Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_structuraltimeseries.wasp
Title produced by softwareStructural Time Series Models
Date of computationWed, 07 Dec 2016 14:15:17 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/07/t1481116624o4tggq4irk1j49n.htm/, Retrieved Fri, 01 Nov 2024 03:31:58 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=298089, Retrieved Fri, 01 Nov 2024 03:31:58 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact104
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Structural Time Series Models] [Paper Plot foreca...] [2016-12-07 13:15:17] [27c26e37291399ddf43c115158039444] [Current]
Feedback Forum

Post a new message
Dataseries X:
6600
6800
7500
7500
7400
7600
7300
7900
7100
7700
6500
5000
6200
7000
7400
7200
6900
7400
6400
5500
6600
7000
6200
5100
5600
6400
7200
7100
7000
7300
7600
7600
6700
6800
5900
5000
5600
5600
7100
7000
6600
7200
7200
7200
6200
6500
5800
4900
5800
6800
7100
6900
6800
7200
7200
7400
6400
6700
6200
5000
5600
6700
7000
6800
6900
7100
7300
7300
6600
6800
5900
4900
5500
6300
7100
6700
6700
7100
7300
7300
6200
6500
5800
4700
5500
6500
6800
6600
6300
6700
7200
7200
5900
6100
5500
4700
5400
6400
7500
6900
6400
6700
7100
7100
4000
6300
5400
4600
5400
6000
7200
6800
6400
7100
7500
7400
6400
6600
5600
4800
5400
6600




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time6 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time6 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298089&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]6 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=298089&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298089&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time6 seconds
R ServerBig Analytics Cloud Computing Center







Structural Time Series Model -- Interpolation
tObservedLevelSlopeSeasonalStand. Residuals
166006600000
268006719.340009280135.131643471673966.18991207969550.35680405457836
375007158.7514389419831.5894447146286295.6327942860541.27465091694864
475007382.0406995394240.196381580087491.56414368131750.683179068635684
574007426.6165949139840.3195315589191-27.28555095935390.0166470299291882
676007511.0038377742341.169049305552682.09414698970240.16965477271049
773007424.4232763474539.096920071864-104.321998223627-0.492515699645969
879007623.4083244871341.616289424874251.4396176566060.615985046392167
971007414.0214457779837.5895877452898-274.582396959177-0.966127315929232
1077007499.979255453438.3809569627245192.4282932490830.186044837561686
1165007045.2724621878230.2167148731889-467.92023321029-1.89576584045324
1250005993.5122303270112.1937980044556-823.848400130243-4.1584942330011
1362005966.3496451925413.3642862503205240.018341120219-0.166340635170632
1470006501.0067186909215.7516855040646420.6177477571992.00863486204718
1574006943.4945000673726.9525150786488400.0443282724811.50142124748159
1672007123.3913732758131.536613858920256.13321813731850.550126030528217
1769007101.0549496224930.1519792152548-193.476148364939-0.201437128311208
1874007204.8344927441431.6538271042808184.5098682328960.280521918427168
1964006970.3934133430627.1567961664261-531.477294688995-1.01973783920921
2055006151.1699565533414.1672308166379-527.024186757736-3.24740824076346
2166006307.4501084525816.2855998613324271.6975698695340.545190625169113
2270006380.3327946118117.1057205204971611.3641952877990.216990902513623
2362006284.367674227715.6568326990037-67.7756625139813-0.433047370400996
2451006140.032999498714.2891623374844-1016.49429462054-0.613586200448352
2556005938.9773379595413.9213008137214-306.854186670146-0.840279156881395
2664006039.8465729263714.6973486163373347.4613237845130.332077291067227
2772006442.589697569921.834671512462703.4007141380561.42937720602559
2871006783.9684257052729.1537022756172272.1420802815621.17261195592611
2970007020.1053219761433.8814241095861-49.01109579368040.772092285884578
3073006995.4927088759732.6716600765124312.830569055757-0.221380700673116
3176007323.4919898204538.1000882671037234.0278045033321.1258163239764
3276007774.9435479758945.002246670602-234.6776555529011.57969104217854
3367007276.0536003616336.5690341876133-497.333001421286-2.07915660146571
3468006682.7010157476427.5707781595098208.489929286843-2.4060527780512
3559006219.4085992184721.396915820552-248.345480996931-1.87329765217134
3650006016.5411037365419.0357786814864-984.025559154753-0.856912270321923
3756005993.1572658275618.6294154306792-386.993566702062-0.162468301300752
3856005785.3828281552615.8054794509422-152.831614385017-0.85882840507466
3971006116.6996452628421.1252300299195938.8651688706541.17795724997135
4070006507.06091841928.4686768112615441.4811867580391.37146930032036
4166006673.981365780131.3428408868542-93.37128329636670.517688686138385
4272006906.632790391435.3853480962236264.8720514816510.759745330518471
4372007026.4569335467136.9694262506577161.4890558023930.320668330550768
4472007054.850180526136.8203505411092146.379672569829-0.0326555565396477
4562006727.8854499006830.9592724500623-475.629914595831-1.38563714034682
4665006359.758759158425.0209812113556197.579663705003-1.51902468960274
4758006109.0228515689621.2494954960138-269.403947110751-1.04908148171865
4849005953.3942282969118.9850671677989-1027.96871038311-0.673190848307923
4958006019.3424629876819.5912518212101-226.0887794827820.178636787678566
5068006555.7849350948227.0779232079842170.4335208471391.95513371616828
5171006585.1386282003127.1161123714914514.5398871526280.00853943356177378
5269006601.9358065574726.9236859372033299.51225090311-0.0385798382724647
5368006802.8733381254230.3158370809572-27.3228953612430.652447059084618
5472006917.7481211980531.9537738460511270.3005242712150.318842340592206
5572006958.842101392332.1241403763534239.8584235432530.034623351211514
5674006980.7304245580531.9434558244513420.730082650078-0.0388591563007262
5764006829.7874161566728.9039288638857-403.655293868952-0.694522329886589
5867006597.7275411454624.8198512224042139.567952840265-0.990542751409569
5962006489.9809533484922.8495911236797-271.035525092776-0.503035021732616
6050006334.3607764381820.2673642136209-1308.85349128158-0.677239970586757
6156006213.8070199830818.1946949262279-593.701785282027-0.533862460817267
6267006344.2969837542619.9544451372666339.7332563600280.424273479348873
6370006450.6129252822421.4208610034199537.1772903002590.324817366281613
6468006546.6684892279222.7737294600207242.8225939674350.280056690039219
6569006758.6641534378926.3231776468459114.6885253982510.71095570019131
6671006830.0276516614527.1702170456451263.6083886572210.169804663511664
6773006927.3967756215428.4620329941986362.6461436200140.265485998949357
6873006864.1675233230826.8352715715246448.871992241207-0.347338696256786
6966006848.4656591541426.1122278288581-242.409923297116-0.161180149563606
7068006724.8279977853623.67013270553196.4945223696361-0.567254008496324
7159006422.9380291131918.5266493683296-476.582737001365-1.23299417711738
7249006269.9103674718215.8499832477138-1345.4851509923-0.649670020969605
7355006212.444773117114.690631819474-702.015574865173-0.277422617083863
7463006131.2140933279113.1170540645413182.397068314601-0.362191321603272
7571006348.7500979130616.6306923438727722.3434699201710.769809172260356
7667006486.744453206618.8029966131704196.1369827076250.45635990781384
7767006573.0858423190120.0411394947938117.3890435440850.254122458915127
7871006716.1516759694522.3065685650599366.4647744362150.463846477597902
7973006813.2213500360723.666408148847476.1884673369890.282464478536143
8073006820.856520632923.3816539282413481.418351442607-0.0606379610853097
8162006597.4327396916119.1221529135684-362.38338008512-0.933748960891627
8265006393.1135025653715.3702356730856138.622388733931-0.845202766943379
8358006270.1060973791213.0921424235883-450.452090682995-0.523371645316845
8447006140.1297485093110.7524329353577-1419.81137941894-0.541057715588074
8555006151.8079763829910.767710283714-651.9393737564950.00349919881306977
8665006291.8192399324112.9483185302041189.8658693746410.487848679371164
8768006263.4824013981112.2319094594389542.35573257089-0.155584016371499
8866006353.9048160832913.623469423508235.0556366497890.294385759007571
8963006331.5331564204112.9725292036803-26.4519986031449-0.1355635727492
9067006341.4355264203412.9167820715793358.998344745324-0.0115770469213244
9172006482.7281641512715.2313858084788699.1017366031740.484724555605548
9272006532.5309155165315.8453828437617662.5701237256660.130637532844094
9359006360.7486669953112.5750048094484-434.146420584972-0.709128451390279
9461006121.230440234278.2584881998495814.5159357397642-0.952675286681223
9555005984.43292019935.80551966635913-463.864246774678-0.548131243529245
9647006036.769994953136.58932260942638-1343.367570664040.175816444327572
9754006082.779653381397.25715689547607-688.3665965297610.148890855456113
9864006145.034911430248.20164216947211247.1779608364260.207555552950525
9975006529.4390187995214.7744553700031917.3639375855081.41831862381169
10069006649.4299989167316.6421395066104235.7065059834730.396438801697742
10164006585.6132489036115.1988645325714-174.24894626746-0.303204079769671
10267006499.1929197356613.3702954410945215.169490744028-0.383232709044125
10371006431.4336288758411.9163563402316680.044010852657-0.306218297503104
10471006359.6181212650610.429909665788752.236807254727-0.316204725742765
10540005443.12257396706-5.82861576686706-1311.83823274567-3.50090230340098
10663005641.087928814-2.29460489799499630.0453638895550.76966570191792
10754005790.971185317780.32349184660286-412.5266870959990.574697631831598
10846005906.415969560772.29921589449862-1322.721603395180.434726808796794
10954006052.270299500824.77168006468129-672.5977090771990.541967230058744
11060006037.663543808284.43511819696886-34.9212323665539-0.073121963000815
11172006156.837243672956.449268117519451026.938756537710.432682119554414
11268006323.899965509299.29702569127364453.4034828322820.605446061616998
11364006421.9976725085810.8822591785293-34.54472168439360.334768172931185
11471006591.3851937176813.7182144101342486.2102487661080.597818499869267
11575006628.1864476109314.130241173537868.5488126194670.0871061841750762
11674006458.1534019414110.8622989703733967.90661789348-0.69519576853825
11764007048.2772665025421.0630479081281-730.2659899554842.1868585631501
11866006726.1843208988115.0639528194612-77.6108584627688-1.29546203247089
11956006408.215504112669.27120555239511-761.074842848539-1.25720234032398
12048006275.579496332576.80680619487728-1455.49336584258-0.535677907117765
12154006182.70444130025.07195610365971-768.597518415935-0.376224937133674
12266006413.968035343229.02898168442705154.0336403660.853429641882227

\begin{tabular}{lllllllll}
\hline
Structural Time Series Model -- Interpolation \tabularnewline
t & Observed & Level & Slope & Seasonal & Stand. Residuals \tabularnewline
1 & 6600 & 6600 & 0 & 0 & 0 \tabularnewline
2 & 6800 & 6719.34000928013 & 5.1316434716739 & 66.1899120796955 & 0.35680405457836 \tabularnewline
3 & 7500 & 7158.75143894198 & 31.5894447146286 & 295.632794286054 & 1.27465091694864 \tabularnewline
4 & 7500 & 7382.04069953942 & 40.1963815800874 & 91.5641436813175 & 0.683179068635684 \tabularnewline
5 & 7400 & 7426.61659491398 & 40.3195315589191 & -27.2855509593539 & 0.0166470299291882 \tabularnewline
6 & 7600 & 7511.00383777423 & 41.1690493055526 & 82.0941469897024 & 0.16965477271049 \tabularnewline
7 & 7300 & 7424.42327634745 & 39.096920071864 & -104.321998223627 & -0.492515699645969 \tabularnewline
8 & 7900 & 7623.40832448713 & 41.616289424874 & 251.439617656606 & 0.615985046392167 \tabularnewline
9 & 7100 & 7414.02144577798 & 37.5895877452898 & -274.582396959177 & -0.966127315929232 \tabularnewline
10 & 7700 & 7499.9792554534 & 38.3809569627245 & 192.428293249083 & 0.186044837561686 \tabularnewline
11 & 6500 & 7045.27246218782 & 30.2167148731889 & -467.92023321029 & -1.89576584045324 \tabularnewline
12 & 5000 & 5993.51223032701 & 12.1937980044556 & -823.848400130243 & -4.1584942330011 \tabularnewline
13 & 6200 & 5966.34964519254 & 13.3642862503205 & 240.018341120219 & -0.166340635170632 \tabularnewline
14 & 7000 & 6501.00671869092 & 15.7516855040646 & 420.617747757199 & 2.00863486204718 \tabularnewline
15 & 7400 & 6943.49450006737 & 26.9525150786488 & 400.044328272481 & 1.50142124748159 \tabularnewline
16 & 7200 & 7123.39137327581 & 31.5366138589202 & 56.1332181373185 & 0.550126030528217 \tabularnewline
17 & 6900 & 7101.05494962249 & 30.1519792152548 & -193.476148364939 & -0.201437128311208 \tabularnewline
18 & 7400 & 7204.83449274414 & 31.6538271042808 & 184.509868232896 & 0.280521918427168 \tabularnewline
19 & 6400 & 6970.39341334306 & 27.1567961664261 & -531.477294688995 & -1.01973783920921 \tabularnewline
20 & 5500 & 6151.16995655334 & 14.1672308166379 & -527.024186757736 & -3.24740824076346 \tabularnewline
21 & 6600 & 6307.45010845258 & 16.2855998613324 & 271.697569869534 & 0.545190625169113 \tabularnewline
22 & 7000 & 6380.33279461181 & 17.1057205204971 & 611.364195287799 & 0.216990902513623 \tabularnewline
23 & 6200 & 6284.3676742277 & 15.6568326990037 & -67.7756625139813 & -0.433047370400996 \tabularnewline
24 & 5100 & 6140.0329994987 & 14.2891623374844 & -1016.49429462054 & -0.613586200448352 \tabularnewline
25 & 5600 & 5938.97733795954 & 13.9213008137214 & -306.854186670146 & -0.840279156881395 \tabularnewline
26 & 6400 & 6039.84657292637 & 14.6973486163373 & 347.461323784513 & 0.332077291067227 \tabularnewline
27 & 7200 & 6442.5896975699 & 21.834671512462 & 703.400714138056 & 1.42937720602559 \tabularnewline
28 & 7100 & 6783.96842570527 & 29.1537022756172 & 272.142080281562 & 1.17261195592611 \tabularnewline
29 & 7000 & 7020.10532197614 & 33.8814241095861 & -49.0110957936804 & 0.772092285884578 \tabularnewline
30 & 7300 & 6995.49270887597 & 32.6716600765124 & 312.830569055757 & -0.221380700673116 \tabularnewline
31 & 7600 & 7323.49198982045 & 38.1000882671037 & 234.027804503332 & 1.1258163239764 \tabularnewline
32 & 7600 & 7774.94354797589 & 45.002246670602 & -234.677655552901 & 1.57969104217854 \tabularnewline
33 & 6700 & 7276.05360036163 & 36.5690341876133 & -497.333001421286 & -2.07915660146571 \tabularnewline
34 & 6800 & 6682.70101574764 & 27.5707781595098 & 208.489929286843 & -2.4060527780512 \tabularnewline
35 & 5900 & 6219.40859921847 & 21.396915820552 & -248.345480996931 & -1.87329765217134 \tabularnewline
36 & 5000 & 6016.54110373654 & 19.0357786814864 & -984.025559154753 & -0.856912270321923 \tabularnewline
37 & 5600 & 5993.15726582756 & 18.6294154306792 & -386.993566702062 & -0.162468301300752 \tabularnewline
38 & 5600 & 5785.38282815526 & 15.8054794509422 & -152.831614385017 & -0.85882840507466 \tabularnewline
39 & 7100 & 6116.69964526284 & 21.1252300299195 & 938.865168870654 & 1.17795724997135 \tabularnewline
40 & 7000 & 6507.060918419 & 28.4686768112615 & 441.481186758039 & 1.37146930032036 \tabularnewline
41 & 6600 & 6673.9813657801 & 31.3428408868542 & -93.3712832963667 & 0.517688686138385 \tabularnewline
42 & 7200 & 6906.6327903914 & 35.3853480962236 & 264.872051481651 & 0.759745330518471 \tabularnewline
43 & 7200 & 7026.45693354671 & 36.9694262506577 & 161.489055802393 & 0.320668330550768 \tabularnewline
44 & 7200 & 7054.8501805261 & 36.8203505411092 & 146.379672569829 & -0.0326555565396477 \tabularnewline
45 & 6200 & 6727.88544990068 & 30.9592724500623 & -475.629914595831 & -1.38563714034682 \tabularnewline
46 & 6500 & 6359.7587591584 & 25.0209812113556 & 197.579663705003 & -1.51902468960274 \tabularnewline
47 & 5800 & 6109.02285156896 & 21.2494954960138 & -269.403947110751 & -1.04908148171865 \tabularnewline
48 & 4900 & 5953.39422829691 & 18.9850671677989 & -1027.96871038311 & -0.673190848307923 \tabularnewline
49 & 5800 & 6019.34246298768 & 19.5912518212101 & -226.088779482782 & 0.178636787678566 \tabularnewline
50 & 6800 & 6555.78493509482 & 27.0779232079842 & 170.433520847139 & 1.95513371616828 \tabularnewline
51 & 7100 & 6585.13862820031 & 27.1161123714914 & 514.539887152628 & 0.00853943356177378 \tabularnewline
52 & 6900 & 6601.93580655747 & 26.9236859372033 & 299.51225090311 & -0.0385798382724647 \tabularnewline
53 & 6800 & 6802.87333812542 & 30.3158370809572 & -27.322895361243 & 0.652447059084618 \tabularnewline
54 & 7200 & 6917.74812119805 & 31.9537738460511 & 270.300524271215 & 0.318842340592206 \tabularnewline
55 & 7200 & 6958.8421013923 & 32.1241403763534 & 239.858423543253 & 0.034623351211514 \tabularnewline
56 & 7400 & 6980.73042455805 & 31.9434558244513 & 420.730082650078 & -0.0388591563007262 \tabularnewline
57 & 6400 & 6829.78741615667 & 28.9039288638857 & -403.655293868952 & -0.694522329886589 \tabularnewline
58 & 6700 & 6597.72754114546 & 24.8198512224042 & 139.567952840265 & -0.990542751409569 \tabularnewline
59 & 6200 & 6489.98095334849 & 22.8495911236797 & -271.035525092776 & -0.503035021732616 \tabularnewline
60 & 5000 & 6334.36077643818 & 20.2673642136209 & -1308.85349128158 & -0.677239970586757 \tabularnewline
61 & 5600 & 6213.80701998308 & 18.1946949262279 & -593.701785282027 & -0.533862460817267 \tabularnewline
62 & 6700 & 6344.29698375426 & 19.9544451372666 & 339.733256360028 & 0.424273479348873 \tabularnewline
63 & 7000 & 6450.61292528224 & 21.4208610034199 & 537.177290300259 & 0.324817366281613 \tabularnewline
64 & 6800 & 6546.66848922792 & 22.7737294600207 & 242.822593967435 & 0.280056690039219 \tabularnewline
65 & 6900 & 6758.66415343789 & 26.3231776468459 & 114.688525398251 & 0.71095570019131 \tabularnewline
66 & 7100 & 6830.02765166145 & 27.1702170456451 & 263.608388657221 & 0.169804663511664 \tabularnewline
67 & 7300 & 6927.39677562154 & 28.4620329941986 & 362.646143620014 & 0.265485998949357 \tabularnewline
68 & 7300 & 6864.16752332308 & 26.8352715715246 & 448.871992241207 & -0.347338696256786 \tabularnewline
69 & 6600 & 6848.46565915414 & 26.1122278288581 & -242.409923297116 & -0.161180149563606 \tabularnewline
70 & 6800 & 6724.82799778536 & 23.670132705531 & 96.4945223696361 & -0.567254008496324 \tabularnewline
71 & 5900 & 6422.93802911319 & 18.5266493683296 & -476.582737001365 & -1.23299417711738 \tabularnewline
72 & 4900 & 6269.91036747182 & 15.8499832477138 & -1345.4851509923 & -0.649670020969605 \tabularnewline
73 & 5500 & 6212.4447731171 & 14.690631819474 & -702.015574865173 & -0.277422617083863 \tabularnewline
74 & 6300 & 6131.21409332791 & 13.1170540645413 & 182.397068314601 & -0.362191321603272 \tabularnewline
75 & 7100 & 6348.75009791306 & 16.6306923438727 & 722.343469920171 & 0.769809172260356 \tabularnewline
76 & 6700 & 6486.7444532066 & 18.8029966131704 & 196.136982707625 & 0.45635990781384 \tabularnewline
77 & 6700 & 6573.08584231901 & 20.0411394947938 & 117.389043544085 & 0.254122458915127 \tabularnewline
78 & 7100 & 6716.15167596945 & 22.3065685650599 & 366.464774436215 & 0.463846477597902 \tabularnewline
79 & 7300 & 6813.22135003607 & 23.666408148847 & 476.188467336989 & 0.282464478536143 \tabularnewline
80 & 7300 & 6820.8565206329 & 23.3816539282413 & 481.418351442607 & -0.0606379610853097 \tabularnewline
81 & 6200 & 6597.43273969161 & 19.1221529135684 & -362.38338008512 & -0.933748960891627 \tabularnewline
82 & 6500 & 6393.11350256537 & 15.3702356730856 & 138.622388733931 & -0.845202766943379 \tabularnewline
83 & 5800 & 6270.10609737912 & 13.0921424235883 & -450.452090682995 & -0.523371645316845 \tabularnewline
84 & 4700 & 6140.12974850931 & 10.7524329353577 & -1419.81137941894 & -0.541057715588074 \tabularnewline
85 & 5500 & 6151.80797638299 & 10.767710283714 & -651.939373756495 & 0.00349919881306977 \tabularnewline
86 & 6500 & 6291.81923993241 & 12.9483185302041 & 189.865869374641 & 0.487848679371164 \tabularnewline
87 & 6800 & 6263.48240139811 & 12.2319094594389 & 542.35573257089 & -0.155584016371499 \tabularnewline
88 & 6600 & 6353.90481608329 & 13.623469423508 & 235.055636649789 & 0.294385759007571 \tabularnewline
89 & 6300 & 6331.53315642041 & 12.9725292036803 & -26.4519986031449 & -0.1355635727492 \tabularnewline
90 & 6700 & 6341.43552642034 & 12.9167820715793 & 358.998344745324 & -0.0115770469213244 \tabularnewline
91 & 7200 & 6482.72816415127 & 15.2313858084788 & 699.101736603174 & 0.484724555605548 \tabularnewline
92 & 7200 & 6532.53091551653 & 15.8453828437617 & 662.570123725666 & 0.130637532844094 \tabularnewline
93 & 5900 & 6360.74866699531 & 12.5750048094484 & -434.146420584972 & -0.709128451390279 \tabularnewline
94 & 6100 & 6121.23044023427 & 8.25848819984958 & 14.5159357397642 & -0.952675286681223 \tabularnewline
95 & 5500 & 5984.4329201993 & 5.80551966635913 & -463.864246774678 & -0.548131243529245 \tabularnewline
96 & 4700 & 6036.76999495313 & 6.58932260942638 & -1343.36757066404 & 0.175816444327572 \tabularnewline
97 & 5400 & 6082.77965338139 & 7.25715689547607 & -688.366596529761 & 0.148890855456113 \tabularnewline
98 & 6400 & 6145.03491143024 & 8.20164216947211 & 247.177960836426 & 0.207555552950525 \tabularnewline
99 & 7500 & 6529.43901879952 & 14.7744553700031 & 917.363937585508 & 1.41831862381169 \tabularnewline
100 & 6900 & 6649.42999891673 & 16.6421395066104 & 235.706505983473 & 0.396438801697742 \tabularnewline
101 & 6400 & 6585.61324890361 & 15.1988645325714 & -174.24894626746 & -0.303204079769671 \tabularnewline
102 & 6700 & 6499.19291973566 & 13.3702954410945 & 215.169490744028 & -0.383232709044125 \tabularnewline
103 & 7100 & 6431.43362887584 & 11.9163563402316 & 680.044010852657 & -0.306218297503104 \tabularnewline
104 & 7100 & 6359.61812126506 & 10.429909665788 & 752.236807254727 & -0.316204725742765 \tabularnewline
105 & 4000 & 5443.12257396706 & -5.82861576686706 & -1311.83823274567 & -3.50090230340098 \tabularnewline
106 & 6300 & 5641.087928814 & -2.29460489799499 & 630.045363889555 & 0.76966570191792 \tabularnewline
107 & 5400 & 5790.97118531778 & 0.32349184660286 & -412.526687095999 & 0.574697631831598 \tabularnewline
108 & 4600 & 5906.41596956077 & 2.29921589449862 & -1322.72160339518 & 0.434726808796794 \tabularnewline
109 & 5400 & 6052.27029950082 & 4.77168006468129 & -672.597709077199 & 0.541967230058744 \tabularnewline
110 & 6000 & 6037.66354380828 & 4.43511819696886 & -34.9212323665539 & -0.073121963000815 \tabularnewline
111 & 7200 & 6156.83724367295 & 6.44926811751945 & 1026.93875653771 & 0.432682119554414 \tabularnewline
112 & 6800 & 6323.89996550929 & 9.29702569127364 & 453.403482832282 & 0.605446061616998 \tabularnewline
113 & 6400 & 6421.99767250858 & 10.8822591785293 & -34.5447216843936 & 0.334768172931185 \tabularnewline
114 & 7100 & 6591.38519371768 & 13.7182144101342 & 486.210248766108 & 0.597818499869267 \tabularnewline
115 & 7500 & 6628.18644761093 & 14.130241173537 & 868.548812619467 & 0.0871061841750762 \tabularnewline
116 & 7400 & 6458.15340194141 & 10.8622989703733 & 967.90661789348 & -0.69519576853825 \tabularnewline
117 & 6400 & 7048.27726650254 & 21.0630479081281 & -730.265989955484 & 2.1868585631501 \tabularnewline
118 & 6600 & 6726.18432089881 & 15.0639528194612 & -77.6108584627688 & -1.29546203247089 \tabularnewline
119 & 5600 & 6408.21550411266 & 9.27120555239511 & -761.074842848539 & -1.25720234032398 \tabularnewline
120 & 4800 & 6275.57949633257 & 6.80680619487728 & -1455.49336584258 & -0.535677907117765 \tabularnewline
121 & 5400 & 6182.7044413002 & 5.07195610365971 & -768.597518415935 & -0.376224937133674 \tabularnewline
122 & 6600 & 6413.96803534322 & 9.02898168442705 & 154.033640366 & 0.853429641882227 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298089&T=1

[TABLE]
[ROW][C]Structural Time Series Model -- Interpolation[/C][/ROW]
[ROW][C]t[/C][C]Observed[/C][C]Level[/C][C]Slope[/C][C]Seasonal[/C][C]Stand. Residuals[/C][/ROW]
[ROW][C]1[/C][C]6600[/C][C]6600[/C][C]0[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]2[/C][C]6800[/C][C]6719.34000928013[/C][C]5.1316434716739[/C][C]66.1899120796955[/C][C]0.35680405457836[/C][/ROW]
[ROW][C]3[/C][C]7500[/C][C]7158.75143894198[/C][C]31.5894447146286[/C][C]295.632794286054[/C][C]1.27465091694864[/C][/ROW]
[ROW][C]4[/C][C]7500[/C][C]7382.04069953942[/C][C]40.1963815800874[/C][C]91.5641436813175[/C][C]0.683179068635684[/C][/ROW]
[ROW][C]5[/C][C]7400[/C][C]7426.61659491398[/C][C]40.3195315589191[/C][C]-27.2855509593539[/C][C]0.0166470299291882[/C][/ROW]
[ROW][C]6[/C][C]7600[/C][C]7511.00383777423[/C][C]41.1690493055526[/C][C]82.0941469897024[/C][C]0.16965477271049[/C][/ROW]
[ROW][C]7[/C][C]7300[/C][C]7424.42327634745[/C][C]39.096920071864[/C][C]-104.321998223627[/C][C]-0.492515699645969[/C][/ROW]
[ROW][C]8[/C][C]7900[/C][C]7623.40832448713[/C][C]41.616289424874[/C][C]251.439617656606[/C][C]0.615985046392167[/C][/ROW]
[ROW][C]9[/C][C]7100[/C][C]7414.02144577798[/C][C]37.5895877452898[/C][C]-274.582396959177[/C][C]-0.966127315929232[/C][/ROW]
[ROW][C]10[/C][C]7700[/C][C]7499.9792554534[/C][C]38.3809569627245[/C][C]192.428293249083[/C][C]0.186044837561686[/C][/ROW]
[ROW][C]11[/C][C]6500[/C][C]7045.27246218782[/C][C]30.2167148731889[/C][C]-467.92023321029[/C][C]-1.89576584045324[/C][/ROW]
[ROW][C]12[/C][C]5000[/C][C]5993.51223032701[/C][C]12.1937980044556[/C][C]-823.848400130243[/C][C]-4.1584942330011[/C][/ROW]
[ROW][C]13[/C][C]6200[/C][C]5966.34964519254[/C][C]13.3642862503205[/C][C]240.018341120219[/C][C]-0.166340635170632[/C][/ROW]
[ROW][C]14[/C][C]7000[/C][C]6501.00671869092[/C][C]15.7516855040646[/C][C]420.617747757199[/C][C]2.00863486204718[/C][/ROW]
[ROW][C]15[/C][C]7400[/C][C]6943.49450006737[/C][C]26.9525150786488[/C][C]400.044328272481[/C][C]1.50142124748159[/C][/ROW]
[ROW][C]16[/C][C]7200[/C][C]7123.39137327581[/C][C]31.5366138589202[/C][C]56.1332181373185[/C][C]0.550126030528217[/C][/ROW]
[ROW][C]17[/C][C]6900[/C][C]7101.05494962249[/C][C]30.1519792152548[/C][C]-193.476148364939[/C][C]-0.201437128311208[/C][/ROW]
[ROW][C]18[/C][C]7400[/C][C]7204.83449274414[/C][C]31.6538271042808[/C][C]184.509868232896[/C][C]0.280521918427168[/C][/ROW]
[ROW][C]19[/C][C]6400[/C][C]6970.39341334306[/C][C]27.1567961664261[/C][C]-531.477294688995[/C][C]-1.01973783920921[/C][/ROW]
[ROW][C]20[/C][C]5500[/C][C]6151.16995655334[/C][C]14.1672308166379[/C][C]-527.024186757736[/C][C]-3.24740824076346[/C][/ROW]
[ROW][C]21[/C][C]6600[/C][C]6307.45010845258[/C][C]16.2855998613324[/C][C]271.697569869534[/C][C]0.545190625169113[/C][/ROW]
[ROW][C]22[/C][C]7000[/C][C]6380.33279461181[/C][C]17.1057205204971[/C][C]611.364195287799[/C][C]0.216990902513623[/C][/ROW]
[ROW][C]23[/C][C]6200[/C][C]6284.3676742277[/C][C]15.6568326990037[/C][C]-67.7756625139813[/C][C]-0.433047370400996[/C][/ROW]
[ROW][C]24[/C][C]5100[/C][C]6140.0329994987[/C][C]14.2891623374844[/C][C]-1016.49429462054[/C][C]-0.613586200448352[/C][/ROW]
[ROW][C]25[/C][C]5600[/C][C]5938.97733795954[/C][C]13.9213008137214[/C][C]-306.854186670146[/C][C]-0.840279156881395[/C][/ROW]
[ROW][C]26[/C][C]6400[/C][C]6039.84657292637[/C][C]14.6973486163373[/C][C]347.461323784513[/C][C]0.332077291067227[/C][/ROW]
[ROW][C]27[/C][C]7200[/C][C]6442.5896975699[/C][C]21.834671512462[/C][C]703.400714138056[/C][C]1.42937720602559[/C][/ROW]
[ROW][C]28[/C][C]7100[/C][C]6783.96842570527[/C][C]29.1537022756172[/C][C]272.142080281562[/C][C]1.17261195592611[/C][/ROW]
[ROW][C]29[/C][C]7000[/C][C]7020.10532197614[/C][C]33.8814241095861[/C][C]-49.0110957936804[/C][C]0.772092285884578[/C][/ROW]
[ROW][C]30[/C][C]7300[/C][C]6995.49270887597[/C][C]32.6716600765124[/C][C]312.830569055757[/C][C]-0.221380700673116[/C][/ROW]
[ROW][C]31[/C][C]7600[/C][C]7323.49198982045[/C][C]38.1000882671037[/C][C]234.027804503332[/C][C]1.1258163239764[/C][/ROW]
[ROW][C]32[/C][C]7600[/C][C]7774.94354797589[/C][C]45.002246670602[/C][C]-234.677655552901[/C][C]1.57969104217854[/C][/ROW]
[ROW][C]33[/C][C]6700[/C][C]7276.05360036163[/C][C]36.5690341876133[/C][C]-497.333001421286[/C][C]-2.07915660146571[/C][/ROW]
[ROW][C]34[/C][C]6800[/C][C]6682.70101574764[/C][C]27.5707781595098[/C][C]208.489929286843[/C][C]-2.4060527780512[/C][/ROW]
[ROW][C]35[/C][C]5900[/C][C]6219.40859921847[/C][C]21.396915820552[/C][C]-248.345480996931[/C][C]-1.87329765217134[/C][/ROW]
[ROW][C]36[/C][C]5000[/C][C]6016.54110373654[/C][C]19.0357786814864[/C][C]-984.025559154753[/C][C]-0.856912270321923[/C][/ROW]
[ROW][C]37[/C][C]5600[/C][C]5993.15726582756[/C][C]18.6294154306792[/C][C]-386.993566702062[/C][C]-0.162468301300752[/C][/ROW]
[ROW][C]38[/C][C]5600[/C][C]5785.38282815526[/C][C]15.8054794509422[/C][C]-152.831614385017[/C][C]-0.85882840507466[/C][/ROW]
[ROW][C]39[/C][C]7100[/C][C]6116.69964526284[/C][C]21.1252300299195[/C][C]938.865168870654[/C][C]1.17795724997135[/C][/ROW]
[ROW][C]40[/C][C]7000[/C][C]6507.060918419[/C][C]28.4686768112615[/C][C]441.481186758039[/C][C]1.37146930032036[/C][/ROW]
[ROW][C]41[/C][C]6600[/C][C]6673.9813657801[/C][C]31.3428408868542[/C][C]-93.3712832963667[/C][C]0.517688686138385[/C][/ROW]
[ROW][C]42[/C][C]7200[/C][C]6906.6327903914[/C][C]35.3853480962236[/C][C]264.872051481651[/C][C]0.759745330518471[/C][/ROW]
[ROW][C]43[/C][C]7200[/C][C]7026.45693354671[/C][C]36.9694262506577[/C][C]161.489055802393[/C][C]0.320668330550768[/C][/ROW]
[ROW][C]44[/C][C]7200[/C][C]7054.8501805261[/C][C]36.8203505411092[/C][C]146.379672569829[/C][C]-0.0326555565396477[/C][/ROW]
[ROW][C]45[/C][C]6200[/C][C]6727.88544990068[/C][C]30.9592724500623[/C][C]-475.629914595831[/C][C]-1.38563714034682[/C][/ROW]
[ROW][C]46[/C][C]6500[/C][C]6359.7587591584[/C][C]25.0209812113556[/C][C]197.579663705003[/C][C]-1.51902468960274[/C][/ROW]
[ROW][C]47[/C][C]5800[/C][C]6109.02285156896[/C][C]21.2494954960138[/C][C]-269.403947110751[/C][C]-1.04908148171865[/C][/ROW]
[ROW][C]48[/C][C]4900[/C][C]5953.39422829691[/C][C]18.9850671677989[/C][C]-1027.96871038311[/C][C]-0.673190848307923[/C][/ROW]
[ROW][C]49[/C][C]5800[/C][C]6019.34246298768[/C][C]19.5912518212101[/C][C]-226.088779482782[/C][C]0.178636787678566[/C][/ROW]
[ROW][C]50[/C][C]6800[/C][C]6555.78493509482[/C][C]27.0779232079842[/C][C]170.433520847139[/C][C]1.95513371616828[/C][/ROW]
[ROW][C]51[/C][C]7100[/C][C]6585.13862820031[/C][C]27.1161123714914[/C][C]514.539887152628[/C][C]0.00853943356177378[/C][/ROW]
[ROW][C]52[/C][C]6900[/C][C]6601.93580655747[/C][C]26.9236859372033[/C][C]299.51225090311[/C][C]-0.0385798382724647[/C][/ROW]
[ROW][C]53[/C][C]6800[/C][C]6802.87333812542[/C][C]30.3158370809572[/C][C]-27.322895361243[/C][C]0.652447059084618[/C][/ROW]
[ROW][C]54[/C][C]7200[/C][C]6917.74812119805[/C][C]31.9537738460511[/C][C]270.300524271215[/C][C]0.318842340592206[/C][/ROW]
[ROW][C]55[/C][C]7200[/C][C]6958.8421013923[/C][C]32.1241403763534[/C][C]239.858423543253[/C][C]0.034623351211514[/C][/ROW]
[ROW][C]56[/C][C]7400[/C][C]6980.73042455805[/C][C]31.9434558244513[/C][C]420.730082650078[/C][C]-0.0388591563007262[/C][/ROW]
[ROW][C]57[/C][C]6400[/C][C]6829.78741615667[/C][C]28.9039288638857[/C][C]-403.655293868952[/C][C]-0.694522329886589[/C][/ROW]
[ROW][C]58[/C][C]6700[/C][C]6597.72754114546[/C][C]24.8198512224042[/C][C]139.567952840265[/C][C]-0.990542751409569[/C][/ROW]
[ROW][C]59[/C][C]6200[/C][C]6489.98095334849[/C][C]22.8495911236797[/C][C]-271.035525092776[/C][C]-0.503035021732616[/C][/ROW]
[ROW][C]60[/C][C]5000[/C][C]6334.36077643818[/C][C]20.2673642136209[/C][C]-1308.85349128158[/C][C]-0.677239970586757[/C][/ROW]
[ROW][C]61[/C][C]5600[/C][C]6213.80701998308[/C][C]18.1946949262279[/C][C]-593.701785282027[/C][C]-0.533862460817267[/C][/ROW]
[ROW][C]62[/C][C]6700[/C][C]6344.29698375426[/C][C]19.9544451372666[/C][C]339.733256360028[/C][C]0.424273479348873[/C][/ROW]
[ROW][C]63[/C][C]7000[/C][C]6450.61292528224[/C][C]21.4208610034199[/C][C]537.177290300259[/C][C]0.324817366281613[/C][/ROW]
[ROW][C]64[/C][C]6800[/C][C]6546.66848922792[/C][C]22.7737294600207[/C][C]242.822593967435[/C][C]0.280056690039219[/C][/ROW]
[ROW][C]65[/C][C]6900[/C][C]6758.66415343789[/C][C]26.3231776468459[/C][C]114.688525398251[/C][C]0.71095570019131[/C][/ROW]
[ROW][C]66[/C][C]7100[/C][C]6830.02765166145[/C][C]27.1702170456451[/C][C]263.608388657221[/C][C]0.169804663511664[/C][/ROW]
[ROW][C]67[/C][C]7300[/C][C]6927.39677562154[/C][C]28.4620329941986[/C][C]362.646143620014[/C][C]0.265485998949357[/C][/ROW]
[ROW][C]68[/C][C]7300[/C][C]6864.16752332308[/C][C]26.8352715715246[/C][C]448.871992241207[/C][C]-0.347338696256786[/C][/ROW]
[ROW][C]69[/C][C]6600[/C][C]6848.46565915414[/C][C]26.1122278288581[/C][C]-242.409923297116[/C][C]-0.161180149563606[/C][/ROW]
[ROW][C]70[/C][C]6800[/C][C]6724.82799778536[/C][C]23.670132705531[/C][C]96.4945223696361[/C][C]-0.567254008496324[/C][/ROW]
[ROW][C]71[/C][C]5900[/C][C]6422.93802911319[/C][C]18.5266493683296[/C][C]-476.582737001365[/C][C]-1.23299417711738[/C][/ROW]
[ROW][C]72[/C][C]4900[/C][C]6269.91036747182[/C][C]15.8499832477138[/C][C]-1345.4851509923[/C][C]-0.649670020969605[/C][/ROW]
[ROW][C]73[/C][C]5500[/C][C]6212.4447731171[/C][C]14.690631819474[/C][C]-702.015574865173[/C][C]-0.277422617083863[/C][/ROW]
[ROW][C]74[/C][C]6300[/C][C]6131.21409332791[/C][C]13.1170540645413[/C][C]182.397068314601[/C][C]-0.362191321603272[/C][/ROW]
[ROW][C]75[/C][C]7100[/C][C]6348.75009791306[/C][C]16.6306923438727[/C][C]722.343469920171[/C][C]0.769809172260356[/C][/ROW]
[ROW][C]76[/C][C]6700[/C][C]6486.7444532066[/C][C]18.8029966131704[/C][C]196.136982707625[/C][C]0.45635990781384[/C][/ROW]
[ROW][C]77[/C][C]6700[/C][C]6573.08584231901[/C][C]20.0411394947938[/C][C]117.389043544085[/C][C]0.254122458915127[/C][/ROW]
[ROW][C]78[/C][C]7100[/C][C]6716.15167596945[/C][C]22.3065685650599[/C][C]366.464774436215[/C][C]0.463846477597902[/C][/ROW]
[ROW][C]79[/C][C]7300[/C][C]6813.22135003607[/C][C]23.666408148847[/C][C]476.188467336989[/C][C]0.282464478536143[/C][/ROW]
[ROW][C]80[/C][C]7300[/C][C]6820.8565206329[/C][C]23.3816539282413[/C][C]481.418351442607[/C][C]-0.0606379610853097[/C][/ROW]
[ROW][C]81[/C][C]6200[/C][C]6597.43273969161[/C][C]19.1221529135684[/C][C]-362.38338008512[/C][C]-0.933748960891627[/C][/ROW]
[ROW][C]82[/C][C]6500[/C][C]6393.11350256537[/C][C]15.3702356730856[/C][C]138.622388733931[/C][C]-0.845202766943379[/C][/ROW]
[ROW][C]83[/C][C]5800[/C][C]6270.10609737912[/C][C]13.0921424235883[/C][C]-450.452090682995[/C][C]-0.523371645316845[/C][/ROW]
[ROW][C]84[/C][C]4700[/C][C]6140.12974850931[/C][C]10.7524329353577[/C][C]-1419.81137941894[/C][C]-0.541057715588074[/C][/ROW]
[ROW][C]85[/C][C]5500[/C][C]6151.80797638299[/C][C]10.767710283714[/C][C]-651.939373756495[/C][C]0.00349919881306977[/C][/ROW]
[ROW][C]86[/C][C]6500[/C][C]6291.81923993241[/C][C]12.9483185302041[/C][C]189.865869374641[/C][C]0.487848679371164[/C][/ROW]
[ROW][C]87[/C][C]6800[/C][C]6263.48240139811[/C][C]12.2319094594389[/C][C]542.35573257089[/C][C]-0.155584016371499[/C][/ROW]
[ROW][C]88[/C][C]6600[/C][C]6353.90481608329[/C][C]13.623469423508[/C][C]235.055636649789[/C][C]0.294385759007571[/C][/ROW]
[ROW][C]89[/C][C]6300[/C][C]6331.53315642041[/C][C]12.9725292036803[/C][C]-26.4519986031449[/C][C]-0.1355635727492[/C][/ROW]
[ROW][C]90[/C][C]6700[/C][C]6341.43552642034[/C][C]12.9167820715793[/C][C]358.998344745324[/C][C]-0.0115770469213244[/C][/ROW]
[ROW][C]91[/C][C]7200[/C][C]6482.72816415127[/C][C]15.2313858084788[/C][C]699.101736603174[/C][C]0.484724555605548[/C][/ROW]
[ROW][C]92[/C][C]7200[/C][C]6532.53091551653[/C][C]15.8453828437617[/C][C]662.570123725666[/C][C]0.130637532844094[/C][/ROW]
[ROW][C]93[/C][C]5900[/C][C]6360.74866699531[/C][C]12.5750048094484[/C][C]-434.146420584972[/C][C]-0.709128451390279[/C][/ROW]
[ROW][C]94[/C][C]6100[/C][C]6121.23044023427[/C][C]8.25848819984958[/C][C]14.5159357397642[/C][C]-0.952675286681223[/C][/ROW]
[ROW][C]95[/C][C]5500[/C][C]5984.4329201993[/C][C]5.80551966635913[/C][C]-463.864246774678[/C][C]-0.548131243529245[/C][/ROW]
[ROW][C]96[/C][C]4700[/C][C]6036.76999495313[/C][C]6.58932260942638[/C][C]-1343.36757066404[/C][C]0.175816444327572[/C][/ROW]
[ROW][C]97[/C][C]5400[/C][C]6082.77965338139[/C][C]7.25715689547607[/C][C]-688.366596529761[/C][C]0.148890855456113[/C][/ROW]
[ROW][C]98[/C][C]6400[/C][C]6145.03491143024[/C][C]8.20164216947211[/C][C]247.177960836426[/C][C]0.207555552950525[/C][/ROW]
[ROW][C]99[/C][C]7500[/C][C]6529.43901879952[/C][C]14.7744553700031[/C][C]917.363937585508[/C][C]1.41831862381169[/C][/ROW]
[ROW][C]100[/C][C]6900[/C][C]6649.42999891673[/C][C]16.6421395066104[/C][C]235.706505983473[/C][C]0.396438801697742[/C][/ROW]
[ROW][C]101[/C][C]6400[/C][C]6585.61324890361[/C][C]15.1988645325714[/C][C]-174.24894626746[/C][C]-0.303204079769671[/C][/ROW]
[ROW][C]102[/C][C]6700[/C][C]6499.19291973566[/C][C]13.3702954410945[/C][C]215.169490744028[/C][C]-0.383232709044125[/C][/ROW]
[ROW][C]103[/C][C]7100[/C][C]6431.43362887584[/C][C]11.9163563402316[/C][C]680.044010852657[/C][C]-0.306218297503104[/C][/ROW]
[ROW][C]104[/C][C]7100[/C][C]6359.61812126506[/C][C]10.429909665788[/C][C]752.236807254727[/C][C]-0.316204725742765[/C][/ROW]
[ROW][C]105[/C][C]4000[/C][C]5443.12257396706[/C][C]-5.82861576686706[/C][C]-1311.83823274567[/C][C]-3.50090230340098[/C][/ROW]
[ROW][C]106[/C][C]6300[/C][C]5641.087928814[/C][C]-2.29460489799499[/C][C]630.045363889555[/C][C]0.76966570191792[/C][/ROW]
[ROW][C]107[/C][C]5400[/C][C]5790.97118531778[/C][C]0.32349184660286[/C][C]-412.526687095999[/C][C]0.574697631831598[/C][/ROW]
[ROW][C]108[/C][C]4600[/C][C]5906.41596956077[/C][C]2.29921589449862[/C][C]-1322.72160339518[/C][C]0.434726808796794[/C][/ROW]
[ROW][C]109[/C][C]5400[/C][C]6052.27029950082[/C][C]4.77168006468129[/C][C]-672.597709077199[/C][C]0.541967230058744[/C][/ROW]
[ROW][C]110[/C][C]6000[/C][C]6037.66354380828[/C][C]4.43511819696886[/C][C]-34.9212323665539[/C][C]-0.073121963000815[/C][/ROW]
[ROW][C]111[/C][C]7200[/C][C]6156.83724367295[/C][C]6.44926811751945[/C][C]1026.93875653771[/C][C]0.432682119554414[/C][/ROW]
[ROW][C]112[/C][C]6800[/C][C]6323.89996550929[/C][C]9.29702569127364[/C][C]453.403482832282[/C][C]0.605446061616998[/C][/ROW]
[ROW][C]113[/C][C]6400[/C][C]6421.99767250858[/C][C]10.8822591785293[/C][C]-34.5447216843936[/C][C]0.334768172931185[/C][/ROW]
[ROW][C]114[/C][C]7100[/C][C]6591.38519371768[/C][C]13.7182144101342[/C][C]486.210248766108[/C][C]0.597818499869267[/C][/ROW]
[ROW][C]115[/C][C]7500[/C][C]6628.18644761093[/C][C]14.130241173537[/C][C]868.548812619467[/C][C]0.0871061841750762[/C][/ROW]
[ROW][C]116[/C][C]7400[/C][C]6458.15340194141[/C][C]10.8622989703733[/C][C]967.90661789348[/C][C]-0.69519576853825[/C][/ROW]
[ROW][C]117[/C][C]6400[/C][C]7048.27726650254[/C][C]21.0630479081281[/C][C]-730.265989955484[/C][C]2.1868585631501[/C][/ROW]
[ROW][C]118[/C][C]6600[/C][C]6726.18432089881[/C][C]15.0639528194612[/C][C]-77.6108584627688[/C][C]-1.29546203247089[/C][/ROW]
[ROW][C]119[/C][C]5600[/C][C]6408.21550411266[/C][C]9.27120555239511[/C][C]-761.074842848539[/C][C]-1.25720234032398[/C][/ROW]
[ROW][C]120[/C][C]4800[/C][C]6275.57949633257[/C][C]6.80680619487728[/C][C]-1455.49336584258[/C][C]-0.535677907117765[/C][/ROW]
[ROW][C]121[/C][C]5400[/C][C]6182.7044413002[/C][C]5.07195610365971[/C][C]-768.597518415935[/C][C]-0.376224937133674[/C][/ROW]
[ROW][C]122[/C][C]6600[/C][C]6413.96803534322[/C][C]9.02898168442705[/C][C]154.033640366[/C][C]0.853429641882227[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298089&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298089&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Structural Time Series Model -- Interpolation
tObservedLevelSlopeSeasonalStand. Residuals
166006600000
268006719.340009280135.131643471673966.18991207969550.35680405457836
375007158.7514389419831.5894447146286295.6327942860541.27465091694864
475007382.0406995394240.196381580087491.56414368131750.683179068635684
574007426.6165949139840.3195315589191-27.28555095935390.0166470299291882
676007511.0038377742341.169049305552682.09414698970240.16965477271049
773007424.4232763474539.096920071864-104.321998223627-0.492515699645969
879007623.4083244871341.616289424874251.4396176566060.615985046392167
971007414.0214457779837.5895877452898-274.582396959177-0.966127315929232
1077007499.979255453438.3809569627245192.4282932490830.186044837561686
1165007045.2724621878230.2167148731889-467.92023321029-1.89576584045324
1250005993.5122303270112.1937980044556-823.848400130243-4.1584942330011
1362005966.3496451925413.3642862503205240.018341120219-0.166340635170632
1470006501.0067186909215.7516855040646420.6177477571992.00863486204718
1574006943.4945000673726.9525150786488400.0443282724811.50142124748159
1672007123.3913732758131.536613858920256.13321813731850.550126030528217
1769007101.0549496224930.1519792152548-193.476148364939-0.201437128311208
1874007204.8344927441431.6538271042808184.5098682328960.280521918427168
1964006970.3934133430627.1567961664261-531.477294688995-1.01973783920921
2055006151.1699565533414.1672308166379-527.024186757736-3.24740824076346
2166006307.4501084525816.2855998613324271.6975698695340.545190625169113
2270006380.3327946118117.1057205204971611.3641952877990.216990902513623
2362006284.367674227715.6568326990037-67.7756625139813-0.433047370400996
2451006140.032999498714.2891623374844-1016.49429462054-0.613586200448352
2556005938.9773379595413.9213008137214-306.854186670146-0.840279156881395
2664006039.8465729263714.6973486163373347.4613237845130.332077291067227
2772006442.589697569921.834671512462703.4007141380561.42937720602559
2871006783.9684257052729.1537022756172272.1420802815621.17261195592611
2970007020.1053219761433.8814241095861-49.01109579368040.772092285884578
3073006995.4927088759732.6716600765124312.830569055757-0.221380700673116
3176007323.4919898204538.1000882671037234.0278045033321.1258163239764
3276007774.9435479758945.002246670602-234.6776555529011.57969104217854
3367007276.0536003616336.5690341876133-497.333001421286-2.07915660146571
3468006682.7010157476427.5707781595098208.489929286843-2.4060527780512
3559006219.4085992184721.396915820552-248.345480996931-1.87329765217134
3650006016.5411037365419.0357786814864-984.025559154753-0.856912270321923
3756005993.1572658275618.6294154306792-386.993566702062-0.162468301300752
3856005785.3828281552615.8054794509422-152.831614385017-0.85882840507466
3971006116.6996452628421.1252300299195938.8651688706541.17795724997135
4070006507.06091841928.4686768112615441.4811867580391.37146930032036
4166006673.981365780131.3428408868542-93.37128329636670.517688686138385
4272006906.632790391435.3853480962236264.8720514816510.759745330518471
4372007026.4569335467136.9694262506577161.4890558023930.320668330550768
4472007054.850180526136.8203505411092146.379672569829-0.0326555565396477
4562006727.8854499006830.9592724500623-475.629914595831-1.38563714034682
4665006359.758759158425.0209812113556197.579663705003-1.51902468960274
4758006109.0228515689621.2494954960138-269.403947110751-1.04908148171865
4849005953.3942282969118.9850671677989-1027.96871038311-0.673190848307923
4958006019.3424629876819.5912518212101-226.0887794827820.178636787678566
5068006555.7849350948227.0779232079842170.4335208471391.95513371616828
5171006585.1386282003127.1161123714914514.5398871526280.00853943356177378
5269006601.9358065574726.9236859372033299.51225090311-0.0385798382724647
5368006802.8733381254230.3158370809572-27.3228953612430.652447059084618
5472006917.7481211980531.9537738460511270.3005242712150.318842340592206
5572006958.842101392332.1241403763534239.8584235432530.034623351211514
5674006980.7304245580531.9434558244513420.730082650078-0.0388591563007262
5764006829.7874161566728.9039288638857-403.655293868952-0.694522329886589
5867006597.7275411454624.8198512224042139.567952840265-0.990542751409569
5962006489.9809533484922.8495911236797-271.035525092776-0.503035021732616
6050006334.3607764381820.2673642136209-1308.85349128158-0.677239970586757
6156006213.8070199830818.1946949262279-593.701785282027-0.533862460817267
6267006344.2969837542619.9544451372666339.7332563600280.424273479348873
6370006450.6129252822421.4208610034199537.1772903002590.324817366281613
6468006546.6684892279222.7737294600207242.8225939674350.280056690039219
6569006758.6641534378926.3231776468459114.6885253982510.71095570019131
6671006830.0276516614527.1702170456451263.6083886572210.169804663511664
6773006927.3967756215428.4620329941986362.6461436200140.265485998949357
6873006864.1675233230826.8352715715246448.871992241207-0.347338696256786
6966006848.4656591541426.1122278288581-242.409923297116-0.161180149563606
7068006724.8279977853623.67013270553196.4945223696361-0.567254008496324
7159006422.9380291131918.5266493683296-476.582737001365-1.23299417711738
7249006269.9103674718215.8499832477138-1345.4851509923-0.649670020969605
7355006212.444773117114.690631819474-702.015574865173-0.277422617083863
7463006131.2140933279113.1170540645413182.397068314601-0.362191321603272
7571006348.7500979130616.6306923438727722.3434699201710.769809172260356
7667006486.744453206618.8029966131704196.1369827076250.45635990781384
7767006573.0858423190120.0411394947938117.3890435440850.254122458915127
7871006716.1516759694522.3065685650599366.4647744362150.463846477597902
7973006813.2213500360723.666408148847476.1884673369890.282464478536143
8073006820.856520632923.3816539282413481.418351442607-0.0606379610853097
8162006597.4327396916119.1221529135684-362.38338008512-0.933748960891627
8265006393.1135025653715.3702356730856138.622388733931-0.845202766943379
8358006270.1060973791213.0921424235883-450.452090682995-0.523371645316845
8447006140.1297485093110.7524329353577-1419.81137941894-0.541057715588074
8555006151.8079763829910.767710283714-651.9393737564950.00349919881306977
8665006291.8192399324112.9483185302041189.8658693746410.487848679371164
8768006263.4824013981112.2319094594389542.35573257089-0.155584016371499
8866006353.9048160832913.623469423508235.0556366497890.294385759007571
8963006331.5331564204112.9725292036803-26.4519986031449-0.1355635727492
9067006341.4355264203412.9167820715793358.998344745324-0.0115770469213244
9172006482.7281641512715.2313858084788699.1017366031740.484724555605548
9272006532.5309155165315.8453828437617662.5701237256660.130637532844094
9359006360.7486669953112.5750048094484-434.146420584972-0.709128451390279
9461006121.230440234278.2584881998495814.5159357397642-0.952675286681223
9555005984.43292019935.80551966635913-463.864246774678-0.548131243529245
9647006036.769994953136.58932260942638-1343.367570664040.175816444327572
9754006082.779653381397.25715689547607-688.3665965297610.148890855456113
9864006145.034911430248.20164216947211247.1779608364260.207555552950525
9975006529.4390187995214.7744553700031917.3639375855081.41831862381169
10069006649.4299989167316.6421395066104235.7065059834730.396438801697742
10164006585.6132489036115.1988645325714-174.24894626746-0.303204079769671
10267006499.1929197356613.3702954410945215.169490744028-0.383232709044125
10371006431.4336288758411.9163563402316680.044010852657-0.306218297503104
10471006359.6181212650610.429909665788752.236807254727-0.316204725742765
10540005443.12257396706-5.82861576686706-1311.83823274567-3.50090230340098
10663005641.087928814-2.29460489799499630.0453638895550.76966570191792
10754005790.971185317780.32349184660286-412.5266870959990.574697631831598
10846005906.415969560772.29921589449862-1322.721603395180.434726808796794
10954006052.270299500824.77168006468129-672.5977090771990.541967230058744
11060006037.663543808284.43511819696886-34.9212323665539-0.073121963000815
11172006156.837243672956.449268117519451026.938756537710.432682119554414
11268006323.899965509299.29702569127364453.4034828322820.605446061616998
11364006421.9976725085810.8822591785293-34.54472168439360.334768172931185
11471006591.3851937176813.7182144101342486.2102487661080.597818499869267
11575006628.1864476109314.130241173537868.5488126194670.0871061841750762
11674006458.1534019414110.8622989703733967.90661789348-0.69519576853825
11764007048.2772665025421.0630479081281-730.2659899554842.1868585631501
11866006726.1843208988115.0639528194612-77.6108584627688-1.29546203247089
11956006408.215504112669.27120555239511-761.074842848539-1.25720234032398
12048006275.579496332576.80680619487728-1455.49336584258-0.535677907117765
12154006182.70444130025.07195610365971-768.597518415935-0.376224937133674
12266006413.968035343229.02898168442705154.0336403660.853429641882227







Structural Time Series Model -- Extrapolation
tObservedLevelSeasonal
17302.636182666786497.65833073353804.977851933246
26940.309908185656524.89175511982415.418153065837
36518.743621471126552.1251795061-33.3815580349819
47162.267575127246579.35860389239582.908971234854
57577.783211264886606.59202827868971.191182986208
67462.951829761246633.82545266496829.126377096281
76203.709250054466661.05887705125-457.349626996789
86786.277767984096688.2923014375397.9854665465592
95953.61125874286715.52572582382-761.914467081016
105195.167542227116742.75915021011-1547.59160798299
115793.107378126456769.99257459639-976.885196469941
126872.740452685416797.2259989826875.514453702736
137629.437275302216824.45942336896804.977851933247
147267.111000821096851.69284775525415.418153065837
156845.544714106556878.92627214154-33.3815580349819
167489.068667762686906.15969652782582.908971234854
177904.584303900326933.39312091411971.191182986208
187789.752922396676960.62654530039829.126377096281

\begin{tabular}{lllllllll}
\hline
Structural Time Series Model -- Extrapolation \tabularnewline
t & Observed & Level & Seasonal \tabularnewline
1 & 7302.63618266678 & 6497.65833073353 & 804.977851933246 \tabularnewline
2 & 6940.30990818565 & 6524.89175511982 & 415.418153065837 \tabularnewline
3 & 6518.74362147112 & 6552.1251795061 & -33.3815580349819 \tabularnewline
4 & 7162.26757512724 & 6579.35860389239 & 582.908971234854 \tabularnewline
5 & 7577.78321126488 & 6606.59202827868 & 971.191182986208 \tabularnewline
6 & 7462.95182976124 & 6633.82545266496 & 829.126377096281 \tabularnewline
7 & 6203.70925005446 & 6661.05887705125 & -457.349626996789 \tabularnewline
8 & 6786.27776798409 & 6688.29230143753 & 97.9854665465592 \tabularnewline
9 & 5953.6112587428 & 6715.52572582382 & -761.914467081016 \tabularnewline
10 & 5195.16754222711 & 6742.75915021011 & -1547.59160798299 \tabularnewline
11 & 5793.10737812645 & 6769.99257459639 & -976.885196469941 \tabularnewline
12 & 6872.74045268541 & 6797.22599898268 & 75.514453702736 \tabularnewline
13 & 7629.43727530221 & 6824.45942336896 & 804.977851933247 \tabularnewline
14 & 7267.11100082109 & 6851.69284775525 & 415.418153065837 \tabularnewline
15 & 6845.54471410655 & 6878.92627214154 & -33.3815580349819 \tabularnewline
16 & 7489.06866776268 & 6906.15969652782 & 582.908971234854 \tabularnewline
17 & 7904.58430390032 & 6933.39312091411 & 971.191182986208 \tabularnewline
18 & 7789.75292239667 & 6960.62654530039 & 829.126377096281 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298089&T=2

[TABLE]
[ROW][C]Structural Time Series Model -- Extrapolation[/C][/ROW]
[ROW][C]t[/C][C]Observed[/C][C]Level[/C][C]Seasonal[/C][/ROW]
[ROW][C]1[/C][C]7302.63618266678[/C][C]6497.65833073353[/C][C]804.977851933246[/C][/ROW]
[ROW][C]2[/C][C]6940.30990818565[/C][C]6524.89175511982[/C][C]415.418153065837[/C][/ROW]
[ROW][C]3[/C][C]6518.74362147112[/C][C]6552.1251795061[/C][C]-33.3815580349819[/C][/ROW]
[ROW][C]4[/C][C]7162.26757512724[/C][C]6579.35860389239[/C][C]582.908971234854[/C][/ROW]
[ROW][C]5[/C][C]7577.78321126488[/C][C]6606.59202827868[/C][C]971.191182986208[/C][/ROW]
[ROW][C]6[/C][C]7462.95182976124[/C][C]6633.82545266496[/C][C]829.126377096281[/C][/ROW]
[ROW][C]7[/C][C]6203.70925005446[/C][C]6661.05887705125[/C][C]-457.349626996789[/C][/ROW]
[ROW][C]8[/C][C]6786.27776798409[/C][C]6688.29230143753[/C][C]97.9854665465592[/C][/ROW]
[ROW][C]9[/C][C]5953.6112587428[/C][C]6715.52572582382[/C][C]-761.914467081016[/C][/ROW]
[ROW][C]10[/C][C]5195.16754222711[/C][C]6742.75915021011[/C][C]-1547.59160798299[/C][/ROW]
[ROW][C]11[/C][C]5793.10737812645[/C][C]6769.99257459639[/C][C]-976.885196469941[/C][/ROW]
[ROW][C]12[/C][C]6872.74045268541[/C][C]6797.22599898268[/C][C]75.514453702736[/C][/ROW]
[ROW][C]13[/C][C]7629.43727530221[/C][C]6824.45942336896[/C][C]804.977851933247[/C][/ROW]
[ROW][C]14[/C][C]7267.11100082109[/C][C]6851.69284775525[/C][C]415.418153065837[/C][/ROW]
[ROW][C]15[/C][C]6845.54471410655[/C][C]6878.92627214154[/C][C]-33.3815580349819[/C][/ROW]
[ROW][C]16[/C][C]7489.06866776268[/C][C]6906.15969652782[/C][C]582.908971234854[/C][/ROW]
[ROW][C]17[/C][C]7904.58430390032[/C][C]6933.39312091411[/C][C]971.191182986208[/C][/ROW]
[ROW][C]18[/C][C]7789.75292239667[/C][C]6960.62654530039[/C][C]829.126377096281[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298089&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298089&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Structural Time Series Model -- Extrapolation
tObservedLevelSeasonal
17302.636182666786497.65833073353804.977851933246
26940.309908185656524.89175511982415.418153065837
36518.743621471126552.1251795061-33.3815580349819
47162.267575127246579.35860389239582.908971234854
57577.783211264886606.59202827868971.191182986208
67462.951829761246633.82545266496829.126377096281
76203.709250054466661.05887705125-457.349626996789
86786.277767984096688.2923014375397.9854665465592
95953.61125874286715.52572582382-761.914467081016
105195.167542227116742.75915021011-1547.59160798299
115793.107378126456769.99257459639-976.885196469941
126872.740452685416797.2259989826875.514453702736
137629.437275302216824.45942336896804.977851933247
147267.111000821096851.69284775525415.418153065837
156845.544714106556878.92627214154-33.3815580349819
167489.068667762686906.15969652782582.908971234854
177904.584303900326933.39312091411971.191182986208
187789.752922396676960.62654530039829.126377096281



Parameters (Session):
par4 = 12 ;
Parameters (R input):
par1 = 12 ; par2 = 18 ; par3 = BFGS ;
R code (references can be found in the software module):
require('stsm')
require('stsm.class')
require('KFKSDS')
par1 <- as.numeric(par1)
par2 <- as.numeric(par2)
nx <- length(x)
x <- ts(x,frequency=par1)
m <- StructTS(x,type='BSM')
print(m$coef)
print(m$fitted)
print(m$resid)
mylevel <- as.numeric(m$fitted[,'level'])
myslope <- as.numeric(m$fitted[,'slope'])
myseas <- as.numeric(m$fitted[,'sea'])
myresid <- as.numeric(m$resid)
myfit <- mylevel+myseas
mm <- stsm.model(model = 'BSM', y = x, transPars = 'StructTS')
fit2 <- stsmFit(mm, stsm.method = 'maxlik.td.optim', method = par3, KF.args = list(P0cov = TRUE))
(fit2.comps <- tsSmooth(fit2, P0cov = FALSE)$states)
m2 <- set.pars(mm, pmax(fit2$par, .Machine$double.eps))
(ss <- char2numeric(m2))
(pred <- predict(ss, x, n.ahead = par2))
mylagmax <- nx/2
bitmap(file='test2.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(x),lag.max = mylagmax,main='Observed')
acf(mylevel,na.action=na.pass,lag.max = mylagmax,main='Level')
acf(myseas,na.action=na.pass,lag.max = mylagmax,main='Seasonal')
acf(myresid,na.action=na.pass,lag.max = mylagmax,main='Standardized Residals')
par(op)
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
spectrum(as.numeric(x),main='Observed')
spectrum(mylevel,main='Level')
spectrum(myseas,main='Seasonal')
spectrum(myresid,main='Standardized Residals')
par(op)
dev.off()
bitmap(file='test4.png')
op <- par(mfrow = c(2,2))
cpgram(as.numeric(x),main='Observed')
cpgram(mylevel,main='Level')
cpgram(myseas,main='Seasonal')
cpgram(myresid,main='Standardized Residals')
par(op)
dev.off()
bitmap(file='test1.png')
plot(as.numeric(m$resid),main='Standardized Residuals',ylab='Residuals',xlab='time',type='b')
grid()
dev.off()
bitmap(file='test5.png')
op <- par(mfrow = c(2,2))
hist(m$resid,main='Residual Histogram')
plot(density(m$resid),main='Residual Kernel Density')
qqnorm(m$resid,main='Residual Normal QQ Plot')
qqline(m$resid)
plot(m$resid^2, myfit^2,main='Sq.Resid vs. Sq.Fit',xlab='Squared residuals',ylab='Squared Fit')
par(op)
dev.off()
bitmap(file='test6.png')
par(mfrow = c(3,1), mar = c(3,3,3,3))
plot(cbind(x, pred$pred), type = 'n', plot.type = 'single', ylab = '')
lines(x)
polygon(c(time(pred$pred), rev(time(pred$pred))), c(pred$pred + 2 * pred$se, rev(pred$pred)), col = 'gray85', border = NA)
polygon(c(time(pred$pred), rev(time(pred$pred))), c(pred$pred - 2 * pred$se, rev(pred$pred)), col = ' gray85', border = NA)
lines(pred$pred, col = 'blue', lwd = 1.5)
mtext(text = 'forecasts of the observed series', side = 3, adj = 0)
plot(cbind(x, pred$a[,1]), type = 'n', plot.type = 'single', ylab = '')
lines(x)
polygon(c(time(pred$a[,1]), rev(time(pred$a[,1]))), c(pred$a[,1] + 2 * sqrt(pred$P[,1]), rev(pred$a[,1])), col = 'gray85', border = NA)
polygon(c(time(pred$a[,1]), rev(time(pred$a[,1]))), c(pred$a[,1] - 2 * sqrt(pred$P[,1]), rev(pred$a[,1])), col = ' gray85', border = NA)
lines(pred$a[,1], col = 'blue', lwd = 1.5)
mtext(text = 'forecasts of the level component', side = 3, adj = 0)
plot(cbind(fit2.comps[,3], pred$a[,3]), type = 'n', plot.type = 'single', ylab = '')
lines(fit2.comps[,3])
polygon(c(time(pred$a[,3]), rev(time(pred$a[,3]))), c(pred$a[,3] + 2 * sqrt(pred$P[,3]), rev(pred$a[,3])), col = 'gray85', border = NA)
polygon(c(time(pred$a[,3]), rev(time(pred$a[,3]))), c(pred$a[,3] - 2 * sqrt(pred$P[,3]), rev(pred$a[,3])), col = ' gray85', border = NA)
lines(pred$a[,3], col = 'blue', lwd = 1.5)
mtext(text = 'forecasts of the seasonal component', side = 3, adj = 0)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Structural Time Series Model -- Interpolation',6,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observed',header=TRUE)
a<-table.element(a,'Level',header=TRUE)
a<-table.element(a,'Slope',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,'Stand. Residuals',header=TRUE)
a<-table.row.end(a)
for (i in 1:nx) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
a<-table.element(a,mylevel[i])
a<-table.element(a,myslope[i])
a<-table.element(a,myseas[i])
a<-table.element(a,myresid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Structural Time Series Model -- Extrapolation',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observed',header=TRUE)
a<-table.element(a,'Level',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.row.end(a)
for (i in 1:par2) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,pred$pred[i])
a<-table.element(a,pred$a[i,1])
a<-table.element(a,pred$a[i,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')