste('Correlations for all pairs of data series (method=',par1,')',sep=''),n+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,' ',header=TRUE)
for (i in 1:n) {
a<-table.element(a,dimnames(t(x))[[2]][i],header=TRUE)
}
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,dimnames(t(x))[[2]][i],header=TRUE)
for (j in 1:n) {
r <- cor.test(y[i,],y[j,],method=par1)
a<-table.element(a,round(r$estimate,3))
}
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
ncorrs <- (n*n -n)/2
mycorrs <- array(0, dim=c(10,3))
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Correlations for all pairs of data series with p-values',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'pair',1,TRUE)
a<-table.element(a,'Pearson r',1,TRUE)
a<-table.element(a,'Spearman rho',1,TRUE)
a<-table.element(a,'Kendall tau',1,TRUE)
a<-table.row.end(a)
cor.test(y[1,],y[2,],method=par1)
for (i in 1:(n-1))
{
for (j in (i+1):n)
{
a<-table.row.start(a)
dum <- paste(dimnames(t(x))[[2]][i],';',dimnames(t(x))[[2]][j],sep='')
a<-table.element(a,dum,header=TRUE)
rp <- cor.test(y[i,],y[j,],method='pearson')
a<-table.element(a,round(rp$estimate,4))
rs <- cor.test(y[i,],y[j,],method='spearman')
a<-table.element(a,round(rs$estimate,4))
rk <- cor.test(y[i,],y[j,],method='kendall')
a<-table.element(a,round(rk$estimate,4))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value',header=T)
a<-table.element(a,paste('(',round(rp$p.value,4),')',sep=''))
a<-table.element(a,paste('(',round(rs$p.value,4),')',sep=''))
a<-table.element(a,paste('(',round(rk$p.value,4),')',sep=''))
a<-table.row.end(a)
for (iii in 1:10) {
iiid100 <- iii / 100
if (rp$p.value < iiid100) mycorrs[iii, 1] = mycorrs[iii, 1] + 1
if (rs$p.value < iiid100) mycorrs[iii, 2] = mycorrs[iii, 2] + 1
if (rk$p.value < iiid100) mycorrs[iii, 3] = mycorrs[iii, 3] + 1
}
}
}
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Correlation Tests',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Number of significant by total number of Correlations',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Type I error',1,TRUE)
a<-table.element(a,'Pearson r',1,TRUE)
a<-table.element(a,'Spearman rho',1,TRUE)
a<-table.element(a,'Kendall tau',1,TRUE)
a<-table.row.end(a)
for (iii in 1:10) {
iiid100 <- iii / 100
a<-table.row.start(a)
a<-table.element(a,round(iiid100,2),header=T)
a<-table.element(a,round(mycorrs[iii,1]/ncorrs,2))
a<-table.element(a,round(mycorrs[iii,2]/ncorrs,2))
a<-table.element(a,round(mycorrs[iii,3]/ncorrs,2))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')