Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_exponentialsmoothing.wasp
Title produced by softwareExponential Smoothing
Date of computationWed, 07 Dec 2016 13:41:58 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/07/t1481114541zjt12ztotcunhs9.htm/, Retrieved Fri, 01 Nov 2024 03:27:54 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=298060, Retrieved Fri, 01 Nov 2024 03:27:54 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact85
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Exponential Smoothing] [Smooth] [2016-12-07 12:41:58] [d42b2dfaed369a60e2334709a5cede2f] [Current]
Feedback Forum

Post a new message
Dataseries X:
1800
2000
2200
2250
2400
2350
2350
2250
2250
2200
2150
2150
1900
2050
2100
2100
1900
1950
1900
1950
2000
2050
1900
2050
1750
1950
2250
2150
2250
2500
2250
2300
2550
2550
2600
2900
2400
2750
3300
3200
3150
3200
3200
3250
3600
3550
3600
3600
3300
3650
4200
3900
3950
4200
4300
4350
4650
4650
4450
4750
4300
4600
5350
4750
4900
4700
4500
4700
4700
4350
4400
4450
4050
4700
5050
4750
4800
4900
5000
5050
5400
5400
5350
5600
5200
6000
6650
6050
6050
6400
6400
6100
7050
6450
6250
6600
6000
6600
7400
6650
6250
6650




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time1 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298060&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]1 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=298060&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298060&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center







Estimated Parameters of Exponential Smoothing
ParameterValue
alpha0.409418221589223
beta0.265590436756532
gamma0.589455129365315

\begin{tabular}{lllllllll}
\hline
Estimated Parameters of Exponential Smoothing \tabularnewline
Parameter & Value \tabularnewline
alpha & 0.409418221589223 \tabularnewline
beta & 0.265590436756532 \tabularnewline
gamma & 0.589455129365315 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298060&T=1

[TABLE]
[ROW][C]Estimated Parameters of Exponential Smoothing[/C][/ROW]
[ROW][C]Parameter[/C][C]Value[/C][/ROW]
[ROW][C]alpha[/C][C]0.409418221589223[/C][/ROW]
[ROW][C]beta[/C][C]0.265590436756532[/C][/ROW]
[ROW][C]gamma[/C][C]0.589455129365315[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298060&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298060&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Estimated Parameters of Exponential Smoothing
ParameterValue
alpha0.409418221589223
beta0.265590436756532
gamma0.589455129365315







Interpolation Forecasts of Exponential Smoothing
tObservedFittedResiduals
1319002026.0445366295-126.044536629495
1420502125.08180968193-75.0818096819294
1521002122.21320668348-22.2132066834838
1621002080.3872708729819.6127291270213
1719001861.4199339329538.5800660670543
1819501899.7808447061350.219155293868
1919002056.39430077079-156.394300770794
2019501848.98416837043101.01583162957
2120001849.87881309696150.12118690304
2220501852.27071178969197.729288210312
2319001908.97597034807-8.97597034807472
2420501933.86792303543116.132076964567
2517501747.776008346142.22399165385968
2619501942.105032685617.89496731438885
2722502042.11123426431207.888765735692
2821502191.68810379462-41.6881037946159
2922502016.71603853257233.283961467431
3025002240.26382889086259.736171109142
3122502552.49044969661-302.49044969661
3223002480.05474757195-180.054747571949
3325502461.8603389518688.1396610481402
3425502515.5324299808434.467570019156
3526002456.44095526786143.559044732144
3629002677.41518285199222.584817148012
3724002458.86247501399-58.8624750139857
3827502770.5282818597-20.5282818597038
3933003058.89779853017241.102201469827
4032003181.2935785316118.7064214683865
4131503152.45082300878-2.4508230087813
4232003367.23461832205-167.234618322051
4332003277.27623664104-77.2762366410434
4432503378.44857232394-128.448572323945
4536003553.4181029583246.5818970416817
4635503579.16707954531-29.1670795453051
4736003516.395548845683.6044511543973
4836003797.26943554394-197.269435543941
4933003132.85981032782167.140189672182
5036503635.3121779225314.6878220774679
5142004123.8273236919676.1726763080351
5239004038.81743239108-138.817432391083
5339503868.7678410938681.2321589061376
5442004047.23496022128152.765039778721
5543004108.9710772481191.028922751903
5643504352.08684422467-2.08684422467013
5746504768.32544738357-118.325447383572
5846504709.32569027596-59.3256902759604
5944504682.12849584042-232.128495840424
6047504753.44473741632-3.44473741632282
6143004157.94059089738142.059409102624
6246004702.83248320927-102.832483209267
6353505284.2664158069265.7335841930817
6447505046.08347615922-296.083476159219
6549004845.9971164246254.0028835753837
6647005039.93422236293-339.934222362929
6745004825.79617478047-325.796174780472
6847004660.4676349244839.5323650755199
6947004941.24750480358-241.247504803583
7043504707.55357408705-357.553574087045
7144004331.875045583668.1249544164029
7244504458.95611446569-8.95611446569183
7340503825.26721464184224.732785358158
7447004169.15169722201530.848302777993
7550504976.0371178471773.9628821528295
7647504586.56143044751163.438569552494
7748004690.59193488847109.408065111532
7849004767.41700615839132.582993841606
7950004797.15416472232202.845835277683
8050505091.39749258517-41.3974925851717
8154005357.756353133142.2436468669048
8254005307.1851008607992.81489913921
8353505440.21895347961-90.2189534796098
8456005674.17076271321-74.1707627132128
8552005103.820155744496.1798442556019
8660005743.72005824213256.279941757874
8766506509.8223050409140.177694959101
8860506164.25920749137-114.259207491374
8960506210.05759059074-160.057590590738
9064006232.28475183033167.715248169671
9164006334.5731960915165.4268039084891
9261006537.81942349621-437.819423496207
9370506725.07149845278324.928501547217
9464506795.78744924461-345.787449244607
9562506648.34390685463-398.343906854635
9666006743.61104186259-143.611041862595
9760006040.83446434543-40.8344643454284
9866006690.34253091107-90.3425309110744
9974007204.80178755329195.198212446711
10066506619.5551325076630.4448674923387
10162506610.37714121293-360.377141212931
10266506552.8159861157997.1840138842053

\begin{tabular}{lllllllll}
\hline
Interpolation Forecasts of Exponential Smoothing \tabularnewline
t & Observed & Fitted & Residuals \tabularnewline
13 & 1900 & 2026.0445366295 & -126.044536629495 \tabularnewline
14 & 2050 & 2125.08180968193 & -75.0818096819294 \tabularnewline
15 & 2100 & 2122.21320668348 & -22.2132066834838 \tabularnewline
16 & 2100 & 2080.38727087298 & 19.6127291270213 \tabularnewline
17 & 1900 & 1861.41993393295 & 38.5800660670543 \tabularnewline
18 & 1950 & 1899.78084470613 & 50.219155293868 \tabularnewline
19 & 1900 & 2056.39430077079 & -156.394300770794 \tabularnewline
20 & 1950 & 1848.98416837043 & 101.01583162957 \tabularnewline
21 & 2000 & 1849.87881309696 & 150.12118690304 \tabularnewline
22 & 2050 & 1852.27071178969 & 197.729288210312 \tabularnewline
23 & 1900 & 1908.97597034807 & -8.97597034807472 \tabularnewline
24 & 2050 & 1933.86792303543 & 116.132076964567 \tabularnewline
25 & 1750 & 1747.77600834614 & 2.22399165385968 \tabularnewline
26 & 1950 & 1942.10503268561 & 7.89496731438885 \tabularnewline
27 & 2250 & 2042.11123426431 & 207.888765735692 \tabularnewline
28 & 2150 & 2191.68810379462 & -41.6881037946159 \tabularnewline
29 & 2250 & 2016.71603853257 & 233.283961467431 \tabularnewline
30 & 2500 & 2240.26382889086 & 259.736171109142 \tabularnewline
31 & 2250 & 2552.49044969661 & -302.49044969661 \tabularnewline
32 & 2300 & 2480.05474757195 & -180.054747571949 \tabularnewline
33 & 2550 & 2461.86033895186 & 88.1396610481402 \tabularnewline
34 & 2550 & 2515.53242998084 & 34.467570019156 \tabularnewline
35 & 2600 & 2456.44095526786 & 143.559044732144 \tabularnewline
36 & 2900 & 2677.41518285199 & 222.584817148012 \tabularnewline
37 & 2400 & 2458.86247501399 & -58.8624750139857 \tabularnewline
38 & 2750 & 2770.5282818597 & -20.5282818597038 \tabularnewline
39 & 3300 & 3058.89779853017 & 241.102201469827 \tabularnewline
40 & 3200 & 3181.29357853161 & 18.7064214683865 \tabularnewline
41 & 3150 & 3152.45082300878 & -2.4508230087813 \tabularnewline
42 & 3200 & 3367.23461832205 & -167.234618322051 \tabularnewline
43 & 3200 & 3277.27623664104 & -77.2762366410434 \tabularnewline
44 & 3250 & 3378.44857232394 & -128.448572323945 \tabularnewline
45 & 3600 & 3553.41810295832 & 46.5818970416817 \tabularnewline
46 & 3550 & 3579.16707954531 & -29.1670795453051 \tabularnewline
47 & 3600 & 3516.3955488456 & 83.6044511543973 \tabularnewline
48 & 3600 & 3797.26943554394 & -197.269435543941 \tabularnewline
49 & 3300 & 3132.85981032782 & 167.140189672182 \tabularnewline
50 & 3650 & 3635.31217792253 & 14.6878220774679 \tabularnewline
51 & 4200 & 4123.82732369196 & 76.1726763080351 \tabularnewline
52 & 3900 & 4038.81743239108 & -138.817432391083 \tabularnewline
53 & 3950 & 3868.76784109386 & 81.2321589061376 \tabularnewline
54 & 4200 & 4047.23496022128 & 152.765039778721 \tabularnewline
55 & 4300 & 4108.9710772481 & 191.028922751903 \tabularnewline
56 & 4350 & 4352.08684422467 & -2.08684422467013 \tabularnewline
57 & 4650 & 4768.32544738357 & -118.325447383572 \tabularnewline
58 & 4650 & 4709.32569027596 & -59.3256902759604 \tabularnewline
59 & 4450 & 4682.12849584042 & -232.128495840424 \tabularnewline
60 & 4750 & 4753.44473741632 & -3.44473741632282 \tabularnewline
61 & 4300 & 4157.94059089738 & 142.059409102624 \tabularnewline
62 & 4600 & 4702.83248320927 & -102.832483209267 \tabularnewline
63 & 5350 & 5284.26641580692 & 65.7335841930817 \tabularnewline
64 & 4750 & 5046.08347615922 & -296.083476159219 \tabularnewline
65 & 4900 & 4845.99711642462 & 54.0028835753837 \tabularnewline
66 & 4700 & 5039.93422236293 & -339.934222362929 \tabularnewline
67 & 4500 & 4825.79617478047 & -325.796174780472 \tabularnewline
68 & 4700 & 4660.46763492448 & 39.5323650755199 \tabularnewline
69 & 4700 & 4941.24750480358 & -241.247504803583 \tabularnewline
70 & 4350 & 4707.55357408705 & -357.553574087045 \tabularnewline
71 & 4400 & 4331.8750455836 & 68.1249544164029 \tabularnewline
72 & 4450 & 4458.95611446569 & -8.95611446569183 \tabularnewline
73 & 4050 & 3825.26721464184 & 224.732785358158 \tabularnewline
74 & 4700 & 4169.15169722201 & 530.848302777993 \tabularnewline
75 & 5050 & 4976.03711784717 & 73.9628821528295 \tabularnewline
76 & 4750 & 4586.56143044751 & 163.438569552494 \tabularnewline
77 & 4800 & 4690.59193488847 & 109.408065111532 \tabularnewline
78 & 4900 & 4767.41700615839 & 132.582993841606 \tabularnewline
79 & 5000 & 4797.15416472232 & 202.845835277683 \tabularnewline
80 & 5050 & 5091.39749258517 & -41.3974925851717 \tabularnewline
81 & 5400 & 5357.7563531331 & 42.2436468669048 \tabularnewline
82 & 5400 & 5307.18510086079 & 92.81489913921 \tabularnewline
83 & 5350 & 5440.21895347961 & -90.2189534796098 \tabularnewline
84 & 5600 & 5674.17076271321 & -74.1707627132128 \tabularnewline
85 & 5200 & 5103.8201557444 & 96.1798442556019 \tabularnewline
86 & 6000 & 5743.72005824213 & 256.279941757874 \tabularnewline
87 & 6650 & 6509.8223050409 & 140.177694959101 \tabularnewline
88 & 6050 & 6164.25920749137 & -114.259207491374 \tabularnewline
89 & 6050 & 6210.05759059074 & -160.057590590738 \tabularnewline
90 & 6400 & 6232.28475183033 & 167.715248169671 \tabularnewline
91 & 6400 & 6334.57319609151 & 65.4268039084891 \tabularnewline
92 & 6100 & 6537.81942349621 & -437.819423496207 \tabularnewline
93 & 7050 & 6725.07149845278 & 324.928501547217 \tabularnewline
94 & 6450 & 6795.78744924461 & -345.787449244607 \tabularnewline
95 & 6250 & 6648.34390685463 & -398.343906854635 \tabularnewline
96 & 6600 & 6743.61104186259 & -143.611041862595 \tabularnewline
97 & 6000 & 6040.83446434543 & -40.8344643454284 \tabularnewline
98 & 6600 & 6690.34253091107 & -90.3425309110744 \tabularnewline
99 & 7400 & 7204.80178755329 & 195.198212446711 \tabularnewline
100 & 6650 & 6619.55513250766 & 30.4448674923387 \tabularnewline
101 & 6250 & 6610.37714121293 & -360.377141212931 \tabularnewline
102 & 6650 & 6552.81598611579 & 97.1840138842053 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298060&T=2

[TABLE]
[ROW][C]Interpolation Forecasts of Exponential Smoothing[/C][/ROW]
[ROW][C]t[/C][C]Observed[/C][C]Fitted[/C][C]Residuals[/C][/ROW]
[ROW][C]13[/C][C]1900[/C][C]2026.0445366295[/C][C]-126.044536629495[/C][/ROW]
[ROW][C]14[/C][C]2050[/C][C]2125.08180968193[/C][C]-75.0818096819294[/C][/ROW]
[ROW][C]15[/C][C]2100[/C][C]2122.21320668348[/C][C]-22.2132066834838[/C][/ROW]
[ROW][C]16[/C][C]2100[/C][C]2080.38727087298[/C][C]19.6127291270213[/C][/ROW]
[ROW][C]17[/C][C]1900[/C][C]1861.41993393295[/C][C]38.5800660670543[/C][/ROW]
[ROW][C]18[/C][C]1950[/C][C]1899.78084470613[/C][C]50.219155293868[/C][/ROW]
[ROW][C]19[/C][C]1900[/C][C]2056.39430077079[/C][C]-156.394300770794[/C][/ROW]
[ROW][C]20[/C][C]1950[/C][C]1848.98416837043[/C][C]101.01583162957[/C][/ROW]
[ROW][C]21[/C][C]2000[/C][C]1849.87881309696[/C][C]150.12118690304[/C][/ROW]
[ROW][C]22[/C][C]2050[/C][C]1852.27071178969[/C][C]197.729288210312[/C][/ROW]
[ROW][C]23[/C][C]1900[/C][C]1908.97597034807[/C][C]-8.97597034807472[/C][/ROW]
[ROW][C]24[/C][C]2050[/C][C]1933.86792303543[/C][C]116.132076964567[/C][/ROW]
[ROW][C]25[/C][C]1750[/C][C]1747.77600834614[/C][C]2.22399165385968[/C][/ROW]
[ROW][C]26[/C][C]1950[/C][C]1942.10503268561[/C][C]7.89496731438885[/C][/ROW]
[ROW][C]27[/C][C]2250[/C][C]2042.11123426431[/C][C]207.888765735692[/C][/ROW]
[ROW][C]28[/C][C]2150[/C][C]2191.68810379462[/C][C]-41.6881037946159[/C][/ROW]
[ROW][C]29[/C][C]2250[/C][C]2016.71603853257[/C][C]233.283961467431[/C][/ROW]
[ROW][C]30[/C][C]2500[/C][C]2240.26382889086[/C][C]259.736171109142[/C][/ROW]
[ROW][C]31[/C][C]2250[/C][C]2552.49044969661[/C][C]-302.49044969661[/C][/ROW]
[ROW][C]32[/C][C]2300[/C][C]2480.05474757195[/C][C]-180.054747571949[/C][/ROW]
[ROW][C]33[/C][C]2550[/C][C]2461.86033895186[/C][C]88.1396610481402[/C][/ROW]
[ROW][C]34[/C][C]2550[/C][C]2515.53242998084[/C][C]34.467570019156[/C][/ROW]
[ROW][C]35[/C][C]2600[/C][C]2456.44095526786[/C][C]143.559044732144[/C][/ROW]
[ROW][C]36[/C][C]2900[/C][C]2677.41518285199[/C][C]222.584817148012[/C][/ROW]
[ROW][C]37[/C][C]2400[/C][C]2458.86247501399[/C][C]-58.8624750139857[/C][/ROW]
[ROW][C]38[/C][C]2750[/C][C]2770.5282818597[/C][C]-20.5282818597038[/C][/ROW]
[ROW][C]39[/C][C]3300[/C][C]3058.89779853017[/C][C]241.102201469827[/C][/ROW]
[ROW][C]40[/C][C]3200[/C][C]3181.29357853161[/C][C]18.7064214683865[/C][/ROW]
[ROW][C]41[/C][C]3150[/C][C]3152.45082300878[/C][C]-2.4508230087813[/C][/ROW]
[ROW][C]42[/C][C]3200[/C][C]3367.23461832205[/C][C]-167.234618322051[/C][/ROW]
[ROW][C]43[/C][C]3200[/C][C]3277.27623664104[/C][C]-77.2762366410434[/C][/ROW]
[ROW][C]44[/C][C]3250[/C][C]3378.44857232394[/C][C]-128.448572323945[/C][/ROW]
[ROW][C]45[/C][C]3600[/C][C]3553.41810295832[/C][C]46.5818970416817[/C][/ROW]
[ROW][C]46[/C][C]3550[/C][C]3579.16707954531[/C][C]-29.1670795453051[/C][/ROW]
[ROW][C]47[/C][C]3600[/C][C]3516.3955488456[/C][C]83.6044511543973[/C][/ROW]
[ROW][C]48[/C][C]3600[/C][C]3797.26943554394[/C][C]-197.269435543941[/C][/ROW]
[ROW][C]49[/C][C]3300[/C][C]3132.85981032782[/C][C]167.140189672182[/C][/ROW]
[ROW][C]50[/C][C]3650[/C][C]3635.31217792253[/C][C]14.6878220774679[/C][/ROW]
[ROW][C]51[/C][C]4200[/C][C]4123.82732369196[/C][C]76.1726763080351[/C][/ROW]
[ROW][C]52[/C][C]3900[/C][C]4038.81743239108[/C][C]-138.817432391083[/C][/ROW]
[ROW][C]53[/C][C]3950[/C][C]3868.76784109386[/C][C]81.2321589061376[/C][/ROW]
[ROW][C]54[/C][C]4200[/C][C]4047.23496022128[/C][C]152.765039778721[/C][/ROW]
[ROW][C]55[/C][C]4300[/C][C]4108.9710772481[/C][C]191.028922751903[/C][/ROW]
[ROW][C]56[/C][C]4350[/C][C]4352.08684422467[/C][C]-2.08684422467013[/C][/ROW]
[ROW][C]57[/C][C]4650[/C][C]4768.32544738357[/C][C]-118.325447383572[/C][/ROW]
[ROW][C]58[/C][C]4650[/C][C]4709.32569027596[/C][C]-59.3256902759604[/C][/ROW]
[ROW][C]59[/C][C]4450[/C][C]4682.12849584042[/C][C]-232.128495840424[/C][/ROW]
[ROW][C]60[/C][C]4750[/C][C]4753.44473741632[/C][C]-3.44473741632282[/C][/ROW]
[ROW][C]61[/C][C]4300[/C][C]4157.94059089738[/C][C]142.059409102624[/C][/ROW]
[ROW][C]62[/C][C]4600[/C][C]4702.83248320927[/C][C]-102.832483209267[/C][/ROW]
[ROW][C]63[/C][C]5350[/C][C]5284.26641580692[/C][C]65.7335841930817[/C][/ROW]
[ROW][C]64[/C][C]4750[/C][C]5046.08347615922[/C][C]-296.083476159219[/C][/ROW]
[ROW][C]65[/C][C]4900[/C][C]4845.99711642462[/C][C]54.0028835753837[/C][/ROW]
[ROW][C]66[/C][C]4700[/C][C]5039.93422236293[/C][C]-339.934222362929[/C][/ROW]
[ROW][C]67[/C][C]4500[/C][C]4825.79617478047[/C][C]-325.796174780472[/C][/ROW]
[ROW][C]68[/C][C]4700[/C][C]4660.46763492448[/C][C]39.5323650755199[/C][/ROW]
[ROW][C]69[/C][C]4700[/C][C]4941.24750480358[/C][C]-241.247504803583[/C][/ROW]
[ROW][C]70[/C][C]4350[/C][C]4707.55357408705[/C][C]-357.553574087045[/C][/ROW]
[ROW][C]71[/C][C]4400[/C][C]4331.8750455836[/C][C]68.1249544164029[/C][/ROW]
[ROW][C]72[/C][C]4450[/C][C]4458.95611446569[/C][C]-8.95611446569183[/C][/ROW]
[ROW][C]73[/C][C]4050[/C][C]3825.26721464184[/C][C]224.732785358158[/C][/ROW]
[ROW][C]74[/C][C]4700[/C][C]4169.15169722201[/C][C]530.848302777993[/C][/ROW]
[ROW][C]75[/C][C]5050[/C][C]4976.03711784717[/C][C]73.9628821528295[/C][/ROW]
[ROW][C]76[/C][C]4750[/C][C]4586.56143044751[/C][C]163.438569552494[/C][/ROW]
[ROW][C]77[/C][C]4800[/C][C]4690.59193488847[/C][C]109.408065111532[/C][/ROW]
[ROW][C]78[/C][C]4900[/C][C]4767.41700615839[/C][C]132.582993841606[/C][/ROW]
[ROW][C]79[/C][C]5000[/C][C]4797.15416472232[/C][C]202.845835277683[/C][/ROW]
[ROW][C]80[/C][C]5050[/C][C]5091.39749258517[/C][C]-41.3974925851717[/C][/ROW]
[ROW][C]81[/C][C]5400[/C][C]5357.7563531331[/C][C]42.2436468669048[/C][/ROW]
[ROW][C]82[/C][C]5400[/C][C]5307.18510086079[/C][C]92.81489913921[/C][/ROW]
[ROW][C]83[/C][C]5350[/C][C]5440.21895347961[/C][C]-90.2189534796098[/C][/ROW]
[ROW][C]84[/C][C]5600[/C][C]5674.17076271321[/C][C]-74.1707627132128[/C][/ROW]
[ROW][C]85[/C][C]5200[/C][C]5103.8201557444[/C][C]96.1798442556019[/C][/ROW]
[ROW][C]86[/C][C]6000[/C][C]5743.72005824213[/C][C]256.279941757874[/C][/ROW]
[ROW][C]87[/C][C]6650[/C][C]6509.8223050409[/C][C]140.177694959101[/C][/ROW]
[ROW][C]88[/C][C]6050[/C][C]6164.25920749137[/C][C]-114.259207491374[/C][/ROW]
[ROW][C]89[/C][C]6050[/C][C]6210.05759059074[/C][C]-160.057590590738[/C][/ROW]
[ROW][C]90[/C][C]6400[/C][C]6232.28475183033[/C][C]167.715248169671[/C][/ROW]
[ROW][C]91[/C][C]6400[/C][C]6334.57319609151[/C][C]65.4268039084891[/C][/ROW]
[ROW][C]92[/C][C]6100[/C][C]6537.81942349621[/C][C]-437.819423496207[/C][/ROW]
[ROW][C]93[/C][C]7050[/C][C]6725.07149845278[/C][C]324.928501547217[/C][/ROW]
[ROW][C]94[/C][C]6450[/C][C]6795.78744924461[/C][C]-345.787449244607[/C][/ROW]
[ROW][C]95[/C][C]6250[/C][C]6648.34390685463[/C][C]-398.343906854635[/C][/ROW]
[ROW][C]96[/C][C]6600[/C][C]6743.61104186259[/C][C]-143.611041862595[/C][/ROW]
[ROW][C]97[/C][C]6000[/C][C]6040.83446434543[/C][C]-40.8344643454284[/C][/ROW]
[ROW][C]98[/C][C]6600[/C][C]6690.34253091107[/C][C]-90.3425309110744[/C][/ROW]
[ROW][C]99[/C][C]7400[/C][C]7204.80178755329[/C][C]195.198212446711[/C][/ROW]
[ROW][C]100[/C][C]6650[/C][C]6619.55513250766[/C][C]30.4448674923387[/C][/ROW]
[ROW][C]101[/C][C]6250[/C][C]6610.37714121293[/C][C]-360.377141212931[/C][/ROW]
[ROW][C]102[/C][C]6650[/C][C]6552.81598611579[/C][C]97.1840138842053[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298060&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298060&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Interpolation Forecasts of Exponential Smoothing
tObservedFittedResiduals
1319002026.0445366295-126.044536629495
1420502125.08180968193-75.0818096819294
1521002122.21320668348-22.2132066834838
1621002080.3872708729819.6127291270213
1719001861.4199339329538.5800660670543
1819501899.7808447061350.219155293868
1919002056.39430077079-156.394300770794
2019501848.98416837043101.01583162957
2120001849.87881309696150.12118690304
2220501852.27071178969197.729288210312
2319001908.97597034807-8.97597034807472
2420501933.86792303543116.132076964567
2517501747.776008346142.22399165385968
2619501942.105032685617.89496731438885
2722502042.11123426431207.888765735692
2821502191.68810379462-41.6881037946159
2922502016.71603853257233.283961467431
3025002240.26382889086259.736171109142
3122502552.49044969661-302.49044969661
3223002480.05474757195-180.054747571949
3325502461.8603389518688.1396610481402
3425502515.5324299808434.467570019156
3526002456.44095526786143.559044732144
3629002677.41518285199222.584817148012
3724002458.86247501399-58.8624750139857
3827502770.5282818597-20.5282818597038
3933003058.89779853017241.102201469827
4032003181.2935785316118.7064214683865
4131503152.45082300878-2.4508230087813
4232003367.23461832205-167.234618322051
4332003277.27623664104-77.2762366410434
4432503378.44857232394-128.448572323945
4536003553.4181029583246.5818970416817
4635503579.16707954531-29.1670795453051
4736003516.395548845683.6044511543973
4836003797.26943554394-197.269435543941
4933003132.85981032782167.140189672182
5036503635.3121779225314.6878220774679
5142004123.8273236919676.1726763080351
5239004038.81743239108-138.817432391083
5339503868.7678410938681.2321589061376
5442004047.23496022128152.765039778721
5543004108.9710772481191.028922751903
5643504352.08684422467-2.08684422467013
5746504768.32544738357-118.325447383572
5846504709.32569027596-59.3256902759604
5944504682.12849584042-232.128495840424
6047504753.44473741632-3.44473741632282
6143004157.94059089738142.059409102624
6246004702.83248320927-102.832483209267
6353505284.2664158069265.7335841930817
6447505046.08347615922-296.083476159219
6549004845.9971164246254.0028835753837
6647005039.93422236293-339.934222362929
6745004825.79617478047-325.796174780472
6847004660.4676349244839.5323650755199
6947004941.24750480358-241.247504803583
7043504707.55357408705-357.553574087045
7144004331.875045583668.1249544164029
7244504458.95611446569-8.95611446569183
7340503825.26721464184224.732785358158
7447004169.15169722201530.848302777993
7550504976.0371178471773.9628821528295
7647504586.56143044751163.438569552494
7748004690.59193488847109.408065111532
7849004767.41700615839132.582993841606
7950004797.15416472232202.845835277683
8050505091.39749258517-41.3974925851717
8154005357.756353133142.2436468669048
8254005307.1851008607992.81489913921
8353505440.21895347961-90.2189534796098
8456005674.17076271321-74.1707627132128
8552005103.820155744496.1798442556019
8660005743.72005824213256.279941757874
8766506509.8223050409140.177694959101
8860506164.25920749137-114.259207491374
8960506210.05759059074-160.057590590738
9064006232.28475183033167.715248169671
9164006334.5731960915165.4268039084891
9261006537.81942349621-437.819423496207
9370506725.07149845278324.928501547217
9464506795.78744924461-345.787449244607
9562506648.34390685463-398.343906854635
9666006743.61104186259-143.611041862595
9760006040.83446434543-40.8344643454284
9866006690.34253091107-90.3425309110744
9974007204.80178755329195.198212446711
10066506619.5551325076630.4448674923387
10162506610.37714121293-360.377141212931
10266506552.8159861157997.1840138842053







Extrapolation Forecasts of Exponential Smoothing
tForecast95% Lower Bound95% Upper Bound
1036463.636548478496199.843022137656727.43007481933
1046332.296807238586014.802263191786649.79135128539
1056885.936531785216483.414086516567288.45897705386
1066476.967767950966014.566700602866939.36883529906
1076372.774857430815832.610449706926912.93926515471
1086683.848026732436027.502227161697340.19382630318
1096051.684273030745357.418055476136745.95049058536
1106688.487539356295820.985910498277555.9891682143
1117337.771084620096269.133983522518406.40818571767
1126591.014795789415510.932465732227671.09712584659
1136403.728618463645236.189805882777571.26743104451
1146666.101176960855350.223593250097981.97876067162
1156502.307215637635022.575853725567982.0385775497
1166370.162815797714796.581897184697943.74373441073
1176927.092698539545090.931909209218763.25348786987
1186515.660320691514649.561590602528381.7590507805
1196410.826032715144439.049080946038382.60298448425
1206723.73673991594516.397439912718931.0760399191

\begin{tabular}{lllllllll}
\hline
Extrapolation Forecasts of Exponential Smoothing \tabularnewline
t & Forecast & 95% Lower Bound & 95% Upper Bound \tabularnewline
103 & 6463.63654847849 & 6199.84302213765 & 6727.43007481933 \tabularnewline
104 & 6332.29680723858 & 6014.80226319178 & 6649.79135128539 \tabularnewline
105 & 6885.93653178521 & 6483.41408651656 & 7288.45897705386 \tabularnewline
106 & 6476.96776795096 & 6014.56670060286 & 6939.36883529906 \tabularnewline
107 & 6372.77485743081 & 5832.61044970692 & 6912.93926515471 \tabularnewline
108 & 6683.84802673243 & 6027.50222716169 & 7340.19382630318 \tabularnewline
109 & 6051.68427303074 & 5357.41805547613 & 6745.95049058536 \tabularnewline
110 & 6688.48753935629 & 5820.98591049827 & 7555.9891682143 \tabularnewline
111 & 7337.77108462009 & 6269.13398352251 & 8406.40818571767 \tabularnewline
112 & 6591.01479578941 & 5510.93246573222 & 7671.09712584659 \tabularnewline
113 & 6403.72861846364 & 5236.18980588277 & 7571.26743104451 \tabularnewline
114 & 6666.10117696085 & 5350.22359325009 & 7981.97876067162 \tabularnewline
115 & 6502.30721563763 & 5022.57585372556 & 7982.0385775497 \tabularnewline
116 & 6370.16281579771 & 4796.58189718469 & 7943.74373441073 \tabularnewline
117 & 6927.09269853954 & 5090.93190920921 & 8763.25348786987 \tabularnewline
118 & 6515.66032069151 & 4649.56159060252 & 8381.7590507805 \tabularnewline
119 & 6410.82603271514 & 4439.04908094603 & 8382.60298448425 \tabularnewline
120 & 6723.7367399159 & 4516.39743991271 & 8931.0760399191 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298060&T=3

[TABLE]
[ROW][C]Extrapolation Forecasts of Exponential Smoothing[/C][/ROW]
[ROW][C]t[/C][C]Forecast[/C][C]95% Lower Bound[/C][C]95% Upper Bound[/C][/ROW]
[ROW][C]103[/C][C]6463.63654847849[/C][C]6199.84302213765[/C][C]6727.43007481933[/C][/ROW]
[ROW][C]104[/C][C]6332.29680723858[/C][C]6014.80226319178[/C][C]6649.79135128539[/C][/ROW]
[ROW][C]105[/C][C]6885.93653178521[/C][C]6483.41408651656[/C][C]7288.45897705386[/C][/ROW]
[ROW][C]106[/C][C]6476.96776795096[/C][C]6014.56670060286[/C][C]6939.36883529906[/C][/ROW]
[ROW][C]107[/C][C]6372.77485743081[/C][C]5832.61044970692[/C][C]6912.93926515471[/C][/ROW]
[ROW][C]108[/C][C]6683.84802673243[/C][C]6027.50222716169[/C][C]7340.19382630318[/C][/ROW]
[ROW][C]109[/C][C]6051.68427303074[/C][C]5357.41805547613[/C][C]6745.95049058536[/C][/ROW]
[ROW][C]110[/C][C]6688.48753935629[/C][C]5820.98591049827[/C][C]7555.9891682143[/C][/ROW]
[ROW][C]111[/C][C]7337.77108462009[/C][C]6269.13398352251[/C][C]8406.40818571767[/C][/ROW]
[ROW][C]112[/C][C]6591.01479578941[/C][C]5510.93246573222[/C][C]7671.09712584659[/C][/ROW]
[ROW][C]113[/C][C]6403.72861846364[/C][C]5236.18980588277[/C][C]7571.26743104451[/C][/ROW]
[ROW][C]114[/C][C]6666.10117696085[/C][C]5350.22359325009[/C][C]7981.97876067162[/C][/ROW]
[ROW][C]115[/C][C]6502.30721563763[/C][C]5022.57585372556[/C][C]7982.0385775497[/C][/ROW]
[ROW][C]116[/C][C]6370.16281579771[/C][C]4796.58189718469[/C][C]7943.74373441073[/C][/ROW]
[ROW][C]117[/C][C]6927.09269853954[/C][C]5090.93190920921[/C][C]8763.25348786987[/C][/ROW]
[ROW][C]118[/C][C]6515.66032069151[/C][C]4649.56159060252[/C][C]8381.7590507805[/C][/ROW]
[ROW][C]119[/C][C]6410.82603271514[/C][C]4439.04908094603[/C][C]8382.60298448425[/C][/ROW]
[ROW][C]120[/C][C]6723.7367399159[/C][C]4516.39743991271[/C][C]8931.0760399191[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298060&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298060&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Extrapolation Forecasts of Exponential Smoothing
tForecast95% Lower Bound95% Upper Bound
1036463.636548478496199.843022137656727.43007481933
1046332.296807238586014.802263191786649.79135128539
1056885.936531785216483.414086516567288.45897705386
1066476.967767950966014.566700602866939.36883529906
1076372.774857430815832.610449706926912.93926515471
1086683.848026732436027.502227161697340.19382630318
1096051.684273030745357.418055476136745.95049058536
1106688.487539356295820.985910498277555.9891682143
1117337.771084620096269.133983522518406.40818571767
1126591.014795789415510.932465732227671.09712584659
1136403.728618463645236.189805882777571.26743104451
1146666.101176960855350.223593250097981.97876067162
1156502.307215637635022.575853725567982.0385775497
1166370.162815797714796.581897184697943.74373441073
1176927.092698539545090.931909209218763.25348786987
1186515.660320691514649.561590602528381.7590507805
1196410.826032715144439.049080946038382.60298448425
1206723.73673991594516.397439912718931.0760399191



Parameters (Session):
par1 = 12 ; par2 = Triple ; par3 = multiplicative ; par4 = 18 ;
Parameters (R input):
par1 = 12 ; par2 = Triple ; par3 = multiplicative ; par4 = 18 ;
R code (references can be found in the software module):
par4 <- '18'
par3 <- 'multiplicative'
par2 <- 'Single'
par1 <- '12'
par1 <- as.numeric(par1)
par4 <- as.numeric(par4)
if (par2 == 'Single') K <- 1
if (par2 == 'Double') K <- 2
if (par2 == 'Triple') K <- par1
nx <- length(x)
nxmK <- nx - K
x <- ts(x, frequency = par1)
if (par2 == 'Single') fit <- HoltWinters(x, gamma=F, beta=F)
if (par2 == 'Double') fit <- HoltWinters(x, gamma=F)
if (par2 == 'Triple') fit <- HoltWinters(x, seasonal=par3)
fit
myresid <- x - fit$fitted[,'xhat']
bitmap(file='test1.png')
op <- par(mfrow=c(2,1))
plot(fit,ylab='Observed (black) / Fitted (red)',main='Interpolation Fit of Exponential Smoothing')
plot(myresid,ylab='Residuals',main='Interpolation Prediction Errors')
par(op)
dev.off()
bitmap(file='test2.png')
p <- predict(fit, par4, prediction.interval=TRUE)
np <- length(p[,1])
plot(fit,p,ylab='Observed (black) / Fitted (red)',main='Extrapolation Fit of Exponential Smoothing')
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(myresid),lag.max = nx/2,main='Residual ACF')
spectrum(myresid,main='Residals Periodogram')
cpgram(myresid,main='Residal Cumulative Periodogram')
qqnorm(myresid,main='Residual Normal QQ Plot')
qqline(myresid)
par(op)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Estimated Parameters of Exponential Smoothing',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'Value',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'alpha',header=TRUE)
a<-table.element(a,fit$alpha)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'beta',header=TRUE)
a<-table.element(a,fit$beta)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'gamma',header=TRUE)
a<-table.element(a,fit$gamma)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Interpolation Forecasts of Exponential Smoothing',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observed',header=TRUE)
a<-table.element(a,'Fitted',header=TRUE)
a<-table.element(a,'Residuals',header=TRUE)
a<-table.row.end(a)
for (i in 1:nxmK) {
a<-table.row.start(a)
a<-table.element(a,i+K,header=TRUE)
a<-table.element(a,x[i+K])
a<-table.element(a,fit$fitted[i,'xhat'])
a<-table.element(a,myresid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Extrapolation Forecasts of Exponential Smoothing',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Forecast',header=TRUE)
a<-table.element(a,'95% Lower Bound',header=TRUE)
a<-table.element(a,'95% Upper Bound',header=TRUE)
a<-table.row.end(a)
for (i in 1:np) {
a<-table.row.start(a)
a<-table.element(a,nx+i,header=TRUE)
a<-table.element(a,p[i,'fit'])
a<-table.element(a,p[i,'lwr'])
a<-table.element(a,p[i,'upr'])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')