Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationWed, 07 Dec 2016 14:48:30 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/07/t14811186344xcqsn4i69cxib4.htm/, Retrieved Fri, 01 Nov 2024 03:32:45 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=298112, Retrieved Fri, 01 Nov 2024 03:32:45 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact114
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Multiple Regression] [Multiple Regressi...] [2016-12-07 13:48:30] [55eb8f21ed24cda91766c505eb72bb6f] [Current]
Feedback Forum

Post a new message
Dataseries X:
4	0	13
2	1	16
3	1	17
2	1	NA
2	0	NA
3	1	16
3	1	NA
2	1	NA
2	0	NA
4	0	17
2	0	17
2	0	15
3	0	16
2	0	14
3	0	16
2	1	17
2	0	NA
NA	1	NA
3	1	NA
2	1	NA
2	1	16
3	0	NA
1	1	16
2	1	NA
3	0	NA
2	0	NA
2	0	16
3	0	15
5	0	16
2	0	16
5	0	13
2	1	15
2	0	17
4	0	NA
1	1	13
2	0	17
2	0	NA
3	1	14
2	0	14
3	0	18
2	1	NA
3	1	17
4	1	13
4	1	16
3	1	15
2	1	15
2	1	NA
1	1	15
4	1	13
4	0	NA
3	1	17
2	0	NA
2	1	NA
2	1	11
2	0	14
3	1	13
2	0	NA
2	0	17
3	1	16
3	0	NA
2	1	17
2	1	16
4	1	16
4	1	16
3	0	15
4	1	12
4	0	17
4	1	14
4	0	14
5	1	16
3	1	NA
4	1	NA
4	0	NA
2	1	NA
2	0	NA
3	1	15
4	0	16
2	1	14
5	0	15
1	1	17
3	1	NA
3	0	10
2	0	NA
2	0	17
1	1	NA
2	1	20
1	1	17
2	1	18
2	1	NA
2	0	17
2	1	14
3	0	NA
2	0	17
1	0	NA
1	0	17
3	1	NA
2	1	16
3	1	18
1	0	18
2	1	16
2	1	NA
3	0	NA
2	0	15
2	1	13
3	1	NA
1	1	NA
4	1	NA
3	0	NA
2	0	NA
3	0	16
3	1	NA
3	1	NA
4	1	NA
3	0	12
2	0	NA
3	1	16
2	0	16
1	0	NA
1	1	16
2	0	14
4	0	15
3	0	14
2	1	NA
2	1	15
3	1	NA
3	1	15
3	1	16
2	0	NA
2	0	NA
2	1	NA
3	1	11
4	1	NA
2	0	18
2	1	NA
1	0	11
3	0	NA
3	0	18
4	0	NA
3	1	15
1	0	19
1	0	17
2	0	NA
1	0	14
5	1	NA
3	0	13
2	1	17
2	1	14
4	1	19
2	1	14
4	0	NA
4	0	NA
3	0	16
4	0	16
3	1	15
4	1	12
3	1	NA
4	1	17
2	0	NA
4	1	NA
1	0	18
4	1	15
3	0	18
2	0	15
2	0	NA
2	0	NA
4	0	NA
3	1	16
3	1	NA
2	0	16




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time7 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time7 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298112&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]7 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=298112&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298112&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time7 seconds
R ServerBig Analytics Cloud Computing Center







Multiple Linear Regression - Estimated Regression Equation
TVDSUM[t] = + 16.3773 -0.295181EP3[t] -0.238305Geslacht[t] + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
TVDSUM[t] =  +  16.3773 -0.295181EP3[t] -0.238305Geslacht[t]  + e[t] \tabularnewline
 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298112&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]TVDSUM[t] =  +  16.3773 -0.295181EP3[t] -0.238305Geslacht[t]  + e[t][/C][/ROW]
[ROW][C][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298112&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298112&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
TVDSUM[t] = + 16.3773 -0.295181EP3[t] -0.238305Geslacht[t] + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)+16.38 0.5315+3.0810e+01 7.528e-53 3.764e-53
EP3-0.2952 0.1776-1.6620e+00 0.0996 0.0498
Geslacht-0.2383 0.3674-6.4860e-01 0.5181 0.2591

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & +16.38 &  0.5315 & +3.0810e+01 &  7.528e-53 &  3.764e-53 \tabularnewline
EP3 & -0.2952 &  0.1776 & -1.6620e+00 &  0.0996 &  0.0498 \tabularnewline
Geslacht & -0.2383 &  0.3674 & -6.4860e-01 &  0.5181 &  0.2591 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298112&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]+16.38[/C][C] 0.5315[/C][C]+3.0810e+01[/C][C] 7.528e-53[/C][C] 3.764e-53[/C][/ROW]
[ROW][C]EP3[/C][C]-0.2952[/C][C] 0.1776[/C][C]-1.6620e+00[/C][C] 0.0996[/C][C] 0.0498[/C][/ROW]
[ROW][C]Geslacht[/C][C]-0.2383[/C][C] 0.3674[/C][C]-6.4860e-01[/C][C] 0.5181[/C][C] 0.2591[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298112&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298112&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)+16.38 0.5315+3.0810e+01 7.528e-53 3.764e-53
EP3-0.2952 0.1776-1.6620e+00 0.0996 0.0498
Geslacht-0.2383 0.3674-6.4860e-01 0.5181 0.2591







Multiple Linear Regression - Regression Statistics
Multiple R 0.1778
R-squared 0.03163
Adjusted R-squared 0.01226
F-TEST (value) 1.633
F-TEST (DF numerator)2
F-TEST (DF denominator)100
p-value 0.2005
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 1.861
Sum Squared Residuals 346.4

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R &  0.1778 \tabularnewline
R-squared &  0.03163 \tabularnewline
Adjusted R-squared &  0.01226 \tabularnewline
F-TEST (value) &  1.633 \tabularnewline
F-TEST (DF numerator) & 2 \tabularnewline
F-TEST (DF denominator) & 100 \tabularnewline
p-value &  0.2005 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation &  1.861 \tabularnewline
Sum Squared Residuals &  346.4 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298112&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C] 0.1778[/C][/ROW]
[ROW][C]R-squared[/C][C] 0.03163[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C] 0.01226[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C] 1.633[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]2[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]100[/C][/ROW]
[ROW][C]p-value[/C][C] 0.2005[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C] 1.861[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C] 346.4[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298112&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298112&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R 0.1778
R-squared 0.03163
Adjusted R-squared 0.01226
F-TEST (value) 1.633
F-TEST (DF numerator)2
F-TEST (DF denominator)100
p-value 0.2005
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 1.861
Sum Squared Residuals 346.4







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 13 15.2-2.197
2 16 15.55 0.4514
3 17 15.25 1.747
4 16 15.25 0.7465
5 17 15.2 1.803
6 17 15.79 1.213
7 15 15.79-0.7869
8 16 15.49 0.5082
9 14 15.79-1.787
10 16 15.49 0.5082
11 17 15.55 1.451
12 16 15.55 0.4514
13 16 15.84 0.1562
14 16 15.79 0.2131
15 15 15.49-0.4918
16 16 14.9 1.099
17 16 15.79 0.2131
18 13 14.9-1.901
19 15 15.55-0.5486
20 17 15.79 1.213
21 13 15.84-2.844
22 17 15.79 1.213
23 14 15.25-1.253
24 14 15.79-1.787
25 18 15.49 2.508
26 17 15.25 1.747
27 13 14.96-1.958
28 16 14.96 1.042
29 15 15.25-0.2535
30 15 15.55-0.5486
31 15 15.84-0.8438
32 13 14.96-1.958
33 17 15.25 1.747
34 11 15.55-4.549
35 14 15.79-1.787
36 13 15.25-2.253
37 17 15.79 1.213
38 16 15.25 0.7465
39 17 15.55 1.451
40 16 15.55 0.4514
41 16 14.96 1.042
42 16 14.96 1.042
43 15 15.49-0.4918
44 12 14.96-2.958
45 17 15.2 1.803
46 14 14.96-0.9583
47 14 15.2-1.197
48 16 14.66 1.337
49 15 15.25-0.2535
50 16 15.2 0.8034
51 14 15.55-1.549
52 15 14.9 0.0986
53 17 15.84 1.156
54 10 15.49-5.492
55 17 15.79 1.213
56 20 15.55 4.451
57 17 15.84 1.156
58 18 15.55 2.451
59 17 15.79 1.213
60 14 15.55-1.549
61 17 15.79 1.213
62 17 16.08 0.9179
63 16 15.55 0.4514
64 18 15.25 2.747
65 18 16.08 1.918
66 16 15.55 0.4514
67 15 15.79-0.7869
68 13 15.55-2.549
69 16 15.49 0.5082
70 12 15.49-3.492
71 16 15.25 0.7465
72 16 15.79 0.2131
73 16 15.84 0.1562
74 14 15.79-1.787
75 15 15.2-0.1966
76 14 15.49-1.492
77 15 15.55-0.5486
78 15 15.25-0.2535
79 16 15.25 0.7465
80 11 15.25-4.253
81 18 15.79 2.213
82 11 16.08-5.082
83 18 15.49 2.508
84 15 15.25-0.2535
85 19 16.08 2.918
86 17 16.08 0.9179
87 14 16.08-2.082
88 13 15.49-2.492
89 17 15.55 1.451
90 14 15.55-1.549
91 19 14.96 4.042
92 14 15.55-1.549
93 16 15.49 0.5082
94 16 15.2 0.8034
95 15 15.25-0.2535
96 12 14.96-2.958
97 17 14.96 2.042
98 18 16.08 1.918
99 15 14.96 0.04172
100 18 15.49 2.508
101 15 15.79-0.7869
102 16 15.25 0.7465
103 16 15.79 0.2131

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 &  13 &  15.2 & -2.197 \tabularnewline
2 &  16 &  15.55 &  0.4514 \tabularnewline
3 &  17 &  15.25 &  1.747 \tabularnewline
4 &  16 &  15.25 &  0.7465 \tabularnewline
5 &  17 &  15.2 &  1.803 \tabularnewline
6 &  17 &  15.79 &  1.213 \tabularnewline
7 &  15 &  15.79 & -0.7869 \tabularnewline
8 &  16 &  15.49 &  0.5082 \tabularnewline
9 &  14 &  15.79 & -1.787 \tabularnewline
10 &  16 &  15.49 &  0.5082 \tabularnewline
11 &  17 &  15.55 &  1.451 \tabularnewline
12 &  16 &  15.55 &  0.4514 \tabularnewline
13 &  16 &  15.84 &  0.1562 \tabularnewline
14 &  16 &  15.79 &  0.2131 \tabularnewline
15 &  15 &  15.49 & -0.4918 \tabularnewline
16 &  16 &  14.9 &  1.099 \tabularnewline
17 &  16 &  15.79 &  0.2131 \tabularnewline
18 &  13 &  14.9 & -1.901 \tabularnewline
19 &  15 &  15.55 & -0.5486 \tabularnewline
20 &  17 &  15.79 &  1.213 \tabularnewline
21 &  13 &  15.84 & -2.844 \tabularnewline
22 &  17 &  15.79 &  1.213 \tabularnewline
23 &  14 &  15.25 & -1.253 \tabularnewline
24 &  14 &  15.79 & -1.787 \tabularnewline
25 &  18 &  15.49 &  2.508 \tabularnewline
26 &  17 &  15.25 &  1.747 \tabularnewline
27 &  13 &  14.96 & -1.958 \tabularnewline
28 &  16 &  14.96 &  1.042 \tabularnewline
29 &  15 &  15.25 & -0.2535 \tabularnewline
30 &  15 &  15.55 & -0.5486 \tabularnewline
31 &  15 &  15.84 & -0.8438 \tabularnewline
32 &  13 &  14.96 & -1.958 \tabularnewline
33 &  17 &  15.25 &  1.747 \tabularnewline
34 &  11 &  15.55 & -4.549 \tabularnewline
35 &  14 &  15.79 & -1.787 \tabularnewline
36 &  13 &  15.25 & -2.253 \tabularnewline
37 &  17 &  15.79 &  1.213 \tabularnewline
38 &  16 &  15.25 &  0.7465 \tabularnewline
39 &  17 &  15.55 &  1.451 \tabularnewline
40 &  16 &  15.55 &  0.4514 \tabularnewline
41 &  16 &  14.96 &  1.042 \tabularnewline
42 &  16 &  14.96 &  1.042 \tabularnewline
43 &  15 &  15.49 & -0.4918 \tabularnewline
44 &  12 &  14.96 & -2.958 \tabularnewline
45 &  17 &  15.2 &  1.803 \tabularnewline
46 &  14 &  14.96 & -0.9583 \tabularnewline
47 &  14 &  15.2 & -1.197 \tabularnewline
48 &  16 &  14.66 &  1.337 \tabularnewline
49 &  15 &  15.25 & -0.2535 \tabularnewline
50 &  16 &  15.2 &  0.8034 \tabularnewline
51 &  14 &  15.55 & -1.549 \tabularnewline
52 &  15 &  14.9 &  0.0986 \tabularnewline
53 &  17 &  15.84 &  1.156 \tabularnewline
54 &  10 &  15.49 & -5.492 \tabularnewline
55 &  17 &  15.79 &  1.213 \tabularnewline
56 &  20 &  15.55 &  4.451 \tabularnewline
57 &  17 &  15.84 &  1.156 \tabularnewline
58 &  18 &  15.55 &  2.451 \tabularnewline
59 &  17 &  15.79 &  1.213 \tabularnewline
60 &  14 &  15.55 & -1.549 \tabularnewline
61 &  17 &  15.79 &  1.213 \tabularnewline
62 &  17 &  16.08 &  0.9179 \tabularnewline
63 &  16 &  15.55 &  0.4514 \tabularnewline
64 &  18 &  15.25 &  2.747 \tabularnewline
65 &  18 &  16.08 &  1.918 \tabularnewline
66 &  16 &  15.55 &  0.4514 \tabularnewline
67 &  15 &  15.79 & -0.7869 \tabularnewline
68 &  13 &  15.55 & -2.549 \tabularnewline
69 &  16 &  15.49 &  0.5082 \tabularnewline
70 &  12 &  15.49 & -3.492 \tabularnewline
71 &  16 &  15.25 &  0.7465 \tabularnewline
72 &  16 &  15.79 &  0.2131 \tabularnewline
73 &  16 &  15.84 &  0.1562 \tabularnewline
74 &  14 &  15.79 & -1.787 \tabularnewline
75 &  15 &  15.2 & -0.1966 \tabularnewline
76 &  14 &  15.49 & -1.492 \tabularnewline
77 &  15 &  15.55 & -0.5486 \tabularnewline
78 &  15 &  15.25 & -0.2535 \tabularnewline
79 &  16 &  15.25 &  0.7465 \tabularnewline
80 &  11 &  15.25 & -4.253 \tabularnewline
81 &  18 &  15.79 &  2.213 \tabularnewline
82 &  11 &  16.08 & -5.082 \tabularnewline
83 &  18 &  15.49 &  2.508 \tabularnewline
84 &  15 &  15.25 & -0.2535 \tabularnewline
85 &  19 &  16.08 &  2.918 \tabularnewline
86 &  17 &  16.08 &  0.9179 \tabularnewline
87 &  14 &  16.08 & -2.082 \tabularnewline
88 &  13 &  15.49 & -2.492 \tabularnewline
89 &  17 &  15.55 &  1.451 \tabularnewline
90 &  14 &  15.55 & -1.549 \tabularnewline
91 &  19 &  14.96 &  4.042 \tabularnewline
92 &  14 &  15.55 & -1.549 \tabularnewline
93 &  16 &  15.49 &  0.5082 \tabularnewline
94 &  16 &  15.2 &  0.8034 \tabularnewline
95 &  15 &  15.25 & -0.2535 \tabularnewline
96 &  12 &  14.96 & -2.958 \tabularnewline
97 &  17 &  14.96 &  2.042 \tabularnewline
98 &  18 &  16.08 &  1.918 \tabularnewline
99 &  15 &  14.96 &  0.04172 \tabularnewline
100 &  18 &  15.49 &  2.508 \tabularnewline
101 &  15 &  15.79 & -0.7869 \tabularnewline
102 &  16 &  15.25 &  0.7465 \tabularnewline
103 &  16 &  15.79 &  0.2131 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298112&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C] 13[/C][C] 15.2[/C][C]-2.197[/C][/ROW]
[ROW][C]2[/C][C] 16[/C][C] 15.55[/C][C] 0.4514[/C][/ROW]
[ROW][C]3[/C][C] 17[/C][C] 15.25[/C][C] 1.747[/C][/ROW]
[ROW][C]4[/C][C] 16[/C][C] 15.25[/C][C] 0.7465[/C][/ROW]
[ROW][C]5[/C][C] 17[/C][C] 15.2[/C][C] 1.803[/C][/ROW]
[ROW][C]6[/C][C] 17[/C][C] 15.79[/C][C] 1.213[/C][/ROW]
[ROW][C]7[/C][C] 15[/C][C] 15.79[/C][C]-0.7869[/C][/ROW]
[ROW][C]8[/C][C] 16[/C][C] 15.49[/C][C] 0.5082[/C][/ROW]
[ROW][C]9[/C][C] 14[/C][C] 15.79[/C][C]-1.787[/C][/ROW]
[ROW][C]10[/C][C] 16[/C][C] 15.49[/C][C] 0.5082[/C][/ROW]
[ROW][C]11[/C][C] 17[/C][C] 15.55[/C][C] 1.451[/C][/ROW]
[ROW][C]12[/C][C] 16[/C][C] 15.55[/C][C] 0.4514[/C][/ROW]
[ROW][C]13[/C][C] 16[/C][C] 15.84[/C][C] 0.1562[/C][/ROW]
[ROW][C]14[/C][C] 16[/C][C] 15.79[/C][C] 0.2131[/C][/ROW]
[ROW][C]15[/C][C] 15[/C][C] 15.49[/C][C]-0.4918[/C][/ROW]
[ROW][C]16[/C][C] 16[/C][C] 14.9[/C][C] 1.099[/C][/ROW]
[ROW][C]17[/C][C] 16[/C][C] 15.79[/C][C] 0.2131[/C][/ROW]
[ROW][C]18[/C][C] 13[/C][C] 14.9[/C][C]-1.901[/C][/ROW]
[ROW][C]19[/C][C] 15[/C][C] 15.55[/C][C]-0.5486[/C][/ROW]
[ROW][C]20[/C][C] 17[/C][C] 15.79[/C][C] 1.213[/C][/ROW]
[ROW][C]21[/C][C] 13[/C][C] 15.84[/C][C]-2.844[/C][/ROW]
[ROW][C]22[/C][C] 17[/C][C] 15.79[/C][C] 1.213[/C][/ROW]
[ROW][C]23[/C][C] 14[/C][C] 15.25[/C][C]-1.253[/C][/ROW]
[ROW][C]24[/C][C] 14[/C][C] 15.79[/C][C]-1.787[/C][/ROW]
[ROW][C]25[/C][C] 18[/C][C] 15.49[/C][C] 2.508[/C][/ROW]
[ROW][C]26[/C][C] 17[/C][C] 15.25[/C][C] 1.747[/C][/ROW]
[ROW][C]27[/C][C] 13[/C][C] 14.96[/C][C]-1.958[/C][/ROW]
[ROW][C]28[/C][C] 16[/C][C] 14.96[/C][C] 1.042[/C][/ROW]
[ROW][C]29[/C][C] 15[/C][C] 15.25[/C][C]-0.2535[/C][/ROW]
[ROW][C]30[/C][C] 15[/C][C] 15.55[/C][C]-0.5486[/C][/ROW]
[ROW][C]31[/C][C] 15[/C][C] 15.84[/C][C]-0.8438[/C][/ROW]
[ROW][C]32[/C][C] 13[/C][C] 14.96[/C][C]-1.958[/C][/ROW]
[ROW][C]33[/C][C] 17[/C][C] 15.25[/C][C] 1.747[/C][/ROW]
[ROW][C]34[/C][C] 11[/C][C] 15.55[/C][C]-4.549[/C][/ROW]
[ROW][C]35[/C][C] 14[/C][C] 15.79[/C][C]-1.787[/C][/ROW]
[ROW][C]36[/C][C] 13[/C][C] 15.25[/C][C]-2.253[/C][/ROW]
[ROW][C]37[/C][C] 17[/C][C] 15.79[/C][C] 1.213[/C][/ROW]
[ROW][C]38[/C][C] 16[/C][C] 15.25[/C][C] 0.7465[/C][/ROW]
[ROW][C]39[/C][C] 17[/C][C] 15.55[/C][C] 1.451[/C][/ROW]
[ROW][C]40[/C][C] 16[/C][C] 15.55[/C][C] 0.4514[/C][/ROW]
[ROW][C]41[/C][C] 16[/C][C] 14.96[/C][C] 1.042[/C][/ROW]
[ROW][C]42[/C][C] 16[/C][C] 14.96[/C][C] 1.042[/C][/ROW]
[ROW][C]43[/C][C] 15[/C][C] 15.49[/C][C]-0.4918[/C][/ROW]
[ROW][C]44[/C][C] 12[/C][C] 14.96[/C][C]-2.958[/C][/ROW]
[ROW][C]45[/C][C] 17[/C][C] 15.2[/C][C] 1.803[/C][/ROW]
[ROW][C]46[/C][C] 14[/C][C] 14.96[/C][C]-0.9583[/C][/ROW]
[ROW][C]47[/C][C] 14[/C][C] 15.2[/C][C]-1.197[/C][/ROW]
[ROW][C]48[/C][C] 16[/C][C] 14.66[/C][C] 1.337[/C][/ROW]
[ROW][C]49[/C][C] 15[/C][C] 15.25[/C][C]-0.2535[/C][/ROW]
[ROW][C]50[/C][C] 16[/C][C] 15.2[/C][C] 0.8034[/C][/ROW]
[ROW][C]51[/C][C] 14[/C][C] 15.55[/C][C]-1.549[/C][/ROW]
[ROW][C]52[/C][C] 15[/C][C] 14.9[/C][C] 0.0986[/C][/ROW]
[ROW][C]53[/C][C] 17[/C][C] 15.84[/C][C] 1.156[/C][/ROW]
[ROW][C]54[/C][C] 10[/C][C] 15.49[/C][C]-5.492[/C][/ROW]
[ROW][C]55[/C][C] 17[/C][C] 15.79[/C][C] 1.213[/C][/ROW]
[ROW][C]56[/C][C] 20[/C][C] 15.55[/C][C] 4.451[/C][/ROW]
[ROW][C]57[/C][C] 17[/C][C] 15.84[/C][C] 1.156[/C][/ROW]
[ROW][C]58[/C][C] 18[/C][C] 15.55[/C][C] 2.451[/C][/ROW]
[ROW][C]59[/C][C] 17[/C][C] 15.79[/C][C] 1.213[/C][/ROW]
[ROW][C]60[/C][C] 14[/C][C] 15.55[/C][C]-1.549[/C][/ROW]
[ROW][C]61[/C][C] 17[/C][C] 15.79[/C][C] 1.213[/C][/ROW]
[ROW][C]62[/C][C] 17[/C][C] 16.08[/C][C] 0.9179[/C][/ROW]
[ROW][C]63[/C][C] 16[/C][C] 15.55[/C][C] 0.4514[/C][/ROW]
[ROW][C]64[/C][C] 18[/C][C] 15.25[/C][C] 2.747[/C][/ROW]
[ROW][C]65[/C][C] 18[/C][C] 16.08[/C][C] 1.918[/C][/ROW]
[ROW][C]66[/C][C] 16[/C][C] 15.55[/C][C] 0.4514[/C][/ROW]
[ROW][C]67[/C][C] 15[/C][C] 15.79[/C][C]-0.7869[/C][/ROW]
[ROW][C]68[/C][C] 13[/C][C] 15.55[/C][C]-2.549[/C][/ROW]
[ROW][C]69[/C][C] 16[/C][C] 15.49[/C][C] 0.5082[/C][/ROW]
[ROW][C]70[/C][C] 12[/C][C] 15.49[/C][C]-3.492[/C][/ROW]
[ROW][C]71[/C][C] 16[/C][C] 15.25[/C][C] 0.7465[/C][/ROW]
[ROW][C]72[/C][C] 16[/C][C] 15.79[/C][C] 0.2131[/C][/ROW]
[ROW][C]73[/C][C] 16[/C][C] 15.84[/C][C] 0.1562[/C][/ROW]
[ROW][C]74[/C][C] 14[/C][C] 15.79[/C][C]-1.787[/C][/ROW]
[ROW][C]75[/C][C] 15[/C][C] 15.2[/C][C]-0.1966[/C][/ROW]
[ROW][C]76[/C][C] 14[/C][C] 15.49[/C][C]-1.492[/C][/ROW]
[ROW][C]77[/C][C] 15[/C][C] 15.55[/C][C]-0.5486[/C][/ROW]
[ROW][C]78[/C][C] 15[/C][C] 15.25[/C][C]-0.2535[/C][/ROW]
[ROW][C]79[/C][C] 16[/C][C] 15.25[/C][C] 0.7465[/C][/ROW]
[ROW][C]80[/C][C] 11[/C][C] 15.25[/C][C]-4.253[/C][/ROW]
[ROW][C]81[/C][C] 18[/C][C] 15.79[/C][C] 2.213[/C][/ROW]
[ROW][C]82[/C][C] 11[/C][C] 16.08[/C][C]-5.082[/C][/ROW]
[ROW][C]83[/C][C] 18[/C][C] 15.49[/C][C] 2.508[/C][/ROW]
[ROW][C]84[/C][C] 15[/C][C] 15.25[/C][C]-0.2535[/C][/ROW]
[ROW][C]85[/C][C] 19[/C][C] 16.08[/C][C] 2.918[/C][/ROW]
[ROW][C]86[/C][C] 17[/C][C] 16.08[/C][C] 0.9179[/C][/ROW]
[ROW][C]87[/C][C] 14[/C][C] 16.08[/C][C]-2.082[/C][/ROW]
[ROW][C]88[/C][C] 13[/C][C] 15.49[/C][C]-2.492[/C][/ROW]
[ROW][C]89[/C][C] 17[/C][C] 15.55[/C][C] 1.451[/C][/ROW]
[ROW][C]90[/C][C] 14[/C][C] 15.55[/C][C]-1.549[/C][/ROW]
[ROW][C]91[/C][C] 19[/C][C] 14.96[/C][C] 4.042[/C][/ROW]
[ROW][C]92[/C][C] 14[/C][C] 15.55[/C][C]-1.549[/C][/ROW]
[ROW][C]93[/C][C] 16[/C][C] 15.49[/C][C] 0.5082[/C][/ROW]
[ROW][C]94[/C][C] 16[/C][C] 15.2[/C][C] 0.8034[/C][/ROW]
[ROW][C]95[/C][C] 15[/C][C] 15.25[/C][C]-0.2535[/C][/ROW]
[ROW][C]96[/C][C] 12[/C][C] 14.96[/C][C]-2.958[/C][/ROW]
[ROW][C]97[/C][C] 17[/C][C] 14.96[/C][C] 2.042[/C][/ROW]
[ROW][C]98[/C][C] 18[/C][C] 16.08[/C][C] 1.918[/C][/ROW]
[ROW][C]99[/C][C] 15[/C][C] 14.96[/C][C] 0.04172[/C][/ROW]
[ROW][C]100[/C][C] 18[/C][C] 15.49[/C][C] 2.508[/C][/ROW]
[ROW][C]101[/C][C] 15[/C][C] 15.79[/C][C]-0.7869[/C][/ROW]
[ROW][C]102[/C][C] 16[/C][C] 15.25[/C][C] 0.7465[/C][/ROW]
[ROW][C]103[/C][C] 16[/C][C] 15.79[/C][C] 0.2131[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298112&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298112&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 13 15.2-2.197
2 16 15.55 0.4514
3 17 15.25 1.747
4 16 15.25 0.7465
5 17 15.2 1.803
6 17 15.79 1.213
7 15 15.79-0.7869
8 16 15.49 0.5082
9 14 15.79-1.787
10 16 15.49 0.5082
11 17 15.55 1.451
12 16 15.55 0.4514
13 16 15.84 0.1562
14 16 15.79 0.2131
15 15 15.49-0.4918
16 16 14.9 1.099
17 16 15.79 0.2131
18 13 14.9-1.901
19 15 15.55-0.5486
20 17 15.79 1.213
21 13 15.84-2.844
22 17 15.79 1.213
23 14 15.25-1.253
24 14 15.79-1.787
25 18 15.49 2.508
26 17 15.25 1.747
27 13 14.96-1.958
28 16 14.96 1.042
29 15 15.25-0.2535
30 15 15.55-0.5486
31 15 15.84-0.8438
32 13 14.96-1.958
33 17 15.25 1.747
34 11 15.55-4.549
35 14 15.79-1.787
36 13 15.25-2.253
37 17 15.79 1.213
38 16 15.25 0.7465
39 17 15.55 1.451
40 16 15.55 0.4514
41 16 14.96 1.042
42 16 14.96 1.042
43 15 15.49-0.4918
44 12 14.96-2.958
45 17 15.2 1.803
46 14 14.96-0.9583
47 14 15.2-1.197
48 16 14.66 1.337
49 15 15.25-0.2535
50 16 15.2 0.8034
51 14 15.55-1.549
52 15 14.9 0.0986
53 17 15.84 1.156
54 10 15.49-5.492
55 17 15.79 1.213
56 20 15.55 4.451
57 17 15.84 1.156
58 18 15.55 2.451
59 17 15.79 1.213
60 14 15.55-1.549
61 17 15.79 1.213
62 17 16.08 0.9179
63 16 15.55 0.4514
64 18 15.25 2.747
65 18 16.08 1.918
66 16 15.55 0.4514
67 15 15.79-0.7869
68 13 15.55-2.549
69 16 15.49 0.5082
70 12 15.49-3.492
71 16 15.25 0.7465
72 16 15.79 0.2131
73 16 15.84 0.1562
74 14 15.79-1.787
75 15 15.2-0.1966
76 14 15.49-1.492
77 15 15.55-0.5486
78 15 15.25-0.2535
79 16 15.25 0.7465
80 11 15.25-4.253
81 18 15.79 2.213
82 11 16.08-5.082
83 18 15.49 2.508
84 15 15.25-0.2535
85 19 16.08 2.918
86 17 16.08 0.9179
87 14 16.08-2.082
88 13 15.49-2.492
89 17 15.55 1.451
90 14 15.55-1.549
91 19 14.96 4.042
92 14 15.55-1.549
93 16 15.49 0.5082
94 16 15.2 0.8034
95 15 15.25-0.2535
96 12 14.96-2.958
97 17 14.96 2.042
98 18 16.08 1.918
99 15 14.96 0.04172
100 18 15.49 2.508
101 15 15.79-0.7869
102 16 15.25 0.7465
103 16 15.79 0.2131







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
6 0.5623 0.8755 0.4377
7 0.4557 0.9113 0.5443
8 0.3187 0.6375 0.6813
9 0.306 0.6121 0.694
10 0.2156 0.4311 0.7844
11 0.1467 0.2935 0.8533
12 0.09436 0.1887 0.9056
13 0.05755 0.1151 0.9425
14 0.03486 0.06972 0.9651
15 0.02027 0.04053 0.9797
16 0.0118 0.0236 0.9882
17 0.006595 0.01319 0.9934
18 0.01364 0.02727 0.9864
19 0.01124 0.02247 0.9888
20 0.009568 0.01914 0.9904
21 0.04182 0.08365 0.9582
22 0.03537 0.07075 0.9646
23 0.03123 0.06246 0.9688
24 0.03248 0.06497 0.9675
25 0.05164 0.1033 0.9484
26 0.0482 0.09641 0.9518
27 0.05939 0.1188 0.9406
28 0.04622 0.09245 0.9538
29 0.03217 0.06434 0.9678
30 0.02256 0.04512 0.9774
31 0.01616 0.03232 0.9838
32 0.01835 0.0367 0.9817
33 0.01919 0.03839 0.9808
34 0.1112 0.2225 0.8888
35 0.1092 0.2183 0.8908
36 0.1193 0.2387 0.8807
37 0.1038 0.2077 0.8962
38 0.08511 0.1702 0.9149
39 0.08117 0.1623 0.9188
40 0.06277 0.1255 0.9372
41 0.0515 0.103 0.9485
42 0.04145 0.0829 0.9586
43 0.03059 0.06118 0.9694
44 0.05173 0.1035 0.9483
45 0.0504 0.1008 0.9496
46 0.03987 0.07974 0.9601
47 0.03363 0.06727 0.9664
48 0.02901 0.05802 0.971
49 0.02069 0.04138 0.9793
50 0.01538 0.03076 0.9846
51 0.01352 0.02703 0.9865
52 0.009363 0.01873 0.9906
53 0.007739 0.01548 0.9923
54 0.09537 0.1907 0.9046
55 0.08276 0.1655 0.9172
56 0.2336 0.4672 0.7664
57 0.2078 0.4156 0.7922
58 0.2388 0.4777 0.7612
59 0.2122 0.4244 0.7878
60 0.1964 0.3928 0.8036
61 0.1726 0.3453 0.8274
62 0.1462 0.2925 0.8538
63 0.1173 0.2345 0.8827
64 0.1525 0.305 0.8475
65 0.1574 0.3147 0.8426
66 0.1283 0.2565 0.8717
67 0.1037 0.2073 0.8963
68 0.119 0.2381 0.881
69 0.09296 0.1859 0.907
70 0.1704 0.3407 0.8296
71 0.1398 0.2797 0.8602
72 0.1084 0.2168 0.8916
73 0.08581 0.1716 0.9142
74 0.08194 0.1639 0.9181
75 0.06414 0.1283 0.9359
76 0.06336 0.1267 0.9366
77 0.04616 0.09232 0.9538
78 0.03239 0.06477 0.9676
79 0.02389 0.04778 0.9761
80 0.08019 0.1604 0.9198
81 0.08236 0.1647 0.9176
82 0.3517 0.7034 0.6483
83 0.3571 0.7141 0.6429
84 0.2913 0.5826 0.7087
85 0.3781 0.7561 0.6219
86 0.3335 0.6669 0.6665
87 0.3249 0.6497 0.6752
88 0.4628 0.9256 0.5372
89 0.4551 0.9103 0.5449
90 0.3947 0.7895 0.6053
91 0.7236 0.5527 0.2764
92 0.6789 0.6422 0.3211
93 0.5742 0.8517 0.4258
94 0.4547 0.9093 0.5453
95 0.3322 0.6644 0.6678
96 0.6525 0.6949 0.3475
97 0.5731 0.8538 0.4269

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
6 &  0.5623 &  0.8755 &  0.4377 \tabularnewline
7 &  0.4557 &  0.9113 &  0.5443 \tabularnewline
8 &  0.3187 &  0.6375 &  0.6813 \tabularnewline
9 &  0.306 &  0.6121 &  0.694 \tabularnewline
10 &  0.2156 &  0.4311 &  0.7844 \tabularnewline
11 &  0.1467 &  0.2935 &  0.8533 \tabularnewline
12 &  0.09436 &  0.1887 &  0.9056 \tabularnewline
13 &  0.05755 &  0.1151 &  0.9425 \tabularnewline
14 &  0.03486 &  0.06972 &  0.9651 \tabularnewline
15 &  0.02027 &  0.04053 &  0.9797 \tabularnewline
16 &  0.0118 &  0.0236 &  0.9882 \tabularnewline
17 &  0.006595 &  0.01319 &  0.9934 \tabularnewline
18 &  0.01364 &  0.02727 &  0.9864 \tabularnewline
19 &  0.01124 &  0.02247 &  0.9888 \tabularnewline
20 &  0.009568 &  0.01914 &  0.9904 \tabularnewline
21 &  0.04182 &  0.08365 &  0.9582 \tabularnewline
22 &  0.03537 &  0.07075 &  0.9646 \tabularnewline
23 &  0.03123 &  0.06246 &  0.9688 \tabularnewline
24 &  0.03248 &  0.06497 &  0.9675 \tabularnewline
25 &  0.05164 &  0.1033 &  0.9484 \tabularnewline
26 &  0.0482 &  0.09641 &  0.9518 \tabularnewline
27 &  0.05939 &  0.1188 &  0.9406 \tabularnewline
28 &  0.04622 &  0.09245 &  0.9538 \tabularnewline
29 &  0.03217 &  0.06434 &  0.9678 \tabularnewline
30 &  0.02256 &  0.04512 &  0.9774 \tabularnewline
31 &  0.01616 &  0.03232 &  0.9838 \tabularnewline
32 &  0.01835 &  0.0367 &  0.9817 \tabularnewline
33 &  0.01919 &  0.03839 &  0.9808 \tabularnewline
34 &  0.1112 &  0.2225 &  0.8888 \tabularnewline
35 &  0.1092 &  0.2183 &  0.8908 \tabularnewline
36 &  0.1193 &  0.2387 &  0.8807 \tabularnewline
37 &  0.1038 &  0.2077 &  0.8962 \tabularnewline
38 &  0.08511 &  0.1702 &  0.9149 \tabularnewline
39 &  0.08117 &  0.1623 &  0.9188 \tabularnewline
40 &  0.06277 &  0.1255 &  0.9372 \tabularnewline
41 &  0.0515 &  0.103 &  0.9485 \tabularnewline
42 &  0.04145 &  0.0829 &  0.9586 \tabularnewline
43 &  0.03059 &  0.06118 &  0.9694 \tabularnewline
44 &  0.05173 &  0.1035 &  0.9483 \tabularnewline
45 &  0.0504 &  0.1008 &  0.9496 \tabularnewline
46 &  0.03987 &  0.07974 &  0.9601 \tabularnewline
47 &  0.03363 &  0.06727 &  0.9664 \tabularnewline
48 &  0.02901 &  0.05802 &  0.971 \tabularnewline
49 &  0.02069 &  0.04138 &  0.9793 \tabularnewline
50 &  0.01538 &  0.03076 &  0.9846 \tabularnewline
51 &  0.01352 &  0.02703 &  0.9865 \tabularnewline
52 &  0.009363 &  0.01873 &  0.9906 \tabularnewline
53 &  0.007739 &  0.01548 &  0.9923 \tabularnewline
54 &  0.09537 &  0.1907 &  0.9046 \tabularnewline
55 &  0.08276 &  0.1655 &  0.9172 \tabularnewline
56 &  0.2336 &  0.4672 &  0.7664 \tabularnewline
57 &  0.2078 &  0.4156 &  0.7922 \tabularnewline
58 &  0.2388 &  0.4777 &  0.7612 \tabularnewline
59 &  0.2122 &  0.4244 &  0.7878 \tabularnewline
60 &  0.1964 &  0.3928 &  0.8036 \tabularnewline
61 &  0.1726 &  0.3453 &  0.8274 \tabularnewline
62 &  0.1462 &  0.2925 &  0.8538 \tabularnewline
63 &  0.1173 &  0.2345 &  0.8827 \tabularnewline
64 &  0.1525 &  0.305 &  0.8475 \tabularnewline
65 &  0.1574 &  0.3147 &  0.8426 \tabularnewline
66 &  0.1283 &  0.2565 &  0.8717 \tabularnewline
67 &  0.1037 &  0.2073 &  0.8963 \tabularnewline
68 &  0.119 &  0.2381 &  0.881 \tabularnewline
69 &  0.09296 &  0.1859 &  0.907 \tabularnewline
70 &  0.1704 &  0.3407 &  0.8296 \tabularnewline
71 &  0.1398 &  0.2797 &  0.8602 \tabularnewline
72 &  0.1084 &  0.2168 &  0.8916 \tabularnewline
73 &  0.08581 &  0.1716 &  0.9142 \tabularnewline
74 &  0.08194 &  0.1639 &  0.9181 \tabularnewline
75 &  0.06414 &  0.1283 &  0.9359 \tabularnewline
76 &  0.06336 &  0.1267 &  0.9366 \tabularnewline
77 &  0.04616 &  0.09232 &  0.9538 \tabularnewline
78 &  0.03239 &  0.06477 &  0.9676 \tabularnewline
79 &  0.02389 &  0.04778 &  0.9761 \tabularnewline
80 &  0.08019 &  0.1604 &  0.9198 \tabularnewline
81 &  0.08236 &  0.1647 &  0.9176 \tabularnewline
82 &  0.3517 &  0.7034 &  0.6483 \tabularnewline
83 &  0.3571 &  0.7141 &  0.6429 \tabularnewline
84 &  0.2913 &  0.5826 &  0.7087 \tabularnewline
85 &  0.3781 &  0.7561 &  0.6219 \tabularnewline
86 &  0.3335 &  0.6669 &  0.6665 \tabularnewline
87 &  0.3249 &  0.6497 &  0.6752 \tabularnewline
88 &  0.4628 &  0.9256 &  0.5372 \tabularnewline
89 &  0.4551 &  0.9103 &  0.5449 \tabularnewline
90 &  0.3947 &  0.7895 &  0.6053 \tabularnewline
91 &  0.7236 &  0.5527 &  0.2764 \tabularnewline
92 &  0.6789 &  0.6422 &  0.3211 \tabularnewline
93 &  0.5742 &  0.8517 &  0.4258 \tabularnewline
94 &  0.4547 &  0.9093 &  0.5453 \tabularnewline
95 &  0.3322 &  0.6644 &  0.6678 \tabularnewline
96 &  0.6525 &  0.6949 &  0.3475 \tabularnewline
97 &  0.5731 &  0.8538 &  0.4269 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298112&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]6[/C][C] 0.5623[/C][C] 0.8755[/C][C] 0.4377[/C][/ROW]
[ROW][C]7[/C][C] 0.4557[/C][C] 0.9113[/C][C] 0.5443[/C][/ROW]
[ROW][C]8[/C][C] 0.3187[/C][C] 0.6375[/C][C] 0.6813[/C][/ROW]
[ROW][C]9[/C][C] 0.306[/C][C] 0.6121[/C][C] 0.694[/C][/ROW]
[ROW][C]10[/C][C] 0.2156[/C][C] 0.4311[/C][C] 0.7844[/C][/ROW]
[ROW][C]11[/C][C] 0.1467[/C][C] 0.2935[/C][C] 0.8533[/C][/ROW]
[ROW][C]12[/C][C] 0.09436[/C][C] 0.1887[/C][C] 0.9056[/C][/ROW]
[ROW][C]13[/C][C] 0.05755[/C][C] 0.1151[/C][C] 0.9425[/C][/ROW]
[ROW][C]14[/C][C] 0.03486[/C][C] 0.06972[/C][C] 0.9651[/C][/ROW]
[ROW][C]15[/C][C] 0.02027[/C][C] 0.04053[/C][C] 0.9797[/C][/ROW]
[ROW][C]16[/C][C] 0.0118[/C][C] 0.0236[/C][C] 0.9882[/C][/ROW]
[ROW][C]17[/C][C] 0.006595[/C][C] 0.01319[/C][C] 0.9934[/C][/ROW]
[ROW][C]18[/C][C] 0.01364[/C][C] 0.02727[/C][C] 0.9864[/C][/ROW]
[ROW][C]19[/C][C] 0.01124[/C][C] 0.02247[/C][C] 0.9888[/C][/ROW]
[ROW][C]20[/C][C] 0.009568[/C][C] 0.01914[/C][C] 0.9904[/C][/ROW]
[ROW][C]21[/C][C] 0.04182[/C][C] 0.08365[/C][C] 0.9582[/C][/ROW]
[ROW][C]22[/C][C] 0.03537[/C][C] 0.07075[/C][C] 0.9646[/C][/ROW]
[ROW][C]23[/C][C] 0.03123[/C][C] 0.06246[/C][C] 0.9688[/C][/ROW]
[ROW][C]24[/C][C] 0.03248[/C][C] 0.06497[/C][C] 0.9675[/C][/ROW]
[ROW][C]25[/C][C] 0.05164[/C][C] 0.1033[/C][C] 0.9484[/C][/ROW]
[ROW][C]26[/C][C] 0.0482[/C][C] 0.09641[/C][C] 0.9518[/C][/ROW]
[ROW][C]27[/C][C] 0.05939[/C][C] 0.1188[/C][C] 0.9406[/C][/ROW]
[ROW][C]28[/C][C] 0.04622[/C][C] 0.09245[/C][C] 0.9538[/C][/ROW]
[ROW][C]29[/C][C] 0.03217[/C][C] 0.06434[/C][C] 0.9678[/C][/ROW]
[ROW][C]30[/C][C] 0.02256[/C][C] 0.04512[/C][C] 0.9774[/C][/ROW]
[ROW][C]31[/C][C] 0.01616[/C][C] 0.03232[/C][C] 0.9838[/C][/ROW]
[ROW][C]32[/C][C] 0.01835[/C][C] 0.0367[/C][C] 0.9817[/C][/ROW]
[ROW][C]33[/C][C] 0.01919[/C][C] 0.03839[/C][C] 0.9808[/C][/ROW]
[ROW][C]34[/C][C] 0.1112[/C][C] 0.2225[/C][C] 0.8888[/C][/ROW]
[ROW][C]35[/C][C] 0.1092[/C][C] 0.2183[/C][C] 0.8908[/C][/ROW]
[ROW][C]36[/C][C] 0.1193[/C][C] 0.2387[/C][C] 0.8807[/C][/ROW]
[ROW][C]37[/C][C] 0.1038[/C][C] 0.2077[/C][C] 0.8962[/C][/ROW]
[ROW][C]38[/C][C] 0.08511[/C][C] 0.1702[/C][C] 0.9149[/C][/ROW]
[ROW][C]39[/C][C] 0.08117[/C][C] 0.1623[/C][C] 0.9188[/C][/ROW]
[ROW][C]40[/C][C] 0.06277[/C][C] 0.1255[/C][C] 0.9372[/C][/ROW]
[ROW][C]41[/C][C] 0.0515[/C][C] 0.103[/C][C] 0.9485[/C][/ROW]
[ROW][C]42[/C][C] 0.04145[/C][C] 0.0829[/C][C] 0.9586[/C][/ROW]
[ROW][C]43[/C][C] 0.03059[/C][C] 0.06118[/C][C] 0.9694[/C][/ROW]
[ROW][C]44[/C][C] 0.05173[/C][C] 0.1035[/C][C] 0.9483[/C][/ROW]
[ROW][C]45[/C][C] 0.0504[/C][C] 0.1008[/C][C] 0.9496[/C][/ROW]
[ROW][C]46[/C][C] 0.03987[/C][C] 0.07974[/C][C] 0.9601[/C][/ROW]
[ROW][C]47[/C][C] 0.03363[/C][C] 0.06727[/C][C] 0.9664[/C][/ROW]
[ROW][C]48[/C][C] 0.02901[/C][C] 0.05802[/C][C] 0.971[/C][/ROW]
[ROW][C]49[/C][C] 0.02069[/C][C] 0.04138[/C][C] 0.9793[/C][/ROW]
[ROW][C]50[/C][C] 0.01538[/C][C] 0.03076[/C][C] 0.9846[/C][/ROW]
[ROW][C]51[/C][C] 0.01352[/C][C] 0.02703[/C][C] 0.9865[/C][/ROW]
[ROW][C]52[/C][C] 0.009363[/C][C] 0.01873[/C][C] 0.9906[/C][/ROW]
[ROW][C]53[/C][C] 0.007739[/C][C] 0.01548[/C][C] 0.9923[/C][/ROW]
[ROW][C]54[/C][C] 0.09537[/C][C] 0.1907[/C][C] 0.9046[/C][/ROW]
[ROW][C]55[/C][C] 0.08276[/C][C] 0.1655[/C][C] 0.9172[/C][/ROW]
[ROW][C]56[/C][C] 0.2336[/C][C] 0.4672[/C][C] 0.7664[/C][/ROW]
[ROW][C]57[/C][C] 0.2078[/C][C] 0.4156[/C][C] 0.7922[/C][/ROW]
[ROW][C]58[/C][C] 0.2388[/C][C] 0.4777[/C][C] 0.7612[/C][/ROW]
[ROW][C]59[/C][C] 0.2122[/C][C] 0.4244[/C][C] 0.7878[/C][/ROW]
[ROW][C]60[/C][C] 0.1964[/C][C] 0.3928[/C][C] 0.8036[/C][/ROW]
[ROW][C]61[/C][C] 0.1726[/C][C] 0.3453[/C][C] 0.8274[/C][/ROW]
[ROW][C]62[/C][C] 0.1462[/C][C] 0.2925[/C][C] 0.8538[/C][/ROW]
[ROW][C]63[/C][C] 0.1173[/C][C] 0.2345[/C][C] 0.8827[/C][/ROW]
[ROW][C]64[/C][C] 0.1525[/C][C] 0.305[/C][C] 0.8475[/C][/ROW]
[ROW][C]65[/C][C] 0.1574[/C][C] 0.3147[/C][C] 0.8426[/C][/ROW]
[ROW][C]66[/C][C] 0.1283[/C][C] 0.2565[/C][C] 0.8717[/C][/ROW]
[ROW][C]67[/C][C] 0.1037[/C][C] 0.2073[/C][C] 0.8963[/C][/ROW]
[ROW][C]68[/C][C] 0.119[/C][C] 0.2381[/C][C] 0.881[/C][/ROW]
[ROW][C]69[/C][C] 0.09296[/C][C] 0.1859[/C][C] 0.907[/C][/ROW]
[ROW][C]70[/C][C] 0.1704[/C][C] 0.3407[/C][C] 0.8296[/C][/ROW]
[ROW][C]71[/C][C] 0.1398[/C][C] 0.2797[/C][C] 0.8602[/C][/ROW]
[ROW][C]72[/C][C] 0.1084[/C][C] 0.2168[/C][C] 0.8916[/C][/ROW]
[ROW][C]73[/C][C] 0.08581[/C][C] 0.1716[/C][C] 0.9142[/C][/ROW]
[ROW][C]74[/C][C] 0.08194[/C][C] 0.1639[/C][C] 0.9181[/C][/ROW]
[ROW][C]75[/C][C] 0.06414[/C][C] 0.1283[/C][C] 0.9359[/C][/ROW]
[ROW][C]76[/C][C] 0.06336[/C][C] 0.1267[/C][C] 0.9366[/C][/ROW]
[ROW][C]77[/C][C] 0.04616[/C][C] 0.09232[/C][C] 0.9538[/C][/ROW]
[ROW][C]78[/C][C] 0.03239[/C][C] 0.06477[/C][C] 0.9676[/C][/ROW]
[ROW][C]79[/C][C] 0.02389[/C][C] 0.04778[/C][C] 0.9761[/C][/ROW]
[ROW][C]80[/C][C] 0.08019[/C][C] 0.1604[/C][C] 0.9198[/C][/ROW]
[ROW][C]81[/C][C] 0.08236[/C][C] 0.1647[/C][C] 0.9176[/C][/ROW]
[ROW][C]82[/C][C] 0.3517[/C][C] 0.7034[/C][C] 0.6483[/C][/ROW]
[ROW][C]83[/C][C] 0.3571[/C][C] 0.7141[/C][C] 0.6429[/C][/ROW]
[ROW][C]84[/C][C] 0.2913[/C][C] 0.5826[/C][C] 0.7087[/C][/ROW]
[ROW][C]85[/C][C] 0.3781[/C][C] 0.7561[/C][C] 0.6219[/C][/ROW]
[ROW][C]86[/C][C] 0.3335[/C][C] 0.6669[/C][C] 0.6665[/C][/ROW]
[ROW][C]87[/C][C] 0.3249[/C][C] 0.6497[/C][C] 0.6752[/C][/ROW]
[ROW][C]88[/C][C] 0.4628[/C][C] 0.9256[/C][C] 0.5372[/C][/ROW]
[ROW][C]89[/C][C] 0.4551[/C][C] 0.9103[/C][C] 0.5449[/C][/ROW]
[ROW][C]90[/C][C] 0.3947[/C][C] 0.7895[/C][C] 0.6053[/C][/ROW]
[ROW][C]91[/C][C] 0.7236[/C][C] 0.5527[/C][C] 0.2764[/C][/ROW]
[ROW][C]92[/C][C] 0.6789[/C][C] 0.6422[/C][C] 0.3211[/C][/ROW]
[ROW][C]93[/C][C] 0.5742[/C][C] 0.8517[/C][C] 0.4258[/C][/ROW]
[ROW][C]94[/C][C] 0.4547[/C][C] 0.9093[/C][C] 0.5453[/C][/ROW]
[ROW][C]95[/C][C] 0.3322[/C][C] 0.6644[/C][C] 0.6678[/C][/ROW]
[ROW][C]96[/C][C] 0.6525[/C][C] 0.6949[/C][C] 0.3475[/C][/ROW]
[ROW][C]97[/C][C] 0.5731[/C][C] 0.8538[/C][C] 0.4269[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298112&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298112&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
6 0.5623 0.8755 0.4377
7 0.4557 0.9113 0.5443
8 0.3187 0.6375 0.6813
9 0.306 0.6121 0.694
10 0.2156 0.4311 0.7844
11 0.1467 0.2935 0.8533
12 0.09436 0.1887 0.9056
13 0.05755 0.1151 0.9425
14 0.03486 0.06972 0.9651
15 0.02027 0.04053 0.9797
16 0.0118 0.0236 0.9882
17 0.006595 0.01319 0.9934
18 0.01364 0.02727 0.9864
19 0.01124 0.02247 0.9888
20 0.009568 0.01914 0.9904
21 0.04182 0.08365 0.9582
22 0.03537 0.07075 0.9646
23 0.03123 0.06246 0.9688
24 0.03248 0.06497 0.9675
25 0.05164 0.1033 0.9484
26 0.0482 0.09641 0.9518
27 0.05939 0.1188 0.9406
28 0.04622 0.09245 0.9538
29 0.03217 0.06434 0.9678
30 0.02256 0.04512 0.9774
31 0.01616 0.03232 0.9838
32 0.01835 0.0367 0.9817
33 0.01919 0.03839 0.9808
34 0.1112 0.2225 0.8888
35 0.1092 0.2183 0.8908
36 0.1193 0.2387 0.8807
37 0.1038 0.2077 0.8962
38 0.08511 0.1702 0.9149
39 0.08117 0.1623 0.9188
40 0.06277 0.1255 0.9372
41 0.0515 0.103 0.9485
42 0.04145 0.0829 0.9586
43 0.03059 0.06118 0.9694
44 0.05173 0.1035 0.9483
45 0.0504 0.1008 0.9496
46 0.03987 0.07974 0.9601
47 0.03363 0.06727 0.9664
48 0.02901 0.05802 0.971
49 0.02069 0.04138 0.9793
50 0.01538 0.03076 0.9846
51 0.01352 0.02703 0.9865
52 0.009363 0.01873 0.9906
53 0.007739 0.01548 0.9923
54 0.09537 0.1907 0.9046
55 0.08276 0.1655 0.9172
56 0.2336 0.4672 0.7664
57 0.2078 0.4156 0.7922
58 0.2388 0.4777 0.7612
59 0.2122 0.4244 0.7878
60 0.1964 0.3928 0.8036
61 0.1726 0.3453 0.8274
62 0.1462 0.2925 0.8538
63 0.1173 0.2345 0.8827
64 0.1525 0.305 0.8475
65 0.1574 0.3147 0.8426
66 0.1283 0.2565 0.8717
67 0.1037 0.2073 0.8963
68 0.119 0.2381 0.881
69 0.09296 0.1859 0.907
70 0.1704 0.3407 0.8296
71 0.1398 0.2797 0.8602
72 0.1084 0.2168 0.8916
73 0.08581 0.1716 0.9142
74 0.08194 0.1639 0.9181
75 0.06414 0.1283 0.9359
76 0.06336 0.1267 0.9366
77 0.04616 0.09232 0.9538
78 0.03239 0.06477 0.9676
79 0.02389 0.04778 0.9761
80 0.08019 0.1604 0.9198
81 0.08236 0.1647 0.9176
82 0.3517 0.7034 0.6483
83 0.3571 0.7141 0.6429
84 0.2913 0.5826 0.7087
85 0.3781 0.7561 0.6219
86 0.3335 0.6669 0.6665
87 0.3249 0.6497 0.6752
88 0.4628 0.9256 0.5372
89 0.4551 0.9103 0.5449
90 0.3947 0.7895 0.6053
91 0.7236 0.5527 0.2764
92 0.6789 0.6422 0.3211
93 0.5742 0.8517 0.4258
94 0.4547 0.9093 0.5453
95 0.3322 0.6644 0.6678
96 0.6525 0.6949 0.3475
97 0.5731 0.8538 0.4269







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level0 0OK
5% type I error level160.173913NOK
10% type I error level310.336957NOK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 0 &  0 & OK \tabularnewline
5% type I error level & 16 & 0.173913 & NOK \tabularnewline
10% type I error level & 31 & 0.336957 & NOK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298112&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]0[/C][C] 0[/C][C]OK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]16[/C][C]0.173913[/C][C]NOK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]31[/C][C]0.336957[/C][C]NOK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298112&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298112&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level0 0OK
5% type I error level160.173913NOK
10% type I error level310.336957NOK







Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 0.10371, df1 = 2, df2 = 98, p-value = 0.9016
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = 0.013933, df1 = 4, df2 = 96, p-value = 0.9996
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 0.029816, df1 = 2, df2 = 98, p-value = 0.9706

\begin{tabular}{lllllllll}
\hline
Ramsey RESET F-Test for powers (2 and 3) of fitted values \tabularnewline
> reset_test_fitted
	RESET test
data:  mylm
RESET = 0.10371, df1 = 2, df2 = 98, p-value = 0.9016
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of regressors \tabularnewline
> reset_test_regressors
	RESET test
data:  mylm
RESET = 0.013933, df1 = 4, df2 = 96, p-value = 0.9996
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of principal components \tabularnewline
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 0.029816, df1 = 2, df2 = 98, p-value = 0.9706
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=298112&T=7

[TABLE]
[ROW][C]Ramsey RESET F-Test for powers (2 and 3) of fitted values[/C][/ROW]
[ROW][C]
> reset_test_fitted
	RESET test
data:  mylm
RESET = 0.10371, df1 = 2, df2 = 98, p-value = 0.9016
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of regressors[/C][/ROW] [ROW][C]
> reset_test_regressors
	RESET test
data:  mylm
RESET = 0.013933, df1 = 4, df2 = 96, p-value = 0.9996
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of principal components[/C][/ROW] [ROW][C]
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 0.029816, df1 = 2, df2 = 98, p-value = 0.9706
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=298112&T=7

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298112&T=7

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 0.10371, df1 = 2, df2 = 98, p-value = 0.9016
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = 0.013933, df1 = 4, df2 = 96, p-value = 0.9996
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 0.029816, df1 = 2, df2 = 98, p-value = 0.9706







Variance Inflation Factors (Multicollinearity)
> vif
     EP3 Geslacht 
 1.00131  1.00131 

\begin{tabular}{lllllllll}
\hline
Variance Inflation Factors (Multicollinearity) \tabularnewline
> vif
     EP3 Geslacht 
 1.00131  1.00131 
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=298112&T=8

[TABLE]
[ROW][C]Variance Inflation Factors (Multicollinearity)[/C][/ROW]
[ROW][C]
> vif
     EP3 Geslacht 
 1.00131  1.00131 
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=298112&T=8

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298112&T=8

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Variance Inflation Factors (Multicollinearity)
> vif
     EP3 Geslacht 
 1.00131  1.00131 



Parameters (Session):
par1 = 3 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ; par4 = 0 ; par5 = 0 ;
Parameters (R input):
par1 = 3 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ; par4 = 0 ; par5 = 0 ;
R code (references can be found in the software module):
par5 <- '0'
par4 <- '0'
par3 <- 'No Linear Trend'
par2 <- 'Do not include Seasonal Dummies'
par1 <- '3'
library(lattice)
library(lmtest)
library(car)
library(MASS)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
mywarning <- ''
par1 <- as.numeric(par1)
if(is.na(par1)) {
par1 <- 1
mywarning = 'Warning: you did not specify the column number of the endogenous series! The first column was selected by default.'
}
if (par4=='') par4 <- 0
par4 <- as.numeric(par4)
if (par5=='') par5 <- 0
par5 <- as.numeric(par5)
x <- na.omit(t(y))
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'Seasonal Differences (s=12)'){
(n <- n - 12)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+12,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'First and Seasonal Differences (s=12)'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
(n <- n - 12)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+12,j] - x[i,j]
}
}
x <- x2
}
if(par4 > 0) {
x2 <- array(0, dim=c(n-par4,par4), dimnames=list(1:(n-par4), paste(colnames(x)[par1],'(t-',1:par4,')',sep='')))
for (i in 1:(n-par4)) {
for (j in 1:par4) {
x2[i,j] <- x[i+par4-j,par1]
}
}
x <- cbind(x[(par4+1):n,], x2)
n <- n - par4
}
if(par5 > 0) {
x2 <- array(0, dim=c(n-par5*12,par5), dimnames=list(1:(n-par5*12), paste(colnames(x)[par1],'(t-',1:par5,'s)',sep='')))
for (i in 1:(n-par5*12)) {
for (j in 1:par5) {
x2[i,j] <- x[i+par5*12-j*12,par1]
}
}
x <- cbind(x[(par5*12+1):n,], x2)
n <- n - par5*12
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
(k <- length(x[n,]))
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
print(x)
(k <- length(x[n,]))
head(x)
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
sresid <- studres(mylm)
hist(sresid, freq=FALSE, main='Distribution of Studentized Residuals')
xfit<-seq(min(sresid),max(sresid),length=40)
yfit<-dnorm(xfit)
lines(xfit, yfit)
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqPlot(mylm, main='QQ Plot')
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
print(z)
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, signif(mysum$coefficients[i,1],6), sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, mywarning)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Multiple Linear Regression - Ordinary Least Squares', 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,formatC(signif(mysum$coefficients[i,1],5),format='g',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,2],5),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,3],4),format='e',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4],4),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4]/2,4),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a,formatC(signif(sqrt(mysum$r.squared),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$adj.r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a,formatC(signif(mysum$fstatistic[1],6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[2],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[3],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a,formatC(signif(1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a,formatC(signif(mysum$sigma,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a,formatC(signif(sum(myerror*myerror),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
myr <- as.numeric(mysum$resid)
myr
if(n < 200) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,formatC(signif(x[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(x[i]-mysum$resid[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$resid[i],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,1],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,2],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,3],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant1,6))
a<-table.element(a,formatC(signif(numsignificant1/numgqtests,6),format='g',flag=' '))
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant5,6))
a<-table.element(a,signif(numsignificant5/numgqtests,6))
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant10,6))
a<-table.element(a,signif(numsignificant10/numgqtests,6))
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}
}
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of fitted values',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_fitted <- resettest(mylm,power=2:3,type='fitted')
a<-table.element(a,paste('
',RC.texteval('reset_test_fitted'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of regressors',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_regressors <- resettest(mylm,power=2:3,type='regressor')
a<-table.element(a,paste('
',RC.texteval('reset_test_regressors'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of principal components',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_principal_components <- resettest(mylm,power=2:3,type='princomp')
a<-table.element(a,paste('
',RC.texteval('reset_test_principal_components'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable8.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Variance Inflation Factors (Multicollinearity)',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
vif <- vif(mylm)
a<-table.element(a,paste('
',RC.texteval('vif'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable9.tab')