Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Module--
Title produced by softwareMultiple Regression
Date of computationWed, 07 Dec 2016 13:57:35 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/07/t1481116471i3gb5x34jmruiom.htm/, Retrieved Fri, 01 Nov 2024 03:40:18 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=298087, Retrieved Fri, 01 Nov 2024 03:40:18 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact128
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Multiple Regression] [Correlation matrices] [2016-12-07 12:57:35] [c0b73e623858a81821526bb2f691ccd9] [Current]
Feedback Forum

Post a new message
Dataseries X:
3	4	3	4	14
5	5	5	4	19
5	4	4	4	17
5	4	4	4	17
4	4	3	4	15
5	5	5	5	20
5	4	3	3	15
5	5	5	4	19
5	5	4	1	15
5	4	3	3	15
5	5	5	4	19
NA	4	5	3	12
5	5	5	5	20
5	5	4	4	18
4	4	3	4	15
3	4	4	3	14
5	5	5	5	NA
NA	NA	NA	NA	NA
5	4	3	4	16
5	3	3	5	16
4	4	4	4	16
2	5	1	2	10
5	5	4	5	19
5	5	4	5	19
5	5	4	2	16
4	4	4	3	15
4	5	5	4	18
4	5	4	4	17
5	5	4	5	19
5	5	4	3	17
4	NA	4	2	10
5	5	4	5	19
5	5	5	5	20
1	1	1	2	5
5	5	4	5	19
4	5	4	3	16
4	4	4	3	15
4	4	4	4	16
5	5	4	4	18
4	4	5	3	16
4	4	4	3	15
5	4	4	4	17
3	3	4	NA	10
5	5	5	5	20
5	5	5	4	19
2	2	1	2	7
3	3	3	4	13
4	4	3	5	NA
4	5	3	4	16
NA	NA	NA	4	4
5	5	4	4	18
5	5	5	3	18
4	4	4	4	16
5	5	3	4	17
5	5	5	4	19
4	4	4	4	16
5	5	4	5	NA
4	5	3	1	13
4	4	4	4	16
3	4	3	3	13
4	4	3	1	12
4	5	4	4	17
5	4	4	4	17
4	5	4	4	17
4	5	4	3	16
4	4	4	4	16
4	3	3	4	14
4	4	4	4	NA
2	4	4	3	13
4	5	4	3	16
4	4	3	3	14
5	5	5	5	20
3	3	3	3	12
3	4	3	3	13
5	4	5	4	18
4	3	3	4	14
5	5	5	4	19
4	5	4	5	18
4	3	3	4	14
5	5	3	5	18
5	5	5	4	19
5	4	3	3	15
4	4	3	3	14
5	4	4	4	17
5	5	5	4	19
2	5	4	2	13
5	4	5	5	19
5	5	4	4	18
5	5	5	5	20
5	4	4	2	15
4	4	4	3	15
4	4	4	3	15
5	5	5	5	20
4	4	4	3	15
5	5	5	4	19
5	5	4	4	18
5	4	5	4	18
4	4	4	3	15
5	5	5	5	20
5	5	5	2	17
3	4	2	3	12
5	4	5	4	18
5	5	5	4	19
5	5	5	5	20
4	3	NA	3	10
4	4	5	4	17
4	4	4	3	15
4	4	4	4	16
5	5	5	3	18
5	5	4	4	18
4	4	2	4	14
3	4	4	4	15
3	4	3	2	12
4	4	5	4	17
4	4	3	3	14
5	5	4	4	18
5	4	4	4	17
4	4	5	4	17
5	5	5	5	20
5	4	4	3	16
4	4	3	3	14
4	4	3	4	15
5	5	4	4	18
5	5	5	5	20
5	5	3	4	17
5	5	3	4	17
4	5	4	4	17
5	4	4	4	17
3	4	4	4	15
5	5	4	3	17
5	4	5	4	18
4	5	4	4	17
5	5	5	5	20
4	4	4	3	15
4	4	4	4	16
4	4	4	3	15
4	4	5	5	18
2	3	2	4	NA
4	4	4	3	15
5	4	5	4	18
5	5	5	5	20
5	5	5	4	19
4	4	4	2	14
4	5	4	3	16
5	4	4	2	15
5	4	4	4	17
5	4	5	4	18
5	5	5	5	20
5	3	5	4	17
5	4	5	4	18
4	4	4	3	15
5	4	4	3	16
3	3	3	2	11
3	4	4	4	15
4	5	4	5	18
4	5	4	4	17
3	5	3	5	16
3	4	3	2	12
5	5	5	4	19
5	5	4	4	18
5	4	4	2	15
5	4	4	4	NA
5	5	5	4	19
5	4	5	4	18
5	5	5	4	NA
5	4	5	2	16
4	4	4	4	16
4	4	5	3	16
2	4	5	3	14




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time8 seconds
R ServerBig Analytics Cloud Computing Center
R Framework error message
The field 'Names of X columns' contains a hard return which cannot be interpreted.
Please, resubmit your request without hard returns in the 'Names of X columns'.

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time8 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
R Framework error message & 
The field 'Names of X columns' contains a hard return which cannot be interpreted.
Please, resubmit your request without hard returns in the 'Names of X columns'.
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=298087&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]8 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [ROW]R Framework error message[/C][C]
The field 'Names of X columns' contains a hard return which cannot be interpreted.
Please, resubmit your request without hard returns in the 'Names of X columns'.
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=298087&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298087&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time8 seconds
R ServerBig Analytics Cloud Computing Center
R Framework error message
The field 'Names of X columns' contains a hard return which cannot be interpreted.
Please, resubmit your request without hard returns in the 'Names of X columns'.







Multiple Linear Regression - Estimated Regression Equation
ITH4[t] = -1.19467e-14 -1ITH1[t] -1ITH2[t] -1ITH3[t] + 1`EPSUM\r`[t] + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
ITH4[t] =  -1.19467e-14 -1ITH1[t] -1ITH2[t] -1ITH3[t] +  1`EPSUM\r`[t]  + e[t] \tabularnewline
 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298087&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]ITH4[t] =  -1.19467e-14 -1ITH1[t] -1ITH2[t] -1ITH3[t] +  1`EPSUM\r`[t]  + e[t][/C][/ROW]
[ROW][C][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298087&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298087&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
ITH4[t] = -1.19467e-14 -1ITH1[t] -1ITH2[t] -1ITH3[t] + 1`EPSUM\r`[t] + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)-1.195e-14 2.142e-15-5.5780e+00 1.094e-07 5.471e-08
ITH1-1 6.446e-16-1.5510e+15 0 0
ITH2-1 6.718e-16-1.4890e+15 0 0
ITH3-1 6.175e-16-1.6190e+15 0 0
`EPSUM\r`+1 3.639e-16+2.7480e+15 0 0

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & -1.195e-14 &  2.142e-15 & -5.5780e+00 &  1.094e-07 &  5.471e-08 \tabularnewline
ITH1 & -1 &  6.446e-16 & -1.5510e+15 &  0 &  0 \tabularnewline
ITH2 & -1 &  6.718e-16 & -1.4890e+15 &  0 &  0 \tabularnewline
ITH3 & -1 &  6.175e-16 & -1.6190e+15 &  0 &  0 \tabularnewline
`EPSUM\r` & +1 &  3.639e-16 & +2.7480e+15 &  0 &  0 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298087&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]-1.195e-14[/C][C] 2.142e-15[/C][C]-5.5780e+00[/C][C] 1.094e-07[/C][C] 5.471e-08[/C][/ROW]
[ROW][C]ITH1[/C][C]-1[/C][C] 6.446e-16[/C][C]-1.5510e+15[/C][C] 0[/C][C] 0[/C][/ROW]
[ROW][C]ITH2[/C][C]-1[/C][C] 6.718e-16[/C][C]-1.4890e+15[/C][C] 0[/C][C] 0[/C][/ROW]
[ROW][C]ITH3[/C][C]-1[/C][C] 6.175e-16[/C][C]-1.6190e+15[/C][C] 0[/C][C] 0[/C][/ROW]
[ROW][C]`EPSUM\r`[/C][C]+1[/C][C] 3.639e-16[/C][C]+2.7480e+15[/C][C] 0[/C][C] 0[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298087&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298087&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)-1.195e-14 2.142e-15-5.5780e+00 1.094e-07 5.471e-08
ITH1-1 6.446e-16-1.5510e+15 0 0
ITH2-1 6.718e-16-1.4890e+15 0 0
ITH3-1 6.175e-16-1.6190e+15 0 0
`EPSUM\r`+1 3.639e-16+2.7480e+15 0 0







Multiple Linear Regression - Regression Statistics
Multiple R 1
R-squared 1
Adjusted R-squared 1
F-TEST (value) 2.389e+30
F-TEST (DF numerator)4
F-TEST (DF denominator)151
p-value 0
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 3.711e-15
Sum Squared Residuals 2.079e-27

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R &  1 \tabularnewline
R-squared &  1 \tabularnewline
Adjusted R-squared &  1 \tabularnewline
F-TEST (value) &  2.389e+30 \tabularnewline
F-TEST (DF numerator) & 4 \tabularnewline
F-TEST (DF denominator) & 151 \tabularnewline
p-value &  0 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation &  3.711e-15 \tabularnewline
Sum Squared Residuals &  2.079e-27 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298087&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C] 1[/C][/ROW]
[ROW][C]R-squared[/C][C] 1[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C] 1[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C] 2.389e+30[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]4[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]151[/C][/ROW]
[ROW][C]p-value[/C][C] 0[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C] 3.711e-15[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C] 2.079e-27[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298087&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298087&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R 1
R-squared 1
Adjusted R-squared 1
F-TEST (value) 2.389e+30
F-TEST (DF numerator)4
F-TEST (DF denominator)151
p-value 0
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 3.711e-15
Sum Squared Residuals 2.079e-27







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 4 4-4.206e-14
2 4 4 1.805e-15
3 4 4-1.382e-14
4 4 4-6.463e-15
5 4 4 2.068e-15
6 5 5 1.464e-16
7 3 3 2.453e-16
8 4 4-6.177e-17
9 1 1-1.441e-15
10 3 3 2.453e-16
11 4 4-6.177e-17
12 5 5 1.464e-16
13 4 4 2.665e-16
14 4 4 1.101e-15
15 3 3 9.078e-16
16 4 4 5.644e-16
17 5 5 7.995e-16
18 4 4 6.904e-16
19 2 2 1.442e-15
20 5 5 7.235e-16
21 5 5 7.235e-16
22 2 2-1.344e-15
23 3 3 3.157e-16
24 4 4 1.071e-16
25 4 4 5.802e-16
26 5 5 7.235e-16
27 3 3 8.525e-17
28 5 5 7.235e-16
29 5 5 1.464e-16
30 2 2 2.142e-15
31 5 5 7.235e-16
32 3 3 1.778e-16
33 3 3 3.157e-16
34 4 4 6.904e-16
35 4 4 2.665e-16
36 3 3 7.16e-17
37 3 3 3.157e-16
38 4 4 4.313e-16
39 5 5 1.464e-16
40 4 4-6.177e-17
41 2 2 1.551e-15
42 4 4 1.554e-15
43 4 4 1.019e-15
44 4 4 2.665e-16
45 3 3-3.809e-16
46 4 4 6.904e-16
47 4 4 5.097e-16
48 4 4-6.177e-17
49 4 4 6.904e-16
50 1 1-7.715e-16
51 4 4 6.904e-16
52 3 3 1.207e-15
53 1 1-6.336e-16
54 4 4 5.802e-16
55 4 4 4.313e-16
56 4 4 5.802e-16
57 3 3 1.778e-16
58 4 4 6.904e-16
59 4 4 1.017e-15
60 3 3 8.755e-16
61 3 3 1.778e-16
62 3 3 6.154e-16
63 5 5 1.464e-16
64 3 3 1.207e-15
65 3 3 1.207e-15
66 4 4 1.456e-16
67 4 4 1.017e-15
68 4 4-6.177e-17
69 5 5 7.05e-16
70 4 4 1.017e-15
71 5 5 9.677e-16
72 4 4-6.177e-17
73 3 3 2.453e-16
74 3 3 6.154e-16
75 4 4 4.313e-16
76 4 4-6.177e-17
77 2 2 1.547e-16
78 5 5 6.174e-16
79 4 4 2.665e-16
80 5 5 1.464e-16
81 2 2-5.4e-16
82 3 3 3.157e-16
83 3 3 3.157e-16
84 5 5 1.464e-16
85 3 3 3.157e-16
86 4 4-6.177e-17
87 4 4 2.665e-16
88 4 4 1.456e-16
89 3 3 3.157e-16
90 5 5 1.464e-16
91 2 2-1.144e-15
92 3 3 1.722e-15
93 4 4 1.456e-16
94 4 4-6.177e-17
95 5 5 1.464e-16
96 4 4 4.185e-16
97 3 3 3.157e-16
98 4 4 6.904e-16
99 3 3-3.809e-16
100 4 4 2.665e-16
101 4 4 1.678e-15
102 4 4 1.282e-15
103 2 2 9.993e-16
104 4 4 4.185e-16
105 3 3 6.154e-16
106 4 4 2.665e-16
107 4 4 4.313e-16
108 4 4 4.185e-16
109 5 5 1.464e-16
110 3 3-1.099e-16
111 3 3 6.154e-16
112 4 4 1.101e-15
113 4 4 2.665e-16
114 5 5 1.464e-16
115 4 4 5.097e-16
116 4 4 5.097e-16
117 4 4 5.802e-16
118 4 4 4.313e-16
119 4 4 1.282e-15
120 3 3 8.525e-17
121 4 4 1.456e-16
122 4 4 5.802e-16
123 5 5 1.464e-16
124 3 3 3.157e-16
125 4 4 6.904e-16
126 3 3 3.157e-16
127 5 5 5.989e-16
128 3 3 3.157e-16
129 4 4 1.456e-16
130 5 5 1.464e-16
131 4 4-6.177e-17
132 2 2-1.144e-16
133 3 3 1.778e-16
134 2 2-5.4e-16
135 4 4 4.313e-16
136 4 4 1.456e-16
137 5 5 1.464e-16
138 4 4-3.548e-16
139 4 4 1.456e-16
140 3 3 3.157e-16
141 3 3-1.099e-16
142 2 2 9.153e-16
143 4 4 1.282e-15
144 5 5 7.05e-16
145 4 4 5.802e-16
146 5 5 2.041e-15
147 2 2 9.993e-16
148 4 4-6.177e-17
149 4 4 2.665e-16
150 2 2-5.4e-16
151 4 4-6.177e-17
152 4 4 1.456e-16
153 2 2-1.006e-15
154 4 4 6.904e-16
155 3 3 7.16e-17
156 3 3 5.342e-16

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 &  4 &  4 & -4.206e-14 \tabularnewline
2 &  4 &  4 &  1.805e-15 \tabularnewline
3 &  4 &  4 & -1.382e-14 \tabularnewline
4 &  4 &  4 & -6.463e-15 \tabularnewline
5 &  4 &  4 &  2.068e-15 \tabularnewline
6 &  5 &  5 &  1.464e-16 \tabularnewline
7 &  3 &  3 &  2.453e-16 \tabularnewline
8 &  4 &  4 & -6.177e-17 \tabularnewline
9 &  1 &  1 & -1.441e-15 \tabularnewline
10 &  3 &  3 &  2.453e-16 \tabularnewline
11 &  4 &  4 & -6.177e-17 \tabularnewline
12 &  5 &  5 &  1.464e-16 \tabularnewline
13 &  4 &  4 &  2.665e-16 \tabularnewline
14 &  4 &  4 &  1.101e-15 \tabularnewline
15 &  3 &  3 &  9.078e-16 \tabularnewline
16 &  4 &  4 &  5.644e-16 \tabularnewline
17 &  5 &  5 &  7.995e-16 \tabularnewline
18 &  4 &  4 &  6.904e-16 \tabularnewline
19 &  2 &  2 &  1.442e-15 \tabularnewline
20 &  5 &  5 &  7.235e-16 \tabularnewline
21 &  5 &  5 &  7.235e-16 \tabularnewline
22 &  2 &  2 & -1.344e-15 \tabularnewline
23 &  3 &  3 &  3.157e-16 \tabularnewline
24 &  4 &  4 &  1.071e-16 \tabularnewline
25 &  4 &  4 &  5.802e-16 \tabularnewline
26 &  5 &  5 &  7.235e-16 \tabularnewline
27 &  3 &  3 &  8.525e-17 \tabularnewline
28 &  5 &  5 &  7.235e-16 \tabularnewline
29 &  5 &  5 &  1.464e-16 \tabularnewline
30 &  2 &  2 &  2.142e-15 \tabularnewline
31 &  5 &  5 &  7.235e-16 \tabularnewline
32 &  3 &  3 &  1.778e-16 \tabularnewline
33 &  3 &  3 &  3.157e-16 \tabularnewline
34 &  4 &  4 &  6.904e-16 \tabularnewline
35 &  4 &  4 &  2.665e-16 \tabularnewline
36 &  3 &  3 &  7.16e-17 \tabularnewline
37 &  3 &  3 &  3.157e-16 \tabularnewline
38 &  4 &  4 &  4.313e-16 \tabularnewline
39 &  5 &  5 &  1.464e-16 \tabularnewline
40 &  4 &  4 & -6.177e-17 \tabularnewline
41 &  2 &  2 &  1.551e-15 \tabularnewline
42 &  4 &  4 &  1.554e-15 \tabularnewline
43 &  4 &  4 &  1.019e-15 \tabularnewline
44 &  4 &  4 &  2.665e-16 \tabularnewline
45 &  3 &  3 & -3.809e-16 \tabularnewline
46 &  4 &  4 &  6.904e-16 \tabularnewline
47 &  4 &  4 &  5.097e-16 \tabularnewline
48 &  4 &  4 & -6.177e-17 \tabularnewline
49 &  4 &  4 &  6.904e-16 \tabularnewline
50 &  1 &  1 & -7.715e-16 \tabularnewline
51 &  4 &  4 &  6.904e-16 \tabularnewline
52 &  3 &  3 &  1.207e-15 \tabularnewline
53 &  1 &  1 & -6.336e-16 \tabularnewline
54 &  4 &  4 &  5.802e-16 \tabularnewline
55 &  4 &  4 &  4.313e-16 \tabularnewline
56 &  4 &  4 &  5.802e-16 \tabularnewline
57 &  3 &  3 &  1.778e-16 \tabularnewline
58 &  4 &  4 &  6.904e-16 \tabularnewline
59 &  4 &  4 &  1.017e-15 \tabularnewline
60 &  3 &  3 &  8.755e-16 \tabularnewline
61 &  3 &  3 &  1.778e-16 \tabularnewline
62 &  3 &  3 &  6.154e-16 \tabularnewline
63 &  5 &  5 &  1.464e-16 \tabularnewline
64 &  3 &  3 &  1.207e-15 \tabularnewline
65 &  3 &  3 &  1.207e-15 \tabularnewline
66 &  4 &  4 &  1.456e-16 \tabularnewline
67 &  4 &  4 &  1.017e-15 \tabularnewline
68 &  4 &  4 & -6.177e-17 \tabularnewline
69 &  5 &  5 &  7.05e-16 \tabularnewline
70 &  4 &  4 &  1.017e-15 \tabularnewline
71 &  5 &  5 &  9.677e-16 \tabularnewline
72 &  4 &  4 & -6.177e-17 \tabularnewline
73 &  3 &  3 &  2.453e-16 \tabularnewline
74 &  3 &  3 &  6.154e-16 \tabularnewline
75 &  4 &  4 &  4.313e-16 \tabularnewline
76 &  4 &  4 & -6.177e-17 \tabularnewline
77 &  2 &  2 &  1.547e-16 \tabularnewline
78 &  5 &  5 &  6.174e-16 \tabularnewline
79 &  4 &  4 &  2.665e-16 \tabularnewline
80 &  5 &  5 &  1.464e-16 \tabularnewline
81 &  2 &  2 & -5.4e-16 \tabularnewline
82 &  3 &  3 &  3.157e-16 \tabularnewline
83 &  3 &  3 &  3.157e-16 \tabularnewline
84 &  5 &  5 &  1.464e-16 \tabularnewline
85 &  3 &  3 &  3.157e-16 \tabularnewline
86 &  4 &  4 & -6.177e-17 \tabularnewline
87 &  4 &  4 &  2.665e-16 \tabularnewline
88 &  4 &  4 &  1.456e-16 \tabularnewline
89 &  3 &  3 &  3.157e-16 \tabularnewline
90 &  5 &  5 &  1.464e-16 \tabularnewline
91 &  2 &  2 & -1.144e-15 \tabularnewline
92 &  3 &  3 &  1.722e-15 \tabularnewline
93 &  4 &  4 &  1.456e-16 \tabularnewline
94 &  4 &  4 & -6.177e-17 \tabularnewline
95 &  5 &  5 &  1.464e-16 \tabularnewline
96 &  4 &  4 &  4.185e-16 \tabularnewline
97 &  3 &  3 &  3.157e-16 \tabularnewline
98 &  4 &  4 &  6.904e-16 \tabularnewline
99 &  3 &  3 & -3.809e-16 \tabularnewline
100 &  4 &  4 &  2.665e-16 \tabularnewline
101 &  4 &  4 &  1.678e-15 \tabularnewline
102 &  4 &  4 &  1.282e-15 \tabularnewline
103 &  2 &  2 &  9.993e-16 \tabularnewline
104 &  4 &  4 &  4.185e-16 \tabularnewline
105 &  3 &  3 &  6.154e-16 \tabularnewline
106 &  4 &  4 &  2.665e-16 \tabularnewline
107 &  4 &  4 &  4.313e-16 \tabularnewline
108 &  4 &  4 &  4.185e-16 \tabularnewline
109 &  5 &  5 &  1.464e-16 \tabularnewline
110 &  3 &  3 & -1.099e-16 \tabularnewline
111 &  3 &  3 &  6.154e-16 \tabularnewline
112 &  4 &  4 &  1.101e-15 \tabularnewline
113 &  4 &  4 &  2.665e-16 \tabularnewline
114 &  5 &  5 &  1.464e-16 \tabularnewline
115 &  4 &  4 &  5.097e-16 \tabularnewline
116 &  4 &  4 &  5.097e-16 \tabularnewline
117 &  4 &  4 &  5.802e-16 \tabularnewline
118 &  4 &  4 &  4.313e-16 \tabularnewline
119 &  4 &  4 &  1.282e-15 \tabularnewline
120 &  3 &  3 &  8.525e-17 \tabularnewline
121 &  4 &  4 &  1.456e-16 \tabularnewline
122 &  4 &  4 &  5.802e-16 \tabularnewline
123 &  5 &  5 &  1.464e-16 \tabularnewline
124 &  3 &  3 &  3.157e-16 \tabularnewline
125 &  4 &  4 &  6.904e-16 \tabularnewline
126 &  3 &  3 &  3.157e-16 \tabularnewline
127 &  5 &  5 &  5.989e-16 \tabularnewline
128 &  3 &  3 &  3.157e-16 \tabularnewline
129 &  4 &  4 &  1.456e-16 \tabularnewline
130 &  5 &  5 &  1.464e-16 \tabularnewline
131 &  4 &  4 & -6.177e-17 \tabularnewline
132 &  2 &  2 & -1.144e-16 \tabularnewline
133 &  3 &  3 &  1.778e-16 \tabularnewline
134 &  2 &  2 & -5.4e-16 \tabularnewline
135 &  4 &  4 &  4.313e-16 \tabularnewline
136 &  4 &  4 &  1.456e-16 \tabularnewline
137 &  5 &  5 &  1.464e-16 \tabularnewline
138 &  4 &  4 & -3.548e-16 \tabularnewline
139 &  4 &  4 &  1.456e-16 \tabularnewline
140 &  3 &  3 &  3.157e-16 \tabularnewline
141 &  3 &  3 & -1.099e-16 \tabularnewline
142 &  2 &  2 &  9.153e-16 \tabularnewline
143 &  4 &  4 &  1.282e-15 \tabularnewline
144 &  5 &  5 &  7.05e-16 \tabularnewline
145 &  4 &  4 &  5.802e-16 \tabularnewline
146 &  5 &  5 &  2.041e-15 \tabularnewline
147 &  2 &  2 &  9.993e-16 \tabularnewline
148 &  4 &  4 & -6.177e-17 \tabularnewline
149 &  4 &  4 &  2.665e-16 \tabularnewline
150 &  2 &  2 & -5.4e-16 \tabularnewline
151 &  4 &  4 & -6.177e-17 \tabularnewline
152 &  4 &  4 &  1.456e-16 \tabularnewline
153 &  2 &  2 & -1.006e-15 \tabularnewline
154 &  4 &  4 &  6.904e-16 \tabularnewline
155 &  3 &  3 &  7.16e-17 \tabularnewline
156 &  3 &  3 &  5.342e-16 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298087&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C] 4[/C][C] 4[/C][C]-4.206e-14[/C][/ROW]
[ROW][C]2[/C][C] 4[/C][C] 4[/C][C] 1.805e-15[/C][/ROW]
[ROW][C]3[/C][C] 4[/C][C] 4[/C][C]-1.382e-14[/C][/ROW]
[ROW][C]4[/C][C] 4[/C][C] 4[/C][C]-6.463e-15[/C][/ROW]
[ROW][C]5[/C][C] 4[/C][C] 4[/C][C] 2.068e-15[/C][/ROW]
[ROW][C]6[/C][C] 5[/C][C] 5[/C][C] 1.464e-16[/C][/ROW]
[ROW][C]7[/C][C] 3[/C][C] 3[/C][C] 2.453e-16[/C][/ROW]
[ROW][C]8[/C][C] 4[/C][C] 4[/C][C]-6.177e-17[/C][/ROW]
[ROW][C]9[/C][C] 1[/C][C] 1[/C][C]-1.441e-15[/C][/ROW]
[ROW][C]10[/C][C] 3[/C][C] 3[/C][C] 2.453e-16[/C][/ROW]
[ROW][C]11[/C][C] 4[/C][C] 4[/C][C]-6.177e-17[/C][/ROW]
[ROW][C]12[/C][C] 5[/C][C] 5[/C][C] 1.464e-16[/C][/ROW]
[ROW][C]13[/C][C] 4[/C][C] 4[/C][C] 2.665e-16[/C][/ROW]
[ROW][C]14[/C][C] 4[/C][C] 4[/C][C] 1.101e-15[/C][/ROW]
[ROW][C]15[/C][C] 3[/C][C] 3[/C][C] 9.078e-16[/C][/ROW]
[ROW][C]16[/C][C] 4[/C][C] 4[/C][C] 5.644e-16[/C][/ROW]
[ROW][C]17[/C][C] 5[/C][C] 5[/C][C] 7.995e-16[/C][/ROW]
[ROW][C]18[/C][C] 4[/C][C] 4[/C][C] 6.904e-16[/C][/ROW]
[ROW][C]19[/C][C] 2[/C][C] 2[/C][C] 1.442e-15[/C][/ROW]
[ROW][C]20[/C][C] 5[/C][C] 5[/C][C] 7.235e-16[/C][/ROW]
[ROW][C]21[/C][C] 5[/C][C] 5[/C][C] 7.235e-16[/C][/ROW]
[ROW][C]22[/C][C] 2[/C][C] 2[/C][C]-1.344e-15[/C][/ROW]
[ROW][C]23[/C][C] 3[/C][C] 3[/C][C] 3.157e-16[/C][/ROW]
[ROW][C]24[/C][C] 4[/C][C] 4[/C][C] 1.071e-16[/C][/ROW]
[ROW][C]25[/C][C] 4[/C][C] 4[/C][C] 5.802e-16[/C][/ROW]
[ROW][C]26[/C][C] 5[/C][C] 5[/C][C] 7.235e-16[/C][/ROW]
[ROW][C]27[/C][C] 3[/C][C] 3[/C][C] 8.525e-17[/C][/ROW]
[ROW][C]28[/C][C] 5[/C][C] 5[/C][C] 7.235e-16[/C][/ROW]
[ROW][C]29[/C][C] 5[/C][C] 5[/C][C] 1.464e-16[/C][/ROW]
[ROW][C]30[/C][C] 2[/C][C] 2[/C][C] 2.142e-15[/C][/ROW]
[ROW][C]31[/C][C] 5[/C][C] 5[/C][C] 7.235e-16[/C][/ROW]
[ROW][C]32[/C][C] 3[/C][C] 3[/C][C] 1.778e-16[/C][/ROW]
[ROW][C]33[/C][C] 3[/C][C] 3[/C][C] 3.157e-16[/C][/ROW]
[ROW][C]34[/C][C] 4[/C][C] 4[/C][C] 6.904e-16[/C][/ROW]
[ROW][C]35[/C][C] 4[/C][C] 4[/C][C] 2.665e-16[/C][/ROW]
[ROW][C]36[/C][C] 3[/C][C] 3[/C][C] 7.16e-17[/C][/ROW]
[ROW][C]37[/C][C] 3[/C][C] 3[/C][C] 3.157e-16[/C][/ROW]
[ROW][C]38[/C][C] 4[/C][C] 4[/C][C] 4.313e-16[/C][/ROW]
[ROW][C]39[/C][C] 5[/C][C] 5[/C][C] 1.464e-16[/C][/ROW]
[ROW][C]40[/C][C] 4[/C][C] 4[/C][C]-6.177e-17[/C][/ROW]
[ROW][C]41[/C][C] 2[/C][C] 2[/C][C] 1.551e-15[/C][/ROW]
[ROW][C]42[/C][C] 4[/C][C] 4[/C][C] 1.554e-15[/C][/ROW]
[ROW][C]43[/C][C] 4[/C][C] 4[/C][C] 1.019e-15[/C][/ROW]
[ROW][C]44[/C][C] 4[/C][C] 4[/C][C] 2.665e-16[/C][/ROW]
[ROW][C]45[/C][C] 3[/C][C] 3[/C][C]-3.809e-16[/C][/ROW]
[ROW][C]46[/C][C] 4[/C][C] 4[/C][C] 6.904e-16[/C][/ROW]
[ROW][C]47[/C][C] 4[/C][C] 4[/C][C] 5.097e-16[/C][/ROW]
[ROW][C]48[/C][C] 4[/C][C] 4[/C][C]-6.177e-17[/C][/ROW]
[ROW][C]49[/C][C] 4[/C][C] 4[/C][C] 6.904e-16[/C][/ROW]
[ROW][C]50[/C][C] 1[/C][C] 1[/C][C]-7.715e-16[/C][/ROW]
[ROW][C]51[/C][C] 4[/C][C] 4[/C][C] 6.904e-16[/C][/ROW]
[ROW][C]52[/C][C] 3[/C][C] 3[/C][C] 1.207e-15[/C][/ROW]
[ROW][C]53[/C][C] 1[/C][C] 1[/C][C]-6.336e-16[/C][/ROW]
[ROW][C]54[/C][C] 4[/C][C] 4[/C][C] 5.802e-16[/C][/ROW]
[ROW][C]55[/C][C] 4[/C][C] 4[/C][C] 4.313e-16[/C][/ROW]
[ROW][C]56[/C][C] 4[/C][C] 4[/C][C] 5.802e-16[/C][/ROW]
[ROW][C]57[/C][C] 3[/C][C] 3[/C][C] 1.778e-16[/C][/ROW]
[ROW][C]58[/C][C] 4[/C][C] 4[/C][C] 6.904e-16[/C][/ROW]
[ROW][C]59[/C][C] 4[/C][C] 4[/C][C] 1.017e-15[/C][/ROW]
[ROW][C]60[/C][C] 3[/C][C] 3[/C][C] 8.755e-16[/C][/ROW]
[ROW][C]61[/C][C] 3[/C][C] 3[/C][C] 1.778e-16[/C][/ROW]
[ROW][C]62[/C][C] 3[/C][C] 3[/C][C] 6.154e-16[/C][/ROW]
[ROW][C]63[/C][C] 5[/C][C] 5[/C][C] 1.464e-16[/C][/ROW]
[ROW][C]64[/C][C] 3[/C][C] 3[/C][C] 1.207e-15[/C][/ROW]
[ROW][C]65[/C][C] 3[/C][C] 3[/C][C] 1.207e-15[/C][/ROW]
[ROW][C]66[/C][C] 4[/C][C] 4[/C][C] 1.456e-16[/C][/ROW]
[ROW][C]67[/C][C] 4[/C][C] 4[/C][C] 1.017e-15[/C][/ROW]
[ROW][C]68[/C][C] 4[/C][C] 4[/C][C]-6.177e-17[/C][/ROW]
[ROW][C]69[/C][C] 5[/C][C] 5[/C][C] 7.05e-16[/C][/ROW]
[ROW][C]70[/C][C] 4[/C][C] 4[/C][C] 1.017e-15[/C][/ROW]
[ROW][C]71[/C][C] 5[/C][C] 5[/C][C] 9.677e-16[/C][/ROW]
[ROW][C]72[/C][C] 4[/C][C] 4[/C][C]-6.177e-17[/C][/ROW]
[ROW][C]73[/C][C] 3[/C][C] 3[/C][C] 2.453e-16[/C][/ROW]
[ROW][C]74[/C][C] 3[/C][C] 3[/C][C] 6.154e-16[/C][/ROW]
[ROW][C]75[/C][C] 4[/C][C] 4[/C][C] 4.313e-16[/C][/ROW]
[ROW][C]76[/C][C] 4[/C][C] 4[/C][C]-6.177e-17[/C][/ROW]
[ROW][C]77[/C][C] 2[/C][C] 2[/C][C] 1.547e-16[/C][/ROW]
[ROW][C]78[/C][C] 5[/C][C] 5[/C][C] 6.174e-16[/C][/ROW]
[ROW][C]79[/C][C] 4[/C][C] 4[/C][C] 2.665e-16[/C][/ROW]
[ROW][C]80[/C][C] 5[/C][C] 5[/C][C] 1.464e-16[/C][/ROW]
[ROW][C]81[/C][C] 2[/C][C] 2[/C][C]-5.4e-16[/C][/ROW]
[ROW][C]82[/C][C] 3[/C][C] 3[/C][C] 3.157e-16[/C][/ROW]
[ROW][C]83[/C][C] 3[/C][C] 3[/C][C] 3.157e-16[/C][/ROW]
[ROW][C]84[/C][C] 5[/C][C] 5[/C][C] 1.464e-16[/C][/ROW]
[ROW][C]85[/C][C] 3[/C][C] 3[/C][C] 3.157e-16[/C][/ROW]
[ROW][C]86[/C][C] 4[/C][C] 4[/C][C]-6.177e-17[/C][/ROW]
[ROW][C]87[/C][C] 4[/C][C] 4[/C][C] 2.665e-16[/C][/ROW]
[ROW][C]88[/C][C] 4[/C][C] 4[/C][C] 1.456e-16[/C][/ROW]
[ROW][C]89[/C][C] 3[/C][C] 3[/C][C] 3.157e-16[/C][/ROW]
[ROW][C]90[/C][C] 5[/C][C] 5[/C][C] 1.464e-16[/C][/ROW]
[ROW][C]91[/C][C] 2[/C][C] 2[/C][C]-1.144e-15[/C][/ROW]
[ROW][C]92[/C][C] 3[/C][C] 3[/C][C] 1.722e-15[/C][/ROW]
[ROW][C]93[/C][C] 4[/C][C] 4[/C][C] 1.456e-16[/C][/ROW]
[ROW][C]94[/C][C] 4[/C][C] 4[/C][C]-6.177e-17[/C][/ROW]
[ROW][C]95[/C][C] 5[/C][C] 5[/C][C] 1.464e-16[/C][/ROW]
[ROW][C]96[/C][C] 4[/C][C] 4[/C][C] 4.185e-16[/C][/ROW]
[ROW][C]97[/C][C] 3[/C][C] 3[/C][C] 3.157e-16[/C][/ROW]
[ROW][C]98[/C][C] 4[/C][C] 4[/C][C] 6.904e-16[/C][/ROW]
[ROW][C]99[/C][C] 3[/C][C] 3[/C][C]-3.809e-16[/C][/ROW]
[ROW][C]100[/C][C] 4[/C][C] 4[/C][C] 2.665e-16[/C][/ROW]
[ROW][C]101[/C][C] 4[/C][C] 4[/C][C] 1.678e-15[/C][/ROW]
[ROW][C]102[/C][C] 4[/C][C] 4[/C][C] 1.282e-15[/C][/ROW]
[ROW][C]103[/C][C] 2[/C][C] 2[/C][C] 9.993e-16[/C][/ROW]
[ROW][C]104[/C][C] 4[/C][C] 4[/C][C] 4.185e-16[/C][/ROW]
[ROW][C]105[/C][C] 3[/C][C] 3[/C][C] 6.154e-16[/C][/ROW]
[ROW][C]106[/C][C] 4[/C][C] 4[/C][C] 2.665e-16[/C][/ROW]
[ROW][C]107[/C][C] 4[/C][C] 4[/C][C] 4.313e-16[/C][/ROW]
[ROW][C]108[/C][C] 4[/C][C] 4[/C][C] 4.185e-16[/C][/ROW]
[ROW][C]109[/C][C] 5[/C][C] 5[/C][C] 1.464e-16[/C][/ROW]
[ROW][C]110[/C][C] 3[/C][C] 3[/C][C]-1.099e-16[/C][/ROW]
[ROW][C]111[/C][C] 3[/C][C] 3[/C][C] 6.154e-16[/C][/ROW]
[ROW][C]112[/C][C] 4[/C][C] 4[/C][C] 1.101e-15[/C][/ROW]
[ROW][C]113[/C][C] 4[/C][C] 4[/C][C] 2.665e-16[/C][/ROW]
[ROW][C]114[/C][C] 5[/C][C] 5[/C][C] 1.464e-16[/C][/ROW]
[ROW][C]115[/C][C] 4[/C][C] 4[/C][C] 5.097e-16[/C][/ROW]
[ROW][C]116[/C][C] 4[/C][C] 4[/C][C] 5.097e-16[/C][/ROW]
[ROW][C]117[/C][C] 4[/C][C] 4[/C][C] 5.802e-16[/C][/ROW]
[ROW][C]118[/C][C] 4[/C][C] 4[/C][C] 4.313e-16[/C][/ROW]
[ROW][C]119[/C][C] 4[/C][C] 4[/C][C] 1.282e-15[/C][/ROW]
[ROW][C]120[/C][C] 3[/C][C] 3[/C][C] 8.525e-17[/C][/ROW]
[ROW][C]121[/C][C] 4[/C][C] 4[/C][C] 1.456e-16[/C][/ROW]
[ROW][C]122[/C][C] 4[/C][C] 4[/C][C] 5.802e-16[/C][/ROW]
[ROW][C]123[/C][C] 5[/C][C] 5[/C][C] 1.464e-16[/C][/ROW]
[ROW][C]124[/C][C] 3[/C][C] 3[/C][C] 3.157e-16[/C][/ROW]
[ROW][C]125[/C][C] 4[/C][C] 4[/C][C] 6.904e-16[/C][/ROW]
[ROW][C]126[/C][C] 3[/C][C] 3[/C][C] 3.157e-16[/C][/ROW]
[ROW][C]127[/C][C] 5[/C][C] 5[/C][C] 5.989e-16[/C][/ROW]
[ROW][C]128[/C][C] 3[/C][C] 3[/C][C] 3.157e-16[/C][/ROW]
[ROW][C]129[/C][C] 4[/C][C] 4[/C][C] 1.456e-16[/C][/ROW]
[ROW][C]130[/C][C] 5[/C][C] 5[/C][C] 1.464e-16[/C][/ROW]
[ROW][C]131[/C][C] 4[/C][C] 4[/C][C]-6.177e-17[/C][/ROW]
[ROW][C]132[/C][C] 2[/C][C] 2[/C][C]-1.144e-16[/C][/ROW]
[ROW][C]133[/C][C] 3[/C][C] 3[/C][C] 1.778e-16[/C][/ROW]
[ROW][C]134[/C][C] 2[/C][C] 2[/C][C]-5.4e-16[/C][/ROW]
[ROW][C]135[/C][C] 4[/C][C] 4[/C][C] 4.313e-16[/C][/ROW]
[ROW][C]136[/C][C] 4[/C][C] 4[/C][C] 1.456e-16[/C][/ROW]
[ROW][C]137[/C][C] 5[/C][C] 5[/C][C] 1.464e-16[/C][/ROW]
[ROW][C]138[/C][C] 4[/C][C] 4[/C][C]-3.548e-16[/C][/ROW]
[ROW][C]139[/C][C] 4[/C][C] 4[/C][C] 1.456e-16[/C][/ROW]
[ROW][C]140[/C][C] 3[/C][C] 3[/C][C] 3.157e-16[/C][/ROW]
[ROW][C]141[/C][C] 3[/C][C] 3[/C][C]-1.099e-16[/C][/ROW]
[ROW][C]142[/C][C] 2[/C][C] 2[/C][C] 9.153e-16[/C][/ROW]
[ROW][C]143[/C][C] 4[/C][C] 4[/C][C] 1.282e-15[/C][/ROW]
[ROW][C]144[/C][C] 5[/C][C] 5[/C][C] 7.05e-16[/C][/ROW]
[ROW][C]145[/C][C] 4[/C][C] 4[/C][C] 5.802e-16[/C][/ROW]
[ROW][C]146[/C][C] 5[/C][C] 5[/C][C] 2.041e-15[/C][/ROW]
[ROW][C]147[/C][C] 2[/C][C] 2[/C][C] 9.993e-16[/C][/ROW]
[ROW][C]148[/C][C] 4[/C][C] 4[/C][C]-6.177e-17[/C][/ROW]
[ROW][C]149[/C][C] 4[/C][C] 4[/C][C] 2.665e-16[/C][/ROW]
[ROW][C]150[/C][C] 2[/C][C] 2[/C][C]-5.4e-16[/C][/ROW]
[ROW][C]151[/C][C] 4[/C][C] 4[/C][C]-6.177e-17[/C][/ROW]
[ROW][C]152[/C][C] 4[/C][C] 4[/C][C] 1.456e-16[/C][/ROW]
[ROW][C]153[/C][C] 2[/C][C] 2[/C][C]-1.006e-15[/C][/ROW]
[ROW][C]154[/C][C] 4[/C][C] 4[/C][C] 6.904e-16[/C][/ROW]
[ROW][C]155[/C][C] 3[/C][C] 3[/C][C] 7.16e-17[/C][/ROW]
[ROW][C]156[/C][C] 3[/C][C] 3[/C][C] 5.342e-16[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298087&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298087&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 4 4-4.206e-14
2 4 4 1.805e-15
3 4 4-1.382e-14
4 4 4-6.463e-15
5 4 4 2.068e-15
6 5 5 1.464e-16
7 3 3 2.453e-16
8 4 4-6.177e-17
9 1 1-1.441e-15
10 3 3 2.453e-16
11 4 4-6.177e-17
12 5 5 1.464e-16
13 4 4 2.665e-16
14 4 4 1.101e-15
15 3 3 9.078e-16
16 4 4 5.644e-16
17 5 5 7.995e-16
18 4 4 6.904e-16
19 2 2 1.442e-15
20 5 5 7.235e-16
21 5 5 7.235e-16
22 2 2-1.344e-15
23 3 3 3.157e-16
24 4 4 1.071e-16
25 4 4 5.802e-16
26 5 5 7.235e-16
27 3 3 8.525e-17
28 5 5 7.235e-16
29 5 5 1.464e-16
30 2 2 2.142e-15
31 5 5 7.235e-16
32 3 3 1.778e-16
33 3 3 3.157e-16
34 4 4 6.904e-16
35 4 4 2.665e-16
36 3 3 7.16e-17
37 3 3 3.157e-16
38 4 4 4.313e-16
39 5 5 1.464e-16
40 4 4-6.177e-17
41 2 2 1.551e-15
42 4 4 1.554e-15
43 4 4 1.019e-15
44 4 4 2.665e-16
45 3 3-3.809e-16
46 4 4 6.904e-16
47 4 4 5.097e-16
48 4 4-6.177e-17
49 4 4 6.904e-16
50 1 1-7.715e-16
51 4 4 6.904e-16
52 3 3 1.207e-15
53 1 1-6.336e-16
54 4 4 5.802e-16
55 4 4 4.313e-16
56 4 4 5.802e-16
57 3 3 1.778e-16
58 4 4 6.904e-16
59 4 4 1.017e-15
60 3 3 8.755e-16
61 3 3 1.778e-16
62 3 3 6.154e-16
63 5 5 1.464e-16
64 3 3 1.207e-15
65 3 3 1.207e-15
66 4 4 1.456e-16
67 4 4 1.017e-15
68 4 4-6.177e-17
69 5 5 7.05e-16
70 4 4 1.017e-15
71 5 5 9.677e-16
72 4 4-6.177e-17
73 3 3 2.453e-16
74 3 3 6.154e-16
75 4 4 4.313e-16
76 4 4-6.177e-17
77 2 2 1.547e-16
78 5 5 6.174e-16
79 4 4 2.665e-16
80 5 5 1.464e-16
81 2 2-5.4e-16
82 3 3 3.157e-16
83 3 3 3.157e-16
84 5 5 1.464e-16
85 3 3 3.157e-16
86 4 4-6.177e-17
87 4 4 2.665e-16
88 4 4 1.456e-16
89 3 3 3.157e-16
90 5 5 1.464e-16
91 2 2-1.144e-15
92 3 3 1.722e-15
93 4 4 1.456e-16
94 4 4-6.177e-17
95 5 5 1.464e-16
96 4 4 4.185e-16
97 3 3 3.157e-16
98 4 4 6.904e-16
99 3 3-3.809e-16
100 4 4 2.665e-16
101 4 4 1.678e-15
102 4 4 1.282e-15
103 2 2 9.993e-16
104 4 4 4.185e-16
105 3 3 6.154e-16
106 4 4 2.665e-16
107 4 4 4.313e-16
108 4 4 4.185e-16
109 5 5 1.464e-16
110 3 3-1.099e-16
111 3 3 6.154e-16
112 4 4 1.101e-15
113 4 4 2.665e-16
114 5 5 1.464e-16
115 4 4 5.097e-16
116 4 4 5.097e-16
117 4 4 5.802e-16
118 4 4 4.313e-16
119 4 4 1.282e-15
120 3 3 8.525e-17
121 4 4 1.456e-16
122 4 4 5.802e-16
123 5 5 1.464e-16
124 3 3 3.157e-16
125 4 4 6.904e-16
126 3 3 3.157e-16
127 5 5 5.989e-16
128 3 3 3.157e-16
129 4 4 1.456e-16
130 5 5 1.464e-16
131 4 4-6.177e-17
132 2 2-1.144e-16
133 3 3 1.778e-16
134 2 2-5.4e-16
135 4 4 4.313e-16
136 4 4 1.456e-16
137 5 5 1.464e-16
138 4 4-3.548e-16
139 4 4 1.456e-16
140 3 3 3.157e-16
141 3 3-1.099e-16
142 2 2 9.153e-16
143 4 4 1.282e-15
144 5 5 7.05e-16
145 4 4 5.802e-16
146 5 5 2.041e-15
147 2 2 9.993e-16
148 4 4-6.177e-17
149 4 4 2.665e-16
150 2 2-5.4e-16
151 4 4-6.177e-17
152 4 4 1.456e-16
153 2 2-1.006e-15
154 4 4 6.904e-16
155 3 3 7.16e-17
156 3 3 5.342e-16







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
8 1.534e-05 3.069e-05 1
9 0.0001225 0.000245 0.9999
10 3.15e-05 6.301e-05 1
11 0.0009754 0.001951 0.999
12 8.312e-05 0.0001662 0.9999
13 2.31e-11 4.62e-11 1
14 1.916e-08 3.832e-08 1
15 4.86e-06 9.72e-06 1
16 2.365e-18 4.731e-18 1
17 0.0002354 0.0004708 0.9998
18 7.604e-09 1.521e-08 1
19 7.832e-09 1.566e-08 1
20 2.408e-05 4.815e-05 1
21 1.308e-17 2.616e-17 1
22 1.568e-09 3.135e-09 1
23 2.33e-11 4.66e-11 1
24 3.947e-28 7.895e-28 1
25 5.288e-11 1.058e-10 1
26 8.796e-15 1.759e-14 1
27 0.9935 0.01299 0.006497
28 2.458e-07 4.915e-07 1
29 0.9473 0.1053 0.05266
30 4.515e-24 9.031e-24 1
31 1.782e-12 3.564e-12 1
32 1.805e-06 3.609e-06 1
33 2.726e-11 5.452e-11 1
34 1 4.004e-17 2.002e-17
35 1.088e-44 2.177e-44 1
36 9.414e-17 1.883e-16 1
37 9.681e-05 0.0001936 0.9999
38 4.63e-09 9.26e-09 1
39 1.672e-30 3.344e-30 1
40 0.0007855 0.001571 0.9992
41 0.2047 0.4095 0.7953
42 3.205e-35 6.41e-35 1
43 5.904e-27 1.181e-26 1
44 1 1.065e-29 5.323e-30
45 2.479e-08 4.958e-08 1
46 0.9657 0.06869 0.03435
47 0.0001107 0.0002215 0.9999
48 3.699e-24 7.397e-24 1
49 0.0033 0.0066 0.9967
50 1 2.372e-41 1.186e-41
51 0.1792 0.3585 0.8208
52 9.233e-11 1.847e-10 1
53 3.887e-20 7.775e-20 1
54 0.2464 0.4927 0.7536
55 1.187e-29 2.374e-29 1
56 8.138e-14 1.628e-13 1
57 4.84e-18 9.681e-18 1
58 3.506e-11 7.012e-11 1
59 1 3.962e-19 1.981e-19
60 0.0008768 0.001754 0.9991
61 1.615e-31 3.23e-31 1
62 0.05416 0.1083 0.9458
63 1 2.013e-45 1.007e-45
64 1.231e-47 2.462e-47 1
65 0.01815 0.0363 0.9818
66 3.118e-17 6.236e-17 1
67 0.8809 0.2381 0.1191
68 9.361e-34 1.872e-33 1
69 0.07743 0.1549 0.9226
70 0.002013 0.004027 0.998
71 1.292e-07 2.584e-07 1
72 0.9903 0.01947 0.009736
73 1.281e-16 2.562e-16 1
74 6.173e-17 1.235e-16 1
75 0.9486 0.1027 0.05136
76 0.9595 0.08097 0.04049
77 0.06997 0.1399 0.93
78 0.4282 0.8564 0.5718
79 0.00304 0.006081 0.997
80 1 6.51e-09 3.255e-09
81 1.247e-15 2.495e-15 1
82 1 1.789e-09 8.945e-10
83 1 5.301e-62 2.651e-62
84 1.094e-26 2.188e-26 1
85 0.9998 0.0003413 0.0001706
86 2.261e-07 4.522e-07 1
87 3.639e-17 7.278e-17 1
88 0.8485 0.303 0.1515
89 1 1.321e-21 6.603e-22
90 1 2.244e-10 1.122e-10
91 1 8.498e-26 4.249e-26
92 1 4.68e-37 2.34e-37
93 1.334e-69 2.667e-69 1
94 1 3.352e-12 1.676e-12
95 1 2.655e-40 1.327e-40
96 1 1.597e-07 7.984e-08
97 2.14e-10 4.28e-10 1
98 1 3.573e-42 1.787e-42
99 1 9.029e-05 4.514e-05
100 1 8.472e-08 4.236e-08
101 1 4.999e-08 2.5e-08
102 0.9283 0.1434 0.07172
103 1 1.06e-15 5.3e-16
104 1 7.221e-05 3.611e-05
105 8.324e-22 1.665e-21 1
106 6.749e-72 1.35e-71 1
107 0.5873 0.8254 0.4127
108 1 1.122e-14 5.612e-15
109 0.9394 0.1212 0.06062
110 1 6.411e-13 3.205e-13
111 1 2.688e-10 1.344e-10
112 6.297e-37 1.259e-36 1
113 1 4.363e-32 2.182e-32
114 1 1.088e-42 5.44e-43
115 1 1.123e-07 5.614e-08
116 1 0.0001004 5.018e-05
117 1 1.073e-17 5.365e-18
118 0.9983 0.003496 0.001748
119 1 3.722e-27 1.861e-27
120 1 1.648e-17 8.24e-18
121 1 8.951e-15 4.475e-15
122 0.2685 0.537 0.7315
123 1 2.366e-21 1.183e-21
124 1 2.407e-10 1.203e-10
125 1 2.622e-06 1.311e-06
126 0.9969 0.006125 0.003062
127 0.9467 0.1066 0.05332
128 0.002563 0.005125 0.9974
129 5.278e-16 1.056e-15 1
130 1 1.969e-17 9.847e-18
131 0.9996 0.0007775 0.0003888
132 1 2.875e-13 1.438e-13
133 1 1.225e-12 6.127e-13
134 1 1.898e-05 9.488e-06
135 1 9.077e-19 4.539e-19
136 0.1821 0.3641 0.8179
137 1 1.195e-09 5.976e-10
138 1 7.6e-14 3.8e-14
139 0.9878 0.02435 0.01218
140 1 5.474e-17 2.737e-17
141 1 6.644e-13 3.322e-13
142 1 7.704e-09 3.852e-09
143 1 2.849e-05 1.425e-05
144 1 8.915e-05 4.458e-05
145 1 1.758e-07 8.79e-08
146 1 4.144e-05 2.072e-05
147 0.9948 0.01045 0.005226
148 0.9993 0.001324 0.0006619

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
8 &  1.534e-05 &  3.069e-05 &  1 \tabularnewline
9 &  0.0001225 &  0.000245 &  0.9999 \tabularnewline
10 &  3.15e-05 &  6.301e-05 &  1 \tabularnewline
11 &  0.0009754 &  0.001951 &  0.999 \tabularnewline
12 &  8.312e-05 &  0.0001662 &  0.9999 \tabularnewline
13 &  2.31e-11 &  4.62e-11 &  1 \tabularnewline
14 &  1.916e-08 &  3.832e-08 &  1 \tabularnewline
15 &  4.86e-06 &  9.72e-06 &  1 \tabularnewline
16 &  2.365e-18 &  4.731e-18 &  1 \tabularnewline
17 &  0.0002354 &  0.0004708 &  0.9998 \tabularnewline
18 &  7.604e-09 &  1.521e-08 &  1 \tabularnewline
19 &  7.832e-09 &  1.566e-08 &  1 \tabularnewline
20 &  2.408e-05 &  4.815e-05 &  1 \tabularnewline
21 &  1.308e-17 &  2.616e-17 &  1 \tabularnewline
22 &  1.568e-09 &  3.135e-09 &  1 \tabularnewline
23 &  2.33e-11 &  4.66e-11 &  1 \tabularnewline
24 &  3.947e-28 &  7.895e-28 &  1 \tabularnewline
25 &  5.288e-11 &  1.058e-10 &  1 \tabularnewline
26 &  8.796e-15 &  1.759e-14 &  1 \tabularnewline
27 &  0.9935 &  0.01299 &  0.006497 \tabularnewline
28 &  2.458e-07 &  4.915e-07 &  1 \tabularnewline
29 &  0.9473 &  0.1053 &  0.05266 \tabularnewline
30 &  4.515e-24 &  9.031e-24 &  1 \tabularnewline
31 &  1.782e-12 &  3.564e-12 &  1 \tabularnewline
32 &  1.805e-06 &  3.609e-06 &  1 \tabularnewline
33 &  2.726e-11 &  5.452e-11 &  1 \tabularnewline
34 &  1 &  4.004e-17 &  2.002e-17 \tabularnewline
35 &  1.088e-44 &  2.177e-44 &  1 \tabularnewline
36 &  9.414e-17 &  1.883e-16 &  1 \tabularnewline
37 &  9.681e-05 &  0.0001936 &  0.9999 \tabularnewline
38 &  4.63e-09 &  9.26e-09 &  1 \tabularnewline
39 &  1.672e-30 &  3.344e-30 &  1 \tabularnewline
40 &  0.0007855 &  0.001571 &  0.9992 \tabularnewline
41 &  0.2047 &  0.4095 &  0.7953 \tabularnewline
42 &  3.205e-35 &  6.41e-35 &  1 \tabularnewline
43 &  5.904e-27 &  1.181e-26 &  1 \tabularnewline
44 &  1 &  1.065e-29 &  5.323e-30 \tabularnewline
45 &  2.479e-08 &  4.958e-08 &  1 \tabularnewline
46 &  0.9657 &  0.06869 &  0.03435 \tabularnewline
47 &  0.0001107 &  0.0002215 &  0.9999 \tabularnewline
48 &  3.699e-24 &  7.397e-24 &  1 \tabularnewline
49 &  0.0033 &  0.0066 &  0.9967 \tabularnewline
50 &  1 &  2.372e-41 &  1.186e-41 \tabularnewline
51 &  0.1792 &  0.3585 &  0.8208 \tabularnewline
52 &  9.233e-11 &  1.847e-10 &  1 \tabularnewline
53 &  3.887e-20 &  7.775e-20 &  1 \tabularnewline
54 &  0.2464 &  0.4927 &  0.7536 \tabularnewline
55 &  1.187e-29 &  2.374e-29 &  1 \tabularnewline
56 &  8.138e-14 &  1.628e-13 &  1 \tabularnewline
57 &  4.84e-18 &  9.681e-18 &  1 \tabularnewline
58 &  3.506e-11 &  7.012e-11 &  1 \tabularnewline
59 &  1 &  3.962e-19 &  1.981e-19 \tabularnewline
60 &  0.0008768 &  0.001754 &  0.9991 \tabularnewline
61 &  1.615e-31 &  3.23e-31 &  1 \tabularnewline
62 &  0.05416 &  0.1083 &  0.9458 \tabularnewline
63 &  1 &  2.013e-45 &  1.007e-45 \tabularnewline
64 &  1.231e-47 &  2.462e-47 &  1 \tabularnewline
65 &  0.01815 &  0.0363 &  0.9818 \tabularnewline
66 &  3.118e-17 &  6.236e-17 &  1 \tabularnewline
67 &  0.8809 &  0.2381 &  0.1191 \tabularnewline
68 &  9.361e-34 &  1.872e-33 &  1 \tabularnewline
69 &  0.07743 &  0.1549 &  0.9226 \tabularnewline
70 &  0.002013 &  0.004027 &  0.998 \tabularnewline
71 &  1.292e-07 &  2.584e-07 &  1 \tabularnewline
72 &  0.9903 &  0.01947 &  0.009736 \tabularnewline
73 &  1.281e-16 &  2.562e-16 &  1 \tabularnewline
74 &  6.173e-17 &  1.235e-16 &  1 \tabularnewline
75 &  0.9486 &  0.1027 &  0.05136 \tabularnewline
76 &  0.9595 &  0.08097 &  0.04049 \tabularnewline
77 &  0.06997 &  0.1399 &  0.93 \tabularnewline
78 &  0.4282 &  0.8564 &  0.5718 \tabularnewline
79 &  0.00304 &  0.006081 &  0.997 \tabularnewline
80 &  1 &  6.51e-09 &  3.255e-09 \tabularnewline
81 &  1.247e-15 &  2.495e-15 &  1 \tabularnewline
82 &  1 &  1.789e-09 &  8.945e-10 \tabularnewline
83 &  1 &  5.301e-62 &  2.651e-62 \tabularnewline
84 &  1.094e-26 &  2.188e-26 &  1 \tabularnewline
85 &  0.9998 &  0.0003413 &  0.0001706 \tabularnewline
86 &  2.261e-07 &  4.522e-07 &  1 \tabularnewline
87 &  3.639e-17 &  7.278e-17 &  1 \tabularnewline
88 &  0.8485 &  0.303 &  0.1515 \tabularnewline
89 &  1 &  1.321e-21 &  6.603e-22 \tabularnewline
90 &  1 &  2.244e-10 &  1.122e-10 \tabularnewline
91 &  1 &  8.498e-26 &  4.249e-26 \tabularnewline
92 &  1 &  4.68e-37 &  2.34e-37 \tabularnewline
93 &  1.334e-69 &  2.667e-69 &  1 \tabularnewline
94 &  1 &  3.352e-12 &  1.676e-12 \tabularnewline
95 &  1 &  2.655e-40 &  1.327e-40 \tabularnewline
96 &  1 &  1.597e-07 &  7.984e-08 \tabularnewline
97 &  2.14e-10 &  4.28e-10 &  1 \tabularnewline
98 &  1 &  3.573e-42 &  1.787e-42 \tabularnewline
99 &  1 &  9.029e-05 &  4.514e-05 \tabularnewline
100 &  1 &  8.472e-08 &  4.236e-08 \tabularnewline
101 &  1 &  4.999e-08 &  2.5e-08 \tabularnewline
102 &  0.9283 &  0.1434 &  0.07172 \tabularnewline
103 &  1 &  1.06e-15 &  5.3e-16 \tabularnewline
104 &  1 &  7.221e-05 &  3.611e-05 \tabularnewline
105 &  8.324e-22 &  1.665e-21 &  1 \tabularnewline
106 &  6.749e-72 &  1.35e-71 &  1 \tabularnewline
107 &  0.5873 &  0.8254 &  0.4127 \tabularnewline
108 &  1 &  1.122e-14 &  5.612e-15 \tabularnewline
109 &  0.9394 &  0.1212 &  0.06062 \tabularnewline
110 &  1 &  6.411e-13 &  3.205e-13 \tabularnewline
111 &  1 &  2.688e-10 &  1.344e-10 \tabularnewline
112 &  6.297e-37 &  1.259e-36 &  1 \tabularnewline
113 &  1 &  4.363e-32 &  2.182e-32 \tabularnewline
114 &  1 &  1.088e-42 &  5.44e-43 \tabularnewline
115 &  1 &  1.123e-07 &  5.614e-08 \tabularnewline
116 &  1 &  0.0001004 &  5.018e-05 \tabularnewline
117 &  1 &  1.073e-17 &  5.365e-18 \tabularnewline
118 &  0.9983 &  0.003496 &  0.001748 \tabularnewline
119 &  1 &  3.722e-27 &  1.861e-27 \tabularnewline
120 &  1 &  1.648e-17 &  8.24e-18 \tabularnewline
121 &  1 &  8.951e-15 &  4.475e-15 \tabularnewline
122 &  0.2685 &  0.537 &  0.7315 \tabularnewline
123 &  1 &  2.366e-21 &  1.183e-21 \tabularnewline
124 &  1 &  2.407e-10 &  1.203e-10 \tabularnewline
125 &  1 &  2.622e-06 &  1.311e-06 \tabularnewline
126 &  0.9969 &  0.006125 &  0.003062 \tabularnewline
127 &  0.9467 &  0.1066 &  0.05332 \tabularnewline
128 &  0.002563 &  0.005125 &  0.9974 \tabularnewline
129 &  5.278e-16 &  1.056e-15 &  1 \tabularnewline
130 &  1 &  1.969e-17 &  9.847e-18 \tabularnewline
131 &  0.9996 &  0.0007775 &  0.0003888 \tabularnewline
132 &  1 &  2.875e-13 &  1.438e-13 \tabularnewline
133 &  1 &  1.225e-12 &  6.127e-13 \tabularnewline
134 &  1 &  1.898e-05 &  9.488e-06 \tabularnewline
135 &  1 &  9.077e-19 &  4.539e-19 \tabularnewline
136 &  0.1821 &  0.3641 &  0.8179 \tabularnewline
137 &  1 &  1.195e-09 &  5.976e-10 \tabularnewline
138 &  1 &  7.6e-14 &  3.8e-14 \tabularnewline
139 &  0.9878 &  0.02435 &  0.01218 \tabularnewline
140 &  1 &  5.474e-17 &  2.737e-17 \tabularnewline
141 &  1 &  6.644e-13 &  3.322e-13 \tabularnewline
142 &  1 &  7.704e-09 &  3.852e-09 \tabularnewline
143 &  1 &  2.849e-05 &  1.425e-05 \tabularnewline
144 &  1 &  8.915e-05 &  4.458e-05 \tabularnewline
145 &  1 &  1.758e-07 &  8.79e-08 \tabularnewline
146 &  1 &  4.144e-05 &  2.072e-05 \tabularnewline
147 &  0.9948 &  0.01045 &  0.005226 \tabularnewline
148 &  0.9993 &  0.001324 &  0.0006619 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298087&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]8[/C][C] 1.534e-05[/C][C] 3.069e-05[/C][C] 1[/C][/ROW]
[ROW][C]9[/C][C] 0.0001225[/C][C] 0.000245[/C][C] 0.9999[/C][/ROW]
[ROW][C]10[/C][C] 3.15e-05[/C][C] 6.301e-05[/C][C] 1[/C][/ROW]
[ROW][C]11[/C][C] 0.0009754[/C][C] 0.001951[/C][C] 0.999[/C][/ROW]
[ROW][C]12[/C][C] 8.312e-05[/C][C] 0.0001662[/C][C] 0.9999[/C][/ROW]
[ROW][C]13[/C][C] 2.31e-11[/C][C] 4.62e-11[/C][C] 1[/C][/ROW]
[ROW][C]14[/C][C] 1.916e-08[/C][C] 3.832e-08[/C][C] 1[/C][/ROW]
[ROW][C]15[/C][C] 4.86e-06[/C][C] 9.72e-06[/C][C] 1[/C][/ROW]
[ROW][C]16[/C][C] 2.365e-18[/C][C] 4.731e-18[/C][C] 1[/C][/ROW]
[ROW][C]17[/C][C] 0.0002354[/C][C] 0.0004708[/C][C] 0.9998[/C][/ROW]
[ROW][C]18[/C][C] 7.604e-09[/C][C] 1.521e-08[/C][C] 1[/C][/ROW]
[ROW][C]19[/C][C] 7.832e-09[/C][C] 1.566e-08[/C][C] 1[/C][/ROW]
[ROW][C]20[/C][C] 2.408e-05[/C][C] 4.815e-05[/C][C] 1[/C][/ROW]
[ROW][C]21[/C][C] 1.308e-17[/C][C] 2.616e-17[/C][C] 1[/C][/ROW]
[ROW][C]22[/C][C] 1.568e-09[/C][C] 3.135e-09[/C][C] 1[/C][/ROW]
[ROW][C]23[/C][C] 2.33e-11[/C][C] 4.66e-11[/C][C] 1[/C][/ROW]
[ROW][C]24[/C][C] 3.947e-28[/C][C] 7.895e-28[/C][C] 1[/C][/ROW]
[ROW][C]25[/C][C] 5.288e-11[/C][C] 1.058e-10[/C][C] 1[/C][/ROW]
[ROW][C]26[/C][C] 8.796e-15[/C][C] 1.759e-14[/C][C] 1[/C][/ROW]
[ROW][C]27[/C][C] 0.9935[/C][C] 0.01299[/C][C] 0.006497[/C][/ROW]
[ROW][C]28[/C][C] 2.458e-07[/C][C] 4.915e-07[/C][C] 1[/C][/ROW]
[ROW][C]29[/C][C] 0.9473[/C][C] 0.1053[/C][C] 0.05266[/C][/ROW]
[ROW][C]30[/C][C] 4.515e-24[/C][C] 9.031e-24[/C][C] 1[/C][/ROW]
[ROW][C]31[/C][C] 1.782e-12[/C][C] 3.564e-12[/C][C] 1[/C][/ROW]
[ROW][C]32[/C][C] 1.805e-06[/C][C] 3.609e-06[/C][C] 1[/C][/ROW]
[ROW][C]33[/C][C] 2.726e-11[/C][C] 5.452e-11[/C][C] 1[/C][/ROW]
[ROW][C]34[/C][C] 1[/C][C] 4.004e-17[/C][C] 2.002e-17[/C][/ROW]
[ROW][C]35[/C][C] 1.088e-44[/C][C] 2.177e-44[/C][C] 1[/C][/ROW]
[ROW][C]36[/C][C] 9.414e-17[/C][C] 1.883e-16[/C][C] 1[/C][/ROW]
[ROW][C]37[/C][C] 9.681e-05[/C][C] 0.0001936[/C][C] 0.9999[/C][/ROW]
[ROW][C]38[/C][C] 4.63e-09[/C][C] 9.26e-09[/C][C] 1[/C][/ROW]
[ROW][C]39[/C][C] 1.672e-30[/C][C] 3.344e-30[/C][C] 1[/C][/ROW]
[ROW][C]40[/C][C] 0.0007855[/C][C] 0.001571[/C][C] 0.9992[/C][/ROW]
[ROW][C]41[/C][C] 0.2047[/C][C] 0.4095[/C][C] 0.7953[/C][/ROW]
[ROW][C]42[/C][C] 3.205e-35[/C][C] 6.41e-35[/C][C] 1[/C][/ROW]
[ROW][C]43[/C][C] 5.904e-27[/C][C] 1.181e-26[/C][C] 1[/C][/ROW]
[ROW][C]44[/C][C] 1[/C][C] 1.065e-29[/C][C] 5.323e-30[/C][/ROW]
[ROW][C]45[/C][C] 2.479e-08[/C][C] 4.958e-08[/C][C] 1[/C][/ROW]
[ROW][C]46[/C][C] 0.9657[/C][C] 0.06869[/C][C] 0.03435[/C][/ROW]
[ROW][C]47[/C][C] 0.0001107[/C][C] 0.0002215[/C][C] 0.9999[/C][/ROW]
[ROW][C]48[/C][C] 3.699e-24[/C][C] 7.397e-24[/C][C] 1[/C][/ROW]
[ROW][C]49[/C][C] 0.0033[/C][C] 0.0066[/C][C] 0.9967[/C][/ROW]
[ROW][C]50[/C][C] 1[/C][C] 2.372e-41[/C][C] 1.186e-41[/C][/ROW]
[ROW][C]51[/C][C] 0.1792[/C][C] 0.3585[/C][C] 0.8208[/C][/ROW]
[ROW][C]52[/C][C] 9.233e-11[/C][C] 1.847e-10[/C][C] 1[/C][/ROW]
[ROW][C]53[/C][C] 3.887e-20[/C][C] 7.775e-20[/C][C] 1[/C][/ROW]
[ROW][C]54[/C][C] 0.2464[/C][C] 0.4927[/C][C] 0.7536[/C][/ROW]
[ROW][C]55[/C][C] 1.187e-29[/C][C] 2.374e-29[/C][C] 1[/C][/ROW]
[ROW][C]56[/C][C] 8.138e-14[/C][C] 1.628e-13[/C][C] 1[/C][/ROW]
[ROW][C]57[/C][C] 4.84e-18[/C][C] 9.681e-18[/C][C] 1[/C][/ROW]
[ROW][C]58[/C][C] 3.506e-11[/C][C] 7.012e-11[/C][C] 1[/C][/ROW]
[ROW][C]59[/C][C] 1[/C][C] 3.962e-19[/C][C] 1.981e-19[/C][/ROW]
[ROW][C]60[/C][C] 0.0008768[/C][C] 0.001754[/C][C] 0.9991[/C][/ROW]
[ROW][C]61[/C][C] 1.615e-31[/C][C] 3.23e-31[/C][C] 1[/C][/ROW]
[ROW][C]62[/C][C] 0.05416[/C][C] 0.1083[/C][C] 0.9458[/C][/ROW]
[ROW][C]63[/C][C] 1[/C][C] 2.013e-45[/C][C] 1.007e-45[/C][/ROW]
[ROW][C]64[/C][C] 1.231e-47[/C][C] 2.462e-47[/C][C] 1[/C][/ROW]
[ROW][C]65[/C][C] 0.01815[/C][C] 0.0363[/C][C] 0.9818[/C][/ROW]
[ROW][C]66[/C][C] 3.118e-17[/C][C] 6.236e-17[/C][C] 1[/C][/ROW]
[ROW][C]67[/C][C] 0.8809[/C][C] 0.2381[/C][C] 0.1191[/C][/ROW]
[ROW][C]68[/C][C] 9.361e-34[/C][C] 1.872e-33[/C][C] 1[/C][/ROW]
[ROW][C]69[/C][C] 0.07743[/C][C] 0.1549[/C][C] 0.9226[/C][/ROW]
[ROW][C]70[/C][C] 0.002013[/C][C] 0.004027[/C][C] 0.998[/C][/ROW]
[ROW][C]71[/C][C] 1.292e-07[/C][C] 2.584e-07[/C][C] 1[/C][/ROW]
[ROW][C]72[/C][C] 0.9903[/C][C] 0.01947[/C][C] 0.009736[/C][/ROW]
[ROW][C]73[/C][C] 1.281e-16[/C][C] 2.562e-16[/C][C] 1[/C][/ROW]
[ROW][C]74[/C][C] 6.173e-17[/C][C] 1.235e-16[/C][C] 1[/C][/ROW]
[ROW][C]75[/C][C] 0.9486[/C][C] 0.1027[/C][C] 0.05136[/C][/ROW]
[ROW][C]76[/C][C] 0.9595[/C][C] 0.08097[/C][C] 0.04049[/C][/ROW]
[ROW][C]77[/C][C] 0.06997[/C][C] 0.1399[/C][C] 0.93[/C][/ROW]
[ROW][C]78[/C][C] 0.4282[/C][C] 0.8564[/C][C] 0.5718[/C][/ROW]
[ROW][C]79[/C][C] 0.00304[/C][C] 0.006081[/C][C] 0.997[/C][/ROW]
[ROW][C]80[/C][C] 1[/C][C] 6.51e-09[/C][C] 3.255e-09[/C][/ROW]
[ROW][C]81[/C][C] 1.247e-15[/C][C] 2.495e-15[/C][C] 1[/C][/ROW]
[ROW][C]82[/C][C] 1[/C][C] 1.789e-09[/C][C] 8.945e-10[/C][/ROW]
[ROW][C]83[/C][C] 1[/C][C] 5.301e-62[/C][C] 2.651e-62[/C][/ROW]
[ROW][C]84[/C][C] 1.094e-26[/C][C] 2.188e-26[/C][C] 1[/C][/ROW]
[ROW][C]85[/C][C] 0.9998[/C][C] 0.0003413[/C][C] 0.0001706[/C][/ROW]
[ROW][C]86[/C][C] 2.261e-07[/C][C] 4.522e-07[/C][C] 1[/C][/ROW]
[ROW][C]87[/C][C] 3.639e-17[/C][C] 7.278e-17[/C][C] 1[/C][/ROW]
[ROW][C]88[/C][C] 0.8485[/C][C] 0.303[/C][C] 0.1515[/C][/ROW]
[ROW][C]89[/C][C] 1[/C][C] 1.321e-21[/C][C] 6.603e-22[/C][/ROW]
[ROW][C]90[/C][C] 1[/C][C] 2.244e-10[/C][C] 1.122e-10[/C][/ROW]
[ROW][C]91[/C][C] 1[/C][C] 8.498e-26[/C][C] 4.249e-26[/C][/ROW]
[ROW][C]92[/C][C] 1[/C][C] 4.68e-37[/C][C] 2.34e-37[/C][/ROW]
[ROW][C]93[/C][C] 1.334e-69[/C][C] 2.667e-69[/C][C] 1[/C][/ROW]
[ROW][C]94[/C][C] 1[/C][C] 3.352e-12[/C][C] 1.676e-12[/C][/ROW]
[ROW][C]95[/C][C] 1[/C][C] 2.655e-40[/C][C] 1.327e-40[/C][/ROW]
[ROW][C]96[/C][C] 1[/C][C] 1.597e-07[/C][C] 7.984e-08[/C][/ROW]
[ROW][C]97[/C][C] 2.14e-10[/C][C] 4.28e-10[/C][C] 1[/C][/ROW]
[ROW][C]98[/C][C] 1[/C][C] 3.573e-42[/C][C] 1.787e-42[/C][/ROW]
[ROW][C]99[/C][C] 1[/C][C] 9.029e-05[/C][C] 4.514e-05[/C][/ROW]
[ROW][C]100[/C][C] 1[/C][C] 8.472e-08[/C][C] 4.236e-08[/C][/ROW]
[ROW][C]101[/C][C] 1[/C][C] 4.999e-08[/C][C] 2.5e-08[/C][/ROW]
[ROW][C]102[/C][C] 0.9283[/C][C] 0.1434[/C][C] 0.07172[/C][/ROW]
[ROW][C]103[/C][C] 1[/C][C] 1.06e-15[/C][C] 5.3e-16[/C][/ROW]
[ROW][C]104[/C][C] 1[/C][C] 7.221e-05[/C][C] 3.611e-05[/C][/ROW]
[ROW][C]105[/C][C] 8.324e-22[/C][C] 1.665e-21[/C][C] 1[/C][/ROW]
[ROW][C]106[/C][C] 6.749e-72[/C][C] 1.35e-71[/C][C] 1[/C][/ROW]
[ROW][C]107[/C][C] 0.5873[/C][C] 0.8254[/C][C] 0.4127[/C][/ROW]
[ROW][C]108[/C][C] 1[/C][C] 1.122e-14[/C][C] 5.612e-15[/C][/ROW]
[ROW][C]109[/C][C] 0.9394[/C][C] 0.1212[/C][C] 0.06062[/C][/ROW]
[ROW][C]110[/C][C] 1[/C][C] 6.411e-13[/C][C] 3.205e-13[/C][/ROW]
[ROW][C]111[/C][C] 1[/C][C] 2.688e-10[/C][C] 1.344e-10[/C][/ROW]
[ROW][C]112[/C][C] 6.297e-37[/C][C] 1.259e-36[/C][C] 1[/C][/ROW]
[ROW][C]113[/C][C] 1[/C][C] 4.363e-32[/C][C] 2.182e-32[/C][/ROW]
[ROW][C]114[/C][C] 1[/C][C] 1.088e-42[/C][C] 5.44e-43[/C][/ROW]
[ROW][C]115[/C][C] 1[/C][C] 1.123e-07[/C][C] 5.614e-08[/C][/ROW]
[ROW][C]116[/C][C] 1[/C][C] 0.0001004[/C][C] 5.018e-05[/C][/ROW]
[ROW][C]117[/C][C] 1[/C][C] 1.073e-17[/C][C] 5.365e-18[/C][/ROW]
[ROW][C]118[/C][C] 0.9983[/C][C] 0.003496[/C][C] 0.001748[/C][/ROW]
[ROW][C]119[/C][C] 1[/C][C] 3.722e-27[/C][C] 1.861e-27[/C][/ROW]
[ROW][C]120[/C][C] 1[/C][C] 1.648e-17[/C][C] 8.24e-18[/C][/ROW]
[ROW][C]121[/C][C] 1[/C][C] 8.951e-15[/C][C] 4.475e-15[/C][/ROW]
[ROW][C]122[/C][C] 0.2685[/C][C] 0.537[/C][C] 0.7315[/C][/ROW]
[ROW][C]123[/C][C] 1[/C][C] 2.366e-21[/C][C] 1.183e-21[/C][/ROW]
[ROW][C]124[/C][C] 1[/C][C] 2.407e-10[/C][C] 1.203e-10[/C][/ROW]
[ROW][C]125[/C][C] 1[/C][C] 2.622e-06[/C][C] 1.311e-06[/C][/ROW]
[ROW][C]126[/C][C] 0.9969[/C][C] 0.006125[/C][C] 0.003062[/C][/ROW]
[ROW][C]127[/C][C] 0.9467[/C][C] 0.1066[/C][C] 0.05332[/C][/ROW]
[ROW][C]128[/C][C] 0.002563[/C][C] 0.005125[/C][C] 0.9974[/C][/ROW]
[ROW][C]129[/C][C] 5.278e-16[/C][C] 1.056e-15[/C][C] 1[/C][/ROW]
[ROW][C]130[/C][C] 1[/C][C] 1.969e-17[/C][C] 9.847e-18[/C][/ROW]
[ROW][C]131[/C][C] 0.9996[/C][C] 0.0007775[/C][C] 0.0003888[/C][/ROW]
[ROW][C]132[/C][C] 1[/C][C] 2.875e-13[/C][C] 1.438e-13[/C][/ROW]
[ROW][C]133[/C][C] 1[/C][C] 1.225e-12[/C][C] 6.127e-13[/C][/ROW]
[ROW][C]134[/C][C] 1[/C][C] 1.898e-05[/C][C] 9.488e-06[/C][/ROW]
[ROW][C]135[/C][C] 1[/C][C] 9.077e-19[/C][C] 4.539e-19[/C][/ROW]
[ROW][C]136[/C][C] 0.1821[/C][C] 0.3641[/C][C] 0.8179[/C][/ROW]
[ROW][C]137[/C][C] 1[/C][C] 1.195e-09[/C][C] 5.976e-10[/C][/ROW]
[ROW][C]138[/C][C] 1[/C][C] 7.6e-14[/C][C] 3.8e-14[/C][/ROW]
[ROW][C]139[/C][C] 0.9878[/C][C] 0.02435[/C][C] 0.01218[/C][/ROW]
[ROW][C]140[/C][C] 1[/C][C] 5.474e-17[/C][C] 2.737e-17[/C][/ROW]
[ROW][C]141[/C][C] 1[/C][C] 6.644e-13[/C][C] 3.322e-13[/C][/ROW]
[ROW][C]142[/C][C] 1[/C][C] 7.704e-09[/C][C] 3.852e-09[/C][/ROW]
[ROW][C]143[/C][C] 1[/C][C] 2.849e-05[/C][C] 1.425e-05[/C][/ROW]
[ROW][C]144[/C][C] 1[/C][C] 8.915e-05[/C][C] 4.458e-05[/C][/ROW]
[ROW][C]145[/C][C] 1[/C][C] 1.758e-07[/C][C] 8.79e-08[/C][/ROW]
[ROW][C]146[/C][C] 1[/C][C] 4.144e-05[/C][C] 2.072e-05[/C][/ROW]
[ROW][C]147[/C][C] 0.9948[/C][C] 0.01045[/C][C] 0.005226[/C][/ROW]
[ROW][C]148[/C][C] 0.9993[/C][C] 0.001324[/C][C] 0.0006619[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298087&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298087&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
8 1.534e-05 3.069e-05 1
9 0.0001225 0.000245 0.9999
10 3.15e-05 6.301e-05 1
11 0.0009754 0.001951 0.999
12 8.312e-05 0.0001662 0.9999
13 2.31e-11 4.62e-11 1
14 1.916e-08 3.832e-08 1
15 4.86e-06 9.72e-06 1
16 2.365e-18 4.731e-18 1
17 0.0002354 0.0004708 0.9998
18 7.604e-09 1.521e-08 1
19 7.832e-09 1.566e-08 1
20 2.408e-05 4.815e-05 1
21 1.308e-17 2.616e-17 1
22 1.568e-09 3.135e-09 1
23 2.33e-11 4.66e-11 1
24 3.947e-28 7.895e-28 1
25 5.288e-11 1.058e-10 1
26 8.796e-15 1.759e-14 1
27 0.9935 0.01299 0.006497
28 2.458e-07 4.915e-07 1
29 0.9473 0.1053 0.05266
30 4.515e-24 9.031e-24 1
31 1.782e-12 3.564e-12 1
32 1.805e-06 3.609e-06 1
33 2.726e-11 5.452e-11 1
34 1 4.004e-17 2.002e-17
35 1.088e-44 2.177e-44 1
36 9.414e-17 1.883e-16 1
37 9.681e-05 0.0001936 0.9999
38 4.63e-09 9.26e-09 1
39 1.672e-30 3.344e-30 1
40 0.0007855 0.001571 0.9992
41 0.2047 0.4095 0.7953
42 3.205e-35 6.41e-35 1
43 5.904e-27 1.181e-26 1
44 1 1.065e-29 5.323e-30
45 2.479e-08 4.958e-08 1
46 0.9657 0.06869 0.03435
47 0.0001107 0.0002215 0.9999
48 3.699e-24 7.397e-24 1
49 0.0033 0.0066 0.9967
50 1 2.372e-41 1.186e-41
51 0.1792 0.3585 0.8208
52 9.233e-11 1.847e-10 1
53 3.887e-20 7.775e-20 1
54 0.2464 0.4927 0.7536
55 1.187e-29 2.374e-29 1
56 8.138e-14 1.628e-13 1
57 4.84e-18 9.681e-18 1
58 3.506e-11 7.012e-11 1
59 1 3.962e-19 1.981e-19
60 0.0008768 0.001754 0.9991
61 1.615e-31 3.23e-31 1
62 0.05416 0.1083 0.9458
63 1 2.013e-45 1.007e-45
64 1.231e-47 2.462e-47 1
65 0.01815 0.0363 0.9818
66 3.118e-17 6.236e-17 1
67 0.8809 0.2381 0.1191
68 9.361e-34 1.872e-33 1
69 0.07743 0.1549 0.9226
70 0.002013 0.004027 0.998
71 1.292e-07 2.584e-07 1
72 0.9903 0.01947 0.009736
73 1.281e-16 2.562e-16 1
74 6.173e-17 1.235e-16 1
75 0.9486 0.1027 0.05136
76 0.9595 0.08097 0.04049
77 0.06997 0.1399 0.93
78 0.4282 0.8564 0.5718
79 0.00304 0.006081 0.997
80 1 6.51e-09 3.255e-09
81 1.247e-15 2.495e-15 1
82 1 1.789e-09 8.945e-10
83 1 5.301e-62 2.651e-62
84 1.094e-26 2.188e-26 1
85 0.9998 0.0003413 0.0001706
86 2.261e-07 4.522e-07 1
87 3.639e-17 7.278e-17 1
88 0.8485 0.303 0.1515
89 1 1.321e-21 6.603e-22
90 1 2.244e-10 1.122e-10
91 1 8.498e-26 4.249e-26
92 1 4.68e-37 2.34e-37
93 1.334e-69 2.667e-69 1
94 1 3.352e-12 1.676e-12
95 1 2.655e-40 1.327e-40
96 1 1.597e-07 7.984e-08
97 2.14e-10 4.28e-10 1
98 1 3.573e-42 1.787e-42
99 1 9.029e-05 4.514e-05
100 1 8.472e-08 4.236e-08
101 1 4.999e-08 2.5e-08
102 0.9283 0.1434 0.07172
103 1 1.06e-15 5.3e-16
104 1 7.221e-05 3.611e-05
105 8.324e-22 1.665e-21 1
106 6.749e-72 1.35e-71 1
107 0.5873 0.8254 0.4127
108 1 1.122e-14 5.612e-15
109 0.9394 0.1212 0.06062
110 1 6.411e-13 3.205e-13
111 1 2.688e-10 1.344e-10
112 6.297e-37 1.259e-36 1
113 1 4.363e-32 2.182e-32
114 1 1.088e-42 5.44e-43
115 1 1.123e-07 5.614e-08
116 1 0.0001004 5.018e-05
117 1 1.073e-17 5.365e-18
118 0.9983 0.003496 0.001748
119 1 3.722e-27 1.861e-27
120 1 1.648e-17 8.24e-18
121 1 8.951e-15 4.475e-15
122 0.2685 0.537 0.7315
123 1 2.366e-21 1.183e-21
124 1 2.407e-10 1.203e-10
125 1 2.622e-06 1.311e-06
126 0.9969 0.006125 0.003062
127 0.9467 0.1066 0.05332
128 0.002563 0.005125 0.9974
129 5.278e-16 1.056e-15 1
130 1 1.969e-17 9.847e-18
131 0.9996 0.0007775 0.0003888
132 1 2.875e-13 1.438e-13
133 1 1.225e-12 6.127e-13
134 1 1.898e-05 9.488e-06
135 1 9.077e-19 4.539e-19
136 0.1821 0.3641 0.8179
137 1 1.195e-09 5.976e-10
138 1 7.6e-14 3.8e-14
139 0.9878 0.02435 0.01218
140 1 5.474e-17 2.737e-17
141 1 6.644e-13 3.322e-13
142 1 7.704e-09 3.852e-09
143 1 2.849e-05 1.425e-05
144 1 8.915e-05 4.458e-05
145 1 1.758e-07 8.79e-08
146 1 4.144e-05 2.072e-05
147 0.9948 0.01045 0.005226
148 0.9993 0.001324 0.0006619







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level117 0.8298NOK
5% type I error level1220.865248NOK
10% type I error level1240.879433NOK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 117 &  0.8298 & NOK \tabularnewline
5% type I error level & 122 & 0.865248 & NOK \tabularnewline
10% type I error level & 124 & 0.879433 & NOK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298087&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]117[/C][C] 0.8298[/C][C]NOK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]122[/C][C]0.865248[/C][C]NOK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]124[/C][C]0.879433[/C][C]NOK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298087&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298087&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level117 0.8298NOK
5% type I error level1220.865248NOK
10% type I error level1240.879433NOK







Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 0.43942, df1 = 2, df2 = 149, p-value = 0.6452
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = 1.4309, df1 = 8, df2 = 143, p-value = 0.1884
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 0.53674, df1 = 2, df2 = 149, p-value = 0.5858

\begin{tabular}{lllllllll}
\hline
Ramsey RESET F-Test for powers (2 and 3) of fitted values \tabularnewline
> reset_test_fitted
	RESET test
data:  mylm
RESET = 0.43942, df1 = 2, df2 = 149, p-value = 0.6452
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of regressors \tabularnewline
> reset_test_regressors
	RESET test
data:  mylm
RESET = 1.4309, df1 = 8, df2 = 143, p-value = 0.1884
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of principal components \tabularnewline
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 0.53674, df1 = 2, df2 = 149, p-value = 0.5858
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=298087&T=7

[TABLE]
[ROW][C]Ramsey RESET F-Test for powers (2 and 3) of fitted values[/C][/ROW]
[ROW][C]
> reset_test_fitted
	RESET test
data:  mylm
RESET = 0.43942, df1 = 2, df2 = 149, p-value = 0.6452
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of regressors[/C][/ROW] [ROW][C]
> reset_test_regressors
	RESET test
data:  mylm
RESET = 1.4309, df1 = 8, df2 = 143, p-value = 0.1884
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of principal components[/C][/ROW] [ROW][C]
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 0.53674, df1 = 2, df2 = 149, p-value = 0.5858
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=298087&T=7

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298087&T=7

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 0.43942, df1 = 2, df2 = 149, p-value = 0.6452
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = 1.4309, df1 = 8, df2 = 143, p-value = 0.1884
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 0.53674, df1 = 2, df2 = 149, p-value = 0.5858







Variance Inflation Factors (Multicollinearity)
> vif
      ITH1       ITH2       ITH3 `EPSUM\\r` 
  3.177746   2.299483   3.180086   9.194824 

\begin{tabular}{lllllllll}
\hline
Variance Inflation Factors (Multicollinearity) \tabularnewline
> vif
      ITH1       ITH2       ITH3 `EPSUM\\r` 
  3.177746   2.299483   3.180086   9.194824 
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=298087&T=8

[TABLE]
[ROW][C]Variance Inflation Factors (Multicollinearity)[/C][/ROW]
[ROW][C]
> vif
      ITH1       ITH2       ITH3 `EPSUM\\r` 
  3.177746   2.299483   3.180086   9.194824 
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=298087&T=8

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298087&T=8

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Variance Inflation Factors (Multicollinearity)
> vif
      ITH1       ITH2       ITH3 `EPSUM\\r` 
  3.177746   2.299483   3.180086   9.194824 



Parameters (Session):
Parameters (R input):
par1 = 5 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ; par4 = 0 ; par5 = 0 ; par6 = ; par7 = ; par8 = ; par9 = ; par10 = ; par11 = ; par12 = ; par13 = ; par14 = ; par15 = ; par16 = ; par17 = ; par18 = ; par19 = ; par20 = ;
R code (references can be found in the software module):
par5 <- '0'
par4 <- '0'
par3 <- 'No Linear Trend'
par2 <- 'Do not include Seasonal Dummies'
par1 <- '4'
library(lattice)
library(lmtest)
library(car)
library(MASS)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
mywarning <- ''
par1 <- as.numeric(par1)
if(is.na(par1)) {
par1 <- 1
mywarning = 'Warning: you did not specify the column number of the endogenous series! The first column was selected by default.'
}
if (par4=='') par4 <- 0
par4 <- as.numeric(par4)
if (par5=='') par5 <- 0
par5 <- as.numeric(par5)
x <- na.omit(t(y))
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'Seasonal Differences (s=12)'){
(n <- n - 12)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+12,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'First and Seasonal Differences (s=12)'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
(n <- n - 12)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+12,j] - x[i,j]
}
}
x <- x2
}
if(par4 > 0) {
x2 <- array(0, dim=c(n-par4,par4), dimnames=list(1:(n-par4), paste(colnames(x)[par1],'(t-',1:par4,')',sep='')))
for (i in 1:(n-par4)) {
for (j in 1:par4) {
x2[i,j] <- x[i+par4-j,par1]
}
}
x <- cbind(x[(par4+1):n,], x2)
n <- n - par4
}
if(par5 > 0) {
x2 <- array(0, dim=c(n-par5*12,par5), dimnames=list(1:(n-par5*12), paste(colnames(x)[par1],'(t-',1:par5,'s)',sep='')))
for (i in 1:(n-par5*12)) {
for (j in 1:par5) {
x2[i,j] <- x[i+par5*12-j*12,par1]
}
}
x <- cbind(x[(par5*12+1):n,], x2)
n <- n - par5*12
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
(k <- length(x[n,]))
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
print(x)
(k <- length(x[n,]))
head(x)
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
sresid <- studres(mylm)
hist(sresid, freq=FALSE, main='Distribution of Studentized Residuals')
xfit<-seq(min(sresid),max(sresid),length=40)
yfit<-dnorm(xfit)
lines(xfit, yfit)
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqPlot(mylm, main='QQ Plot')
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
print(z)
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, signif(mysum$coefficients[i,1],6), sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, mywarning)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Multiple Linear Regression - Ordinary Least Squares', 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,formatC(signif(mysum$coefficients[i,1],5),format='g',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,2],5),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,3],4),format='e',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4],4),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4]/2,4),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a,formatC(signif(sqrt(mysum$r.squared),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$adj.r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a,formatC(signif(mysum$fstatistic[1],6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[2],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[3],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a,formatC(signif(1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a,formatC(signif(mysum$sigma,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a,formatC(signif(sum(myerror*myerror),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
myr <- as.numeric(mysum$resid)
myr
if(n < 200) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,formatC(signif(x[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(x[i]-mysum$resid[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$resid[i],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,1],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,2],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,3],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant1,6))
a<-table.element(a,formatC(signif(numsignificant1/numgqtests,6),format='g',flag=' '))
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant5,6))
a<-table.element(a,signif(numsignificant5/numgqtests,6))
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant10,6))
a<-table.element(a,signif(numsignificant10/numgqtests,6))
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}
}
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of fitted values',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_fitted <- resettest(mylm,power=2:3,type='fitted')
a<-table.element(a,paste('
',RC.texteval('reset_test_fitted'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of regressors',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_regressors <- resettest(mylm,power=2:3,type='regressor')
a<-table.element(a,paste('
',RC.texteval('reset_test_regressors'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of principal components',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_principal_components <- resettest(mylm,power=2:3,type='princomp')
a<-table.element(a,paste('
',RC.texteval('reset_test_principal_components'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable8.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Variance Inflation Factors (Multicollinearity)',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
vif <- vif(mylm)
a<-table.element(a,paste('
',RC.texteval('vif'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable9.tab')